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Abstract

Modern industrial processes store a large amount of process data in the integration of subsystems or
subprocesses, which creates conditions for data-driven models. However, due to a few features in
various tasks possessing a direct correlation, there are many variables and complex relationships,
which may result in incomplete input information. To address this problem, this paper proposes a
task decomposition and feature integration-based distributed process monitoring model. Firstly, a
sparse subspace clustering algorithm is introduced for task decomposition. This algorithm divides
the original space into several interactive feature subspaces and allocates weights to quantify the
contribution of the subtask simultaneously. Secondly, based on the divided features, a distributed
framework for spatial feature integration is proposed. The framework constructs a differentiated
parallel coding network by designing a structural self-organization mechanism, which achieves
feature extraction and fusion of each subspace. Finally, a collaborative optimization algorithm is
proposed to optimize the network parameters of each sub-model at the same time to ensure the
accuracy of the model. To demonstrate the effectiveness of this data modeling method, we tested it
in several benchmark data sets and a high-dimensional nonlinear system. The experimental results
show that the model has better performance in data dimensionality reduction.

Keywords: index terms—process monitoring model; sparse feature; sparse subspace clustering;
collaborative optimization algorithm; distributed neural network

I. INTRODUCTION

In the past decades, process monitoring model (PMM) has been widely used for variables
monitoring, fault diagnosis, and performance evaluation in industrial processes [1-3]. With the
development of acquisition equipment, automation, and transmission technology, a mass of
irrelevant process variables are stored, industrial process monitoring model is confronted with the
problem of feature sparsity [4-6]. The inflow of large-scale incomplete information will increase the
model deviation and the difficulty of parameter training [7-9]. Therefore, it is urgent to develop a
multitask clustering (MTC) algorithm that 1) not only automatically mines the potential relationship
of variables from the data 2) but also reduces the size of the problem and improves the efficiency of
model processing. To achieve the above goal on MTC, we need to resort to two research areas—
multitask clustering and model design.

To divide the feature space, many clustering algorithms have been proposed. Meanwhile,
partitioning methods such as k-means are probably one of the most frequently used techniques. As

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.0364.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 July 2025 d0i:10.20944/preprints202507.0364.v1

2 of 18

widely reported in the literature, however, the performance of this kind of algorithm is unstable due
to the influence of the initially selected central sample [10-12]. To improve the algorithm performance,
there have been many research proposals [13,14]. In [13], Modha et al. proposed a feature weighted
k-means clustering algorithm, to be the one that yields the clustering that simultaneously minimizes
the average within-cluster dispersion and maximizes the average between-cluster dispersion along
all the feature spaces. In [14], Luo et al. proposed a spatial constrained k-means clustering algorithm,
which adopted the spatial constraints into the hierarchical K-means clusters on each image level. This
kind of algorithm can only get a single spherical partition of the data input space. To further mine
data information, some more complex clustering methods are proposed [15,16]. For example,
Louhichi et al. proposed a density-based algorithm for discovering clusters to obtain the local density
change in a large database with noise [15]. Cheng et al. proposed a multistage random sampling
clustering algorithm based on fuzzy c-means, which effectively improves computational efficiency
by significantly reducing the clustering time [16]. However, all of the proposed algorithms in [13-16]
are aimed at linear separable data space, and it is hard to find suitable clustering contours and stable
clustering results for indivisible data. By introducing a kernel function, the algorithm based on the
kernel function can project the linearly inseparable data in the input space into the high-dimensional
space to make it separable [17,18]. In [17], Chiang et al. extended the support vector clustering to an
adaptive cell growing model that maps data points to a high-dimensional feature space through a
desired kernel function. In [18], Fan et al. designed a self-adaptive kernel k-means algorithm, which
can adjust the kernel parameter automatically according to the data structure. The above clustering
methods all contain division criteria based on distance measurement. With the increase of data
dimensions, the data are almost equidistant, and the distance metric becomes meaningless. Manifold
Learning considers that high-dimensional data will exhibit dense aggregation in a low-dimensional
space. Therefore, the subspace clustering method (SCM) is derived to find the low-dimensional
subspace in high-dimensional data [19,20]. For example, Kang et al. proposed a unified multi-view
subspace clustering model that incorporates the graph learning from each view, the generation of
basic partitions, and the fusion of consensus partitions [19]. Xu et al. adopt soft subspace clustering
to solve the problem of rule redundancy of fuzzy systems in high-dimensional data [20]. Several
articles have mentioned that SCM provides a variety of perspectives for feature extraction of sparse
data to ensure the maximum use of input information [20-23].

After the feature space is divided, the original problem becomes a multi-tasking problem. There
are many models based on local-global ideas that can be used to solve the above problem [24-26]. For
example, Koker et al. proposed a parallel feed-forward neural network structure is used in the
prediction of Parkinson’s Disease [24]. Gupta et al. proposed a new technique to train deep neural
networks over several data sources, which allowed for deep neural networks to be trained using data
from multiple entities in a distributed fashion [25]. Cao et al. proposed a fuzzy rough neural network
via distributed parallelism, where each model is transformed into a multi-objective optimization
problem [26]. The subnets of these models are often isomorphic and are only suitable for cases where
the feature subset is similar [27-30]. MNN adopts the divide-and-conquer strategy, divides the main
tasks into several simple subtasks, and obtains heterogeneous subnet modules according to different
tasks, thus improving the overall generalization performance [31,32]. In [31], Li et al. (5|5 H et
al & AEAERMANN? ) introduced an enhanced feature-weighted modular neural network (MNN),
in which each RBF subnetwork was independently constructed, and the final output is obtained by
aggregating the outputs of all subnetworks through a weighted summation, where the weights
reflected the contribution of each subnetwork. In [32], Valdez et al. proposed a new hybrid approach
combining particle swarm optimization and genetic algorithms, which used fuzzy logic to integrate
the results of subnetwork modules in MNN for face recognition. In the follow-up research, a series
of methods have been proposed that MNN can independently generate heterogeneous subnetworks
to solve online problems [33,34]. For example, Qiao et al. proposed an online self-adaptive MNN for
time-varying systems, which adopted a single-pass subtractive cluster algorithm to divide the input
space and used a fuzzy strategy to integrate the results of subnetworks [33]. Loo et al. proposed a
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novel self-regulating algorithm to generate an optimum growing multi-experts network structure,
which adopted a modified fully self-organized simplified adaptive resonance theory and self-
adaptive learning rates for gradient descent learning rules to dynamically grow and prune the
MNN’s structure at a fixed step [34]. However, MNN has the problem of long learning time due to
the slow convergence rate of gradient decline [35-38]. Moreover, the preset output weight makes it
difficult to obtain an accurate prediction output according to the change of input distribution [39].

In this paper, to fully exploit sparse data information and obtain stable modeling performance,
a task decomposition and feature integration-based distributed process monitoring model is
proposed to realize the feature fusion of multi-task subspace. Our proposed PMM has the following
properties: Firstly, an improved sparse subspace clustering algorithm (ISSC) constructs the affinity
matrix by the distance between the sample and the subspace to obtain dense low-rank subspaces.
This ISSC algorithm can retain the correlation information of features while efficiently feature
division is achieved. Secondly, a distributed framework for spatial feature integration constructs
differentiated coding networks in parallel, and designs model evaluation indexes according to
subspace sparsity of each coding network, which can achieve feature extraction and integration of
each subspace. Thirdly, a collaborative optimization algorithm optimizes the network parameters of
each sub-model at the same time to ensure the accuracy of the model, which can maintain the
accuracy of PMM.

The rest of this paper is organized as follows. Section II briefly reviews and discusses the basics
of SSC. Section III details the proposed PMM framework, including ISSC and the distributed neural
network. Then, the parameter update process of the distributed neural network is given in Section
IV. Section V reports some experimental results of the proposed PMM, which demonstrate some
merits in learning speed and modeling accuracy against other existing methods. Section VI concludes
this paper with some remarks.

II. PROBLEM FORMULATION AND PRELIMINARIES

Industrial processes have accumulated a large number of process variables, most of which have
no significant correlation. Sparse coding advocates building a more concise feature representation
[40,41]. The data set is divided into meaningful blocks to highlight the local information, so that these
blocks are not related to each other to the maximum extent, so as to obtain dense feature
representation.

Given a feature x and a basis pool U =[u1, uz, ..., ux ], sparse coding aims at sparsely and linearly
reconstructing the feature to be encoded, x=viui+vauzt--+viur. Here, sparseness means only a small
fraction of elements in v are non-zero. The optimization problem of sparse coding can be calculated
as follows

min
v

M, st x=Uv, (D)

where, [[v || omeans the number of non-zero elements in v. However, the minimization of 4 norm is

an NP hard problem. In many practical applications, reconstruction error is inevitable and often
difficult to estimate in advance. Therefore, it is beneficial to jointly optimize both the sparsity of the
coefficients and the reconstruction error. Accordingly, the objective function of sparse coding can be
reformulated as follows

x—Uv"z-M,”v"] st. u, <1, (2)

min
U,y

where, the first term of Eq. (2) is the reconstruction error, and the second term is used to control the
sparsity of the sparse codes v. And A is the tradeoff parameter used to balance the sparsity and the
reconstruction error.
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III. ARCHITECTURE OF ISSC-DFNN

Under a global-local framework, ISSC-DFNN is composed of four primary components: the
input layer, Subspace partition, feature extraction, and feature integration, as illustrated in Fig. 1. The
structure and functionality of each layer are detailed as follows

Input: This component first loads the dataset and then employs Eq (3) to evaluate the relative
contribution of each process variable, thereby removing redundant features. An input matrix X=[x1,x,
..., xo] of size NxD, where N denotes the number of samples and D denotes the number of features.
The dth feature vector is denoted as x+=[x41, xd2, ..., xan]"(d =1, 2, ...., D).

Subspace partition: In this block, by using the idea of manifold learning, the sparse original
space is divided into several interactive low-dimensional subspaces. An enhanced sparse subspace
clustering algorithm is proposed to partition the input matrix X = GX/MJ7 X G52 M ERE, A
TN IRBI? ) into K feature subsets, denoted as Ax(k =1, 2, ..., K), where each Ax is an Nxmx
matrix and mx indicates the number of features in the kth subset. These feature subsets are
subsequently assigned to their corresponding subnetworks for further processing.

Feature extraction: The subnetwork layer in ISSC-DFNN consists of K feature extraction
subnetworks, where K corresponds to the number of identified feature subspaces. Each subnetwork
is adaptively constructed using the ErrCor algorithm and is responsible for processing a specific
group of features in parallel.

Feature integration: The primary role of this layer is to fuse the outputs from multiple
subnetworks via a weighted summation mechanism, with the integration weights determined based
on the Sparse Similarity Index.

IV. ALGORITHM DESIGN OF ISSC-DNN

In this section, we first introduce a sparse subspace task decomposition clustering algorithm,
which segments the original space into several mutually associated feature subspaces, with
corresponding weights assigned to characterize the importance of each subtask, and then uses a
structured self-organizing mechanism, differentiated parallel coding network DFNN to realize
feature extraction and fusion of each subspace. Subsequently, a global gradient descent algorithm is

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.0364.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 July 2025 d0i:10.20944/preprints202507.0364.v1

5 of 18

employed to simultaneously optimize the parameters of all subnetworks, thereby ensuring the
overall model accuracy.

A. The subspace partition method of spectral clustering

The subspace clustering algorithm selects several dimensions into space groups in the initial
dimensions, which is not simply cut, and can avoid information loss in the process of dimension
reduction. However, the contribution of different dimensions to clustering is not the same, and the
dimensions may even be related to each other. This means that the dimension of the subspace cannot
be obtained adaptively when each dimension of the subspace is assigned the same weight. Given a
data matrix XERND, the soft subspace clustering (SSC) algorithm performs decomposition along
either the row or column dimension, assigning a membership value to each row or column. Based on
these membership values, the algorithm determines the cluster affiliation of each row or column. This
allows some instances or features to be associated with multiple clusters simultaneously, resulting in
overlapping, soft partitions that reflect compatibility across clusters. Focusing on row-wise
decomposition, the corresponding objective function of the SSC algorithm is defined as follows

J(T) zzu/kmz k(xl/
k=1 j=1 (3)

K K
0<u, <L,y u, =1,0<w, <LY w, =1,
k=1 k=1

where K denotes the number of clusters, while N and D represent the number of rows and columns
of the data matrix X, respectively. The matrix v=[v1, v2, ..., v, ..., vk] contains the centers of all clusters,
and W=[w1, Wy, ..., wp] is the weight matrix, where each column vector reflects the relative importance
of features within a given cluster. U=[u1, u2, ..., un] denotes the membership matrix for the data
samples, and mmm is the fuzzy weighting exponent. The three components of the objective function
quantify the intra-cluster compactness, the entropy of feature weights, and the inter-cluster
separation, respectively. The primary objective of the algorithm is to minimize intra-cluster
compactness while maximizing inter-cluster separation by iteratively updating v, W, and U under a
fixed number of clusters K.

Given an NxD data matrix X, K sample points are randomly given as the clustering center point
v=[v1, v2, ..., Uk, ..., k]. The membership matrix of the sample is obtained as U=[u1, u2, ..., uj, ..., un], u=
[up, up, ..., u, ..., uix], ujirepresents the membership degree of each sample x; belonging to the kth

category
1
d,-
uy = — (4)

Zkl Ik

where, =1, 2, ..., D, j=1, 2, .., N, k=1, 2, .., K, D and N are the number of relevant variables and the
number of samples respectively, K represents the total number of categories, m>1 is the fuzzy

| min(N,D-1) (5)
| min(N,D-1)-2 |’

dix is the Euclidean distance of each sample xirelative to the k-th cluster center
D
dy =205 -v) (0)
i=1

Update the existing cluster center v’ = [v1/, v/, ..., vK'], and calculate the cluster center v«’ of the k-th
category as

parameter, determined by the input N and D

(7)
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According to the updated clustering center, the sample membership degree is recalculated by
Eq. (1) and Eq. (3), and the contribution degree of each line feature in the original dataset belonging
to the kth category is denoted as W=[w1, w, ..., Wj, ..., wp]T, w= [wi1, wi, ..., Wi, ..., wik], where wik
indicates the contribution of the xiof line i to category k

N
Wi = Z u," (xij Vi ')2 (8)
=

To determine the number of cluster category K, we add a cluster center in each iteration, then
recalculate sample membership until the objective function is minimal.

In this study, the optimal number of clusters is determined by selecting the value that minimizes
the objective function within the interval [2, 2log(D)], where D represents the number of input
features. This strategy ensures that, even in high-dimensional input spaces, the number of resulting
subtasks remains within a manageable range. A detailed description of the overall algorithm is
provided in Table 1.

Table 1. The ISSC based feature partitioning algorithm.

1: C=1

2: Initialize the parameters and set the maximum number
of iterations to Max.

3: Repeat:

4: C=C+1;

5: Arbitrarily initialize cluster centers matrix V(0),
initialize the weight matrix W(0).

6: Repeat: iter =iter +1;

7: Calculate the membership matrix U(iter) according to
Eq. (4);

8: Calculate the weight matrix W(iter) according to Eq. (6);

9: Until | |'V(iter)-V(iter-1)| |<C or iter = Max.
10: Calculate the JIESSC by Eq. (2);
11: Until C = 2log(D); D is the number of input features.

12: Calculate the minimum value of J and the optimal

clusters K.

B. Construction of subnetwork

1) Structure of subnetworks
In the following, we describe the DFNN layer by layer as a whole. The front network is
composed of a distributed coding network, which is used to integrate redundant features in each
subspace, and a corresponding self-organization strategy is designed to ensure that it can obtain
different coding structures for each subspace. The latter network is responsible for feature expression
for a regular FNN. The training of the whole network is also carried out separately into the two parts.
For the K subspaces A« with the size of NxPk, he number of input neurons for the corresponding
network is Px(k=1, 2, ..., K). Assuming there are I neurons in the hidden layer of the kth subnetwork,
an auto-encoder maps it to a hidden representation & through an encoder function f as
b= f(W, +b,) )
with two parameters, i.e., weight matrix Wk€R»? and the bias vector br€R. The hidden representation
h can be mapped back to x, which is a reconstructed vector by the decoder function, as
&= g(W/+b) (10)
where f is the sigmoid function, and g is the identity function. The cost function is mean squared
error, because it is an appropriate choice for real-valued pixel intensity inputs.
2) Structure of subnetworks
Let Qk denote the number of neurons in the hidden layer of the kth subnetwork. The output of
the gr th neuron (g« =1, 2, ..., Q) is computed as follows

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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7 ; Vo
_ “(= 200y =X (=) 207)
= e =e

7= (11)

i=1,2y00 Py =1,2,.,0,

where x=[x1, x3,..., xr] is the input of RBF layer, 6=[o;, 0’,...,0/'] and ¢=[c], ¢ ..., ¢/ ] are the vectors
of widths and centers of the jth RBF neuron, respectively, vjis the output value of the jth neuron, and
Qkis the number of neurons in this layer.

The output is clarified using the gravity method

¥ =W¢ (12)
where
le[w,,wz,-u,wgk] (13)

W'is the parameter matrix, W £[w1, ws, ..., woi] are the weights between the gth neuron in the
hidden layer and the output layer, y« is the sole neuron in the output layer and can be calculated as

, o -3 ey 203
g, =W ¢=Zj:lee 2 (14)
Each subnet generates an attribute fusion feature. The output of all subnets should be

normalized before feature integration

e—zl:((x,v—c,-j ) 1267)

G= gk — W./

NN CEAEL ) (15)

K R
k=1 & rt Vi€
k=1,2,---,K,

where Gis the output of the network.
3) Self-constructing of subnetworks

Through the subspace construction process, we obtain K independent subspace feature subsets
Ar. However, there is a highly collinear relationship between the features within these subspaces, and
there is some information redundancy in the model input. It is necessary to construct an incomplete
neural network structure (hi<Px) for more concise feature representation. In this paper, a self-
organizing strategy based on pruning is proposed to ensure that DENN codes differently according
to different subspace inputs. Before introducing the self-organizing mechanism, the error of the kth
subnetwork is defined as

6 =% - x| (14)

where xiand xiare the gth desired output and actual output of the output layer, respectively.

It is assumed that each hidden layer neuron is activated with a certain probability, and the
hidden layer neurons are independent of each other. In the kth subspace, the average activation value
of the jth neuron in the hidden layer of the subnet is expressed as

n 1 & :
p=3 ) (15)

where N represents the number of samples in the kth subspace. The sparsity of neurons in the
hidden layer can be calculated by

=2 (16)

where pmx represents the maximum average activation value and po represents the sparse
parameter. If the target accuracy is not reached within the predefined maximum number of epochs,
or if sparse nodes are detected, the corresponding hidden neurons are pruned, as illustrated in Eq
(15)

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Cor1 = {Ak’nm“ ,V4,, = argmax(je, |)} (17)

where ex denotes the error vector of the kth subnetwork, with the width parameter initialized as
oaw1=1, and the output weight set to lor1=1. In this approach, one new hidden neuron is added to the
network during each training epoch. The algorithm terminates once the subnetwork achieves the
target accuracy or when no sparse nodes are detected.

C. Collaborative optimization algorithm

In order to optimize the parameters of the subnetworks simultaneously, the comprehensive loss
function is used for a unified solution. All subnetworks were centrally prepared at a fusion center,
and then the global variable §* could be obtained by solving the following problem.

wB) =B +5 Y aloo (16)

where axk is a scale factor to keep the loss functions of the front and back networks at the same range,
0 is the partial derivatives of the loss to y, and g are the corresponding errors of their respective

outputs.
8,0)=5" =, (7,0~ 1,(0) (17)
dy, (t)
Accordingly, the global objective can be restated as
N
u(B)=2 u(B) (18)
i=1

enabling all the nodes to cooperatively solve the problem. As has been shown previously, we
next derive the updating formulation of the estimate fi(k)and the initial state i(0).

According to the expression in (16), we can verify that the difference between the gradients Vui,
evaluated at i(k+1)

and Bi(k), respectively, can be given by

ﬂ,-<k+1>=ﬂ,.(k)+V—yCZa,.,(ﬂ,.<k>—A(k)>

(19)
B,(0) = a,6,()
The positive parameter y is chosen appropriately in (0, yma), where
2re
= 20
o = L@ ¥ (20)
where
40)
B.(t)=| B,(®) 1)
G (@)
wi(0) - wi(0) -+ wy(8)
A(t) = ' : (22)

wi (@) w (0)wp (1)

Table 2. Collaborative optimization algorithm.
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1: T=1, Set the maximum number of iterations to To;
2: Initialize expected accuracy Qk, global variables f*, and neural
network parameters ¢;*, o/ and wor;
3: Repeat:
4: Repeat: T=T+1;
5: Calculate the output of each neural subnet according to Eq (14);
6: Calculate the output error dxof each subnet according to Eq (17);
7: The global variable i of each subnet can be obtained according
to Eq (16);
8: Update subnet parameters by according to (18);
9: Until T> To
10: The accuracy cok of the network is calculated according to Eq
(15).
11: hidden nodes = hidden nodes + 1;
7: Until cok < Qx;
d@) e e
B ()= (23)
PO N1 () R ()
o[(t) o)1) - 0p()
C@)= B (24)
oL@ o op(®) o)

where A(f) is a unified parameter matrix, which is composed of front network parameter matrix A(t)
and post network parameter matrix B(t), ] is the adaptive learning rate, and 0<u<1 is the learning rate
adjustment parameter. G(¢) is the gradient vector.
According to the chain rule, the elements of the Jacobian matrix are calculated to be
oL _ 0dL dz, oh,
o (t) 0z, o, oW (r)

z, (1-z, )xw?8, xx,  (25)

oL L oL oL
de; (1) ) l:aclj @) 0c,;(0) h dc,; (1 )} 20
a2 OxvOx[x0-¢,0] o7
e, (t) 0, (1)
aL | oL oo oL
do; (1) _[ao-u (1) d0,,() do,, (t):l 2%
oL w0 Oxs0-¢,0f 29)

do, (1) o, (1)

The parameter update amount of each subspace is calculated from Egs. (19)-(29).

V. SIMULATION STUDIES

In this section, the performance of ISSC-DFNN was tested through several benchmark tasks and
areal-world application dataset in an engineering application. Besides, ISSC-DFNN is compared with
some other existing methods. All the simulations were programmed with MATLAB version 2016 in
the same PC environment.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.0364.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 July 2025 d0i:10.20944/preprints202507.0364.v1

10 of 18

A.  Experimental datasets

1) Benchmark problems

To assess the modeling performance of ISSC-DFNN, four benchmark datasets from the UCI
Machine Learning Repository were selected for evaluation, namely Boston Housing, Auto Prices,
Residential Building, and Abalone. Regression models were constructed using the input and output
features of each dataset. Detailed information about these datasets is provided in Table 3. For
comprehensive descriptions of each feature, please refer to the UCI Machine Learning Repository.

Table 3. Information for FOUR UCI datasets.

Dataset Training samples Testing samples  Input dimensions Output dimension
Boston Housing 350 150 13 1
Auto Price 120 50 14 1
Abalone 1500 500 8 1
Residential building 350 150 107 1

2) ETP in wastewater treatment

Effluent total phosphorus (ETP) serves as a key indicator in sewage treatment, reflecting whether
the discharged wastewater complies with regulatory standards. Accurate prediction of ETP is vital
for the real-time control of the sewage treatment process. In this study, practical data were gathered
from a sewage treatment plant in Beijing, and the ISSC-DFNN model was employed to perform the
predictions. As shown in Table 4, the dataset of plant variables provides 23 input variables X = {X,...,
X2}, two different monitoring target variables Y4, and 1200 samples. These variables are composed
of some process variables that are beneficial to monitoring, e.g., T, DO, ORP, MLSS, NOs-N. There
are also some irrelevant or weak correlation variables. In order to unify the time series of online data
and laboratory data, the sampling frequency of all parameters was 10 minutes. After removing
abnormal data, 1,200 samples from September 1, 2019, to October 31, 2019, will be obtained for
normalization processing. There are 700 data samples in each data set, which consists of 600 training
data and 100 test data.

Table 4. Input variables of ETP dataset.

X Inlet flow Xi3 BOD

X, Temperature Xis Influent oil

X3 ORP1 Xis Effluent oil

Xy ORP2 X6 Influent ammonia
Xs MLSS1 X7 Influent colourity
X NO3-N Xis Effluent colourity
X, NH4-N X9 Influent PH
Xs DO, X0 Effluent PH
Xy ORP; Xo1 Suspended Solid
Xio MLSS, Xo Influent nitrogen
X1 NO3-N Xa3 Influent phosphate
X1z DO, Yq ETP

B. Experimental setup

To enhance the operational efficiency of the ISSC algorithm within the DFNN framework, the parameters y

and # are chosen as 10 and 0.01, respectively. The parameter ¢ is typically set to a relatively small value within
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the range [1,2] to ensure stable performance of the IESSC algorithm, in this study, it is empirically set to 1.5.
The approximation performance of the model is evaluated using the root mean square error (RMSE) and the

average percentage error (APE) between predicted and desired output, which is shown as (30) and (31):

RMSE = \/%Z (v,()-g®), (30

app — L3 0=

100%, 31
N o] Gl

where N denotes the sample size, and y,; and g represent the desired and actual outputs for the nth sample,
respectively. To reduce the effect of randomness, each experiment corresponding to a dataset is independently
repeated 10 times, and the average RMSE and APE values are reported as the final results.

To evaluate the superiority of ISSC-DFNN, we focus on the influence of distributed neural network on the
process monitoring model. The modeling results are compared with other mainstream feature extraction
algorithms: the models considered include a modular neural network with adaptive feature partitioning (FC-
AMNN), the traditional modular neural network (TMNN), and an online self-organizing modular neural

network (OSAMNN). Detailed descriptions of each model are provided in Table 5.

Table 5. Comparison results with other models for UCI benchmark problems.

Dataset A: Boston Housing Dataset B: Auto Price
Algorithm — - - — - -
Training Testing Testing Training Testing Testing
RMSE RMSE APE Subnetworks RMSE RMSE APE Subnetworks
Prop. 0.0759 0.0741 0.1375 2 0.0738 0.0742 0.1729 2
FC-AMNN 0.0767 0.0748 0.1396 4 0.0752 0.0766 0.1781 2
TMNN 0.0875 0.0906 0.1684 2 0.0872 0.0883 0.1968 2
OSAMNN 0.0927 0.1006 0.1734 8 0.0785 0.0810 0.1892 5
Dataset C: Abalone Dataset D: Residential building
Algorithm — - - . - -
Training Testing Testing Training Testing Testing
RMSE RMSE APE Subnetworks RMSE RMSE APE Subnetworks
Prop. 0.0739 0.0741 0.1721 2 0.0987 0.0962 0.467 3
FC-AMNN 0.0774 0.0786 0.1797 2 0.0994 0.1062 0.4963 4
TMNN 0.0823 0.0886 0.1895 2 0.1152 0.1204 0.5397 3
OSAMNN 0.0815 0.0879 0.1838 7 0.1074 0.1126 0.5124 4
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C.  Prediction results on benchmark problems

Figures 5 illustrate the training and testing results of ISSC-DFNN across different datasets. In each figure,
the training RMSE curve gradually converges as the number of iterations increases, with noticeable jumps
indicating the addition of hidden nodes within subnetworks to compensate for errors during training. The two
subplots on the right display the testing outcomes of ISSC-DFNN, clearly demonstrating its strong
approximation ability. Table 5 compares these results with several other models. Besides the evaluation metrics
RMSE and MAPE, the number of subnetworks for each model is also reported to highlight structural

advantages.
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From Table 6, it is evident that ISSC-DFNN achieves the best performance across multiple metrics, followed
by FC-AMNN, both utilize feature clustering methods. In contrast, OSAMNN and TMNN, which are based on
sample clustering, exhibit comparatively weaker results. The primary distinction between ISSC-DFNN and FC-
AMNN lies in their feature clustering approaches. Furthermore, ISSC-DFNN derives integration weights
through task decomposition, making the task decomposition module more tightly coupled with the integration

module, thereby enhancing overall model performance.

Table 6. Comparison results with other models on ETP.

Training Testing Testing

Algorithm RMSE RMSE APE Subnetwork
Prop. 0.0763 0.0781 0.0306 2
FC-AMNN 0.0802 0.0816 0.0391 2
TMNN 0.0984 0.0996 0.0502 3
OSAMNN 0.0795 0.0828 0.0412 7

The relatively poorer performance of TMNN and OSAMNN can be attributed to several factors, including
their sample decomposition strategies, subnetwork architectures, and integration weight calculation. Overall,
soft-partition-based task decomposition demonstrates superior generalization ability, as reflected by the lower
RMSE and MAPE values when comparing ISSC-DFNN to FC-AMNN. Additionally, ISSC-DFNN overcomes
the issue of ineffective subnetwork training caused by insufficient samples in certain subtasks, a problem
observed in TMNN and OSAMNN. Notably, ISSC-DFNN features a more compact architecture with fewer

subnetworks, implying that it requires a smaller number of subnetworks to achieve the desired accuracy.
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Figure 5 illustrates the testing results of ISSC-DFNN for a single trial on the effluent ETP
dataset. As shown, ISSC-DFNN effectively captures the practical data trends, with the fitting
curve demonstrating strong approximation capabilities. Table 6 presents the averaged
prediction results of ISSC-DFNN alongside several other models over 20 trials for ETP
concentration. It is evident from Table 6 that the predictions align well with benchmark
outcomes. Similarly, ISSC-DFNN and FC-AMNN, which utilize a feature decomposition
approach, outperform other methods on the practical dataset, followed by OSAMNN and
TMNN that employ sample decomposition techniques. Notably, both training and testing
RMSE values of ISSC-DFNN are lower than those of the competing models, indicating
superior generalization performance. Additionally, as reflected in Table 6, ISSC-DFNN
maintains a relatively simple architecture with a limited number of subnetworks.
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E. Statistical analysis

To further demonstrate the superiority of the proposed model, we conducted a Wilcoxon
signed-rank test (Dem”sar, 2006) to compare the performance of ISSC-DFNN with that of
several baseline models. The Wilcoxon signed-rank test begins by computing the differences
in evaluation metrics between two methods, followed by calculating the rank sums of the
positive and negative differences, denoted as R and R", respectively. A significant difference
is concluded if the resulting probability Pwilconxon value is less than the significance level
0.05. In this study, the testing RMSE is employed as the evaluation metric for all models.

Table 7 presents the results of the Wilcoxon signed-rank test. The experimental results
indicate that, regardless of the comparison method, the ISSC-DFNN consistently satisfies the
significance criterion of Pwilconxon <0.05. This confirms that the performance of the proposed
ISSC-DFNN model is statistically significantly different from that of the other models,
thereby further demonstrating its superiority.

Table 7. Wilcoxon'’s test results of Testing RMSE on all datasets.

Models R* R Pyitconxon
Prof. vs TMNN 21 0 0.00741
Prof. vs FC-AMNN 21 0 0.00741
Prof. vs OSAMNN 21 0 0.00741

VI. CONCLUSION

In this study, a distributed neural network framework is proposed, which is built upon the
ISSC algorithm. The ISSC algorithm is utilized to perform feature clustering, thereby
generating multiple subtasks with partially overlapping feature sets. Each subtask is handled
by an RBF neural network trained using a self-organizing approach. Finally, the overall
output is obtained by aggregating the predictions of all subnetworks using integration weights
derived from the ISSC algorithm. The effectiveness of the proposed ISSC-DFNN has been
confirmed by some simulated and experimental results. Tables 5-7 indicate that the proposed
ISSC-DFNN achieved better testing RMSE, testing APE, and mean accuracy than the other
algorithms. Based on experimental results, the characteristics of ISSC-DFNN are discussed
and summarized as follows:

1) When confronted with large-scale datasets, the model is always able to acquire a leaner
and denser feature representation, ensuring that each subtask preserves more input
information to improve model accuracy.

2) The number of subnetworks can be kept small, even when dealing with datasets of very
high dimensionality. Furthermore, based on the self-organizing strategy, each subnet can
obtain a relatively compact structure in different subtasks, which is helpful to avoid redundant
parameter training and reduce computational complexity.

3) The convergence of the proposed ISSC-DFNN can be maintained, and this proposed
ISSC-DFNN with a comprehensive loss function may improve the chance of approximating
the global optimization parameters.
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Nevertheless, the proposed method still has certain limitations. One notable issue is the
reliance on a large number of manually set parameters, including those within the ISSC
algorithm as well as the parameters involved in subnetwork training. To address this, future
work will focus on developing a more streamlined model with reduced parameter dependency.
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