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Abstract: Due to the success of artificial intelligence (Al) applications in the medical field over
the past decade, concerns about the explainability of these systems have increased. The reliability
requirements of black-box led algorithms for making decisions affecting patients pose a challenge
even beyond their accuracy. Recent advances in Al increasingly underscore the need to incorporate
explainability into these systems. While most traditional Al methods and expert systems are
inherently interpretable, recent literature has focused primarily on explainability techniques for
more complex models such as deep learning. This scoping review analyzes the existing literature
on explainability and interpretability of AI methods in the medical and clinical field, providing an
overview of past and current research trends, and limitations that might impede the development of
Explainable Artificial Intelligence (XAI) in medicine, challenges, and possible research directions. In
addition, this review discusses possible alternatives for leveraging medical knowledge to improve
interpretability in clinical settings, while taking into account the needs of users.

Keywords: artificial intelligence; medicine; explainable Al interpretable Al

1. Introduction

1.1. Al in medicine: opportunities and challenges

Today’s Artificial Intelligence (AI) with its capability to automate and ease almost any kind of
task, frequently appearing to surpass human performance, has made it a popular and widespread
technology for many applications, especially over the last decade, and thanks to advances in deep
learning (DL), with clinical healthcare being no exception.

Medicine has been one of the most challenging, but also most attention-getting application field
for Al for the past five decades, with diagnostic decision support, the interpretation of medical images
and clinical lab tests, drug development, patient management, and others, all demonstrating the broad
and diverse scope of Al techniques applied to medical issues.

Al methods have promised a range of potential advantages for medical informatics systems.
Automating burdensome tasks can be of great help, alleviating clinicians from unnecessary efforts and
allowing them to focus on more important issues surrounding patient care. Al systems can perform
these tasks with high precision and efficiency, and also, they can assist the extraction of relevant
information from the large quantities of data being produced by modern medicine [1]. Al systems
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might be particularly beneficial in settings such as developing countries, where advanced medical
expertise could not be accessed otherwise.

Therefore, as it has the potential to transform and improve healthcare, there is already plenty of
research on Al applied to clinical decision support systems or medical imaging analysis for diagnosis
and prognosis [2], as well as to other areas such as drug —including vaccines— development or
healthcare organisation [3].

However, despite the promising opportunities that Al holds, the number of clinical Al applications
currently deployed and actually used in real-world healthcare workflow is still relatively limited
[4], although the US FDA has recently increased the number of approvals for Al-based medical
applications. The reasons behind this “adoption gap” are complex, and depend not only on pure
scientific and technological issues, but also on the special components of medical reasoning, ethical
issues, organisational aspects and medical professionals’ training and acceptance of novel procedures
and tools, among others. One of the main problems, which we are going to focus on in this review, is
the lack of transparency of the Al systems, which hinder their explainability and adoption.

When a novel Al algorithm is introduced as a tool to support medical decisions, that can directly
influence people’s lives and wellbeing, a number of questions —including ethical issues— arise
concerning the trustworthiness of these systems and the possibilities of making theme more predictable
[5].

These concerns become especially acute when using the classical, so-called “black box” Al
algorithms. A recent, singular “mainstream” example is that of deep learning models that cannot
provide direct, human understandable insights on the knowledge being used to achieve their final
conclusions. Clinicians continue to be reluctant to trust the results of those kinds of systems that
cannot easily provide detailed explanations [6]. Even clinicians with more advanced technological
knowledge are also being concerned with related issues such as algorithmic biases or more technical
aspects —such as overfitting or the quality of the original data— which are much harder to uncover
without considerable understanding of the underlying mathematical and computational models, as
well as the statistical assumptions behind in the actual implementations [7].

Finally, we can'’t finish this introductory section without talking about ChatGPT that has been
openly released recently !. It is based on transformer deep neural network (DNN) architecture (GPT-3)
that helps to encode and decode the input text, and its main purpose is to extend the input size to
allow larger texts analysis and extract a latent space that contains the “meaning” of that text. Based on
that latent space the system is able to search for sentence queries or generate related responses. It has a
conversational type human-machine interface and language capabilities that allows an easy interaction
in natural language extending the current query capabilities of web search tools. It is still unclear what
are the main applications of this technology in medicine (it can be used to access similar previous
patients’ reports, take clinical decisions, documentation, summarize, etc.) but from the explainability
perspective it can be considered as a technology based on deep neural networks. To show its current
potential at [8] the authors demonstrate that Large Languge Models (LLMs) are able to approach or
exceed the required threshold for passing the United States Medical Licensing Examination and its
potential to generate novel insights that can assist human learners in a medical education setting. Yet
there are no guarantees or explanations as to why it gives one answer or another [9].

1.2. The emergence of the field of XAI

Burgeoning expectations about Al coupled with the need to resolve or skirt around the above
problems have led to the field known as eXplainable Artificial Intelligence (XAI). The latter deals
with the different methods and approaches that enhance the transparency of AI models, whether by
building and designing more efficient or alternative intrinsically interpretable models, or by providing

1 ChatGPT was released November 20th, 2022 by OpenAl
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explanations for the “black box” models relying on statistical and optimization methods, by using
auxiliary techniques [10]. Concerning medical applications, there is great hope that these XAl-based
approaches might be one of the keys to improve understanding, trust and the final adoption of Al
models in clinical practice [11,12].

Explainability and transparency are not new research topics for Al in medical applications. For
consultation and decision support, in particular, the first expert systems developed in the 70s, such as
MYCIN [13], tried to lay out the reasoning behind every decision by showing simple logical rules to the
user. Other early systems such as CASNET [14] —codesigned by one of the coauthors of this paper—
used complex causal models of human pathophysiology to support and justify its recommendations.
Years after these pioneering expert systems, knowledge engineers have not yet been able to facilitate
comprehensive and useful explanation facilities for knowledge engineering systems, which are still
limited.

Lots of research was conducted on knowledge acquisition and knowledge representation over
this first generation of Al systems —also medical—, and several impediments to creating knowledge
bases from human expertise were identified [15]. These issues are strongly linked to the topic of
explainability. In the pursuit of an understandable Al model that provides explanations to its decisions,
we have to consider what kind of knowledge and how it should be represented in the explanation
given in order to be sufficient and useful for the user (in the context of medicine, a physician).

1.3. Relevance of explainability in medical Al

Despite the difficulties, it is clear that the potential benefits of explainability and transparent
models are quite a few, motivating the renewed interest in the field (Figure 1). Besides helping increase
acceptance of Al models, enabling clinical professionals to take advantage of their conveniences and
addressing ethical concerns, transparency could also allow better validation of these systems and
facilitate troubleshooting during development [16]. Going even further, it could also be argued that
transparent models could assist knowledge discovery in some cases, if able to understand the intrinsic
relations hidden in the data found by Al models [17].

2

Improve systems

Control errors

Justify decisions

Knowledge

Enhance trust discovery

Figure 1. Different purposes and benefits of XAI approaches: technical, scientific and ethical reasons.

In addition, explainability might become a future legal requisite in fields such as medicine, since
patients need to be properly informed about how their personal data is being used. Currently, some
legal regulations, such as the GDPR (General Data Protection Regulation) in the European Union [18],
are starting to include the requirement of transparent AI when dealing with sensitive data, pointing
out that in the future, the use of explainability in Al-based systems might be furtherly enforced [19].

For those reasons, much recent literature is increasingly available appraising the benefits of
XAI and presenting many different new methods which claim to be appropriate solutions. This is
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specially required in the field of healthcare, where responsibility and understanding become peculiarly
important issues. However, there is persistent controversy in the field, since some researchers remain
skeptical about current approaches, stating that capabilities of XAI may be overestimated, while several
important limitations may be disregarded [20]. Such a controversy advocates for rigorous internal and
external validation of Al models [21].

Such concerns need actually encourage further critical research in this area, as interpretability of
Al methods remains as an open challenge but also a crucial need for the deployment of these systems,
specially in areas such as clinical practice. This scoping review aims to be a starting point for those
who want to get a wider and comprehensive view of the field of XAl applied to medicine.

There are already a few review articles on this topic, as shown in our preliminary research, either
more general [22,23] or focused in more specific subfields [24—-29]. Here we aim to present a broader
perspective on the state of the art of XAl methods used in clinical applications, particularly taking into
account the lessons learned from pioneering research in medical AI —since the 1970s— spanning until
the recent boom of Al around Deep Learning, with the actual participation trhoughout these years
of some of the authors. With such a direct and long perspective in time, we highlight not only the
benefits but also the open challenges posed by interpretability based on medical AI models.

1.4. The influence of data quality

Before moving on to discuss the different methods used in explainable medical Al, we want to
remark on one crucial aspect that can seriously affect our results, regardless of the used technique: the
quality of the used data. When discussing explainability and transparency of AI models, the quality of
the data analyzed and utilized in the machine learning process is critical to ensure that the generated
output is trustworthy, transparent and does not lead to misinterpretation.

The scarcity and poor quality of available data is one of the biggest technical and methodological
challenges in medical Al, and it is directly related to the issues of ethical trust, algorithmic vs. human
expert bias and interpretability. Data based models have the advantage of not needing to explicitly
capture and encode expert knowledge, which is quite difficult in most cases, and particularly in
healthcare, as will be discussed in following sections of this review. However, poor quality or artifacts
in measurement, gathering, or other processing of the data can make these models fragile and fail
easily [30].

Predictive as well as explanatory model performance is strongly related to variations and quality
of the dataset used for training in a machine learning context. An inappropriate dataset can make a
model unable to generalise to unseen scenarios in deployment due to overfitting, caused by over or
underrepresented classes in the training data, by wrong annotations or by other reasons [31]. Moreover,
besides these issues of overfitting and bad performance, the issue of bias from various sources related
to the data and its acquisition and subsequent selection or filtering through preprocessing are also
central to explainability and its relation to the robustness of a model to changes in assumptions and
future applicability scenarios.

One of the goals of XAI methods is to build transparent models in order to avoid algorithmic
biases. However, biases are inevitably introduced in the application of models by the training data they
rely on. Several reasons can be behind data bias, such as poorly represented populations or different
conditions affecting data collection and model deployment [32]. In addition, data can incorporate
human biases, and specially in the field of medicine, where the individuality and particularities of
each patient and clinician will exert great influence [33].

Overfitting of models in training, and biases can have devastating consequences on the field
of healthcare, but one of the potential benefits of XAI techniques is that they might be designed to
help detect how and when these problems arise before deployment of faulty models [34]. That more
emphasis should be put on data quality is obvious, such as checking the dataset’s consistency, integrity
and adequacy for the specific application as a crucial step for the development of a trustworthy
and robust Al model [35]. Exhaustive data curation is needed for building large, well labelled and
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good quality datasets [36] and should go hand in hand with XAI approaches in order to avoid the
aforementioned problems, as well as with exhaustive testing of Al systems before clinical deployment
[37].

2. Objectives

The main goal of this review is to analyse the existing literature dealing with explainability
and interpretability of Al methods applied to the medical field. We aim to provide an overview of
current research trends and identify the challenges and limitations that this research area presents, as
well as potential research directions and alternative approaches that could help improve trust and
transparency for clinical Al applications.

There is much recent literature on explainability methods, with a special focus on deep learning
models in the last few years. However, as mentioned before, the issue of interpretability has been
addressed since the beginnings of Al and its application to medicine with models such as the first
medical expert systems.

For that reason, besides giving an overview of current approaches, this review aims to cover some
studies on explainability from classical AI methods as well for applications in medicine and the clinic.

In order to make concrete the objectives of this review, the following research questions are posed:

* RQ1. What are the XAl approaches being used in medical Al applications?

¢ RQ2. Does any technical limitation to explainability exist that might particularly hinder XAI
development in medicine?

* RQ3. What are current research gaps and directions in the field of XAI that could be of special
interest for medical applications?

* RO4. Is it possible to include some kind of medical validation or knowledge to enhance the
explainability of clinical Al systems?

3. Methodology

3.1. Search strategy

This scoping review has been conducted according to the framework and guidelines proposed
by the Joanna Briggs Institute Manual for Evidence Synthesis [38]. An electronic search over three
scientific research databases was conducted, namely Web of Science, PubMed and Scopus, looking
for relevant literature on the topic of explainability and transparency of Al methods in the field of
medicine. The search was conducted until February 2022, so articles up until that date were included
in the systematic search.

To narrow down the search, several synonyms and related words were included so that each
article title contained at least one term associated with medicine, another with artificial intelligence
and another with explainability (Table 1).


https://doi.org/10.20944/preprints202309.0581.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 September 2023 do0i:10.20944/preprints202309.0581.v1

6 of 24

Table 1. Keywords used for literature search.

XAl, explanation, explainability, interpretable, interpretability,

Explainable trust, trustworthy, ethical, causality, understandable

Al, machine intelligence, computer intelligence, machine
learning, deep learning, neural network, convolutional, computer
vision, bayesian, black box, classifier, expert system, prediction
model, algorithm, big data, data mining, knowledge discovery,
pattern recognition, natural language processing, supervised
learning, reinforcement learning

Artificial Intelligence

Medical, clinical, health, healthcare, doctor, physician, diagnosis,
prognosis, drug, illness, disease, cancer, mri, ct, treatment,
Medicine therapy, patient, radiology, surgery, dermatology, hematology,
oncology, cardiology, neurology, urology, psychiatry,
immunology, immune, virus, bacteria

In addition to the systematic search, a few articles identified through the references of selected
studies, recommended by the authors of this review or searched by hand for topics not thoroughly
covered in the available literature were also included. Some of them were also selected to include
recent advances not covered in the systematic search time range.

3.2. Inclusion and exclusion criteria

In order to meet the objectives of this review, the following criteria were defined for source
inclusion:

¢ Directly related to the context of medicine and healthcare.

®  Addressing clinical problems with Al algorithms, such as machine learning (ML), DL, computer
vision or other kinds of either data or knowledge based methods.

¢ Including a clear focus on any kind of ethical or technical information about explainability,
transparency or related issues.

*  Published in English and with available full text.

A bottom time limit for the publications included was not established, as one of the objectives of
this review was to cover some studies from the first medical Al systems (1970s - ) to take into account
the lessons learned from that period that might be of interest for current and future Al-focused systems.
No constraints about the kind of publication were defined either: articles, reviews and studies of any
kind were both as long as they met the inclusion criteria and were of interest for this review.

Articles that did not meet this criteria were excluded, such as those that used other types of
computer approaches that do not fall under the scope of Al, those that did not talk about clinical
applications or those that only included matters of explainability as a side topic without going into
much detail.

3.3. Data extraction and analysis

The process of source of evidence screening conducted in this review are shown in Figure 2.
After performing the systematic search and excluding duplicates between the results of the different
databases, a first stage of selection was performed by analysing the title and abstract of the resulting
papers. At this stage, all papers that were clearly not related to the topic of this review, either because
they were not related to medicine, because they did not actually focus on Al methods, or because they
did not discuss interpretability at all, as well as those that were not published in English.
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e PubMed (n = 443)
e Scopus (n = 805)
e Web Of Science (n = 848)

v
Total articles (n = 2094)

Identification

-
Duplicates excluded
> (n=989)

A
Title and abstract Articles excluded
screening (n = 1107) (nh=529)

v
Full-text articles assessed Articles excluded

for eligibility (n = 578 ) (n = 493)

Eligibility

Manual search
(n=59)

Y
Studies included for J

qualitative synthesis
(n = 144)

Figure 2. Source of evidence analysis and selection workflow.

Once all the potential candidate articles had been selected, a second stage of selection was
performed to reach the final selection of literature included in this review. A more thorough assessment
was made by looking into the full text papers, in order to exclude the ones that were of no interest for
this review: those that were too short or general, articles that did not focus sufficiently on the topic
of explainability, studies that were too similar to others already included or that employed identical
techniques and did not add much value to the synthesis of the review, in addition to ones that had no
available full text. This final selection of articles, plus the ones identified by manual search, make up
the final bibliography included on this review.

3.4. Literature search results

The literature analysis carried out in this review corroborates the rising popularity over the past
few years of the topics of explainability and interpretability on medical Al applications. Even though
our search shows that some related studies were published in the 1980s, it is not until about 2017 that
the number of publications starts to substantially increase, similar to what other related studies show
[39]. Moreover, as expected, there is a special focus on explainability approaches to DL models, as they
are currently the most popular ML methods.

Studies included in this review mainly consist of medical Al applications that employ
explainability methods or that are built with interpretable models, but there are also some review
papers and ethical commentaries. In what follows, we review the approaches and methods employed
in the reviewed literature to make medical Al models explainable will be presented, as well other
important issues covered in the various articles.

4. XAI methods in medicine

4.1. Classification of explainability approaches

Several taxonomies have been proposed in the literature to classify XAI methods and approaches,
depending on different criteria [40-42] (Figure 3).
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Intrinsically interpretable models :l
Model specific
Post-hoc
Model agnostic

Global
—  Scope —[:
Local

— Stage

XAl Problem Classification
R type Regression Numerical/
Categorical
Input Pictorical
data Textual
Numerical Time series
| Output Rules
format Textual
Visual
Mixed

Figure 3. Several diverse approaches to the classification of XAI methods. Adapted from [42].

First, there is a clear distinction between auxiliary techniques that aim to provide explanations for
either the model’s prediction or its inner workings, which are commonly called post-hoc explainability
methods, and Al models that are intrinsically interpretable, either because of their simplicity, the
features they use or because they have a straightforward structure that is readily understandable by
humans.

Secondly, we can distinguish interpretability techniques by their scope, where explanations
provided by an XAI approach can be local, meaning that they refer to particular predictions of the
model, or global, if they try to describe the behaviour of the model as a whole.

Other differentiations can be made between interpretability techniques that are model specific,
because they have requirements regarding the kind of data or algorithm used, and model agnostic
methods, that are general and can be applied in any case. Intrinsically interpretable models are model
specific by definition, but post-hoc explainability methods can be generally seen as model agnostic,
though some of them can have some requisites regarding the data or structure of the model.

More classifications can be made regarding how characteristics of the output explanations are
displayed (textual, visual, rules...), the type of input data required, the type of problem they can be
applied to [42] or how they are produced [23].

However, since these classifications overlap [43], in the following sections we have chosen to go
over the different techniques included in the reviewed literature structured under the most popular
taxonomy: interpretable models and post-hoc explainability methods.

4.2. Intrinsically interpretable models

Intrinsically interpretable models are those built using logical relations, statistical or probabilistic
frameworks and similar strategies that represent human-interpretable systems, since they use rules,
relationships or probabilities assigned to known variables.

This approach to transparency in Al, despite receiving less attention in recent years while the
focus has been on DL, is historically the original one, and the perspective taken by knowledge-based
systems.

4.2.1. Classical medical knowledge-based systems

Some knowledge-based systems, commonly known as “expert systems”, are some of the classical
Al models that were first developed at the end of the 1960s. Explanations were sometimes introduced
as a feature of these first rule-based expert systems by design, as they were needed not only by
users, but also by developers to troubleshoot their code during the design of these models. Thus, the
importance of Al explainability has been discussed since the 1970’s [44,45].
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In medicine, many of these systems were developed aiming to be an aid for clinicians during
diagnosis of patients and treatment assignment [46]. We must remind that explanations for patient
cases are neither easily made, in many occasions, by human medical professionals. The most widely
known of these classical models was MYCIN [13], but many more based on causal, taxonomic, and
other networks of semantic relations such as CASNET, INTERNIST, the Present Illiness Program and
others were designed to support rules by models of underlying knowledge that explained the rules and
drove the inferences in clinical decision-making [14,47,48]. Subsequently, modeling of explanations
was pursued explicitly for the MYCIN type of rule-based models [49]. The role of explanation was
frequently recognized as a major aspect of expert systems [50-52].

As shown in Figure 4, expert systems consist in a knowledge base, containing the expertise
captured from human experts in the field, usually in the form of rules, including both declarative
or terminological knowledge and procedural knowledge of the domain [45]. This knowledge base
is consulted by an inference algorithm when the user interacts with the system, and an explanation
facility interacts with both the inference system and the knowledge base to construct the corresponding
explaining statements [53].

2

Inference Explanation
mechanism facility

Knowledge base

Problem-solving
knowledge
Domain
knowledge

Figure 4. Basic diagram of a medical knowledge-based expert system. Adapted from [53].

- N

Clinical
expert

The explanations provided were pre-modelled [54] and usually consisted of tracing the rules used
by the inference mechanism to arrive at the final decision and presenting them in an intelligible way to
the user. Such an approach aimed to explain how and why the system produced a diagnosis [52], and
in some more sophisticated cases, even the causal evolution of the patient’s clinical status [55].

However, these explanations were limited by the knowledge base constructed by the system’s
designers: all the justifications for knowledge had to be explicitly captured to produce specific
explanations [52]. Knowledge acquisition (KA) and updating is a challenging task (see Section 6.2)
and was not efficiently resolved, leading KA to become the bottleneck that resulted in the decline of
interest on knowledge-based Al systems (as a main example of symbolic Al) in favour of data-based
Al and ML systems (which we can call as subsymbolic Al).

4.2.2. Interpretable machine learning models

As an alternative to knowledge-based systems, from the early days of medical decision making,
statistical Bayesian, Hypothesis-Testing, and linear discriminant models were ML models that can
be considered interpretable. They are based on the statistical relationships extracted from clinical
databases which allow formal probabilistic inferential methods to be applied. Ledley and Lusted
proposed the Bayesian approach in their pioneering article in the journal Science in 1959 [56], with
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many of the alternatives first discussed in The Diagnostic Process conference [57]. Logistic regression
is an effective statistical approach that can be used for classification and prediction (sendi2021).
Generalized Linear Models (GLMs) [58] are also used in various problems among the literature [59,60],
while Generalized Additive Models (GAMs), an extension of these, allow modeling of non-linear
relationships and are used for prediction in medical problems as well [61,62].

Decision trees are considered transparent models because of their hierarchical structure which
allows to easily visualise the logical processing of data in decision making processes. Moreover, a
set of rules can be extracted to formalise that interpretation. They can be used for classification in
the medical context [63,64], however, sometimes show poor generalisation capabilities, so it is most
common to use tree ensembles (like the random forest algorithm [65]) that show better performance,
in combination with post-hoc explainability methods, as they lose some interpretability [66-68,68,69].

Generalization of formal models through Bayesian networks [70], have become popular for
modelling medical prediction problems [71-75], representing conditional dependencies between
variables in the form of a graph, so that evidence can be propagated through the network to update
the diagnostic or prognostic states of a patient [76]. This reasoning process can be easily visualised in
an straightforward manner.

Interpretable models can be used by themselves, but another interesting strategy is using them in
ensemble models. Ensemble models consist in combining several different ML methods to achieve
a better performance and better interpretability than with a black-box model alone [77]. These
approaches can also include these interpretable models in conjunction with DL models such as neural
networks [78-81], as well as other post-hoc explainability techniques [82,83] such as the ones that will
be presented later in this paper (Section 4.3). However, they pose increasingly and as yet unresolved
complex interpretation issues as recently emphasized by Pearl [84].

4.2.3. Interpretation of neural network architectures

Despite the fact that neural networks cannot be fully included in the category of intrinsically
interpretable models we can characterize them (also DL are included), such as architectures designed
so that they resemble some of the simple neural modelling of brain function and used heuristically
to recognise images or perform different tasks, and some neural network architectures have been
specially designed to provide interpretability. The first type tries to mimic human decision-making
where the decision is based on previously seen examples. In [85] a prototype learning design is
presented to provide interpretable samples associated with the different types of respiratory sounds
(normal, crackle, and wheeze). This technique learns a set of prototypes in a latent space that are
used to make a prediction. Moreover it also allows for a new sample to be compared with the set
of prototypes identifying the most similar and decode it to its original input representation. The
architecture is based on the work in [86] and it intrinsically provides an automatic process to extract
the input characteristics that are related to the associated prototype given that input.

Other methods” main motivation is to behave in a way more similar to how clinicians diagnose,
and provide explanations in the form of relevant features. Among this type, attention maps are widely
used. It basically extracts the influence of a feature on the output for a given sample. It is based on the
gradients of the learned model and in [87] has been used to provide visual MRI explanations of liver
lesions. For small datasets it is possible even to include some kind of medical knowledge as structural
constraint rules over the attention maps during the process design [88]. Moreover the attention maps
can be also applied at different scales concatenating feature maps as proposed at [89] being able to
identify small structures on retina images.

These approaches are specific to DL but still surrogate models or post-hoc methods are applicable
to add explainability.


https://doi.org/10.20944/preprints202309.0581.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 September 2023 do0i:10.20944/preprints202309.0581.v1

11 of 24

4.3. Post-hoc explainability methods

Extending the above approach to transparency came with the development of more complex
data-based ML methods, such as support vector machines (SVMs), tree ensembles and of course, DL
techniques. The latter have become popular due to their impressive performance on a huge variety of
tasks, sometimes even surpassing human accuracy for concrete applications, but also unfortunately
entailing deeper opacity -for instance, than the detailed explanations that classic statistics can provide.

For this reason, different explainability methods have been proposed in order to shed light on the
inner workings or algorithmic implementations used in these blackbox-like AI models. Because they
are implemented as added facilities to these models, executed either over the results or the finished
models, they are known as post-hoc methods, which produce post-hoc explanations, as opposed to the
approach of intrinsically interpretable models.

Many of the approaches included in this category, which are also currently the most widely used
as reported in the literature, are model agnostic. Post-hoc model agnostic methods are so popular
due to their convenience: they are quick and easy to set up, flexible and well-established. Within this
category, there are also some model specific post-hoc techniques designed to work only for a particular
type of model.

These are less flexible, but tend to be faster and sometimes more accurate due to their specificity,
as they can access the model internals and can produce different types of explanations that might be
more suitable for some cases [23].

Regardless of their range of application, post-hoc methods can be also grouped by the basis of
their functionalities. Combining the taxonomies proposed in [10] and [66], we can broadly differentiate
between explanations by simplification (surrogate models), feature relevance methods, visualization
techniques and example-based explanations. In the following sections these ideas will be presented as
well as some of the most popular and representative methods belonging to each group.

4.3.1. Explanation by simplification

One way to explain a black-box model is to use a simpler, intrinsically interpretable model for the
task of explaining its behaviour.

One method that uses this idea, which is undoubtedly one of the most employed ones throughout
all the literature, is LIME (Local Interpretable Model-agnostic Explanations) [90]. This method builds a
simple linear surrogate model to explain each of the predictions of the learned black-box model. The
prediction’s input to be explained is locally perturbed creating a new dataset that is used to build the
explainable surrogate model. Explanation of instances can help to enforce trust in assisted Al clinical
diagnosis within a patient diagnosis workflow [91].

Knowledge distillation is another technique included in this category. It was developed to
compress neural networks for efficiency purposes, but it can also be used to construct a global surrogate
interpretable model [92]. It consists of using the more complex black box model as a "teacher" to a
simpler model that learns to mimic its output scores. If the “student” model demonstrates sufficient
empirical performance, a domain expert may even prefer to use it in place of the teacher model and
LIME. The main rationale behind this type of modelling is the assumption that some potential noise
and error in the training data may affect the training efficacy of simple models. [93] used knowledge
distillation to create an interpretable model achieving strong prediction performance for ICU outcome
prediction.

Under this category we could also include techniques that attempt to simplify the models by
extracting knowledge in a more comprehensive way. For example, rule extraction methods try to
approximate the decision-making process of the black-box model, such as a neural network, with a
set of rules or decision trees. Some of the methods try decomposing the units of the model to extract
these rules [94], while others keep treating the original model as a black box and use the outcomes to
perform a rule search [95]. There are also combinations of both approaches [96].


https://doi.org/10.20944/preprints202309.0581.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 September 2023 do0i:10.20944/preprints202309.0581.v1

12 of 24

4.3.2. Explanation by Feature relevance methods

In the category of feature relevance methods we can find many popular examples of explainability
techniques. These approaches try to find which are the most relevant variables or features to the
model’s predictions, those that influence the most the outcome in each case or in general.

The ancestry to these techniques can be found in both statistical and heuristic approaches dating
back to the 1930’s with Principal Component Analysis (PCA), which explains the weightings of features,
or contributions to relevance in in terms of their contribution to inter and intra population patterns of
multinomial variance and covariance [97]. These techniques were also shown to be central to both
dimensionality reduction and its explanation in terms of information content for pattern recognition
[98] and clinical diagnostic classification and prediction using subspace methods from atomic logic
[99]. Later, related techniques for feature extraction by projection pursuit were developed and applied
to clinical decision-making.

More recently, with LIME (that could also be included in this group), SHAP (SHapley Additive
exPlanations) is one of the most widely used XAI model agnostic techniques, and it is the main example
of the category of feature relevance methods. It is based on concepts from game theory that allow to
compute which are the features that contribute the most to the outcomes of the black box model, by
trying different feature set permutations [100]. SHAP explanations increase trust by helping to test
prior knowledge and also can help to get insights into new ones [101].

Other well known similar example that measures the importance of different parts of the
input by trying different changes is SA (Sensitivity Analysis) [102], and LRP (Layer-Wise Relevance
Propagation) [103], Deep Taylor Decomposition (an evolution of LRP) [104] and DeepLIFT [105] are
other model-specific alternatives for neural networks, that propagate the activation of neurons with
respect to the inputs to compute feature importance.

4.3.3. Explanation by visualization techniques

Some of the aforementioned methods can produce visual explanations in some cases. Still, in
this section we can mention some other methods that visualize directly the inner workings of the
models, like Grad-CAM [106], that helps showing the activation of the layers of a convolutional neural
network. In addition, there are other techniques that visualize the inputs and outputs of a model
and the relationship between them, such as PDP (Partial Dependence Plots) [82] and ICE (Individual
Conditional Expectation) plots [107]. It is worth mentioning that visualization can help to build
explicable interfaces to interact with users, but it is complex to use them as an automatic step of the
general explainability process.

4.3.4. Explanations by examples

Finally, another approach to produce explanations is to provide examples of other similar cases
that help understanding why one instance has been classified as one object or structure or another by
the model, or instead, dissimilar instances (counterfactuals) that might provide insights on why not.

For instance, MMD-critic [108] is an unsupervised algorithm that finds prototypes (the most
representative instances of a class) as well as criticisms, instances that belong to a class but are not well
represented by the prototypes. Another example are counterfactual explanations [109], that describe
the minimum conditions that would lead to a different prediction by the model.

5. Evaluation of explainability

Despite the growing body of literature on different XAI methods and the rising interest on
the topics of interpretability, explainability, and transparency, there is still limited research on the
field of formal evaluations and measurements for these issues [110]. Most studies just employ XAl
techniques without providing any kind of quantitative evaluation or appraisal of whether the produced
explanations are appropriate.
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Developing formal metrics and a more systematic evaluation of different methods can be difficult
because of the variety of the available techniques and the lack of consensus on the definition of
interpretability [111]. Moreover, contrary to usual performance metrics, there is no ground-truth
when evaluating explanations of a black-box model [20,111]. However, this is foundational work
of great importance, as such evaluation metrics would help towards not only assessing the quality
of explanations and somehow measuring if the goal of interpretability is met, but also to compare
between techniques and help standardise the different approaches, making it easier to select the most
appropriate method for each case [112].

In short, there is a need for more robust metrics, standards and methodologies that help data
scientists and engineers to integrate interpretability of in medical Al applications in a more detailed,
verified, consistent and comparable way, along the whole methodology, design and algorithmic
development process [113]. Nevertheless, in the few studies available on this topic, there are some
common aspects that establish a starting point for further development, and there are some metrics
such as robustness, consistency, comprehensibility, and importance of explanations.

A good and useful explanation for an Al model is one that is in accordance with human intuition
and easy to understand [114]. To evaluate this, some qualitative and quantitative intuitions have
already been proposed.

¢ On the one hand, qualitative intuitions include notions about the cognitive form, complexity and
structure of the explanation. For example, what are the basic units that compose the explanation
and how many are there (more units mean more complexity), how are they related (rules or
hierarchies might be more interpretable for humans), if any uncertainty measure is provided or
not, and so on [110].

®  On the other hand, quantitative intuitions are easier to formally measure, and include, for
example, notions like identity (for identical instances, explanations should be the same), stability
(instances from the same class should have comparable explanations) or separability (distinct
instances should have distinct explanations) [114,115]. Metrics based on these intuitions
mathematically measure the similarity between explanations and instances as well as the
agreement between the explainer and the black-box model.

Other options to evaluate XAI techniques include factors such as the time needed to output an
explanation or the ability to detect bias in the data [114].

Another interesting strategy is to quantify the overlap between human intuitions (such as expert
annotations) and the explanations obtained [116,117], or using human ratings by experts on the topic
[112,118-120].

There are also different options regarding the context in which these various metrics can be used.
The evaluation of an XAl system can be made either in the context of the final target task with the
help of domain experts, in simpler tasks, or using formal definitions [110]. Depending on the specific
characteristics of the problem and available resources, different approaches and metrics can be chosen.

6. Challenges of XAI approaches

As discussed before, there is an increasing recognition of XAl in recent years, particularly in fields
like medicine, rediscovering previous concerns already raised for 50-60 years about statistical, pattern
recognition, and earlier Al models, where the ethical requirements for transparency based on the
Hippocratic Oath and derived professional ethics of practitioners is even stronger [121]. But, despite
the benefits of using explainable systems being so clear and with some of the advances already made
in the field and its range of available methods, the use of XAI techniques is still not widespread [10].

But why might explainability methods still not be enough? The problem of Al interpretability is a
most challenging issue, as there are many unresolved technical limitations, related ethical questions
and controversies surrounding current approaches.
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6.1. Controversy around current XAI methods

Currently, one of the frequently discussed issues among researchers in the field of XAl is the
choice between different approaches, mainly between post-hoc explainability and other transparency
criteria for systems. There is no consensus about whether it is better to use intrinsically interpretable
models or to develop techniques that try to explain the outcomes of black-box models, given the
contrasts and complementarities between them that make comparisons incommensurate.

Despite being more understandable (and therefore meeting some of the transparency needs that
make other types of systems more problematic), interpretable models are commonly rated as less
accurate or efficient than more complex data-based approaches such as DL (see Figure 5), implying
that there is a trade-off between explainability and classification or prediction accuracy [10,23,122].
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Figure 5. Trade-off between explainability and performance of different AI methods. Adapted from
[66].

If such a trade-off exists, it could be alleged that it would not be ethical to use a model that
does not perform at the best possible level, therefore being more adequate to use top-notch accurate
systems, regardless of their black-box nature [7]. Some researchers maintain that, in fact, explainability
might not be so necessary if good accuracy is proven by conducting empirical validations for example
[123,124], while others disagree [125,126]. The practical ethical problem is the heterogeneity and lack of
“gold standards” of comparable training and testing datasets for any particular problem with statistical
and heuristic approaches, which do not take into account the wide range of qualitative differences
between different types of data and knowledge, and the implementation of responsible evaluatory
judgments by experts which cannot be reduced to simple measures. Complementary approaches for
this might be official certifications or criteria for controlling data biases, beside explainability, in order
to build trust on these systems [127,128].

Moreover, some scholars argue that, while it is important that research continues trying to unravel
black-box models, we should also focus on pursuing more efficient and stable models, and putting so
much emphasis on interpretability of these models before clinical application might restrain innovation
in that direction and might not be that crucial [129].

However, from an opposite point of view, other researchers advocate for intrinsically interpretable
models arguing that there is no such trade-off between explainability and accuracy in reality and that
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these models are more appropriate and safe for high-stakes fields like healthcare, where explanations
of black-box models can be misleading and inaccurate, inducing effects opposite to the intended [125].
At the same time, some interpretable models have been recognized to require further explanations for
non-technical end users such as clinicians or patients [24].

While there is no clear agreement on what is the best approach to the problem of transparency and
interpretability or if it is even always necessary, some studies show that physicians, not surprisingly;,
do prefer Al systems that include some form of explainability, while seeming not to have a clear
preference between methods [6].

In the following section, we will discuss further limitations of explanations related to this
controversy, and that should be taken into account when designing these kinds of models and choosing
among explainability approaches.

6.2. Technical limitations of explainability

While there is a common trend in favour of employing XAI among researchers, the limitations
of these approaches are often underestimated, which can be especially high risk in the field of
medicine [130]. These obstacles might not fully invalidate the use of XAI methods, but researchers and
developers should be aware of them, as they can negate the application of these techniques in certain
cases, and urgently require study [21].

Importantly, it should be noted that explanations and transparency might not translate into
understanding underlying biomedical causal relationships [131], so we must be very cautious when
using explainability as a tool to attempt knowledge discovery. For instance, using a surrogate model
to explain a black-box system is only an approximation to the original model, and the produced
explanations are unlikely to be faithful to the true inner workings of it [132]. Beyond this, it can not be
assumed that behind the explanations or decisions of an Al system there is always an equivalent or
at least a truly comparable reason that human experts could infer [133]. For that reason, we should
be careful not to build systems that are persuasive rather than transparent [134,135], by properly
analysing, validating and interpreting the results obtained.

Another point to be taken into account is that usually models and explanations that are more
simple or compact are more interpretable, but it might not always be that way. Explanations depend
on the specific context of the task and expectations of the user [44], and if they are not meaningful,
detailed enough or in the needed form, they might not be useful and only complicate explanations of
decision pathways [135].

It should also be considered that there can also be serious cognitive limits to explainability, as
it was acknowledged about knowledge acquisition in the development of expert systems in the first
decades of Al development. When human experts, like clinicians, become proficient in an area, they
perform their tasks in a kind of automated or at least compiled way, effortlessly and efficiently. At this
point, the knowledge needed for performing these tasks has become tacit, meaning that is compiled in
their mind and not available for conscious access and sharing [15]. For that reason, sometimes they
cannot completely explain what are the exact reasons behind their decisions.

This issue of after-the-fact justificatory explanations by experts makes it really hard to accurately or
veridically model expert knowledge when the problem to solve is complex or vaguely defined, which
is typical for the medical domain [30]. Unlike scientific disciplines such as biology, in clinical practice
where reproducible experimentation is approximately feasible at least, there is a considerable uniquely
patient-and-expert encounter specific practical expertise, and lack of generalizable knowledge for many
practical problem-solving situations [136]. In consequence, it is really difficult to elicit reproducible
and useful models of physician reasoning in the form of concrete rules [30].

This is one of the reasons that have contributed to making it impossible to fully capture the
knowledge needed for building expert systems [15], and, ironically it presents parallels to the problems
with black-box Al heuristic or statistical models [136], so maybe it is unrealistic to expect comprehensive
explanations from these systems as we might desire, in the same way that we do not entirely understand
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much of human neural processes within their complex biochemical and genetic and developmental
living contexts. Moreover, one must take into account that post-hoc explanations frequently suffer
from the same problems of interpretability as human-expert explanations [20].

7. Research opportunities for medical XAI

The research limitations and shortcomings surrounding XAI discussed in this review, include
the need for more robust evaluations (Section 5) and for more studies about cognitive limitations of
explainability (Section 6), as well as efforts for improving data quality (Section 1.4). Here we discuss
explainability as it is especially related to the field of medicine.

Before getting specific,it ought to be emphasized that much more interdisciplinary work would
benefit the building of XAI systems. Not only do users’ needs have to be taken into account more
explicitly, but detecting errors in models that are related to a particular field of application has to be
learned and imbued by technical designers, in order to improve current explainability techniques and
develop and implement novel and more effective ones.

Lately, most of the studies in the field of interpretability tend to focus and develop some particular
techniques, the ones that are more popular at the moment (for example, feature extractions or deep
learning models visualisations), give less attention to other categories (such as interpretable models,
for instance). Popular purely technological techniques are hardly most appropriate solutions for every
case and, moreover, combining ideas from different fields could lead to really interesting advances to
achieve more effective explanations [135].

7.1. Alternative ways to incorporate medical knowledge

We have already commented on the difficulties of capturing and modelling knowledge from
experts, specially in healthcare, due to the uncertainty and incompleteness of knowledge in clinical
practice [136]. However, it is undeniable that knowledge would help building more robust Al systems,
with enhanced clinical interpretability. For that reason, research on alternative ways of embedding
clinicians’ expertise in AI models will be most useful.

One way of incorporating medical knowledge can involve human-in-the-loop evaluations of these
systems [2]. Interaction with medical experts during development, or discussing the results of XAI
models can help detect errors, validate these systems and identify possible underlying causes of the
model’s behaviour that would go unnoticed by technical developers. The use of the novel technique
ChatGPT could also be helpful to automatize this process or part of it.

Another interesting research path is information fusion. Combining different types of multimodal
data, such as medical images, family histories, genomic data or electronic health records can help
specify, define and incorporate clinical context into a model, improving not only its diagnostic accuracy,
but also its interpretability [28,137,138]. Moreover, using data collected from different centres can also
help with domain variability and shift and enhance AI models [28].

There are already some studies on how to achieve this fusion of different kinds of data [137] as
well as studies taking this kind of approach [139], however, more research and comprehensive data
collection and annotation should be made to facilitate the building of these enhanced Al systems [28].

7.2. Taking into account user needs

Choosing the right XAI approach for each case is not a straightforward task, as the decision
depends on many factors, such as characteristics of the concrete problem, of the application
environment or of the available data, as different applications have different interpretability needs
[111]. However, the most important aspect involves the requirement of the actual end-users of a
system: clinicians and, in some cases, patients.

The questions from the users will vary depending on their expertise and knowledge of the domain,
and their views on an application problem. A clinician using an Al system to confirm a diagnosis who
wants to know if the model is working properly but has no technical knowledge will need different
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explanations than the system builder who wants to check the models” performance, or a patient who is
using an Al system by themselves. For these reasons, the kind and extent of explanations need to be
adjusted to the specific type of user needs in order to build trust [140], without falling into over-trust
[1].

Depending on the prospective end users of the explanations, whether patients, clinicians or
technical designers, it might be preferable to design different types of explainability: about the
exhaustive workings of the model or about the relevant features being used, for example [17]. It should
be identified in each case why users want explanations from the model, what information they need
that said explanations contain and how they prefer them to be presented [141,142].

If the factors above are not considered, accurate explanations will not match the needs of the users
and be informative and understandable to them [143]. Achieving this user understanding might as
well need interaction between the system and its human user, in order to obtain further answers to
different questions [10].

To summarize, in order to enable the collaboration between humans and Al, XAI outcomes have
to be appropriately tailored to different end users, so more attention has to focus on these aspects of
research: human-machine interaction and users’ mental models. Most likely, general solutions will not
be feasible, so the context of the problem has to be taken into account, preferably with interdisciplinary
collaboration, and combining different types of explainability to fulfill users needs [144].

8. Conclusions

Al has the potential to transform and improve healthcare, nevertheless, without explainable and
trustworthy systems, its application will continue to be limited.

In this paper, we have reviewed the precedents and background with the state of the art of XAl as
applied in medicine. Several popular approaches and techniques have been discussed providing an
overview of available options to include explainability as an aspect of clinical Al systems (RQ1).

The benefits of explainable systems could be considerable: promoting trust, enabling better
interpretation of the data and predictions or enhancing the detection of errors, for example. However,
considerable challenges identified in this review need to be overcome in the field of medical XAI.
Besides the high dimensionality and black box nature of many Al models, in medicine the problem of
data quality is especially serious, if we are to be able to develop accurate XAl techniques without the
risk of being influenced by unrepresentative or poorly selected or curated and filtered data. Moreover,
cognitive limitations to knowledge acquisition about clinicians’ reasoning are also related to the extent
of how far XAI methods might be able to prove useful (RQ2).

In order to develop and consolidate further robust explainability methods and interpretable
models, making them a useful tool for clinicians to trust medical Al applications and therefore support
their implementation in the real world, future research on this topic should be focused on overcoming
these challenges, as well as better analysing user needs, enhancing human-system interaction and
studying alternatives such as data fusion or clinicians’ feedback to include medical validation and
knowledge in different ways without the need of explicitly modelling it. Moreover, involving medical
experts in the process of design and development of these systems would also help building more
robust models and improving user understanding (RQ3 and RQ4).

All in all, the prospects for XAI methods in clinical applications is that they are essential in
many ways, but that further research is needed to overcome the current limitations enhancing these
techniques in order to build secure, trustworthy and efficient systems that benefit both patients and
clinicians.
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