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Abstract 

Modern industrial processes store a large amount of process data in the integration of subsystems or 
subprocesses, which creates conditions for data-driven models. However, due to a few features in 
various tasks possessing a direct correlation, there are many variables and complex relationships, 
which may result in incomplete input information. To address this problem, this paper proposes a 
task decomposition and feature integration-based distributed process monitoring model. Firstly, a 
sparse subspace clustering algorithm is introduced for task decomposition. This algorithm divides 
the original space into several interactive feature subspaces and allocates weights to quantify the 
contribution of the subtask simultaneously. Secondly, based on the divided features, a distributed 
framework for spatial feature integration is proposed. The framework constructs a differentiated 
parallel coding network by designing a structural self-organization mechanism, which achieves 
feature extraction and fusion of each subspace. Finally, a collaborative optimization algorithm is 
proposed to optimize the network parameters of each sub-model at the same time to ensure the 
accuracy of the model. To demonstrate the effectiveness of this data modeling method, we tested it 
in several benchmark data sets and a high-dimensional nonlinear system. The experimental results 
show that the model has better performance in data dimensionality reduction. 

Keywords: index terms—process monitoring model; sparse feature; sparse subspace clustering; 
collaborative optimization algorithm; distributed neural network 
 

I. INTRODUCTION 
In the past decades, process monitoring model (PMM) has been widely used for variables 

monitoring, fault diagnosis, and performance evaluation in industrial processes [1–3]. With the 
development of acquisition equipment, automation, and transmission technology, a mass of 
irrelevant process variables are stored, industrial process monitoring model is confronted with the 
problem of feature sparsity [4–6]. The inflow of large-scale incomplete information will increase the 
model deviation and the difficulty of parameter training [7–9]. Therefore, it is urgent to develop a 
multitask clustering (MTC) algorithm that 1) not only automatically mines the potential relationship 
of variables from the data 2) but also reduces the size of the problem and improves the efficiency of 
model processing. To achieve the above goal on MTC, we need to resort to two research areas—
multitask clustering and model design. 

To divide the feature space, many clustering algorithms have been proposed. Meanwhile, 
partitioning methods such as k-means are probably one of the most frequently used techniques. As 
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widely reported in the literature, however, the performance of this kind of algorithm is unstable due 
to the influence of the initially selected central sample [10–12]. To improve the algorithm performance, 
there have been many research proposals [13,14]. In [13], Modha et al. proposed a feature weighted 
k-means clustering algorithm, to be the one that yields the clustering that simultaneously minimizes 
the average within-cluster dispersion and maximizes the average between-cluster dispersion along 
all the feature spaces. In [14], Luo et al. proposed a spatial constrained k-means clustering algorithm, 
which adopted the spatial constraints into the hierarchical K-means clusters on each image level. This 
kind of algorithm can only get a single spherical partition of the data input space. To further mine 
data information, some more complex clustering methods are proposed [15,16]. For example, 
Louhichi et al. proposed a density-based algorithm for discovering clusters to obtain the local density 
change in a large database with noise [15]. Cheng et al. proposed a multistage random sampling 
clustering algorithm based on fuzzy c-means, which effectively improves computational efficiency 
by significantly reducing the clustering time [16]. However, all of the proposed algorithms in [13–16] 
are aimed at linear separable data space, and it is hard to find suitable clustering contours and stable 
clustering results for indivisible data. By introducing a kernel function, the algorithm based on the 
kernel function can project the linearly inseparable data in the input space into the high-dimensional 
space to make it separable [17,18]. In [17], Chiang et al. extended the support vector clustering to an 
adaptive cell growing model that maps data points to a high-dimensional feature space through a 
desired kernel function. In [18], Fan et al. designed a self-adaptive kernel k-means algorithm, which 
can adjust the kernel parameter automatically according to the data structure. The above clustering 
methods all contain division criteria based on distance measurement. With the increase of data 
dimensions, the data are almost equidistant, and the distance metric becomes meaningless. Manifold 
Learning considers that high-dimensional data will exhibit dense aggregation in a low-dimensional 
space. Therefore, the subspace clustering method (SCM) is derived to find the low-dimensional 
subspace in high-dimensional data [19,20]. For example, Kang et al. proposed a unified multi-view 
subspace clustering model that incorporates the graph learning from each view, the generation of 
basic partitions, and the fusion of consensus partitions [19]. Xu et al. adopt soft subspace clustering 
to solve the problem of rule redundancy of fuzzy systems in high-dimensional data [20]. Several 
articles have mentioned that SCM provides a variety of perspectives for feature extraction of sparse 
data to ensure the maximum use of input information [20–23]. 

After the feature space is divided, the original problem becomes a multi-tasking problem. There 
are many models based on local-global ideas that can be used to solve the above problem [24–26]. For 
example, Koker et al. proposed a parallel feed-forward neural network structure is used in the 
prediction of Parkinson’s Disease [24]. Gupta et al. proposed a new technique to train deep neural 
networks over several data sources, which allowed for deep neural networks to be trained using data 
from multiple entities in a distributed fashion [25]. Cao et al. proposed a fuzzy rough neural network 
via distributed parallelism, where each model is transformed into a multi-objective optimization 
problem [26]. The subnets of these models are often isomorphic and are only suitable for cases where 
the feature subset is similar [27–30]. MNN adopts the divide-and-conquer strategy, divides the main 
tasks into several simple subtasks, and obtains heterogeneous subnet modules according to different 
tasks, thus improving the overall generalization performance [31,32]. In [31], Li et al.（引言里的et 
al.是不是都要斜体啊？） introduced an enhanced feature-weighted modular neural network (MNN), 
in which each RBF subnetwork was independently constructed, and the final output is obtained by 
aggregating the outputs of all subnetworks through a weighted summation, where the weights 
reflected the contribution of each subnetwork. In [32], Valdez et al. proposed a new hybrid approach 
combining particle swarm optimization and genetic algorithms, which used fuzzy logic to integrate 
the results of subnetwork modules in MNN for face recognition. In the follow-up research, a series 
of methods have been proposed that MNN can independently generate heterogeneous subnetworks 
to solve online problems [33,34]. For example, Qiao et al. proposed an online self-adaptive MNN for 
time-varying systems, which adopted a single-pass subtractive cluster algorithm to divide the input 
space and used a fuzzy strategy to integrate the results of subnetworks [33]. Loo et al. proposed a 
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novel self-regulating algorithm to generate an optimum growing multi-experts network structure, 
which adopted a modified fully self-organized simplified adaptive resonance theory and self-
adaptive learning rates for gradient descent learning rules to dynamically grow and prune the 
MNN’s structure at a fixed step [34]. However, MNN has the problem of long learning time due to 
the slow convergence rate of gradient decline [35–38]. Moreover, the preset output weight makes it 
difficult to obtain an accurate prediction output according to the change of input distribution [39]. 

In this paper, to fully exploit sparse data information and obtain stable modeling performance, 
a task decomposition and feature integration-based distributed process monitoring model is 
proposed to realize the feature fusion of multi-task subspace. Our proposed PMM has the following 
properties: Firstly, an improved sparse subspace clustering algorithm (ISSC) constructs the affinity 
matrix by the distance between the sample and the subspace to obtain dense low-rank subspaces. 
This ISSC algorithm can retain the correlation information of features while efficiently feature 
division is achieved. Secondly, a distributed framework for spatial feature integration constructs 
differentiated coding networks in parallel, and designs model evaluation indexes according to 
subspace sparsity of each coding network, which can achieve feature extraction and integration of 
each subspace. Thirdly, a collaborative optimization algorithm optimizes the network parameters of 
each sub-model at the same time to ensure the accuracy of the model, which can maintain the 
accuracy of PMM. 

The rest of this paper is organized as follows. Section II briefly reviews and discusses the basics 
of SSC. Section III details the proposed PMM framework, including ISSC and the distributed neural 
network. Then, the parameter update process of the distributed neural network is given in Section 
IV. Section V reports some experimental results of the proposed PMM, which demonstrate some 
merits in learning speed and modeling accuracy against other existing methods. Section VI concludes 
this paper with some remarks. 

II. PROBLEM FORMULATION AND PRELIMINARIES  
Industrial processes have accumulated a large number of process variables, most of which have 

no significant correlation. Sparse coding advocates building a more concise feature representation 
[40,41]. The data set is divided into meaningful blocks to highlight the local information, so that these 
blocks are not related to each other to the maximum extent, so as to obtain dense feature 
representation.  

Given a feature x and a basis pool U =[u1, u2, ..., uk ], sparse coding aims at sparsely and linearly 
reconstructing the feature to be encoded, x=v1u1+v2u2+···+vkuk. Here, sparseness means only a small 
fraction of elements in v are non-zero. The optimization problem of sparse coding can be calculated 
as follows 

  0
min . ,

v
v st =x Uv                        (1) 

where, ║v║0 means the number of non-zero elements in v. However, the minimization of 0 norm is 
an NP hard problem. In many practical applications, reconstruction error is inevitable and often 
difficult to estimate in advance. Therefore, it is beneficial to jointly optimize both the sparsity of the 
coefficients and the reconstruction error. Accordingly, the objective function of sparse coding can be 
reformulated as follows 

2

1,
min . 1,mU v

x Uv v st uλ− + ≤               (2) 

where, the first term of Eq. (2) is the reconstruction error, and the second term is used to control the 
sparsity of the sparse codes v. And λ is the tradeoff parameter used to balance the sparsity and the 
reconstruction error.  
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III. ARCHITECTURE OF ISSC-DFNN 
Under a global-local framework, ISSC-DFNN is composed of four primary components: the 

input layer, Subspace partition, feature extraction, and feature integration, as illustrated in Fig. 1. The 
structure and functionality of each layer are detailed as follows 

Input: This component first loads the dataset and then employs Eq (3) to evaluate the relative 
contribution of each process variable, thereby removing redundant features. An input matrix X=[x1,x2, 
..., xD] of size N×D, where N denotes the number of samples and D denotes the number of features. 
The dth feature vector is denoted as xd=[xd,1, xd,2, ..., xd,N]T(d =1, 2, …., D). 

Subspace partition: In this block, by using the idea of manifold learning, the sparse original 
space is divided into several interactive low-dimensional subspaces. An enhanced sparse subspace 
clustering algorithm is proposed to partition the input matrix X （这个地方 X 好像是个矩阵，是不是

需要加粗表示啊？）into K feature subsets, denoted as Ak (k = 1, 2, …, K), where each Ak is an N×mk 
matrix and mk indicates the number of features in the kth subset. These feature subsets are 
subsequently assigned to their corresponding subnetworks for further processing. 

Feature extraction: The subnetwork layer in ISSC-DFNN consists of K feature extraction 
subnetworks, where K corresponds to the number of identified feature subspaces. Each subnetwork 
is adaptively constructed using the ErrCor algorithm and is responsible for processing a specific 
group of features in parallel. 

Feature integration: The primary role of this layer is to fuse the outputs from multiple 
subnetworks via a weighted summation mechanism, with the integration weights determined based 
on the Sparse Similarity Index.  

IV. ALGORITHM DESIGN OF ISSC-DNN 
In this section, we first introduce a sparse subspace task decomposition clustering algorithm, 

which segments the original space into several mutually associated feature subspaces, with 
corresponding weights assigned to characterize the importance of each subtask, and then uses a 
structured self-organizing mechanism, differentiated parallel coding network DFNN to realize 
feature extraction and fusion of each subspace. Subsequently, a global gradient descent algorithm is 
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employed to simultaneously optimize the parameters of all subnetworks, thereby ensuring the 
overall model accuracy. 

A. The subspace partition method of spectral clustering 

The subspace clustering algorithm selects several dimensions into space groups in the initial 
dimensions, which is not simply cut, and can avoid information loss in the process of dimension 
reduction. However, the contribution of different dimensions to clustering is not the same, and the 
dimensions may even be related to each other. This means that the dimension of the subspace cannot 
be obtained adaptively when each dimension of the subspace is assigned the same weight. Given a 
data matrix X∈ℝN×D, the soft subspace clustering (SSC) algorithm performs decomposition along 
either the row or column dimension, assigning a membership value to each row or column. Based on 
these membership values, the algorithm determines the cluster affiliation of each row or column. This 
allows some instances or features to be associated with multiple clusters simultaneously, resulting in 
overlapping, soft partitions that reflect compatibility across clusters. Focusing on row-wise 
decomposition, the corresponding objective function of the SSC algorithm is defined as follows 

2

1 1 1

1 1

( ) ( ) ,

0 1, 1,0 1, 1,

K N D
m

jk ik ij k
k j i

K K

jk jk ik ik
k k

J T u w x v

u u w w

= = =

= =

= −

≤ ≤ = ≤ =

′

≤

 

 
           (3) 

where K denotes the number of clusters, while N and D represent the number of rows and columns 
of the data matrix X, respectively. The matrix v=[v1, v2, ..., vk, ..., vK] contains the centers of all clusters, 
and W=[w1, w2, ..., wD] is the weight matrix, where each column vector reflects the relative importance 
of features within a given cluster. U=[u1, u2, ..., uN] denotes the membership matrix for the data 
samples, and mmm is the fuzzy weighting exponent. The three components of the objective function 
quantify the intra-cluster compactness, the entropy of feature weights, and the inter-cluster 
separation, respectively. The primary objective of the algorithm is to minimize intra-cluster 
compactness while maximizing inter-cluster separation by iteratively updating v, W, and U under a 
fixed number of clusters K. 

Given an N×D data matrix X, K sample points are randomly given as the clustering center point 
v=[v1, v2, ..., vk, ..., vK]. The membership matrix of the sample is obtained as U=[u1, u2, ..., uj, ..., uN], uj= 
[uj1, uj2, ..., ujk, ..., ujK], ujk represents the membership degree of each sample xij belonging to the kth 
category 

1
1

1
1

1

,
m

jk
jk

K m
jkk

d
u

d

−

−
=

=


                            (4) 

where, i=1, 2, ..., D, j=1, 2, ..., N, k=1, 2, ..., K, D and N are the number of relevant variables and the 
number of samples respectively, K represents the total number of categories, m>1 is the fuzzy 
parameter, determined by the input N and D 

min( , 1) ,
min( , 1) 2

N Dm
N D

 −=  − − 
                      (5) 

djk is the Euclidean distance of each sample xij relative to the k-th cluster center 

2

1
( )

D

jk ij k
i

d x v
=

= −                           (6) 

Update the existing cluster center v′ = [v1′, v2′, ..., vK′], and calculate the cluster center vk′ of the k-th 
category as 

                           1

1

N m
jk ijj

k N m
jkj

u x
v

u
=

=

′ =



                            (7) 
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According to the updated clustering center, the sample membership degree is recalculated by 
Eq. (1) and Eq. (3), and the contribution degree of each line feature in the original dataset belonging 
to the kth category is denoted as W=[w1, w2, ..., wi, ..., wD]T, wi= [wi1, wi2, ..., wik, ..., wiK], where wik 
indicates the contribution of the xi of line i to category k 

2

1
( )

N
m

ik ik ij k
j

w u x v
=

− ′=                         (8) 

To determine the number of cluster category K, we add a cluster center in each iteration, then 
recalculate sample membership until the objective function is minimal.  

In this study, the optimal number of clusters is determined by selecting the value that minimizes 
the objective function within the interval [2, 2log(D)], where D represents the number of input 
features. This strategy ensures that, even in high-dimensional input spaces, the number of resulting 
subtasks remains within a manageable range. A detailed description of the overall algorithm is 
provided in Table 1. 

Table 1. The ISSC based feature partitioning algorithm. 

1: C=1 
2: Initialize the parameters and set the maximum number 
of iterations to Max. 
3: Repeat: 
4: C=C+1; 
5: Arbitrarily initialize cluster centers matrix V(0), 
initialize the weight matrix W(0). 

6: Repeat:  iter = iter + 1;  
7: Calculate the membership matrix U(iter) according to 
Eq. (4);  
8: Calculate the weight matrix W(iter) according to Eq. (6);  
9: Until ||V(iter)-V(iter-1)||<ζ or iter = Max.  
10: Calculate the JIESSC by Eq. (2); 
11: Until C = 2log(D); D is the number of input features. 

12: Calculate the minimum value of J and the optimal 

clusters K. 

B. Construction of subnetwork 

1) Structure of subnetworks 
In the following, we describe the DFNN layer by layer as a whole. The front network is 

composed of a distributed coding network, which is used to integrate redundant features in each 
subspace, and a corresponding self-organization strategy is designed to ensure that it can obtain 
different coding structures for each subspace. The latter network is responsible for feature expression 
for a regular FNN. The training of the whole network is also carried out separately into the two parts. 

For the K subspaces Ak with the size of N×Pk, he number of input neurons for the corresponding 
network is Pk (k=1, 2, …, K). Assuming there are hk neurons in the hidden layer of the kth subnetwork, 
an auto-encoder maps it to a hidden representation h through an encoder function f as 

( )k k kh f b= +W                               (9) 
with two parameters, i.e., weight matrix Wk∈ℝ𝑛×𝑝 and the bias vector bk∈ℝ𝑛. The hidden representation 
h can be mapped back to x, which is a reconstructed vector by the decoder function, as 

ˆ ( )k kx g b′ ′= +W                               (10) 
where f is the sigmoid function, and g is the identity function. The cost function is mean squared 
error, because it is an appropriate choice for real-valued pixel intensity inputs. 
2) Structure of subnetworks 

Let Qk denote the number of neurons in the hidden layer of the kth  subnetwork. The output of 
the qk th neuron (qk =1, 2, ..., Qk) is computed as follows 
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− −− −

=
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, , ..., , , , ...,

σσφ         (11) 

where x=[x1, x2,…, xPk] is the input of RBF layer, σj=[σ1 
j , σ2 

j ,…,σPk 
j ] and cj=[c1 

j , c2 
j ,…, cPk 

j ] are the vectors 
of widths and centers of the jth RBF neuron, respectively, vj is the output value of the jth neuron, and 
Qk is the number of neurons in this layer. 

The output is clarified using the gravity method 

'
ky = Wφ                                    (12) 

where 

 '
1 2, , ,

kQw w w =  W                          (13) 

W′ is the parameter matrix, W′=[w1, w2, …, wQk] are the weights between the qth neuron in the 
hidden layer and the output layer, yk is the sole neuron in the output layer and can be calculated as 

  
2 2

1
2

1

Pk
k i ij iji

Q x c
k jj

g w e =
− −

=
′= = (( ) / )W σφ           (14) 

Each subnet generates an attribute fusion feature. The output of all subnets should be 
normalized before feature integration 

2 2
1

2 2
1

2

2
1 1

1 2
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i ij iji
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i ij iji
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K K x c
kk jk

w eg
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g w e

k K

=

=

− −
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= =


= =



=

 

(( ) / )

(( ) / )

, , , ,

σ

σ        (15) 

where G is the output of the network. 
3) Self-constructing of subnetworks 

Through the subspace construction process, we obtain K independent subspace feature subsets 
Ak. However, there is a highly collinear relationship between the features within these subspaces, and 
there is some information redundancy in the model input. It is necessary to construct an incomplete 
neural network structure (hk<Pk) for more concise feature representation. In this paper, a self-
organizing strategy based on pruning is proposed to ensure that DFNN codes differently according 
to different subspace inputs. Before introducing the self-organizing mechanism, the error of the kth 
subnetwork is defined as 

1 ˆ ( ( )) ,
2k i ie x - g h x= ×                    (14) 

where xi and xi are the qth desired output and actual output of the output layer, respectively. 
It is assumed that each hidden layer neuron is activated with a certain probability, and the 

hidden layer neurons are independent of each other. In the kth subspace, the average activation value 
of the jth neuron in the hidden layer of the subnet is expressed as 

1

1 N
i

j j
i

h x
N =

=  ( )ˆ ( )ρ                         (15) 

where N represents the number of samples in the kth subspace. The sparsity of neurons in the 
hidden layer can be calculated by 

j
j =

max

ˆ
ˆ
ρ

μ
ρ

                                  (16) 

where ρmax represents the maximum average activation value and µ0 represents the sparse 
parameter. If the target accuracy is not reached within the predefined maximum number of epochs, 
or if sparse nodes are detected, the corresponding hidden neurons are pruned, as illustrated in Eq 
(15) 
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{ }1 argmax
kQ k n k n kc A A e+ = ∀ =

max max, ,, ( )          (17) 

where ek denotes the error vector of the kth subnetwork, with the width parameter initialized as 
σQk+1=1, and the output weight set to lQk+1=1. In this approach, one new hidden neuron is added to the 
network during each training epoch. The algorithm terminates once the subnetwork achieves the 
target accuracy or when no sparse nodes are detected. 

C. Collaborative optimization algorithm 

In order to optimize the parameters of the subnetworks simultaneously, the comprehensive loss 
function is used for a unified solution. All subnetworks were centrally prepared at a fusion center, 
and then the global variable β∗ could be obtained by solving the following problem. 

 
2

2

1

1 1( ) ( )
2 2

K

i i i k k
k

u a tβ β δ
=

= +                (16) 

where ak is a scale factor to keep the loss functions of the front and back networks at the same range, 
δ is the partial derivatives of the loss to y, and g are the corresponding errors of their respective 
outputs. 

( )( ) ( ) ( )
y (t)k k d k

k

Lt a y t y tδ ∂= = −
∂

            (17) 

Accordingly, the global objective can be restated as 

1
( ) ( )

N

i i
i

u uβ β
=

=                              (18) 

enabling all the nodes to cooperatively solve the problem. As has been shown previously, we 
next derive the updating formulation of the estimate βi(k)and the initial state βi(0). 

According to the expression in (16), we can verify that the difference between the gradients ∇ui, 
evaluated at βi(k+1)  

and βi(k), respectively, can be given by 

 1
( 1) ( ) ( ( ) ( ))

(0) ( )

N

i i ij j i
j

i i i

k k a k k
VC

a t

γβ β β β

β δ
=

 + = + −

 =

        (19) 

The positive parameter γ is chosen appropriately in (0, γmax), where 

   
{ } 1

2
max ( )

max V
max i i

VCγ
λ δ

=

=                     (20) 
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i

i i

i
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Table 2. Collaborative optimization algorithm. 
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1: T=1, Set the maximum number of iterations to T0； 
2: Initialize expected accuracy Qk, global variables β∗, and neural 
network parameters cPk 

j , σPk 
j  and wQk； 

3: Repeat:   
4: Repeat:  T=T+1; 
5: Calculate the output of each neural subnet according to Eq (14); 
6: Calculate the output error δk of each subnet according to Eq (17); 
7: The global variable βi of each subnet can be obtained according 
to Eq (16)； 
8: Update subnet parameters by according to (18)； 
9: Until T> T0  
10: The accuracy cQk of the network is calculated according to Eq 
(15). 
11: hidden nodes = hidden nodes + 1;  
7: Until cQk < Qk; 

 
1 1 1
1

1

( ) ( ) ( )
( )

( ) ( ) ( )

j P

i
K K K

j P

t t t
B t

t t t

 
 =  
  

 
  

 

c c c

c c c
         (23) 

1 1 1
1

1

( ) ( ) ( )
( )

( ) ( ) ( )

j P

i
K K K

j P

t t t
C t

t t t

σ σ σ

σ σ σ

 
 =  
  

 
  

 
        (24) 

where Δ(t) is a unified parameter matrix, which is composed of front network parameter matrix A(t) 
and post network parameter matrix B(t), η is the adaptive learning rate, and 0<µ<1 is the learning rate 
adjustment parameter. G(t) is the gradient vector.  

According to the chain rule, the elements of the Jacobian matrix are calculated to be 

    ( ) (2)
(1) (1) 1

( ) ( )
k k

k k k A i
k kik ik

z hL L z z w x
z hw t w t

δ∂ ∂∂ ∂= = − × ×
∂ ∂∂ ∂

  (25) 

1 2( ) ( ) ( ) ( )j j j mj

L L L L
t c t c t c t

 ∂ ∂ ∂ ∂=  
∂ ∂ ∂ ∂  


c

     (26) 

2 ( ) ( ) ( ) ( )
( ) ( )

j i i ij

ij ij

w t v t x t c tL
c t tσ

 × × −∂  = −
∂

      (27) 

1 2( ) ( ) ( ) ( )j j j mj

L L L L
t t t tσ σ σ

 ∂ ∂ ∂ ∂=  
∂ ∂ ∂ ∂  


σ

     (28) 

2

2

( ) ( ) ( ) ( )
( ) ( )

j B i i ij

ij ij

w t v t x t c tL
t t

δ
σ σ

× × −∂ = −
∂

       (29) 

The parameter update amount of each subspace is calculated from Eqs. (19)-(29). 

V. SIMULATION STUDIES 
In this section, the performance of ISSC-DFNN was tested through several benchmark tasks and 

a real-world application dataset in an engineering application. Besides, ISSC-DFNN is compared with 
some other existing methods. All the simulations were programmed with MATLAB version 2016 in 
the same PC environment. 
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A.  Experimental datasets  

1) Benchmark problems 
To assess the modeling performance of ISSC-DFNN, four benchmark datasets from the UCI 

Machine Learning Repository were selected for evaluation, namely Boston Housing, Auto Prices, 
Residential Building, and Abalone. Regression models were constructed using the input and output 
features of each dataset. Detailed information about these datasets is provided in Table 3. For 
comprehensive descriptions of each feature, please refer to the UCI Machine Learning Repository. 

Table 3. Information for FOUR UCI datasets. 

Dataset Training samples Testing samples Input dimensions Output dimension 
Boston Housing 350 150 13 1 

Auto Price  120 50 14 1 
Abalone 1500 500 8 1 

Residential building 350 150 107 1 

2) ETP in wastewater treatment 
Effluent total phosphorus (ETP) serves as a key indicator in sewage treatment, reflecting whether 

the discharged wastewater complies with regulatory standards. Accurate prediction of ETP is vital 
for the real-time control of the sewage treatment process. In this study, practical data were gathered 
from a sewage treatment plant in Beijing, and the ISSC-DFNN model was employed to perform the 
predictions. As shown in Table 4, the dataset of plant variables provides 23 input variables X = {X1,…, 
X23}, two different monitoring target variables Yd, and 1200 samples. These variables are composed 
of some process variables that are beneficial to monitoring, e.g., T, DO, ORP, MLSS, NO3-N. There 
are also some irrelevant or weak correlation variables. In order to unify the time series of online data 
and laboratory data, the sampling frequency of all parameters was 10 minutes. After removing 
abnormal data, 1,200 samples from September 1, 2019, to October 31, 2019, will be obtained for 
normalization processing. There are 700 data samples in each data set, which consists of 600 training 
data and 100 test data.  

Table 4. Input variables of ETP dataset. 

X1 Inlet flow X13 BOD 

X2 Temperature X14 Influent oil 

X3 ORP1 X15 Effluent oil 

X4 ORP2 X16 Influent ammonia 

X5 MLSS1 X17 Influent colourity 

X6 NO3-N X18 Effluent colourity 

X7 NH4-N X19  Influent PH 

X8 DO1 X20 Effluent PH 

X9 ORP3 X21 Suspended Solid 

X10 MLSS2 X22 Influent nitrogen 

X11 NO3-N X23 Influent phosphate 

X12 DO2 Yd ETP 

 

B. Experimental setup 

To enhance the operational efficiency of the ISSC algorithm within the DFNN framework, the parameters γ 
and η are chosen as 10 and 0.01, respectively. The parameter t is typically set to a relatively small value within 
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the range [1,2] to ensure stable performance of the IESSC algorithm, in this study, it is empirically set to 1.5. 
The approximation performance of the model is evaluated using the root mean square error (RMSE) and the 
average percentage error (APE) between predicted and desired output, which is shown as (30) and (31): 
 

2

1

1 N

d
t

RMSE y t g t
N =

= − ( ( ) ( )) ,                    (30) 

1

1 100
N

d

t d

y t g t
APE

N y t=

−
= ×

( ) ( )
%,

( )
             (31) 

where N denotes the sample size, and yd and g represent the desired and actual outputs for the nth sample, 

respectively. To reduce the effect of randomness, each experiment corresponding to a dataset is independently 

repeated 10 times, and the average RMSE and APE values are reported as the final results. 

To evaluate the superiority of ISSC-DFNN, we focus on the influence of distributed neural network on the 

process monitoring model. The modeling results are compared with other mainstream feature extraction 

algorithms: the models considered include a modular neural network with adaptive feature partitioning (FC-

AMNN), the traditional modular neural network (TMNN), and an online self-organizing modular neural 

network (OSAMNN). Detailed descriptions of each model are provided in Table 5.  

Table 5. Comparison results with other models for UCI benchmark problems. 

Algorithm 
Dataset A: Boston Housing Dataset B: Auto Price 

Training  
RMSE 

Testing  
RMSE 

Testing  
APE Subnetworks Training  

RMSE 
Testing  
RMSE 

Testing  
APE Subnetworks 

Prop. 0.0759   0.0741 0.1375 2 0.0738  0.0742 0.1729 2 

FC-AMNN 0.0767 0.0748 0.1396 4 0.0752   0.0766 0.1781 2 

TMNN 0.0875 0.0906 0.1684 2 0.0872 0.0883 0.1968 2 

OSAMNN 0.0927 0.1006 0.1734 8 0.0785 0.0810 0.1892 5 

Algorithm 
Dataset C: Abalone Dataset D: Residential building 

Training  
RMSE 

Testing  
RMSE 

Testing  
APE Subnetworks Training  

RMSE 
Testing  
RMSE 

Testing  
APE Subnetworks 

Prop. 0.0739 0.0741 0.1721 2 0.0987 0.0962 0.467 3 

FC-AMNN 0.0774 0.0786 0.1797 2 0.0994 0.1062 0.4963 4 

TMNN 0.0823 0.0886 0.1895 2 0.1152 0.1204 0.5397 3 

OSAMNN 0.0815 0.0879 0.1838 7 0.1074 0.1126 0.5124 4 
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Figure 2. Training and testing results of Boston Housing. 

 

Figure 3. Training and testing results of Auto Price. 

C.  Prediction results on benchmark problems  

Figures 5 illustrate the training and testing results of ISSC-DFNN across different datasets. In each figure, 
the training RMSE curve gradually converges as the number of iterations increases, with noticeable jumps 
indicating the addition of hidden nodes within subnetworks to compensate for errors during training. The two 
subplots on the right display the testing outcomes of ISSC-DFNN, clearly demonstrating its strong 
approximation ability. Table 5 compares these results with several other models. Besides the evaluation metrics 
RMSE and MAPE, the number of subnetworks for each model is also reported to highlight structural 
advantages. 
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Figure 4. Training and testing results of Abalone. 

From Table 6, it is evident that ISSC-DFNN achieves the best performance across multiple metrics, followed 
by FC-AMNN, both utilize feature clustering methods. In contrast, OSAMNN and TMNN, which are based on 
sample clustering, exhibit comparatively weaker results. The primary distinction between ISSC-DFNN and FC-
AMNN lies in their feature clustering approaches. Furthermore, ISSC-DFNN derives integration weights 
through task decomposition, making the task decomposition module more tightly coupled with the integration 
module, thereby enhancing overall model performance. 

Table 6. Comparison results with other models on ETP. 

Algorithm Training  
RMSE 

Testing  
RMSE 

Testing  
APE Subnetwork 

Prop. 0.0763 0.0781 0.0306 2 

FC-AMNN 0.0802 0.0816 0.0391 2 

TMNN 0.0984 0.0996 0.0502 3 

OSAMNN 0.0795 0.0828 0.0412 7 

The relatively poorer performance of TMNN and OSAMNN can be attributed to several factors, including 
their sample decomposition strategies, subnetwork architectures, and integration weight calculation. Overall, 
soft-partition-based task decomposition demonstrates superior generalization ability, as reflected by the lower 
RMSE and MAPE values when comparing ISSC-DFNN to FC-AMNN. Additionally, ISSC-DFNN overcomes 
the issue of ineffective subnetwork training caused by insufficient samples in certain subtasks, a problem 
observed in TMNN and OSAMNN. Notably, ISSC-DFNN features a more compact architecture with fewer 
subnetworks, implying that it requires a smaller number of subnetworks to achieve the desired accuracy. 
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Figure 4. Training and testing results of Resident building. 

D. Results on ETP in wastewater treatment prediction  

Figure 5 illustrates the testing results of ISSC-DFNN for a single trial on the effluent ETP 
dataset. As shown, ISSC-DFNN effectively captures the practical data trends, with the fitting 
curve demonstrating strong approximation capabilities. Table 6 presents the averaged 
prediction results of ISSC-DFNN alongside several other models over 20 trials for ETP 
concentration. It is evident from Table 6 that the predictions align well with benchmark 
outcomes. Similarly, ISSC-DFNN and FC-AMNN, which utilize a feature decomposition 
approach, outperform other methods on the practical dataset, followed by OSAMNN and 
TMNN that employ sample decomposition techniques. Notably, both training and testing 
RMSE values of ISSC-DFNN are lower than those of the competing models, indicating 
superior generalization performance. Additionally, as reflected in Table 6, ISSC-DFNN 
maintains a relatively simple architecture with a limited number of subnetworks. 

 

Figure 5. Training and testing results of ETP concentration. 
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E. Statistical analysis 

To further demonstrate the superiority of the proposed model, we conducted a Wilcoxon 
signed-rank test (Demˇsar, 2006) to compare the performance of ISSC-DFNN with that of 
several baseline models. The Wilcoxon signed-rank test begins by computing the differences 
in evaluation metrics between two methods, followed by calculating the rank sums of the 
positive and negative differences, denoted as R+ and R-, respectively. A significant difference 
is concluded if the resulting probability Pwilconxon value is less than the significance level 
0.05. In this study, the testing RMSE is employed as the evaluation metric for all models. 

Table 7 presents the results of the Wilcoxon signed-rank test. The experimental results 
indicate that, regardless of the comparison method, the ISSC-DFNN consistently satisfies the 
significance criterion of Pwilconxon <0.05. This confirms that the performance of the proposed 
ISSC-DFNN model is statistically significantly different from that of the other models, 
thereby further demonstrating its superiority. 

Table 7. Wilcoxon’s test results of Testing RMSE on all datasets. 

Models R+ R- Pwilconxon 

Prof. vs TMNN 21 0 0.00741 

Prof. vs FC-AMNN 21 0 0.00741 

Prof. vs OSAMNN 21 0 0.00741 

VI. CONCLUSION 

In this study, a distributed neural network framework is proposed, which is built upon the 
ISSC algorithm. The ISSC algorithm is utilized to perform feature clustering, thereby 
generating multiple subtasks with partially overlapping feature sets. Each subtask is handled 
by an RBF neural network trained using a self-organizing approach. Finally, the overall 
output is obtained by aggregating the predictions of all subnetworks using integration weights 
derived from the ISSC algorithm. The effectiveness of the proposed ISSC-DFNN has been 
confirmed by some simulated and experimental results. Tables 5-7 indicate that the proposed 
ISSC-DFNN achieved better testing RMSE, testing APE, and mean accuracy than the other 
algorithms. Based on experimental results, the characteristics of ISSC-DFNN are discussed 
and summarized as follows: 

1) When confronted with large-scale datasets, the model is always able to acquire a leaner 
and denser feature representation, ensuring that each subtask preserves more input 
information to improve model accuracy. 

2) The number of subnetworks can be kept small, even when dealing with datasets of very 
high dimensionality. Furthermore, based on the self-organizing strategy, each subnet can 
obtain a relatively compact structure in different subtasks, which is helpful to avoid redundant 
parameter training and reduce computational complexity. 

3) The convergence of the proposed ISSC-DFNN can be maintained, and this proposed 
ISSC-DFNN with a comprehensive loss function may improve the chance of approximating 
the global optimization parameters. 
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Nevertheless, the proposed method still has certain limitations. One notable issue is the 
reliance on a large number of manually set parameters, including those within the ISSC 
algorithm as well as the parameters involved in subnetwork training. To address this, future 
work will focus on developing a more streamlined model with reduced parameter dependency. 
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