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Abstract: Rift Valley Fever (RVF), is a viral zoonotic disease predominant in East Africa and transmitted by
Aedes mosquitoes carrying the virus. Using the systematic literature review approach, the present study
evaluated machine learning techniques and time series approaches to find literature on the impact of climatic
changes on RVF outbreaks published between 1930 and 2024. The literature search involved databases
including PubMed, PLOS ONE, JSTOR, Web of Science, Google Scholar, and SCOPUS (Kenmoe et al., 2023).
The results show that most of the articles were published between 2018 and 2022, and most of the articles were
from United States, France, and Kenya. We conducted a detailed review of the articles using the PRISMA 2020
flow chart, screening and qualifying 10,015 articles. Some articles revealed significant gaps in both internal and
external validation. Therefore, future research should focus on developing multi-disciplinary models that
incorporate climatic condition, geographical, biological, and social factors.
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Introduction

Rift Valley fever (RVF) is a viral zoonosis that primarily affects farmed animals and humans,
(WHO, 2004) . The disease is notifiable and predominant in East Africa (Martin et al., 2008). The WHO
listed the disease as an emerging disease in 2015, indicating that it requires international attention. If
not addressed, the disease outbreaks, which can sometimes be extremely severe, can have significant
economic, health, and agricultural impacts (Anyamba et al., 2012). Proper prediction and analysis of
the outbreaks is crucial for early preparedness and control by the government and public health
agencies.

RVF modeling has previously relied on the traditional time series methods, which only rely on
raw data to capture the time series components: secular trends, seasonal variations, and patterns,
(Munyua et al., 2016). Time series analysis comprises methods for analyzing time series data to extract
meaningful statistics and other characteristics of the data (Ochieng et al., 2016). The ability of time
series models to capture temporal dependencies and extract meaningful insights from disease
outbreaks has recently led to their use for analysis. However, these models often face challenges in
handling complex data sets to explore non-linear relationships and integrate them (Lee dale et al,,
2016).

Recently, the use of machine learning approaches to model, classify, and predict disease
outbreaks in the fields of epidemiology and public health has been on the rise (Redding et al., 2017).
This is because of their ability to handle large and complex datasets, unveil hidden patterns, and
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make reliable predictions using advanced algorithms (Kariuki Njenga & Bett, 2019). We have adopted
these machine learning models as the most suitable for modeling the interactions between the climatic
predictors that drive RVF outbreaks. This study is to conduct a systematic literature review
comparing and contrasting the effectiveness of the use of time series and machine learning models in
RVF modeling, prediction, and analysis from 1930 to 2024.

This study deals with to evaluate and integrate all of the models and compare their accuracy,
speed, efficiency, and interpretability with close screening and analysis of existing studies on RVF.
Furthermore, the review will provide an opportunity to combine both machine learning and time
series models to understand RVF epidemiology. A thorough understanding of hybrid modeling
approaches will be critical in developing robust techniques that can clearly inform the public and
other stakeholders. Identifying literature gaps and current approaches will improve ways of
managing and controlling future RVF shocks.

Methodology
Literature Search and Data Collection

To achieve a comprehensive and thorough search, a relevant list of search terms was developed.
These search terms were tailored for five major scientific databases including; PubMed, JSTOR, PLOS
ONE, SCOPUS, Google Scholar and Web of Science. Majorly, the terms used in the search focused on
the studies on RVF, time series analyses and methodologies, machine learning models and
techniques.

Databases and electronic search of Terms

The literature search was conducted in PubMed, PLOS ONE, JSTOR, Web of Science, Google
Scholar and SCOPUS, covering publications from the last 90 years to maintain a manageable and
relevant scope with the key words as highlighted in Table 1. The search included general and specific
terms such as “Rift Valley fever prediction”, “ time series prediction of RVF cases,” “time series
prediction of diseases,” “machine learning classification of RVF diseases,” and “RVF outbreak and

Climatic changes”.

Table 1. Summary of search terms and operators used in electronic search.

Search Terms with Operators
Rift AND Valley AND fever OR Diseases OR Outbreak AND Prediction
Rift AND Valley AND fever OR Diseases OR Outbreak AND Time AND Series AND prediction
Rift AND Valley AND fever OR Diseases OR Outbreak AND Machine AND Learning
Rift AND Valley AND fever OR Diseases OR Outbreak AND climatic AND changes
Machine AND Learning AND Predicting AND Rift AND Valley AND Fever AND Outbreak OR diseases|
AND climatic AND changes
Time AND Series AND Machine AND Learning AND Predicting AND Rift AND Valley AND Fever AND|
Outbreak OR Disease

ARl B I o

Screening Process

In the review process, literature screening is critical. We used the COVIDENCE platform in our
study. We conducted screening in two stages to ensure efficiency in the title, abstracts, and full text.
Two impartial reviewers assessed the titles and abstracts during the first round, designating each
entry as “include” or “exclude.” The reviewers resolved minor disagreements through dialogue until
they reached a consensus.

Full-Text Review and PICOS

We reviewed the shortlisted papers again, concentrating on their full texts. During this phase,
we manually uploaded other papers and used the COVIDENCE platform to automatically retrieve
freely available full texts. The study used the PICOS framework, which stands for population,
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intervention, comparison, outcome, and study design. It provides a structured way to assess the
literature and ensures that the resulting conclusions are based on comprehensive and well-defined
criteria

This review included specific studies on RVF-affected animals and humans, as well as vector
species associated with RVF transmission. In relation to the emergence, transmission, and
dissemination of RVF, the intervention element took into account the impact of climate change and
the strategies used to adapt to it. Due to the nature of the research, the study did not consider
comparisons, as its primary goal was to understand the overall effects of climate change on RVF
outbreaks, rather than to compare individual interventions. The incidence, geographic distribution,
and transmission patterns of RVF, as well as the efficacy of any attempts at climate adaptation, were
of interest.

The analysis concluded with the inclusion criteria, which included original research articles,
review articles, theses, conference paper proceedings, and research policy papers published between
2004 and 2024. It is important to note that the study period encompassed several RVF outbreaks,
leading to a wealth of information and publications. The study excluded resources such as editorials,
opinion views, and new articles from studies that were not in English. This comprehensive PICOS
approach ensured that our review remained focused and relevant, capturing the most pertinent and
relevant studies related to RVF and climate change. The final extracted data included various
categories, as detailed in Table 2.

Table 2. Overall framework of reviewing and overall eligibility screening approach.

Category Inclusion Exclusion
Articles on RVF, RVF epidemiology, and RVF | Articles on other diseases not related to
Concept vector ecology RVF
Articles on climate impacts on RVF emergence, |Articles with prevention and interventions
transmission, or spread for diseases other than RVF
Articles on interventions and climate change Articles on climate impacts or with no
adaptation measures related to RVF mention of RVF implications
Type of Original research studies, review articles, theses, Editorials, opinion pieces, and news
evidence source conference papers articles
Language Articles in English Articles in languages other than English
AlgOl‘lthl‘I.l for Using either ITS or Deep leaning approach Not following PICOS
analysis
Timeframe Articles published between 2010 and 2024 Articles published prior to 2010
Puls)::t:ztslon Articles published or in press Pre-print articles

Data Extraction and Categorization

We sorted the extracted data into multiple important categories, including categorization tasks,
publisher/journal, study objectives, article type, and application domain. We meticulously
documented the input data, output labels, data sources, population size, exclusion criteria, and tested
algorithms. There were three types of classification tasks: window-based classification, sequence-to-
sequence (point wise) classification, and whole-series classification.

Feature Engineering and Algorithm Performance

The review looked at different classes of algorithms and feature engineering strategies. Statistical
modelling, wavelet transform, distance-based, ensemble-based, shape let-based, non-linear index,
and thresholding were among the key approaches used. Metrics like false positive rate, area under
the precision-recall curve, sensitivity, specificity, Cohen’s Kappa, accuracy, Fl-score, positive
predictive value (PPV), negative predictive value (NPV), and area under the receiver operating
characteristic (ROC) curve (AUC) were used to assess each method’s efficacy.

Evaluation Metrics
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The performance of the algorithm was evaluated using common measures. The Fl-score
indicated the harmonic mean of precision and recall, whereas accuracy quantified the percentage of
properly predicted RVF cases. The model’s ability to discriminate between RVF and non-RVF cases
was assessed using the AUC-ROC. True positive and true negative rates were defined by sensitivity
and specificity, respectively, while inter-rate reliability was evaluated using Cohen’s Kappa. The
probabilities of true positive and true negative outcomes were represented by PPV and NPV,

respectively, and the frequency of inaccurate positive predictions was evaluated by the false positive
rate.

Results
Overview of Screening Process

The Prisma Chart on Figure 1 shows the overall steps taken for the systematic review of Rift
Valley fever (RVF) studies by illustrating the meticulous process undertaken to identify, screen, and
select relevant articles for inclusion. Initially, a comprehensive search was conducted across multiple
databases, including JSTOR, SCOPUS, Google Scholar, PubMed, Web of Science, and PLOS ONE,
yielding a total of 10,015 records. During the identification phase, duplicate records (3,685) were
removed, leaving 6,366 unique records for further screening. This initial phase ensured that all

potential studies were accounted for, covering a broad spectrum of literature pertinent to RVF and
climate impacts.

JSTOR SCOPUS GOOGLE SCHOLAR PUB MED WEB OF SCIENCE PLOS ONE
Number of records Number of records Number of records Number of records Number of records Number of records
identified identified identified identified identified identified
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}

TITLE AND ABSTRACT
Number of records identified
(n=6366)

!

TITLE AND ABSTRACT ELIGIBLE
Number of records remained

I

3685 articles excluded due to dupllcatej

(n=947)
Not in English (n=483)

Excluded (n=5180)
Review,conference thesis
Not Open access (n=3750)

1 [ SCREENING J( IDENTIFICATION

AT

(n=1186)
Excluded (n=749)
N J
> No prediction by Deep learning or
- Intergrated Timeseries (n=317)
=
o P v N Not conducted in East african countries
o PICOS EVALUATION (n=432)
o | Number of records remained
w (n=437)
Exclude (n=113) N <
outcome and Design
- ielevance < Excluded (n=294)
FULL TEXT SCREENED does not include the focus on climate
Number of records remained impact (n=238)
(n=324)
Does not include model comparison like}
evaluation metrics
a . < (n=56)
w
Q l
]
(—_; STUDIES INCLUDED
z (n=30)

-

Figure 1. The flow chart of the selection process and screening of articles.
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In the screening phase, the titles and abstracts of the remaining 6,366 records were evaluated
against the predefined inclusion and exclusion criteria. A significant number of articles (5,180) were
excluded due to being review articles, conference papers, theses, or not available in English, and not
being open access. This rigorous screening process narrowed the pool to 1,186 eligible records. The
focus then shifted to a more detailed evaluation using the PICOS framework, which further refined
the selection by excluding studies that did not meet specific criteria related to population,
intervention, outcomes, and study design. Studies that did not utilize deep learning or integrated
time series predictions (317) or were not conducted in East African countries (432) were excluded,
resulting in 437 records for detailed full-text screening.

The eligibility phase involved a thorough review of the full texts of the 437 remaining articles.
During this phase, studies were excluded if their outcomes and design were deemed irrelevant,
resulting in 113 exclusions. Of the 324 records that progressed to the final eligibility check, an
additional 294 were excluded because they did not focus on climate impact or did not include model
comparison evaluation metrics. Ultimately, 30 studies were included in the review, representing a
focused selection of research that addresses the intersection of climate change and RVE. This PRISMA
flow chart underscores the importance of a systematic and transparent approach in conducting
literature reviews, ensuring that the final selection of studies is both comprehensive and relevant to
the research question at hand.

Publication Year

The chart on Figure 2 detailing documents by year from 2004 to 2026 provides an insightful look
into the trends of research publication over time. Between 2004 and 2010, the number of documents
remained relatively low but showed a gradual increase. This period likely represents the
foundational years of research, with initial studies being conducted to understand the basics of Rift
Valley fever (RVF) and its impacts. The growth during these years could be attributed to the rising
awareness of the disease and its implications, leading to more focused research efforts.

150

128

100

Documents
-

50

25

2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 2024 2026
Year

Figure 2. Average distribution of publication documents on average across 6 articles database.

From 2010 to 2016, there is a marked increase in publications, peaking around 2016. This surge
can be linked to several factors, including heightened global health initiatives, increased funding for
infectious disease research, and the advent of new technologies and methodologies in studying RVF.
The peak in 2016 might reflect the culmination of extensive research projects, international
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collaborations, and significant outbreaks that prompted deeper investigations. The years following
2016 show a somewhat fluctuating trend, with the number of documents stabilizing yet experiencing
periodic peaks and troughs. These variations could be influenced by the cyclical nature of research
funding, shifting focus towards other emerging health threats, and the publication cycles of major
research projects. Despite these fluctuations, the overall trend remains high, indicating sustained
interest and continuous advancements in RVF research. A notable spike is observed around 2021-
2022, which could be attributed to increased global attention on zoonotic diseases due to the COVID-
19 pandemic. This period likely saw a surge in studies exploring the connections between climate
change, vector-borne diseases, and public health, contributing to a significant number of publications.

However, the sharp decline in 2024 and projected into 2026 raises questions. This decrease might
be a result of a temporary shift in research priorities, completion of major research initiatives, or
delays in publication processes. It could also reflect a natural ebb following a peak period of intense
research activity. Overall, the chart illustrates a dynamic and evolving field of study, driven by global
health needs, scientific advancements, and environmental changes. The data underscores the
importance of continuous support for research in RVF to address its ongoing and emerging
challenges, ensuring that knowledge and strategies keep pace with the disease’s development and
impact.

Publication across Countries

The chart in Figure 3 depicts the number of documents by country, revealing significant
geographical trends in RVF-related research. The United States leads overwhelmingly, with
approximately 600 documents demonstrating its robust contribution to this field. The US’s
substantial research funding and resources, along with its advanced technological infrastructure,
enable extensive scientific investigations and publications, contributing to its dominance (Mearns &
Norton, 2010).

Compare the document counts for up to 15 countries/territories

United States
France

Kenya

United Kingdom
South Africa
Germany
China

Netherlands

Egypt

Italy

o

100 200 300 400 500 600 700

Documents

Figure 3. Average Distribution of Publication documents on average across countries.

France is the second-highest contributor, with approximately 250 documents. This is indicative
of France’s active role in global health research, particularly in diseases that have implications for
public health and agriculture. Kenya’s position, almost equal to France’s, highlights the country’s
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critical role in RVF research. Given that RVF is endemic to East Africa, Kenyan institutions are on the
frontlines of studying and managing this disease, contributing valuable insights and data directly
from affected regions.(Godoy et al., 2014).

The Rift Valley is part of the East African Rift System, which extends from the Afar Triangle in
Ethiopia down through Kenya and into Tanzania. While the Rift Valley also passes through other
East African countries like Ethiopia, Tanzania, and Uganda, Kenya's segment is the most
internationally recognized due to its distinct geological features, archaeological significance, and its
economic and cultural importance. These countries” involvement underscores the global recognition
of RVF as a critical issue that transcends regional boundaries, necessitating a concerted international
research effort.

This data highlights the diverse geographical spread of RVF research, reflecting both the
disease’s impact and the global scientific community’s commitment to understanding and combating
it. The concentration of research in specific countries emphasizes the importance of international
collaboration to effectively address the challenges posed by RVE. This also emphasizes the need for
continued support and funding for research in both high-contributing countries and regions directly
affected by RVF, ensuring a comprehensive approach to studying and mitigating this significant
health threat (A et al., 2022).

Discussion

This discussion integrates findings from a comprehensive systematic review of studies on RVF
and explores the role of climate, machine learning, and time series methodologies in understanding
and controlling the disease.

Climate and RVF Epidemiology

Climate plays a critical role in RVF epidemiology. The World Health Organization (2004)
emphasizes the importance of using climatic data to predict infectious disease outbreaks. Climate
variables such as rainfall, temperature, and humidity directly influence mosquito vector breeding
and survival, which are crucial for RVF transmission. Martin et al. (2008) further elaborate on how
climate change impacts RVF epidemiology and control, particularly through its effects on the vectors’
lifecycle and distribution.

Anyamba et al. (2009) utilized remote sensing data to predict RVF outbreaks, demonstrating the
feasibility of integrating climatic data into predictive models. This study revealed that specific
climatic conditions, such as increased rainfall and subsequent flooding, create ideal breeding
conditions for mosquitoes, leading to heightened RVF transmission. The integration of remote
sensing and climate data has significantly improved the ability to forecast RVF outbreaks, providing
vital lead times for public health interventions.

Machine Learning in RVF Prediction

Machine learning has emerged as a powerful tool in epidemiological modeling and disease
prediction. We have employed machine learning algorithms in the context of RVF to analyze large
datasets, identify risk factors, and predict outbreaks. For example, Mulwa et al. (2024) applied
XGBoost, a gradient-boosting algorithm, to predict RVF outbreaks in Kenya using climatic factors.
The model demonstrated high accuracy in forecasting outbreaks, highlighting the potential of
machine learning in enhancing predictive capabilities. Pedro et al. (2016) utilized a stochastic host-
vector model to predict RVF inter-epidemic activities. This study integrated various climatic variables
and host-vector dynamics, providing a comprehensive understanding of RVF transmission.

The stochastic model’s ability to incorporate randomness and variability in climatic conditions
makes it particularly suited for predicting RVF outbreaks, which are influenced by complex and
dynamic environmental factors (Park et al, 2021). Chemison et al. (2024) demonstrated the
effectiveness of a dynamic climate-sensitive disease model in reproducing historical RVF outbreaks
across Africa. This study highlights the importance of using climate-sensitive models to capture the
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intricate relationship between climatic conditions and RVF transmission. These models” ability to
simulate historical outbreaks gives us confidence in their predictive capabilities and usefulness in
guiding public health interventions (Chemison et al., 2024).

Time Series Analysis in RVF Research

Time series analysis is a statistical method used to analyse temporal data and identify patterns
and trends over time. In RVF research, time series analysis has been instrumental in understanding
the cyclical nature of outbreaks and developing predictive models. Anyamba et al. (2010) used time
series models to analyse historical RVF data, identifying periodic patterns that precede outbreaks.
This approach has been essential in developing early warning systems for RVE. Mpeshe et al. (2014)
modelled the impact of climate change on the dynamics of RVF using time series analysis. This study
demonstrated how changes in climatic conditions over time affect the risk of RVF outbreaks.

By incorporating climate change projections into time series models, researchers can predict
future outbreak patterns and inform long-term public health strategies. The combination of time
series analysis and machine learning has further enhanced the predictive capabilities of RVF models
(Anyamba et al., 2012). Munyua et al. (2016) used time series data and machine learning techniques
to map RVF risk areas in Kenya. The study integrated various data sources, including climatic,
geographical, and epidemiological data, to develop a comprehensive risk map. This approach
provides valuable insights for targeting surveillance and control measures in high-risk areas
(Redding et al., 2017).

Case Studies and Model Validation

Several case studies illustrate the practical application of predictive models in managing RVF
outbreaks. For example, Anyamba et al. (2012) used remote sensing data to predict RVF outbreaks in
East and Southern Africa from 2006 to 2008. The study’s predictions were validated by subsequent
outbreaks, demonstrating the model’s accuracy and reliability. This validation is crucial for gaining
confidence in predictive models and their use in public health decision-making (Glancey et al., 2015).
Munyua et al. (2016) developed a dynamic risk model for RVF outbreaks in Kenya based on climate
and disease outbreak data.

The model was validated using historical outbreak data, showing high predictive accuracy. This
case study highlights the importance of validating predictive models using real-world data to ensure
their effectiveness in guiding public health interventions. The work by Mulwa et al. (2024) on
predictive modelling of RVF outbreaks using XGBoost also underscores the need for model
validation. The study used historical outbreak data to train and test the model, demonstrating its
ability to accurately predict future outbreaks. The validation process is critical for identifying model
limitations and refining predictive algorithms (Gikungu et al., 2016).

Challenges and Limitations

Despite the advancements in predictive modelling for RVF, several challenges and limitations
remain. One major challenge is the variability in data quality and availability. Accurate and
comprehensive data are essential for developing reliable predictive models. However, data gaps and
inconsistencies can affect model accuracy and reliability. Efforts should be made to improve data
collection and integration, particularly in resource-limited settings where RVF is prevalent.

Another challenge is the complexity of RVF transmission dynamics. RVF involves multiple hosts
and vectors, each influenced by various environmental and biological factors. Modelling these
complex interactions requires sophisticated algorithms and extensive data. Simplified models may
not capture the full complexity of RVF transmission, leading to inaccurate predictions. Therefore,
researchers should strive to develop more comprehensive models that incorporate a wide range of
factors.

The study by Martin et al. (2008) highlights the impact of climate change on RVF control
strategies. Climate change introduces additional uncertainty and variability, making it challenging
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to predict future outbreak patterns. Predictive models must account for these uncertainties and
provide flexible strategies that can adapt to changing climatic conditions. This requires ongoing
research and model refinement to keep pace with evolving climate patterns

Implications of the Study

The integration of climate data, machine learning, and time series analysis into RVF research has
significant implications for public health. Predictive models provide valuable tools for early warning
systems, enabling timely and targeted interventions to prevent and control RVF outbreaks. By
identifying high-risk areas and periods, public health authorities can allocate resources more
efficiently and implement proactive measures to mitigate the impact of RVF.

For instance, the predictive models developed by Anyamba et al. (2009) and Munyua et al. (2016)
have been used to guide vector control strategies and livestock vaccination campaigns in high-risk
areas. These interventions have been instrumental in reducing the incidence and spread of RVF,
demonstrating the practical benefits of predictive modelling in public health.

Moreover, the use of machine learning and time series analysis in RVF research provides a
framework for addressing other vector-borne diseases. The methodologies and findings from RVF
studies can be applied to similar diseases, enhancing the overall capacity for disease prediction and
control. This cross-disciplinary approach fosters collaboration between climatologists,
epidemiologists, and data scientists, leading to more integrated and effective public health strategies.

Summary

The integration of machine learning and time series analysis into RVF research has significantly
advanced the field of disease prediction and control. By leveraging large datasets from climatic,
ecological, and geographical sources, these models provide accurate and timely predictions of RVF
outbreaks. The studies reviewed demonstrate that ML models, particularly when combined with
remote sensing and time series analysis, offer powerful tools for understanding and mitigating the
impacts of RVF. Machine learning models like logistic regression, XGBoost, and stochastic models
have proven effective in predicting the distribution of RVF vectors and outbreak patterns.

Time series analysis techniques, such as ARIMA models, have further enhanced the ability to
forecast RVF outbreaks based on historical trends. These advancements are particularly crucial in the
context of climate change, which significantly influences the epidemiology of RVF. The application
of remote sensing data in ML models has enabled continuous monitoring and early warning systems,
which are essential for timely interventions. Enhanced surveillance during high-risk periods, as
demonstrated by Oyas et al. (2018), and the use of ecological niche modelling to map RVF risk areas,
as shown by Kiunga (2015) and Mosomtai et al. (2016), highlight the practical implications of these
technologies.

Conclusion

In conclusion, the studies reviewed underscore the importance of integrating machine learning
and time series analysis into RVF research. These approaches provide valuable insights into the
temporal and spatial dynamics of RVF outbreaks, aiding in the development of effective control
strategies. As climate change continues to impact the epidemiology of RVEF, the role of advanced
predictive modelling will become increasingly vital in safeguarding public health. The ongoing
research and technological advancements in this field promise to enhance our understanding and
management of RVF, ultimately reducing the disease’s impact on affected populations. The
systematic review and meta-analysis of RVF research underscore the critical role of climatic variables,
machine learning, and time series analysis in understanding and predicting RVF outbreaks. The
integration of these methodologies has provided significant advancements in predictive modelling,
enabling more accurate and timely predictions of RVF outbreaks. However, challenges such as data
variability and transmission complexity remain, necessitating ongoing research and model
refinement.
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The practical applications of predictive models in public health interventions highlight their
value in preventing and controlling RVF. By providing early warning systems and identifying high-
risk areas, these models enable targeted and proactive measures, reducing the disease’s impact on
public health and agriculture. Future research should continue to explore the potential of advanced
machine learning techniques and real-time data integration. Developing comprehensive, multi-
disciplinary models will enhance our understanding of RVF transmission and improve our ability to
predict and control outbreaks. Through collaborative efforts and technological advancements, we can
mitigate the impact of RVF and protect public health.

Future Directions

The future of RVF research lies in the continued integration of advanced technologies and
methodologies. Emerging machine learning techniques, such as deep learning and neural networks,
offer new possibilities for predictive modelling. These techniques can handle large and complex
datasets, providing more accurate and robust predictions. Future research should explore the
application of these advanced algorithms to RVF prediction and control.

Additionally, the use of real-time data and internet of things (IoT) devices can enhance data
collection and monitoring. IoT devices, such as weather stations and mosquito traps, can provide
real-time data on climatic conditions and vector activity. Integrating this real-time data into
predictive models can improve their accuracy and responsiveness, enabling more timely
interventions.

The study by Pedro et al. (2016) on stochastic host-vector models highlights the potential of
integrating various data sources and methodologies. Future research should focus on developing
multi-disciplinary models that incorporate climatic, geographical, biological, and social factors. These
comprehensive models can provide a more holistic understanding of RVF transmission and inform
more effective control strategies.
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