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Abstract: Due to the success of artificial intelligence (AI) applications in the medical field over

the past decade, concerns about the explainability of these systems have increased. The reliability

requirements of black-box led algorithms for making decisions affecting patients pose a challenge

even beyond their accuracy. Recent advances in AI increasingly underscore the need to incorporate

explainability into these systems. While most traditional AI methods and expert systems are

inherently interpretable, recent literature has focused primarily on explainability techniques for

more complex models such as deep learning. This scoping review analyzes the existing literature

on explainability and interpretability of AI methods in the medical and clinical field, providing an

overview of past and current research trends, and limitations that might impede the development of

Explainable Artificial Intelligence (XAI) in medicine, challenges, and possible research directions. In

addition, this review discusses possible alternatives for leveraging medical knowledge to improve

interpretability in clinical settings, while taking into account the needs of users.

Keywords: artificial intelligence; medicine; explainable AI; interpretable AI

1. Introduction

1.1. AI in medicine: opportunities and challenges

Today’s Artificial Intelligence (AI) with its capability to automate and ease almost any kind of

task, frequently appearing to surpass human performance, has made it a popular and widespread

technology for many applications, especially over the last decade, and thanks to advances in deep

learning (DL), with clinical healthcare being no exception.

Medicine has been one of the most challenging, but also most attention-getting application field

for AI for the past five decades, with diagnostic decision support, the interpretation of medical images

and clinical lab tests, drug development, patient management, and others, all demonstrating the broad

and diverse scope of AI techniques applied to medical issues.

AI methods have promised a range of potential advantages for medical informatics systems.

Automating burdensome tasks can be of great help, alleviating clinicians from unnecessary efforts and

allowing them to focus on more important issues surrounding patient care. AI systems can perform

these tasks with high precision and efficiency, and also, they can assist the extraction of relevant

information from the large quantities of data being produced by modern medicine [1]. AI systems
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might be particularly beneficial in settings such as developing countries, where advanced medical

expertise could not be accessed otherwise.

Therefore, as it has the potential to transform and improve healthcare, there is already plenty of

research on AI applied to clinical decision support systems or medical imaging analysis for diagnosis

and prognosis [2], as well as to other areas such as drug —including vaccines— development or

healthcare organisation [3].

However, despite the promising opportunities that AI holds, the number of clinical AI applications

currently deployed and actually used in real-world healthcare workflow is still relatively limited

[4], although the US FDA has recently increased the number of approvals for AI-based medical

applications. The reasons behind this “adoption gap” are complex, and depend not only on pure

scientific and technological issues, but also on the special components of medical reasoning, ethical

issues, organisational aspects and medical professionals’ training and acceptance of novel procedures

and tools, among others. One of the main problems, which we are going to focus on in this review, is

the lack of transparency of the AI systems, which hinder their explainability and adoption.

When a novel AI algorithm is introduced as a tool to support medical decisions, that can directly

influence people’s lives and wellbeing, a number of questions —including ethical issues— arise

concerning the trustworthiness of these systems and the possibilities of making theme more predictable

[5].

These concerns become especially acute when using the classical, so-called “black box” AI

algorithms. A recent, singular “mainstream” example is that of deep learning models that cannot

provide direct, human understandable insights on the knowledge being used to achieve their final

conclusions. Clinicians continue to be reluctant to trust the results of those kinds of systems that

cannot easily provide detailed explanations [6]. Even clinicians with more advanced technological

knowledge are also being concerned with related issues such as algorithmic biases or more technical

aspects —such as overfitting or the quality of the original data— which are much harder to uncover

without considerable understanding of the underlying mathematical and computational models, as

well as the statistical assumptions behind in the actual implementations [7].

Finally, we can’t finish this introductory section without talking about ChatGPT that has been

openly released recently 1. It is based on transformer deep neural network (DNN) architecture (GPT-3)

that helps to encode and decode the input text, and its main purpose is to extend the input size to

allow larger texts analysis and extract a latent space that contains the “meaning” of that text. Based on

that latent space the system is able to search for sentence queries or generate related responses. It has a

conversational type human-machine interface and language capabilities that allows an easy interaction

in natural language extending the current query capabilities of web search tools. It is still unclear what

are the main applications of this technology in medicine (it can be used to access similar previous

patients’ reports, take clinical decisions, documentation, summarize, etc.) but from the explainability

perspective it can be considered as a technology based on deep neural networks. To show its current

potential at [8] the authors demonstrate that Large Languge Models (LLMs) are able to approach or

exceed the required threshold for passing the United States Medical Licensing Examination and its

potential to generate novel insights that can assist human learners in a medical education setting. Yet

there are no guarantees or explanations as to why it gives one answer or another [9].

1.2. The emergence of the field of XAI

Burgeoning expectations about AI coupled with the need to resolve or skirt around the above

problems have led to the field known as eXplainable Artificial Intelligence (XAI). The latter deals

with the different methods and approaches that enhance the transparency of AI models, whether by

building and designing more efficient or alternative intrinsically interpretable models, or by providing

1 ChatGPT was released November 20th, 2022 by OpenAI
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explanations for the “black box” models relying on statistical and optimization methods, by using

auxiliary techniques [10]. Concerning medical applications, there is great hope that these XAI-based

approaches might be one of the keys to improve understanding, trust and the final adoption of AI

models in clinical practice [11,12].

Explainability and transparency are not new research topics for AI in medical applications. For

consultation and decision support, in particular, the first expert systems developed in the 70s, such as

MYCIN [13], tried to lay out the reasoning behind every decision by showing simple logical rules to the

user. Other early systems such as CASNET [14] —codesigned by one of the coauthors of this paper—

used complex causal models of human pathophysiology to support and justify its recommendations.

Years after these pioneering expert systems, knowledge engineers have not yet been able to facilitate

comprehensive and useful explanation facilities for knowledge engineering systems, which are still

limited.

Lots of research was conducted on knowledge acquisition and knowledge representation over

this first generation of AI systems —also medical—, and several impediments to creating knowledge

bases from human expertise were identified [15]. These issues are strongly linked to the topic of

explainability. In the pursuit of an understandable AI model that provides explanations to its decisions,

we have to consider what kind of knowledge and how it should be represented in the explanation

given in order to be sufficient and useful for the user (in the context of medicine, a physician).

1.3. Relevance of explainability in medical AI

Despite the difficulties, it is clear that the potential benefits of explainability and transparent

models are quite a few, motivating the renewed interest in the field (Figure 1). Besides helping increase

acceptance of AI models, enabling clinical professionals to take advantage of their conveniences and

addressing ethical concerns, transparency could also allow better validation of these systems and

facilitate troubleshooting during development [16]. Going even further, it could also be argued that

transparent models could assist knowledge discovery in some cases, if able to understand the intrinsic

relations hidden in the data found by AI models [17].

Figure 1. Different purposes and benefits of XAI approaches: technical, scientific and ethical reasons.

In addition, explainability might become a future legal requisite in fields such as medicine, since

patients need to be properly informed about how their personal data is being used. Currently, some

legal regulations, such as the GDPR (General Data Protection Regulation) in the European Union [18],

are starting to include the requirement of transparent AI when dealing with sensitive data, pointing

out that in the future, the use of explainability in AI-based systems might be furtherly enforced [19].

For those reasons, much recent literature is increasingly available appraising the benefits of

XAI and presenting many different new methods which claim to be appropriate solutions. This is
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specially required in the field of healthcare, where responsibility and understanding become peculiarly

important issues. However, there is persistent controversy in the field, since some researchers remain

skeptical about current approaches, stating that capabilities of XAI may be overestimated, while several

important limitations may be disregarded [20]. Such a controversy advocates for rigorous internal and

external validation of AI models [21].

Such concerns need actually encourage further critical research in this area, as interpretability of

AI methods remains as an open challenge but also a crucial need for the deployment of these systems,

specially in areas such as clinical practice. This scoping review aims to be a starting point for those

who want to get a wider and comprehensive view of the field of XAI applied to medicine.

There are already a few review articles on this topic, as shown in our preliminary research, either

more general [22,23] or focused in more specific subfields [24–29]. Here we aim to present a broader

perspective on the state of the art of XAI methods used in clinical applications, particularly taking into

account the lessons learned from pioneering research in medical AI —since the 1970s— spanning until

the recent boom of AI around Deep Learning, with the actual participation trhoughout these years

of some of the authors. With such a direct and long perspective in time, we highlight not only the

benefits but also the open challenges posed by interpretability based on medical AI models.

1.4. The influence of data quality

Before moving on to discuss the different methods used in explainable medical AI, we want to

remark on one crucial aspect that can seriously affect our results, regardless of the used technique: the

quality of the used data. When discussing explainability and transparency of AI models, the quality of

the data analyzed and utilized in the machine learning process is critical to ensure that the generated

output is trustworthy, transparent and does not lead to misinterpretation.

The scarcity and poor quality of available data is one of the biggest technical and methodological

challenges in medical AI, and it is directly related to the issues of ethical trust, algorithmic vs. human

expert bias and interpretability. Data based models have the advantage of not needing to explicitly

capture and encode expert knowledge, which is quite difficult in most cases, and particularly in

healthcare, as will be discussed in following sections of this review. However, poor quality or artifacts

in measurement, gathering, or other processing of the data can make these models fragile and fail

easily [30].

Predictive as well as explanatory model performance is strongly related to variations and quality

of the dataset used for training in a machine learning context. An inappropriate dataset can make a

model unable to generalise to unseen scenarios in deployment due to overfitting, caused by over or

underrepresented classes in the training data, by wrong annotations or by other reasons [31]. Moreover,

besides these issues of overfitting and bad performance, the issue of bias from various sources related

to the data and its acquisition and subsequent selection or filtering through preprocessing are also

central to explainability and its relation to the robustness of a model to changes in assumptions and

future applicability scenarios.

One of the goals of XAI methods is to build transparent models in order to avoid algorithmic

biases. However, biases are inevitably introduced in the application of models by the training data they

rely on. Several reasons can be behind data bias, such as poorly represented populations or different

conditions affecting data collection and model deployment [32]. In addition, data can incorporate

human biases, and specially in the field of medicine, where the individuality and particularities of

each patient and clinician will exert great influence [33].

Overfitting of models in training, and biases can have devastating consequences on the field

of healthcare, but one of the potential benefits of XAI techniques is that they might be designed to

help detect how and when these problems arise before deployment of faulty models [34]. That more

emphasis should be put on data quality is obvious, such as checking the dataset’s consistency, integrity

and adequacy for the specific application as a crucial step for the development of a trustworthy

and robust AI model [35]. Exhaustive data curation is needed for building large, well labelled and
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good quality datasets [36] and should go hand in hand with XAI approaches in order to avoid the

aforementioned problems, as well as with exhaustive testing of AI systems before clinical deployment

[37].

2. Objectives

The main goal of this review is to analyse the existing literature dealing with explainability

and interpretability of AI methods applied to the medical field. We aim to provide an overview of

current research trends and identify the challenges and limitations that this research area presents, as

well as potential research directions and alternative approaches that could help improve trust and

transparency for clinical AI applications.

There is much recent literature on explainability methods, with a special focus on deep learning

models in the last few years. However, as mentioned before, the issue of interpretability has been

addressed since the beginnings of AI and its application to medicine with models such as the first

medical expert systems.

For that reason, besides giving an overview of current approaches, this review aims to cover some

studies on explainability from classical AI methods as well for applications in medicine and the clinic.

In order to make concrete the objectives of this review, the following research questions are posed:

• RQ1. What are the XAI approaches being used in medical AI applications?
• RQ2. Does any technical limitation to explainability exist that might particularly hinder XAI

development in medicine?
• RQ3. What are current research gaps and directions in the field of XAI that could be of special

interest for medical applications?
• RQ4. Is it possible to include some kind of medical validation or knowledge to enhance the

explainability of clinical AI systems?

3. Methodology

3.1. Search strategy

This scoping review has been conducted according to the framework and guidelines proposed

by the Joanna Briggs Institute Manual for Evidence Synthesis [38]. An electronic search over three

scientific research databases was conducted, namely Web of Science, PubMed and Scopus, looking

for relevant literature on the topic of explainability and transparency of AI methods in the field of

medicine. The search was conducted until February 2022, so articles up until that date were included

in the systematic search.

To narrow down the search, several synonyms and related words were included so that each

article title contained at least one term associated with medicine, another with artificial intelligence

and another with explainability (Table 1).
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Table 1. Keywords used for literature search.

Explainable
XAI, explanation, explainability, interpretable, interpretability,

trust, trustworthy, ethical, causality, understandable

Artificial Intelligence

AI, machine intelligence, computer intelligence, machine
learning, deep learning, neural network, convolutional, computer
vision, bayesian, black box, classifier, expert system, prediction
model, algorithm, big data, data mining, knowledge discovery,
pattern recognition, natural language processing, supervised

learning, reinforcement learning

Medicine

Medical, clinical, health, healthcare, doctor, physician, diagnosis,
prognosis, drug, illness, disease, cancer, mri, ct, treatment,

therapy, patient, radiology, surgery, dermatology, hematology,
oncology, cardiology, neurology, urology, psychiatry,

immunology, immune, virus, bacteria

In addition to the systematic search, a few articles identified through the references of selected

studies, recommended by the authors of this review or searched by hand for topics not thoroughly

covered in the available literature were also included. Some of them were also selected to include

recent advances not covered in the systematic search time range.

3.2. Inclusion and exclusion criteria

In order to meet the objectives of this review, the following criteria were defined for source

inclusion:

• Directly related to the context of medicine and healthcare.
• Addressing clinical problems with AI algorithms, such as machine learning (ML), DL, computer

vision or other kinds of either data or knowledge based methods.
• Including a clear focus on any kind of ethical or technical information about explainability,

transparency or related issues.
• Published in English and with available full text.

A bottom time limit for the publications included was not established, as one of the objectives of

this review was to cover some studies from the first medical AI systems (1970s - ) to take into account

the lessons learned from that period that might be of interest for current and future AI-focused systems.

No constraints about the kind of publication were defined either: articles, reviews and studies of any

kind were both as long as they met the inclusion criteria and were of interest for this review.

Articles that did not meet this criteria were excluded, such as those that used other types of

computer approaches that do not fall under the scope of AI, those that did not talk about clinical

applications or those that only included matters of explainability as a side topic without going into

much detail.

3.3. Data extraction and analysis

The process of source of evidence screening conducted in this review are shown in Figure 2.

After performing the systematic search and excluding duplicates between the results of the different

databases, a first stage of selection was performed by analysing the title and abstract of the resulting

papers. At this stage, all papers that were clearly not related to the topic of this review, either because

they were not related to medicine, because they did not actually focus on AI methods, or because they

did not discuss interpretability at all, as well as those that were not published in English.
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Figure 2. Source of evidence analysis and selection workflow.

Once all the potential candidate articles had been selected, a second stage of selection was

performed to reach the final selection of literature included in this review. A more thorough assessment

was made by looking into the full text papers, in order to exclude the ones that were of no interest for

this review: those that were too short or general, articles that did not focus sufficiently on the topic

of explainability, studies that were too similar to others already included or that employed identical

techniques and did not add much value to the synthesis of the review, in addition to ones that had no

available full text. This final selection of articles, plus the ones identified by manual search, make up

the final bibliography included on this review.

3.4. Literature search results

The literature analysis carried out in this review corroborates the rising popularity over the past

few years of the topics of explainability and interpretability on medical AI applications. Even though

our search shows that some related studies were published in the 1980s, it is not until about 2017 that

the number of publications starts to substantially increase, similar to what other related studies show

[39]. Moreover, as expected, there is a special focus on explainability approaches to DL models, as they

are currently the most popular ML methods.

Studies included in this review mainly consist of medical AI applications that employ

explainability methods or that are built with interpretable models, but there are also some review

papers and ethical commentaries. In what follows, we review the approaches and methods employed

in the reviewed literature to make medical AI models explainable will be presented, as well other

important issues covered in the various articles.

4. XAI methods in medicine

4.1. Classification of explainability approaches

Several taxonomies have been proposed in the literature to classify XAI methods and approaches,

depending on different criteria [40–42] (Figure 3).
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Figure 3. Several diverse approaches to the classification of XAI methods. Adapted from [42].

First, there is a clear distinction between auxiliary techniques that aim to provide explanations for

either the model’s prediction or its inner workings, which are commonly called post-hoc explainability

methods, and AI models that are intrinsically interpretable, either because of their simplicity, the

features they use or because they have a straightforward structure that is readily understandable by

humans.

Secondly, we can distinguish interpretability techniques by their scope, where explanations

provided by an XAI approach can be local, meaning that they refer to particular predictions of the

model, or global, if they try to describe the behaviour of the model as a whole.

Other differentiations can be made between interpretability techniques that are model specific,

because they have requirements regarding the kind of data or algorithm used, and model agnostic

methods, that are general and can be applied in any case. Intrinsically interpretable models are model

specific by definition, but post-hoc explainability methods can be generally seen as model agnostic,

though some of them can have some requisites regarding the data or structure of the model.

More classifications can be made regarding how characteristics of the output explanations are

displayed (textual, visual, rules. . . ), the type of input data required, the type of problem they can be

applied to [42] or how they are produced [23].

However, since these classifications overlap [43], in the following sections we have chosen to go

over the different techniques included in the reviewed literature structured under the most popular

taxonomy: interpretable models and post-hoc explainability methods.

4.2. Intrinsically interpretable models

Intrinsically interpretable models are those built using logical relations, statistical or probabilistic

frameworks and similar strategies that represent human-interpretable systems, since they use rules,

relationships or probabilities assigned to known variables.

This approach to transparency in AI, despite receiving less attention in recent years while the

focus has been on DL, is historically the original one, and the perspective taken by knowledge-based

systems.

4.2.1. Classical medical knowledge-based systems

Some knowledge-based systems, commonly known as “expert systems”, are some of the classical

AI models that were first developed at the end of the 1960s. Explanations were sometimes introduced

as a feature of these first rule-based expert systems by design, as they were needed not only by

users, but also by developers to troubleshoot their code during the design of these models. Thus, the

importance of AI explainability has been discussed since the 1970’s [44,45].
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In medicine, many of these systems were developed aiming to be an aid for clinicians during

diagnosis of patients and treatment assignment [46]. We must remind that explanations for patient

cases are neither easily made, in many occasions, by human medical professionals. The most widely

known of these classical models was MYCIN [13], but many more based on causal, taxonomic, and

other networks of semantic relations such as CASNET, INTERNIST, the Present Illiness Program and

others were designed to support rules by models of underlying knowledge that explained the rules and

drove the inferences in clinical decision-making [14,47,48]. Subsequently, modeling of explanations

was pursued explicitly for the MYCIN type of rule-based models [49]. The role of explanation was

frequently recognized as a major aspect of expert systems [50–52].

As shown in Figure 4, expert systems consist in a knowledge base, containing the expertise

captured from human experts in the field, usually in the form of rules, including both declarative

or terminological knowledge and procedural knowledge of the domain [45]. This knowledge base

is consulted by an inference algorithm when the user interacts with the system, and an explanation

facility interacts with both the inference system and the knowledge base to construct the corresponding

explaining statements [53].

Figure 4. Basic diagram of a medical knowledge-based expert system. Adapted from [53].

The explanations provided were pre-modelled [54] and usually consisted of tracing the rules used

by the inference mechanism to arrive at the final decision and presenting them in an intelligible way to

the user. Such an approach aimed to explain how and why the system produced a diagnosis [52], and

in some more sophisticated cases, even the causal evolution of the patient’s clinical status [55].

However, these explanations were limited by the knowledge base constructed by the system’s

designers: all the justifications for knowledge had to be explicitly captured to produce specific

explanations [52]. Knowledge acquisition (KA) and updating is a challenging task (see Section 6.2)

and was not efficiently resolved, leading KA to become the bottleneck that resulted in the decline of

interest on knowledge-based AI systems (as a main example of symbolic AI) in favour of data-based

AI and ML systems (which we can call as subsymbolic AI).

4.2.2. Interpretable machine learning models

As an alternative to knowledge-based systems, from the early days of medical decision making,

statistical Bayesian, Hypothesis-Testing, and linear discriminant models were ML models that can

be considered interpretable. They are based on the statistical relationships extracted from clinical

databases which allow formal probabilistic inferential methods to be applied. Ledley and Lusted

proposed the Bayesian approach in their pioneering article in the journal Science in 1959 [56], with
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many of the alternatives first discussed in The Diagnostic Process conference [57]. Logistic regression

is an effective statistical approach that can be used for classification and prediction (sendi2021).

Generalized Linear Models (GLMs) [58] are also used in various problems among the literature [59,60],

while Generalized Additive Models (GAMs), an extension of these, allow modeling of non-linear

relationships and are used for prediction in medical problems as well [61,62].

Decision trees are considered transparent models because of their hierarchical structure which

allows to easily visualise the logical processing of data in decision making processes. Moreover, a

set of rules can be extracted to formalise that interpretation. They can be used for classification in

the medical context [63,64], however, sometimes show poor generalisation capabilities, so it is most

common to use tree ensembles (like the random forest algorithm [65]) that show better performance,

in combination with post-hoc explainability methods, as they lose some interpretability [66–68,68,69].

Generalization of formal models through Bayesian networks [70], have become popular for

modelling medical prediction problems [71–75], representing conditional dependencies between

variables in the form of a graph, so that evidence can be propagated through the network to update

the diagnostic or prognostic states of a patient [76]. This reasoning process can be easily visualised in

an straightforward manner.

Interpretable models can be used by themselves, but another interesting strategy is using them in

ensemble models. Ensemble models consist in combining several different ML methods to achieve

a better performance and better interpretability than with a black-box model alone [77]. These

approaches can also include these interpretable models in conjunction with DL models such as neural

networks [78–81], as well as other post-hoc explainability techniques [82,83] such as the ones that will

be presented later in this paper (Section 4.3). However, they pose increasingly and as yet unresolved

complex interpretation issues as recently emphasized by Pearl [84].

4.2.3. Interpretation of neural network architectures

Despite the fact that neural networks cannot be fully included in the category of intrinsically

interpretable models we can characterize them (also DL are included), such as architectures designed

so that they resemble some of the simple neural modelling of brain function and used heuristically

to recognise images or perform different tasks, and some neural network architectures have been

specially designed to provide interpretability. The first type tries to mimic human decision-making

where the decision is based on previously seen examples. In [85] a prototype learning design is

presented to provide interpretable samples associated with the different types of respiratory sounds

(normal, crackle, and wheeze). This technique learns a set of prototypes in a latent space that are

used to make a prediction. Moreover it also allows for a new sample to be compared with the set

of prototypes identifying the most similar and decode it to its original input representation. The

architecture is based on the work in [86] and it intrinsically provides an automatic process to extract

the input characteristics that are related to the associated prototype given that input.

Other methods’ main motivation is to behave in a way more similar to how clinicians diagnose,

and provide explanations in the form of relevant features. Among this type, attention maps are widely

used. It basically extracts the influence of a feature on the output for a given sample. It is based on the

gradients of the learned model and in [87] has been used to provide visual MRI explanations of liver

lesions. For small datasets it is possible even to include some kind of medical knowledge as structural

constraint rules over the attention maps during the process design [88]. Moreover the attention maps

can be also applied at different scales concatenating feature maps as proposed at [89] being able to

identify small structures on retina images.

These approaches are specific to DL but still surrogate models or post-hoc methods are applicable

to add explainability.
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4.3. Post-hoc explainability methods

Extending the above approach to transparency came with the development of more complex

data-based ML methods, such as support vector machines (SVMs), tree ensembles and of course, DL

techniques. The latter have become popular due to their impressive performance on a huge variety of

tasks, sometimes even surpassing human accuracy for concrete applications, but also unfortunately

entailing deeper opacity -for instance, than the detailed explanations that classic statistics can provide.

For this reason, different explainability methods have been proposed in order to shed light on the

inner workings or algorithmic implementations used in these blackbox-like AI models. Because they

are implemented as added facilities to these models, executed either over the results or the finished

models, they are known as post-hoc methods, which produce post-hoc explanations, as opposed to the

approach of intrinsically interpretable models.

Many of the approaches included in this category, which are also currently the most widely used

as reported in the literature, are model agnostic. Post-hoc model agnostic methods are so popular

due to their convenience: they are quick and easy to set up, flexible and well-established. Within this

category, there are also some model specific post-hoc techniques designed to work only for a particular

type of model.

These are less flexible, but tend to be faster and sometimes more accurate due to their specificity,

as they can access the model internals and can produce different types of explanations that might be

more suitable for some cases [23].

Regardless of their range of application, post-hoc methods can be also grouped by the basis of

their functionalities. Combining the taxonomies proposed in [10] and [66], we can broadly differentiate

between explanations by simplification (surrogate models), feature relevance methods, visualization

techniques and example-based explanations. In the following sections these ideas will be presented as

well as some of the most popular and representative methods belonging to each group.

4.3.1. Explanation by simplification

One way to explain a black-box model is to use a simpler, intrinsically interpretable model for the

task of explaining its behaviour.

One method that uses this idea, which is undoubtedly one of the most employed ones throughout

all the literature, is LIME (Local Interpretable Model-agnostic Explanations) [90]. This method builds a

simple linear surrogate model to explain each of the predictions of the learned black-box model. The

prediction’s input to be explained is locally perturbed creating a new dataset that is used to build the

explainable surrogate model. Explanation of instances can help to enforce trust in assisted AI clinical

diagnosis within a patient diagnosis workflow [91].

Knowledge distillation is another technique included in this category. It was developed to

compress neural networks for efficiency purposes, but it can also be used to construct a global surrogate

interpretable model [92]. It consists of using the more complex black box model as a "teacher" to a

simpler model that learns to mimic its output scores. If the “student” model demonstrates sufficient

empirical performance, a domain expert may even prefer to use it in place of the teacher model and

LIME. The main rationale behind this type of modelling is the assumption that some potential noise

and error in the training data may affect the training efficacy of simple models. [93] used knowledge

distillation to create an interpretable model achieving strong prediction performance for ICU outcome

prediction.

Under this category we could also include techniques that attempt to simplify the models by

extracting knowledge in a more comprehensive way. For example, rule extraction methods try to

approximate the decision-making process of the black-box model, such as a neural network, with a

set of rules or decision trees. Some of the methods try decomposing the units of the model to extract

these rules [94], while others keep treating the original model as a black box and use the outcomes to

perform a rule search [95]. There are also combinations of both approaches [96].
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4.3.2. Explanation by Feature relevance methods

In the category of feature relevance methods we can find many popular examples of explainability

techniques. These approaches try to find which are the most relevant variables or features to the

model’s predictions, those that influence the most the outcome in each case or in general.

The ancestry to these techniques can be found in both statistical and heuristic approaches dating

back to the 1930’s with Principal Component Analysis (PCA), which explains the weightings of features,

or contributions to relevance in in terms of their contribution to inter and intra population patterns of

multinomial variance and covariance [97]. These techniques were also shown to be central to both

dimensionality reduction and its explanation in terms of information content for pattern recognition

[98] and clinical diagnostic classification and prediction using subspace methods from atomic logic

[99]. Later, related techniques for feature extraction by projection pursuit were developed and applied

to clinical decision-making.

More recently, with LIME (that could also be included in this group), SHAP (SHapley Additive

exPlanations) is one of the most widely used XAI model agnostic techniques, and it is the main example

of the category of feature relevance methods. It is based on concepts from game theory that allow to

compute which are the features that contribute the most to the outcomes of the black box model, by

trying different feature set permutations [100]. SHAP explanations increase trust by helping to test

prior knowledge and also can help to get insights into new ones [101].

Other well known similar example that measures the importance of different parts of the

input by trying different changes is SA (Sensitivity Analysis) [102], and LRP (Layer-Wise Relevance

Propagation) [103], Deep Taylor Decomposition (an evolution of LRP) [104] and DeepLIFT [105] are

other model-specific alternatives for neural networks, that propagate the activation of neurons with

respect to the inputs to compute feature importance.

4.3.3. Explanation by visualization techniques

Some of the aforementioned methods can produce visual explanations in some cases. Still, in

this section we can mention some other methods that visualize directly the inner workings of the

models, like Grad-CAM [106], that helps showing the activation of the layers of a convolutional neural

network. In addition, there are other techniques that visualize the inputs and outputs of a model

and the relationship between them, such as PDP (Partial Dependence Plots) [82] and ICE (Individual

Conditional Expectation) plots [107]. It is worth mentioning that visualization can help to build

explicable interfaces to interact with users, but it is complex to use them as an automatic step of the

general explainability process.

4.3.4. Explanations by examples

Finally, another approach to produce explanations is to provide examples of other similar cases

that help understanding why one instance has been classified as one object or structure or another by

the model, or instead, dissimilar instances (counterfactuals) that might provide insights on why not.

For instance, MMD-critic [108] is an unsupervised algorithm that finds prototypes (the most

representative instances of a class) as well as criticisms, instances that belong to a class but are not well

represented by the prototypes. Another example are counterfactual explanations [109], that describe

the minimum conditions that would lead to a different prediction by the model.

5. Evaluation of explainability

Despite the growing body of literature on different XAI methods and the rising interest on

the topics of interpretability, explainability, and transparency, there is still limited research on the

field of formal evaluations and measurements for these issues [110]. Most studies just employ XAI

techniques without providing any kind of quantitative evaluation or appraisal of whether the produced

explanations are appropriate.
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Developing formal metrics and a more systematic evaluation of different methods can be difficult

because of the variety of the available techniques and the lack of consensus on the definition of

interpretability [111]. Moreover, contrary to usual performance metrics, there is no ground-truth

when evaluating explanations of a black-box model [20,111]. However, this is foundational work

of great importance, as such evaluation metrics would help towards not only assessing the quality

of explanations and somehow measuring if the goal of interpretability is met, but also to compare

between techniques and help standardise the different approaches, making it easier to select the most

appropriate method for each case [112].

In short, there is a need for more robust metrics, standards and methodologies that help data

scientists and engineers to integrate interpretability of in medical AI applications in a more detailed,

verified, consistent and comparable way, along the whole methodology, design and algorithmic

development process [113]. Nevertheless, in the few studies available on this topic, there are some

common aspects that establish a starting point for further development, and there are some metrics

such as robustness, consistency, comprehensibility, and importance of explanations.

A good and useful explanation for an AI model is one that is in accordance with human intuition

and easy to understand [114]. To evaluate this, some qualitative and quantitative intuitions have

already been proposed.

• On the one hand, qualitative intuitions include notions about the cognitive form, complexity and

structure of the explanation. For example, what are the basic units that compose the explanation

and how many are there (more units mean more complexity), how are they related (rules or

hierarchies might be more interpretable for humans), if any uncertainty measure is provided or

not, and so on [110].
• On the other hand, quantitative intuitions are easier to formally measure, and include, for

example, notions like identity (for identical instances, explanations should be the same), stability

(instances from the same class should have comparable explanations) or separability (distinct

instances should have distinct explanations) [114,115]. Metrics based on these intuitions

mathematically measure the similarity between explanations and instances as well as the

agreement between the explainer and the black-box model.

Other options to evaluate XAI techniques include factors such as the time needed to output an

explanation or the ability to detect bias in the data [114].

Another interesting strategy is to quantify the overlap between human intuitions (such as expert

annotations) and the explanations obtained [116,117], or using human ratings by experts on the topic

[112,118–120].

There are also different options regarding the context in which these various metrics can be used.

The evaluation of an XAI system can be made either in the context of the final target task with the

help of domain experts, in simpler tasks, or using formal definitions [110]. Depending on the specific

characteristics of the problem and available resources, different approaches and metrics can be chosen.

6. Challenges of XAI approaches

As discussed before, there is an increasing recognition of XAI in recent years, particularly in fields

like medicine, rediscovering previous concerns already raised for 50-60 years about statistical, pattern

recognition, and earlier AI models, where the ethical requirements for transparency based on the

Hippocratic Oath and derived professional ethics of practitioners is even stronger [121]. But, despite

the benefits of using explainable systems being so clear and with some of the advances already made

in the field and its range of available methods, the use of XAI techniques is still not widespread [10].

But why might explainability methods still not be enough? The problem of AI interpretability is a

most challenging issue, as there are many unresolved technical limitations, related ethical questions

and controversies surrounding current approaches.
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6.1. Controversy around current XAI methods

Currently, one of the frequently discussed issues among researchers in the field of XAI is the

choice between different approaches, mainly between post-hoc explainability and other transparency

criteria for systems. There is no consensus about whether it is better to use intrinsically interpretable

models or to develop techniques that try to explain the outcomes of black-box models, given the

contrasts and complementarities between them that make comparisons incommensurate.

Despite being more understandable (and therefore meeting some of the transparency needs that

make other types of systems more problematic), interpretable models are commonly rated as less

accurate or efficient than more complex data-based approaches such as DL (see Figure 5), implying

that there is a trade-off between explainability and classification or prediction accuracy [10,23,122].

Figure 5. Trade-off between explainability and performance of different AI methods. Adapted from

[66].

If such a trade-off exists, it could be alleged that it would not be ethical to use a model that

does not perform at the best possible level, therefore being more adequate to use top-notch accurate

systems, regardless of their black-box nature [7]. Some researchers maintain that, in fact, explainability

might not be so necessary if good accuracy is proven by conducting empirical validations for example

[123,124], while others disagree [125,126]. The practical ethical problem is the heterogeneity and lack of

“gold standards” of comparable training and testing datasets for any particular problem with statistical

and heuristic approaches, which do not take into account the wide range of qualitative differences

between different types of data and knowledge, and the implementation of responsible evaluatory

judgments by experts which cannot be reduced to simple measures. Complementary approaches for

this might be official certifications or criteria for controlling data biases, beside explainability, in order

to build trust on these systems [127,128].

Moreover, some scholars argue that, while it is important that research continues trying to unravel

black-box models, we should also focus on pursuing more efficient and stable models, and putting so

much emphasis on interpretability of these models before clinical application might restrain innovation

in that direction and might not be that crucial [129].

However, from an opposite point of view, other researchers advocate for intrinsically interpretable

models arguing that there is no such trade-off between explainability and accuracy in reality and that
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these models are more appropriate and safe for high-stakes fields like healthcare, where explanations

of black-box models can be misleading and inaccurate, inducing effects opposite to the intended [125].

At the same time, some interpretable models have been recognized to require further explanations for

non-technical end users such as clinicians or patients [24].

While there is no clear agreement on what is the best approach to the problem of transparency and

interpretability or if it is even always necessary, some studies show that physicians, not surprisingly,

do prefer AI systems that include some form of explainability, while seeming not to have a clear

preference between methods [6].

In the following section, we will discuss further limitations of explanations related to this

controversy, and that should be taken into account when designing these kinds of models and choosing

among explainability approaches.

6.2. Technical limitations of explainability

While there is a common trend in favour of employing XAI among researchers, the limitations

of these approaches are often underestimated, which can be especially high risk in the field of

medicine [130]. These obstacles might not fully invalidate the use of XAI methods, but researchers and

developers should be aware of them, as they can negate the application of these techniques in certain

cases, and urgently require study [21].

Importantly, it should be noted that explanations and transparency might not translate into

understanding underlying biomedical causal relationships [131], so we must be very cautious when

using explainability as a tool to attempt knowledge discovery. For instance, using a surrogate model

to explain a black-box system is only an approximation to the original model, and the produced

explanations are unlikely to be faithful to the true inner workings of it [132]. Beyond this, it can not be

assumed that behind the explanations or decisions of an AI system there is always an equivalent or

at least a truly comparable reason that human experts could infer [133]. For that reason, we should

be careful not to build systems that are persuasive rather than transparent [134,135], by properly

analysing, validating and interpreting the results obtained.

Another point to be taken into account is that usually models and explanations that are more

simple or compact are more interpretable, but it might not always be that way. Explanations depend

on the specific context of the task and expectations of the user [44], and if they are not meaningful,

detailed enough or in the needed form, they might not be useful and only complicate explanations of

decision pathways [135].

It should also be considered that there can also be serious cognitive limits to explainability, as

it was acknowledged about knowledge acquisition in the development of expert systems in the first

decades of AI development. When human experts, like clinicians, become proficient in an area, they

perform their tasks in a kind of automated or at least compiled way, effortlessly and efficiently. At this

point, the knowledge needed for performing these tasks has become tacit, meaning that is compiled in

their mind and not available for conscious access and sharing [15]. For that reason, sometimes they

cannot completely explain what are the exact reasons behind their decisions.

This issue of after-the-fact justificatory explanations by experts makes it really hard to accurately or

veridically model expert knowledge when the problem to solve is complex or vaguely defined, which

is typical for the medical domain [30]. Unlike scientific disciplines such as biology, in clinical practice

where reproducible experimentation is approximately feasible at least, there is a considerable uniquely

patient-and-expert encounter specific practical expertise, and lack of generalizable knowledge for many

practical problem-solving situations [136]. In consequence, it is really difficult to elicit reproducible

and useful models of physician reasoning in the form of concrete rules [30].

This is one of the reasons that have contributed to making it impossible to fully capture the

knowledge needed for building expert systems [15], and, ironically it presents parallels to the problems

with black-box AI heuristic or statistical models [136], so maybe it is unrealistic to expect comprehensive

explanations from these systems as we might desire, in the same way that we do not entirely understand
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much of human neural processes within their complex biochemical and genetic and developmental

living contexts. Moreover, one must take into account that post-hoc explanations frequently suffer

from the same problems of interpretability as human-expert explanations [20].

7. Research opportunities for medical XAI

The research limitations and shortcomings surrounding XAI discussed in this review, include

the need for more robust evaluations (Section 5) and for more studies about cognitive limitations of

explainability (Section 6), as well as efforts for improving data quality (Section 1.4). Here we discuss

explainability as it is especially related to the field of medicine.

Before getting specific,it ought to be emphasized that much more interdisciplinary work would

benefit the building of XAI systems. Not only do users’ needs have to be taken into account more

explicitly, but detecting errors in models that are related to a particular field of application has to be

learned and imbued by technical designers, in order to improve current explainability techniques and

develop and implement novel and more effective ones.

Lately, most of the studies in the field of interpretability tend to focus and develop some particular

techniques, the ones that are more popular at the moment (for example, feature extractions or deep

learning models visualisations), give less attention to other categories (such as interpretable models,

for instance). Popular purely technological techniques are hardly most appropriate solutions for every

case and, moreover, combining ideas from different fields could lead to really interesting advances to

achieve more effective explanations [135].

7.1. Alternative ways to incorporate medical knowledge

We have already commented on the difficulties of capturing and modelling knowledge from

experts, specially in healthcare, due to the uncertainty and incompleteness of knowledge in clinical

practice [136]. However, it is undeniable that knowledge would help building more robust AI systems,

with enhanced clinical interpretability. For that reason, research on alternative ways of embedding

clinicians’ expertise in AI models will be most useful.

One way of incorporating medical knowledge can involve human-in-the-loop evaluations of these

systems [2]. Interaction with medical experts during development, or discussing the results of XAI

models can help detect errors, validate these systems and identify possible underlying causes of the

model’s behaviour that would go unnoticed by technical developers. The use of the novel technique

ChatGPT could also be helpful to automatize this process or part of it.

Another interesting research path is information fusion. Combining different types of multimodal

data, such as medical images, family histories, genomic data or electronic health records can help

specify, define and incorporate clinical context into a model, improving not only its diagnostic accuracy,

but also its interpretability [28,137,138]. Moreover, using data collected from different centres can also

help with domain variability and shift and enhance AI models [28].

There are already some studies on how to achieve this fusion of different kinds of data [137] as

well as studies taking this kind of approach [139], however, more research and comprehensive data

collection and annotation should be made to facilitate the building of these enhanced AI systems [28].

7.2. Taking into account user needs

Choosing the right XAI approach for each case is not a straightforward task, as the decision

depends on many factors, such as characteristics of the concrete problem, of the application

environment or of the available data, as different applications have different interpretability needs

[111]. However, the most important aspect involves the requirement of the actual end-users of a

system: clinicians and, in some cases, patients.

The questions from the users will vary depending on their expertise and knowledge of the domain,

and their views on an application problem. A clinician using an AI system to confirm a diagnosis who

wants to know if the model is working properly but has no technical knowledge will need different
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explanations than the system builder who wants to check the models’ performance, or a patient who is

using an AI system by themselves. For these reasons, the kind and extent of explanations need to be

adjusted to the specific type of user needs in order to build trust [140], without falling into over-trust

[1].

Depending on the prospective end users of the explanations, whether patients, clinicians or

technical designers, it might be preferable to design different types of explainability: about the

exhaustive workings of the model or about the relevant features being used, for example [17]. It should

be identified in each case why users want explanations from the model, what information they need

that said explanations contain and how they prefer them to be presented [141,142].

If the factors above are not considered, accurate explanations will not match the needs of the users

and be informative and understandable to them [143]. Achieving this user understanding might as

well need interaction between the system and its human user, in order to obtain further answers to

different questions [10].

To summarize, in order to enable the collaboration between humans and AI, XAI outcomes have

to be appropriately tailored to different end users, so more attention has to focus on these aspects of

research: human-machine interaction and users’ mental models. Most likely, general solutions will not

be feasible, so the context of the problem has to be taken into account, preferably with interdisciplinary

collaboration, and combining different types of explainability to fulfill users needs [144].

8. Conclusions

AI has the potential to transform and improve healthcare, nevertheless, without explainable and

trustworthy systems, its application will continue to be limited.

In this paper, we have reviewed the precedents and background with the state of the art of XAI as

applied in medicine. Several popular approaches and techniques have been discussed providing an

overview of available options to include explainability as an aspect of clinical AI systems (RQ1).

The benefits of explainable systems could be considerable: promoting trust, enabling better

interpretation of the data and predictions or enhancing the detection of errors, for example. However,

considerable challenges identified in this review need to be overcome in the field of medical XAI.

Besides the high dimensionality and black box nature of many AI models, in medicine the problem of

data quality is especially serious, if we are to be able to develop accurate XAI techniques without the

risk of being influenced by unrepresentative or poorly selected or curated and filtered data. Moreover,

cognitive limitations to knowledge acquisition about clinicians’ reasoning are also related to the extent

of how far XAI methods might be able to prove useful (RQ2).

In order to develop and consolidate further robust explainability methods and interpretable

models, making them a useful tool for clinicians to trust medical AI applications and therefore support

their implementation in the real world, future research on this topic should be focused on overcoming

these challenges, as well as better analysing user needs, enhancing human-system interaction and

studying alternatives such as data fusion or clinicians’ feedback to include medical validation and

knowledge in different ways without the need of explicitly modelling it. Moreover, involving medical

experts in the process of design and development of these systems would also help building more

robust models and improving user understanding (RQ3 and RQ4).

All in all, the prospects for XAI methods in clinical applications is that they are essential in

many ways, but that further research is needed to overcome the current limitations enhancing these

techniques in order to build secure, trustworthy and efficient systems that benefit both patients and

clinicians.
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