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Abstract: The assessment of the number of people exposed to natural hazards, especially in countries
with strong urban growth, is difficult to be updated at the same rate as land use develops. This paper
presents a remote sensing based procedure for quick updating the assessment of the population
exposed to natural hazards. A relationship between satellite nightlights intensity and urbanization
density from global available cartography is first assessed when all data are available. This can
be used to extrapolate urbanization data at different time steps, updating exposure each time new
nightlights intensity maps are available. As reliability test for the proposed methodology, the number
of people exposed to riverine flood in Italy is assessed, deriving a probabilistic relationship between
DMSP nightlights intensity and urbanization density from GUF database for the year 2011. People
exposed to riverine flood are assessed crossing the population distributed on the derived urbanization
density with flood hazard zones provided by ISPRA. The validation on reliable exposures derived
from ISTAT data shows good agreement. The possibility to update exposure maps with higher
refresh rate makes this approach particularly suitable for applications in developing countries, where
exposure may change at sub-yearly scale.

Keywords: exposure; urban development; nightlights intensity; population distribution; natural
hazards; remote sensing.

1. Introduction

The aim of this paper is to present a general, simple and remote sensing based procedure for the
quick update of the population exposed to natural hazards in rural and urban areas. This procedure
explores the potential of the combination of the high refresh rate of satellite nightlights intensity
products with the high precision of urban cartography. The final product is a map of exposure which
can be easily and quickly updated, with the refresh rate typical of remote sensing products, to be used
in developed but especially in developing countries, where exposure may change at sub-yearly scale.

The impact of natural disasters such as floods, earthquakes or cyclones is growing significantly
in recent decades [1]. This can be related to the growth of all components of the risk equation:
hazard impacted by climate change on one hand and exposure and vulnerability affected by the
rapid economic growth and changes in land use of many areas of the world on the other. While the
evaluation of the hazard component of the risk equation is a quite well established and consolidated
procedure (see, e.g., [2] for floods and [3] for earthquakes) and global hazard maps are produced
for several hazards (see, e.g., [4] and [5] for floods and [6] for earthquakes), the assessment of both
the built-up areas and the number of people exposed to natural risks is a complex process, which
needs information that should be updated often, especially in areas with strong economic and urban
development (see e.g. [7]). Nevertheless, this information is not easily available and even more difficult
to update at the same rate of land use development. Currently available satellite based exposure
products, such as the GUF database [8–10] or the ESM [11], are very detailed and reliable, designed for
use even on a fine scale, e.g. for demographic monitoring, analysis on the spatial structure of built-up
areas, etc. [9]. Nevertheless, the level of processing required to release a final reliable version of these
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products lasts for several years, making their refresh rates significantly lower than the urban growth
rate of many areas of the world. It is worth mentioning here the provisions of the Sendai Framework
for Disaster Risk Reduction [12], which requires a frequent update (e.g. yearly) of information on the
population or assets exposed at national or provincial scale, to be used for the monitoring of some of its
indicators, such as “Number of directly affected people attributed to disasters, per 100,000 population”
(indicator B-1) or “Direct economic loss attributed to disasters in relation to global gross domestic
product” (indicator C-1).

To provide a solution to the need of highly refresh rate exposure data, it would be possible to link
the cartography of exposure to other easily available information that can be updated with a higher
refresh rate. Satellite-based nightlights have been used by various authors to map global urban extent
and its dynamic [13–18] or as proxy for population density [19–21], economic activity [22–24], and
other. Results provided by Bagan and Yamagata [20] show that correlation between population density
and nightlights intensity becomes significant for values of DMSP nightlights intensity above 61-62
(97-98 % of the maximum intensity). Ceola et al. [25] use the Version 4 DMSP-OLS Nighttime Lights
Time Series to derive information about the exposure of population to the flood risk [26], linking the
variation of the light intensity from 1992 to 2012 to the proximity of a river network, identified using
the USGS HydroSHEDS database [27]. However, the temporal evolution of the exposure does not only
depend on the intensity of the light in a defined area around the watercourses, but it is also linked to
the evolution of the extension of the urbanized area (not entirely represented by the pixels surrounding
rivers only) and to its intersection with the areas exposed to the flood hazard.

This paper presents and validate an experimental methodology to reconstruct the urbanization
density and the exposure of built-up areas and people, to be used for aggregated (e.g. municipal,
district, country level) risk and direct damage estimations. The method is based on the identification
of a relationship between nightlights intensity derived from satellite sensors and urbanization density
derived from global available cartography, starting from the assumption that the latter can be
considered as a proxy to quantify exposure in hazard-prone areas. This relation can be assessed
at a specific time when both nightlights intensity and urbanization maps are available, and then can
be potentially used to extrapolate the urbanization at different time steps, when only nightlights are
available. In this way, the cartography of exposure can be quickly updated each time a new nightlights
intensity map is available.

To test the methodology, we propose a reconstruction of the spatial distribution of the population
exposed to riverine flood in Italy based on a probabilistic relationship between the intensity of the
nightlights provided by the DMSP database and the density of urbanization estimated from the GUF
database. The probabilistic relation is obtained by fitting a calibration curve on the GUF and DMSP
data in three different regions, for the reference year 2011. The obtained curve is then reliably used to
redistribute at finer scales the regional population provided by ISTAT, outside the calibration regions,
for the whole Italy. As a final step, people exposed to riverine flood is evaluated crossing the obtained
distributed population with riverine flood hazard zones provided by ISPRA. The validation of the
results is made at municipal scale on the reference exposed population derived from the independent
database provided by ISTAT. It shows a good agreement.

The paper is organized as follows: in Paragraph 2 the methodology and the databases used for the
analysis are described. Paragraph 3 reports the results obtained applying the proposed methodology
for the assessment of the number of people exposed to riverine flood hazard in Italy, together with a
validation of the obtained output at municipal scale. Paragraphs 4 and 5 report the discussion of the
results and the related conclusions, respectively.

2. Materials and Methods

The proposed methodology allows to produce updated maps of built-up areas and population
at country scale using readily available satellite-based information on small portions of a country
(calibration regions). These maps, if combined with hazard maps, can be used for aggregated
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(e.g. municipal, district, country level) risk and direct damage estimations. In order to apply the
methodology nightlights intensity data, urbanization maps and a population estimation at least at national
scale are required.

More specifically, the present approach starts from the identification of a relationship between
intensity of nightlights derived from satellite sensors and urbanization density derived from global
available urbanization maps, starting from the assumption that the latter can be considered as a proxy
to quantify exposure in hazard-prone areas. This relation, named as urban density calibration curve, can
be assessed for one or more calibration regions inside the country or region under study and derived at
a specific time, when both nightlights intensity and urbanization maps are available. Each time a new
nightlights intensity map is available, the resulting calibration curve/s (derived inside the calibration
region/s) can be applied to derive an updated urban density map at country scale. On this map it is
then possible to redistribute the mostly updated population estimation (available at least at national
scale) in order to evaluate the exposed population.

2.1. Algorithm

The steps to be performed in order to obtain an updated population distribution map are reported
hereafter:

1. Input pre-processing: Nightlights intensity and built-up area data are regridded on a reference grid
and normalized between 0 and 1. Resolution of the reference grid is the same of the nightlights
intensity layer, which is usually the dataset provided at the lower resolution. The choice to regrid
the built-up data on the nightlights grid allows to better calibrate the relationship between them
generating a single urban density value for each cell of the nightlights intensity map. In fact, by
regridding, the built-up values are transformed in urban density values, measured as percentage
of the pixel of the new grid occupied by built-up areas.

2. Curves calibration: Urban density curves are calibrated in one or more regions of the case study
area, evaluating the relationship between normalized nightlights intensity and urban density data
(obtained from previous step) available for the same time period. The choice of the number of
curves to calibrate strongly depends on the distribution of the levels of urban development inside
the study area. If the study area has a homogeneous urban development a unique curve can be
derived.

3. Urban density update: If new nightlights intensity data are available, the corresponding map is
regridded and normalized. The curve is then applied to this new nightlights intensity map to
estimate updated urban density for the whole case study area. Therefore, the urban density for
each pixel i of the map is evaluated as:

UDi = f (Li) (1)

Where UDi is the urban density for pixel i, Li is the normalized light intensity for the same pixel
and f is the calibration curve which better fits the experimental data, maximizing the R2 measure.

4. Population distribution: Updated urban density is used to redistribute new available population
data provided at least at national scale, applying the following expression:

Pi = Pj ∗
UDi,j

∑
i

UDi,j
(2)

Where i is the pixel in which population is redistributed; j is the area for which population data
are available (e.g.: country/region/district); Pi,j is the redistributed population in pixel i; Pj is the
total population in area j; UDi,j is the updated urban density UDi for pixel i belonging to area j.

5. Exposure assessment: Distributed population is crossed with hazard maps and population exposed
is estimated.
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A graphical representation of the methodological steps above described is reported in Figure 1.

Figure 1. Graphical representation of the proposed algorithm for the estimation of population exposed
to natural hazards, which reports the main procedural steps, input data, intermediate products and the
final output.

2.2. Test and validation

In order to test the performance of the methodology, an application for the assessment of the
number of people exposed to riverine flood in Italy is performed. Input data used for this application
are described into detail in Section 2.3 and the obtained results are presented and discussed into detail
in Paragraph 3 and Paragraph 4 respectively. In this test, the probabilistic relation between nightlights
and urbanization density is derived by fitting a calibration curve for the reference year 2011. With the
purpose of testing the goodness of the obtained relationship, the calibration curve evaluated for three
specific regions (Lombardy, Tuscany and Sicily) is applied on the same satellite-based nightlights map
of 2011 producing an estimated urban density map at national scale. This new urban density map
is used to redistribute population data provided at regional scale by ISTAT, applying (2). Estimated
distributed population is crossed with hazard maps provided by ISPRA and the estimated exposed
population derived.

The choice of using the same reference year for calibration and testing, without realizing an update
with more recent nightlight data, has been guided by the fact that mostly updated information on
population exposed to riverine flood at municipal scale for Italy (to be used as independent validation
data) are available for year 2011.

Indeed, validation is performed comparing the evaluated exposed population obtained from
testing with reference exposed population. Reference exposed population is obtained redistributing
population provided by ISTAT at the municipal scale on the original urban density map derived from
GUF and then crossing the obtained distribution with the hazard zones layer provided by ISPRA. The
validation is performed at municipal scale, which is the scale at which reference data are provided.
For this reason, both reference and evaluated exposed population from testing are aggregated at the
municipal scale to perform the comparison.
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A graphical representation of the steps performed for testing and validation described above are
reported in Figure 2.

Figure 2. Graphical representation of the workflows performed to test and validate the proposed
methodology, applied for the assessment of the number of people exposed to riverine flood in Italy.

2.3. Input data

In order to test the methodology for riverine flood exposure assessment in Italy, two remote
sensing based datasets have been identified as input data for curves calibration: the DMSP night-time
light series as nightlights intensity dataset, an the GUF as built-up area map. Furthermore, in order to
estimate population exposed to natural hazards, regional population data provided by ISTAT from 2011
census and riverine flood hazard zones provided by ISPRA are used. Both ISTAT and ISPRA datasets
are provided as vector layers.

The layer used for validation is obtained using the same riverine flood hazard zones by ISPRA,
the urban density directly obtained from GUF dataset and population data provided by ISTAT from
2011 census aggregated at municipal scale.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 October 2020                   doi:10.20944/preprints202010.0425.v1

https://doi.org/10.20944/preprints202010.0425.v1


6 of 15

The list of all the datasets used for test and validation are reported in in Table 1. Each of them is
then described into detail in the following subsections.

Table 1. Input and validation data used to test the proposed methodology.

Dataset Data type Provider Resolution Reference year

DMSP-OLS Nighttime Lights Time Series Nightlights intensity NOAA 30" (around 1 km) 2011
Global Urban Footprint Built-up area mapping DLR 0.4" (around 12 m) 2011-2012

Italian riverine flood hazard zones Hazard map ISPRA n.a. (vector layer) 2017
Italian census of population Census data ISTAT n.a. (vector layer) 2011

2.3.1. DMSP-OLS Nighttime Lights Time Series

Information on nightlights intensity is derived from the Defense Meteorological Satellite Program
database, Operational Linescan System (DMSP database) that contains the Version 4 DMSP-OLS
Nighttime Lights Time Series. The series, ranging from 1992 to 2013, are accessible for free through the
NOAA-NGDC web site [26]. Data are provided by 6 different satellite platforms for a total of 34 scenes.
Nightlights data are expressed as yearly averaged digital number (DN) values ranging between 0 to
63, where 0 represents complete darkness and 63 bright areas. Data are provided in raster GeoTiff
format with spatial resolution of 30 arc sec (0.00833◦, nearly 1 km at the equator). The spatial extension
of nightlight images is between 75◦N and 65◦S and 180◦W and 180◦E. The database contains three
different data types: Average Visible, Stable Lights, and Cloud Free Coverages. Stable Lights contains
the lights from cities, towns, and other sites with persistent lighting, including gas flares. Ephemeral
events, such as fires have been masked. Then the background noise was identified and replaced with
zero values. Areas with zero cloud-free observations are represented by the value 255. The latter was
considered as the most suitable information to describe the level of exposure, and then used in the
analysis, as it avoids including temporary changes in lighting. The DN derived was subsequently
normalized between 0 and 1 to ease comparison with the urbanization percentage.

2.3.2. Global Urban Footprint

The Global Urban Footprint is a world-wide map of human settlements at very high resolution
produced by analyzing a global coverage of TerraSAR-X and TanDEM-X images collected in the context
of the TanDEM-X mission launched by DLR in 2007 [9]. The global map has been produced starting
from around 180.000 single TerraSAR-X/TanDEM-X image products for the reference year 2011, which
have been processed by DLRs operational Urban Footprint Processor (UFP), followed by an automated
post-processing approach. The final product is a binary, thematic raster dataset in GeoTiff format, with
reports value 255 for built-up areas and 0 for non-built-up areas, available at a geometric resolution of
0.4 arc seconds ( 12 m, near the equator) [8,28].

2.3.3. Italian riverine flood hazard zones

Riverine flood hazard maps have been collected by ISPRA, in accordance with the European
Floods Directive (2007/60/EC) which requires each Member State to map Flood Hazard and Flood
Risk for significant flood risk areas. The riverine flood hazard maps produced by ISPRA report the
delimitation of the geographic areas that could be affected by floods for three probability scenarios: low
probability (P1), medium probability (P2) and high probability (P3). The identification and delimitation
of flood prone areas for different hydraulic hazard scenarios has been carried out by applying two
different approaches: (i) an hydro-geomorphological and historical-inventory based methodology,
which combines LiDAR data, aerial photos, satellite images, geological maps and historical records of
areas affected by past flood events; (ii) an hydrological-hydraulic analysis, in which flood prone areas
are identified determining the hydrographs for different return periods and applying a numerical
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hydraulic model [29]. Riverine flood hazard maps for the entire Italian territory are provide as a vector
layer. The release used in this paper refers to year 2017.

2.3.4. Italian census of population

Population data used for testing and validation have been extracted from the data warehouse
of the "15th Population and Housing Census" carried out by ISTAT [30]. The warehouse contains a
wealth of information, disaggregated to the sub municipal level or aggregated at municipal, regional
or national scale, on the demographic and social structure of the population usually resident in Italy
and on Italy’s housing stock. The census reference date is 9 October 2011. The census variable which
have been used for this paper is the final demographic data on the population resident in Italy, used at
regional scale for testing and at municipal scale for validation.

3. Results

As mentioned in Section 2.2, the performance of the proposed methodology is tested and validated
in a case study in which the number of people exposed to riverine flood in Italy is assessed. The
workflow applied for testing and validation is reported in Figure 2. The main results obtained at each
step of the workflow are reported hereafter.

3.1. Test of the methodology for the assessment of the number of people exposed to riverine flood hazard in Italy

In this test, DMSP night-time lights and GUF for the reference year 2011 are used in three
calibration regions to obtain a statistical relationship between them. The derived curve is then applied
on the same DMSP map of 2011, producing an estimated urban density map at national scale to be used
to redistribute population data provided at regional scale by ISTAT. Estimated distributed population
is then crossed with ISPRA riverine flood hazard maps to estimate exposure. The outputs of each of
these passages are described into detail in the following subsections.

3.1.1. Input pre-processing

The DMSP night-time light series and the GUF for the reference year 2011 are regridded on a
reference grid (with the same resolution of the DMSP layer, which is around 1 km) and normalized
between 0 and 1. While regridded at 1km, the GUF data are transformed in a urban density value,
measured as percentage of the pixel of the new grid occupied by built-up area pixels from GUF. The
obtained normalized products are shown in Figure 3.

Figure 3. Outputs of data pre-processing: (a) normalized DMSP night-time light series (30 arc seconds,
2011) (b) normalized and regridded (on the same grid of DMSP) urban density as obtained from the
Global Urban Footprint (GUF) map by DLR (12 m, 2011-12).
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The comparison between the two maps of Figure 3 allows to observe that, despite the significant
difference in the resolution, the two products show a similar pattern. More specifically, all products
are able to well capture big cities and high density urban areas. Nevertheless, the DMSP night-time
light tends to overestimate the light intensity around these high density urban areas because of the
glare phenomenon. Other night-time light products with better resolution than DMSP, if available,
may reduce the extension of this noise.

3.1.2. Curve calibration

The probabilistic relationship between normalized nightlights and urbanization density data is
evaluated in three different calibration regions, potentially represented by different levels of urban
development: Lombardy, Tuscany and Sicily. The curve that best represents the relationship between
the average urbanization values for a given light intensity is a 6 degree polynomial, forced to assign
100% urbanization to 100% light intensity. Nightlights intensity is first divided into 20 classes with
equal width (5%) and the distribution of urban density in each class, for each calibration region, is
estimated. The fitting is then performed on the 50th quantile of the urbanization density of the three
calibration regions. More specifically, the identified curve is described by the following equation:

f (Li) =

{
c1 ∗ L6

i + c2 ∗ L5
i + c3 ∗ L4

i + c4 ∗ L3
i + c5 ∗ L2

i + c6 ∗ Li + c7, if Li < 0.975.

c8 ∗ Li + c9, otherwise.
(3)

which can be applied to compute UDi according to (1). The values assumed by the coefficients cn, with
n = 1, . . . , 9, are reported in Table 2.

Table 2. Values assumed by the coefficients reported in (3).

Coefficient c1 c2 c3 c4 c5 c6 c7 c8 c9

Value 34.515 -97.195 106.54 -56.745 15.132 -1.786 0.083 23.063 -22.063

This calibration curve is able to fit very well experimental data, reaching a R2 value up to 0.94.
The visual comparison between the 50th quantiles for the three calibration regions and the fitting curve
is reported in Figure 4.

Figure 4. Visual comparison between 50th quantiles for the three calibration regions and the obtained
fitting curve.
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3.1.3. Urban density estimation

The calibration curve described by (3) is applied using as input the normalized DMSP night-time
light (the same layer used to calibrate the curve) producing an estimated urban density map at national
scale. As well shown in Figure 5, the comparison between estimated and original urban density shows
very consistent patterns. Effects of light diffusion (i.e. glare) are stronger in big urban areas, such as
Milan (squared in red in Figure 5). The availability of higher resolution satellite light intensity data
may potentially reduce the effect.

Figure 5. Comparison between estimated and original urban density mapping (from 0 in white to 1 in
black) for North-West Italy (a) obtained applying the calibration curve on DMSP night-time light series
(30 arc seconds, 2011), (b) derived from normalization of Global Urban Footprint (GUF) maps by DLR
(12 m, 2011-12); Milan area is squared in red.

3.1.4. Population distribution

The estimated urban density map is used to redistribute at finer scale population data provided at
regional scale by ISTAT, by applying (2). The resulting population distribution is reported in Figure 6.

Figure 6. Estimated population distribution obtained redistributing regional population data from
ISTAT on the urban density map derived from DMSP, detailed for for North-West Italy (a) and
distributed for whole Italy (b).

3.1.5. Exposure assessment

Estimated population distribution is crossed with riverine flood hazard maps provided by ISPRA
in order to obtain an estimation of people exposed to flood. ISPRA hazard maps, which report the
delimitation of the areas that could be affected by floods according to low (P1), medium (P2) and high
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(P3) probability scenarios, allows to estimate the number of inhabitants per pixel located in hazard
zones P1, P2 and P3 respectively. The population distribution layer has been resampled from DMSP
resolution (1 km) up to 100 m to facilitate the overlapping with the detail of the hazard zones, which are
provided as a vector layer. The ISPRA riverine flood hazard maps for the three probability scenarios
and the number of inhabitants per pixel located in hazard zone P1, as an example, are illustrated in
Figure 7.

Figure 7. (a) ISPRA riverine flood hazard zones P1 (low probability), P2 (medium probability) and P3
(high probability) for North-East Italy and (b) estimated number of exposed inhabitants per pixel in
hazard zone P1 for the same zoomed-in area.

3.2. Validation against reference exposed population

According to the procedure described in Section 2.2, validation of the resulting exposed population
is performed through a comparison with reference exposed population, obtained redistributing
population provided by ISTAT at the municipal scale on the original urban density map derived from
GUF and then crossing the obtained distribution with the hazard zones layer provided by ISPRA.
Since reference population data are provided at municipal scale, both reference and evaluated exposed
population are compared at the municipal scale. The visual result of the comparison is presented in
Figure 8.

Figure 8. Visual comparison between the number of estimated (a) and the number of reference (b)
population exposed to hazard P1 in Southern Italy, aggregated at municipal scale.

The correlation between estimated and actual exposed population per municipality for whole
Italy is shown in two scatter-plots (Figure 9), which evaluate the correlation for P1 (low probability)
and P3 (high probability) hazard zones respectively.
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Figure 9. Scatter-plots that show the correlation between estimated and actual exposed population at
municipal scale in Italy for P1 (a) and P3 (b) hazard zones.

Data presented in Figure 9 proof a good correlation between estimated and reference exposed
population at municipal scale, reaching a value of R2 equal to 0.88 for exposed people in P1 (low
probability) hazard zones and equal to 0.85 for exposed people in P3 (high probability) hazard zones.

4. Discussion

The test and validation of the methodology has allowed to evaluate its goodness for future
applications, in which it would be possible to use updated data about nightlights intensity and
population estimation at national or regional scale in order to quickly perform an update of population
exposed to hazards. Indeed, the validation with independent data shows good agreement between
estimated and reference population exposed to riverine flood hazard (Figure 8), demonstrating a strong
consistency in the statistical relationship expressed by (3).

Furthermore, the shape of the obtained correlation curve (Figure 4) shows an agreement with
similar studies presented in literature, such as the correlation curve between population density and
nightlights intensity presented by Bagan and Yamagata [20] for Japan. In their study, the correlation
becomes significant for values of DMSP nightlights intensity above 61-62 (97-98 % of the maximum
intensity). This result is absolutely coherent with the choice to force the calibration curve described
by (3) to drawn through (1,1), in order to ensure the maximum urbanization density in correspondence
to the maximum nightlights intensity.

Scatter-plots reported in Figure 9 proof a very strong correlation between estimated and reference
exposed population at municipal scale, specifically for exposure evaluated in P1 (low probability)
hazard zones. In this case, correlation reaches a value of R2 around 0.88. Nevertheless, for P3
(high probability) hazard zones the correlation slightly decreases (R2 around 0.86) due to the
increasing inconsistencies between nightlights data resolution used as main input to update population
distribution maps and the detail of the hazard zones. Indeed, higher probability flooding scenarios are
characterized by a smaller and more scattered extent such as P3 hazard zones, which are very thin
buffers around small rivers. Therefore, the proposed methodology provides better results on large
flood hazard areas, which are more consistent with the light intensity map resolution. The discrepancy
between results obtained with P1 and P3 hazard zones is not so considerable at national scale (the
difference between the two R2 is very small) because of compensation. Nevertheless, at finer scale
this discrepancy is significantly highlighted. In Figure 10, the correlation between estimated and
actual exposed population per municipality for Lombardy region is shown in two scatter-plots, which
evaluate the correlation for P1 (low probability) and P3 (high probability) hazard zones, respectively.
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Figure 10. Scatter-plots that show the correlation between estimated and actual exposed population at
municipal scale in Lombardy region for P1 (a) and P3 (b) hazard zones.

In this case, the correlation reaches a value of R2 around 0.82 for P1 (low probability) and
significantly decreases for P3 (high probability) hazard zones (R2 around 0.50) due to the increasing
inconsistencies between nightlights data resolution and the detail of the P3 hazard zones. These
inconsistencies can be well observed in Figure 11, where derived and reference population distributions
for the city of Milan are overlapped by P3 hazard zones.

Figure 11. Derived (a) and reference (b) population distributions for the city of Milan, overlapped by
P3 (high probability) hazard zones provided by ISPRA.

More specifically, it is possible to observe that the hazard zones are very narrow along the river
network, having a cross dimension significantly lower than the resolution of the derived population
distribution, obtained from DMSP nightlight data. If hazard maps with a lower detail would be used,
such as seismic hazard maps, this issue would be potentially be avoided.

The goodness of the relationship described by (3) can be appreciated also comparing the estimated
and the original urban density maps, both reported in Figure 5. The comparison between the two
maps shows very consistent patterns. Nevertheless, light diffusion is stronger in big urban areas, such
as Milan (squared in red in Figure 5). Indeed, the DMSP night-time light used as input to produce
the estimated urban density map, tends to overestimate the light intensity around big urban areas
because of the glare phenomenon. The availability of higher resolution satellite light intensity data
may potentially reduce the glare effect. Furthermore, products with better resolution than DMSP may
also increase the correlation between nightlights intensity and urban density, improving the overall
performance of the proposed methodology.
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5. Conclusions

The up-to-date assessment of the built-up area and the number of people exposed to natural
hazards represents a key component to perform a reliable risk assessment and to implement successful
risk reduction strategies. The work presented in this paper has allowed to identify, test and validate a
general and simple remote sensing based procedure for the quick update of the population exposed
to natural hazards in rural and urban areas. The methodology is based on the identification of a
relationship between nightlights intensity and urbanization density, which can be assessed in some
calibration regions and then applied to extrapolate the urbanization for the whole country at different
time steps, when only nightlights are available.

The validation with independent data shows good agreement between estimated and reference
population exposed to riverine flood hazard, making this approach suitable for future applications.
Nevertheless, there are some factors which can influence the reliability of the results, delimiting
the field of application of this approach. A first factor is the impact of the resolution of nightlights
intensity data on the estimation of population distribution around big urban areas because of the glare
phenomenon. A second limitation is represented by the fact that the methodology provides better
results on large hazard areas (e.g. flood hazard area P1), which extent is sufficiently larger than the
low resolution of the light intensity map, making unnecessary a more detailed spatial distribution of
the population. Nightlights products with better resolution than DMSP data may overcome all these
two limitations, increasing significantly the performance of the methodology.

Despite the current limitations, the presented approach performs well at the municipal and
supra-municipal scale, producing updated exposure maps which can be used to evaluate aggregated
risk and direct damage estimations. The possibility to easily and quickly update exposure maps with
an higher refresh rate compared to available exposure cartography, makes this approach particularly
suitable for applications in developing countries, where exposure may change at sub-yearly scale.
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Abbreviations

The following abbreviations are used in this manuscript:

DLR German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt)
DMSP Defense Meteorological Program
DN Digital Number
ESM European Settlement Map
GUF Global Urban Footprint
HydroSHEDS Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales
ISPRA Italian Institute for Environmental Protection and Research

(Istituto Superiore per la Protezione e la Ricerca Ambientale)
ISTAT Italian National Institute of Statistics (Istituto Nazionale di Statistica)
LiDAR Light Detection and Ranging or Laser Imaging Detection and Ranging
NGDC National Geophysical Data Center
NOAA National Oceanic and Atmospheric Administration
OLS Operational Line-Scan System
USGS United States Geological Survey
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