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Abstract 

Background: Tumour-infiltrating lymphocytes (TILs) are emerging as a crucial prognostic biomarker 
in triple-negative breast cancer (TNBC). However, their clinical utility remains constrained by the 
subjectivity and interobserver variability of manual scoring, despite standardization efforts by the 
International TILs Working Group (TIL-WG). This study aimed to evaluate the interobserver 
agreement among pathologists in scoring stromal and intratumoral TILs from H&E-stained TNBC 
slides and to identify contributing histological factors. Methods: Two consultant pathologists at 
Hospital Canselor Tuanku Muhriz, Kuala Lumpur independently assessed 64 TNBC cases using TIL-
WG guidelines. Interobserver agreement was quantified using intraclass correlation coefficient (ICC) 
and Cohen's Kappa coefficient. Cases with over 10% scoring discrepancies underwent review by a 
third pathologist and a consensus discussion was held to explore the underlying confounders. 
Results: Our results showed moderate interobserver agreement for stromal TILs (ICC = 0.58) and 
strong agreement for intratumoral TILs (ICC = 0.71). Significant variability was attributed to three 
main confounding variables: heterogeneous TIL distribution, poorly-defined tumor-stroma interface 
and focal dense lymphoid infiltrates. Conclusions: These findings underscore the critical need for 
standardized TILs assessment criteria advocating for the adoption of AI-based scoring method to 
overcome interobserver variability and enhance the reproducibility of evaluations.  

Keywords: tumour-infiltrating lymphocytes (TIL); triple-negative breast cancer (TNBC); manual 
TILs scoring; interobserver variability; intraclass correlation; diagnostic reproducibility 
 

1. Introduction 

Triple-negative breast cancer (TNBC) is an aggressive immunogenic [1], subtype of breast cancer 
characterized by the absence of oestrogen, progesterone, and Human Epidermal Growth Factor 
Receptor 2 (HER-2) [2] presenting significant challenges in prognostication and treatment due to 
limited targeted therapies. Within the tumour microenvironment, tumour-infiltrating lymphocytes 
(TILs), have emerged as a valuable prognostic biomarker in TNBC [3–7] with high densities 
correlating with improved patient outcomes, including overall and disease-free survival. Therefore, 
accurate TILs assessment is crucial for understanding the immune landscape in TNBC. The 
International TILs Working Group (TIL-WG) has established standardised guidelines for evaluating 
stromal TILs (sTILs) by quantifying their proportion within tumour-associated stromal area while 
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also outlining specific exclusion criteria [8]. The density of sTILs can be calculated using the following 
formula:                

sTILs Density = Area of sTILs
Area of tumor-associated stroma × 100% 

In contrast, the density of intratumoural TILs (iTILs) is represented by the percentage of the area 
occupied by TILs within the area of the tumour epithelium [9]. The following formula describes the 
calculation for the iTILs density: 

iTILs Density = Area of iTILs
Area of tumor epithelium × 100% 

Areas of regressive hyalinisation, necrosis, TILs around in situ carcinoma, normal structures, 
and previous needle biopsy sites should be excluded in the assessment [8]. 

Despite these standardised criteria and endorsements for clinical use manual visual assessment 
by pathologists remains inherently subjective [8,10]. This often leads to variability in scoring 
thresholds, and significant interobserver discrepancies. Such inconsistencies can undermine the 
reliability of pathology reports, potentially impacting clinical trials outcome and patient therapeutic 
decisions [11–13]. Consequently, ensuring the reproducibility of TIL scoring is paramount for 
consistent clinical management. Interobserver agreement, commonly assessed using the intraclass 
correlation coefficient (ICC) for continuous data and Kohen’s cappa for categorical data, is vital for 
evaluating TIL assessment reproducibility across different observers [14–18]. 

Previous studies have reported a wide range of ICC values (0.50 -0.933) [11,17,19,20] and Cohen’s 
Kappa values, (0.21 to 0.881) [11,18,19] highlighting considerable variability in agreement levels 
influenced by factors such as study design, observer experience, and methodology. This variability 
stems from a complex interplay of biological, technical, and human factors. Biological contributors 
include intra-tumor heterogeneity, characterised by uneven TIL distributions leading to inconsistent 
region of interest (ROIs) selection [15,16,19] as well as ambiguous features like abundant tertiary 
lymphoid structures or poorly defined tumor-stroma interface [20,21]. Technical factors such as 
suboptimal slide quality inadequate tissue processing or artifacts can obscure cellular details, critical 
for accurate lymphocytes identification [22]. Furthermore, human elements including pathologists' 
varying experience levels, personal interpretation styles, and familiarity with TIL scoring guidelines, 
can lead to scoring discrepancies, particularly in challenging or borderline cases [23,24].  

The observed discrepancies in agreement underscore a critical need for enhanced 
standardization and additional training in TILs assessment methodologies to improve consistency 
and ensure quality control in histopathological evaluations.  Therefore, this study aims to evaluate 
the interobserver agreement among pathologists when scoring both sTILs and iTILs in TNBC cases 
utilizing a standardized assessment criterion. Secondarily, this study seeks to identify specific 
histological features that contribute to these scoring discrepancies. 

2. Materials and Methods 

2.1. Sample Collection and Dataset Description 

A prospective study was conducted on 64 TNBC cases diagnosed at Hospital Canselor Tuanku 
Muhriz (HCTM), Kuala Lumpur between January 2012 and December 2021. Inclusion criteria 
comprised TNBC cases with no prior history of malignancies within 5 years of diagnosis, verified 
availability of formalin fixed paraffin- embedded (FFPE) tissue blocks, and sufficient material for 
H&E and immunohistochemistry (IHC) analysis. Exclusion criteria included inadequate tissue 
quality, technical artifacts, or failure to meet staining standards which may jeopardize TILs 
assessment.  

TNBC status was confirmed through IHC for oestrogen receptor (ER), progesterone receptor 
(PR), and human epidermal growth factor receptor 2 (HER-2). ER and PR negativity were defined as 
<1% positive tumour nuclei, per American Society of Clinical Oncology/College of American 
Pathologists (ASCO/CAP) guidelines [25]. HER-2 negative status was defined by IHC scores of 0, 1+, 
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and 2+, without HER-2 gene amplification confirmed by fluorescence in situ hybridization (FISH) or 
dual-colour dual hapten in situ hybridization (DDISH) on cases where HER-2 score was equivocal. 
Selected FFPE tissue blocks were sectioned at 4 µm for H&E and IHC staining.    

2.2. Pathologist Selection and Manual TIL Assessment 

The selected and quality-checked slides were scanned at 20x magnification using Pannoramic 
DESK II DW slide scanner. Figure 1 illustrates the general workflow of pathologists for manual TILs 
assessment and annotation. Two board- certified pathologists (P1 and P2) with comparable clinical 
experience and expertise in breast pathology independently assessed TILs using digital whole slide 
images (WSI). Both were trained on the standardized TIL assessment criteria established by the TIL-
WG. A calibration session was conducted prior to scoring to ensure adherence to protocol and 
minimize interpretive variability. 

Each pathologist independently annotated regions of interests (ROIs) and scored sTILs and iTILs 
as continuous variable (0% to 100%).  The annotation and scoring process were guided by 
corresponding IHC, CD4+ and CD8+ markers to enhance the accuracy of lymphocyte identification 
and to minimize ambiguity in distinguishing TILs within the tumor microenvironment. Stroma TILs 
were quantified as the percentage of tumor-associated stroma occupied by mononuclear 
inflammatory cells, excluding areas of necrosis, hyalinization, and in situ components. Intratumoural 
TILs were assessed as the proportion of lymphocytes within tumor epithelial nests.  TILs score was 
further categorised using five binary cut-off systems: ≤10%, ≤20%, ≤30%, ≤40%, and ≤50%. Low and 
high TIL classifications were defined relative to each threshold (Table 1). For cases exhibiting more 
than 10% scoring discrepancy between P1 and P2, a third independent pathologist (P3) adjucated the 
score. The final consensus score was determined by averaging the two most concordant score among 
the three reviewers. 

Table 1. Different cut-off systems for TILs assessment. 

Cut-off system 
TILs classification 

Low TILs High TILs 
Cut off value 1 ≤10% >10% 
Cut off value 2 ≤20% >20% 
Cut off value 3 ≤30% >30% 
Cut off value 4 ≤40% >40% 
Cut off value 5 ≤50% >50% 
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Figure 1. Workflow of manual TILs assessment and annotation by the pathologist. 

2.3. Interobserver Agreement and Consensus Review. 

Interobserver reliability was analysed for both categorical and continuous TILs scores. Cohen's 
kappa coefficient was applied to assess agreement for categorical TIL classifications across the five 
cut-off thresholds with interpretation based on Landis and Koch criteria [26]. Intraclass correlation 
coefficients (ICCs) using two-way random effects models assessed agreement and consistency for 
continuous TIL data, with interpretation based on the guidelines of Koo and Li [27]. Bland–Altman 
plots were generated to visualize agreement and identify any systematic biases. For discrepant cases 
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reviewed by P3, pairwise Kappa and ICC values were recalculated to evaluate whether consensus 
review improved interobserver agreement.  

3. Results 

3.1. Interobserver Agreement Using Continuous Scores 

Assessment of interobserver agreement for continuous TIL scoring between pathologists P1 and 
P2 showed moderate consistency for sTILs with ICC values of 0.57 (agreement) and 0.58 (consistency) 
respectively (95% CI, p < 0.001), In contrast, iTILs exhibited stronger agreement, with ICC of 0.70 
(agreement) and 0.75 (consistency) indicating good reliability (Table 2).  

Table 2. Intraclass correlation coefficients for consistency in sTILs and iTILs assessment. 

Reliability measure sTILs ICC (95% CI) iTILs ICC (95% CI) 
ICC (agreement) 0.57 0.70 
ICC (consistency) 0.58 0.75 

Abbreviations: sTILs, stromal tumour-infiltrating lymphocytes; iTILs, intratumoral tumour-infiltrating 
lymphocytes; ICC, intraclass correlation coefficient. 

3.2. Interobserver Agreement Using Categorical Scores 

Cohen's kappa (κ) coefficient was calculated for five TIL cut-off thresholds (10%, 20%, 30%, 40%, 
and 50%) to assess categorical agreement between the two pathologists. For sTILs, kappa values 
ranged from 0.13 to 0.40, with the highest agreement observed at the 10% (κ = 0.40), indicating a 
moderate level of interobserver agreement. Similarly, iTILs showed kappa values ranging from 0.25 
to 0.48, with the 40% cut-off demonstrating the highest level of agreement (κ =0.48). Agreement 
declined with increasing cut-off thresholds, suggesting greater subjectivity in identifying higher TIL 
densities (Table 3). 

Table 3. Cohen's kappa (κ) coefficient for interobserver agreement in sTILs and iTILs at various cut-off 
thresholds between P1 and P2. 

Cut-off (%) sTILs (κ) iTILs (κ) 
10 0.40* 0.43* 
20 0.29 0.31 
30 0.13 0.25 
40 0.16 0.48* 
50 0.34 0.38 

Note: Asterisks (*) indicate the highest agreement values for each category. 

To visualize the discordance among pathologists based on the sTIL and iTILs density scores, 
Bland-Altman plots were drawn (Figure 2 (A) and (B). Bland–Altman plots were constructed to 
visualize scoring variability. For sTILs, the mean difference between observers was -4.26, with wide 
limits of agreement (-52.89 to +44.35), indicating moderate to high variability, particularly at higher 
densities. For iTILs, the mean difference was -8.22 with narrower limits of agreement (-37.98 to +20), 
reflecting relatively better consistency (Figure 2). 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 July 2025 doi:10.20944/preprints202507.0874.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0874.v1
http://creativecommons.org/licenses/by/4.0/


 6 of 15 

 

 

Figure 2. Bland–Altman plots were used to compare the sTIL (A) and iTILs (B) values of two observers (P1 and 
P2) to the median of their scores. The Y-axis represents the difference between the observer and the X-axis shows 
their mean values. The red line denotes the mean difference, and the green lines show the upper and lower limits 
of agreement. 

A heat map comparing TIL density scores across all cases further illustrated the variability, 
particularly in cases with intermediate and high TIL density. Notable discrepancies were evident 
through colour shifts, especially in the yellow-to-red spectrum, denoting differences in lymphocyte 
density estimates between observers (Figure 3). 
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Figure 3. Heat map for scoring of sTILs (A) and iTILs (B) by two pathologists (P1 and P2). The first row shows the mean value for each case scored by both pathologists in an ascending manner 
from left to right; the second and third rows represent two observers’ sTIL and iTILs records for the similar case. Color-coding indicates the percentage density of TILs quantified by each 
pathologist, from green (0%) to yellow (50%) and red (100%). 
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Out of the 64 TNBC cases, 36 exhibited scoring discrepancies greater than 10% between P1 and 
P2.  These cases were re-assessed by a third pathologist (P3). Consensus scoring significantly 
improved agreement metrics. For sTILs, ICC values increased to 0.70 (agreement) and 0.81 
(consistency), while iTILs showed even higher values of 0.81 and 0.84, respectively (Table 4). 

Table 4. Intraclass correlation coefficients for interobserver agreement in discrepant cases (P1, P2, and P3). 

Reliability measure sTILs ICC (95% CI) iTILs ICC (95% CI) 
ICC (agreement) 0.70 0.81 
ICC (consistency) 0.81 0.84 

Abbreviations: sTILs, stromal tumour-infiltrating lymphocytes; iTILs, intratumoral tumour-infiltrating 
lymphocytes; ICC, intraclass correlation coefficient; CI, confidence interval. 

Pairwise Cohen's kappa (κ) coefficients analysis among all three pathologists revealed fair to 
substantial agreement (Table 5). For sTILs, the highest agreement occurred at the 50% cut-off (average 
κ = 0.67). For iTILs, the agreement was most robust at the 50% threshold (average κ = 0.74), indicating 
substantial agreement. 

Table 5. Pairwise Cohen's kappa (κ) coefficient values for sTILs and iTILs at different cut-off thresholds among 
P1, P2, and P3. 

Cut-off 
(%) 

sTILs iTILs 
Interpretation P1 vs P3 

(κ) 
P2 vs P3 

(κ) 
Average 

(κ) 
P1 vs P3 

(κ) 
P2 vs P3 

(κ) 
Average 

(κ) 
10 0.50 0.36 0.43 0.48 0.50 0.49 Fair agreement 
20 0.44 0.35 0.40 0.62 0.27 0.45 Fair agreement 
30 0.50 0.25 0.40 0.64 0.47 0.56 Fair agreement 
40 0.50 0.50 0.50 0.65 0.64 0.65 Fair agreement 

50 0.65 0.68 0.67* 1.0 0.48 0.74* 
Substantial 
agreement 

Abbreviations: κ, Cohen’s kappa coefficient. Note: Asterisks (*) indicate the highest average agreement values for 
each category. 

4. Discussion 

4.1. Interobserver Agreement and Consensus Review for Manual TILs Assessment 

Accurate and reproducible assessment of TILs is essential for their use as prognostic biomarkers 
in TNBC. In this study, we evaluated interobserver variability among pathologists in scoring sTILs 
and iTILs using both continuous and categorical metrics. Our findings demonstrated moderate 
agreement for sTILs (ICC = 0.57-0.58, p < 0.001) and good agreement for iTILs (ICC = 0.70-0.75, p < 
0.001), aligning with previous studies that report higher reproducibility for iTILs due to their more 
well-defined localisation within tumour nests [28,29].  

In contrast, the higher agreement seen for iTILs suggests that identifying lymphocytes within 
tumor cell nests is more straightforward and consistent across observers [18].  The reduced 
reproducibility in sTIL scoring likely reflects the interpretive challenges associated with assessing 
lymphocytes dispersed across variable stromal regions. This heterogeneity may lead to subjective 
variation in identifying representative fields, especially in areas with ambiguous tumour-stroma 
boundaries or dense focal infiltrates. 

4.2. Agreement Across Categorical Cutoffs 

When assessed using a categorical threshold, agreement levels decreased with increasing cut-off 
values. The highest kappa coefficients for sTILs and iTILs were observed at the 10% threshold, 
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suggesting that pathologists can more reliably identify cases with low TIL density. Agreement 
declined notably at higher thresholds (≥30%), reflecting increased subjectivity in interpreting 
moderate to dense lymphocyte infiltration. These findings underscore the importance of 
standardizing cut-off selection, particularly when using TILs in clinical decision-making or trial 
stratification.  

4.3. Assessment of Scoring Agreement Using Bland–Altman Analysis 

The Bland–Altman plot for sTILs demonstrates a relatively wide spread between the upper and 
lower limits of agreement, indicating moderate to high variability in pathologist scoring, particularly 
in cases with high TIL density. This finding is consistent with previous studies that have reported 
greater subjectivity when evaluating densely packed or heterogeneously distributed lymphocytic 
infiltrates [21]. In contrast, the Bland–Altman plot for iTILs displays narrower limits of agreement, 
suggesting better interobserver consistency. Nonetheless, several data points still fall outside these 
limits, especially in the mid-to-high TIL range. This may be attributed to difficulties in delineating 
tumour borders or accurately identifying lymphocytes within epithelial nests, which can be less 
distinct than stromal regions. Overall, both plots reinforce that while the level of agreement is 
generally acceptable, notable variability persists in cases with intermediate to high TIL infiltration, 
underscoring the inherent challenges of manual TIL assessment in complex histological contexts. 

4.4. Heatmap Visualization of Scoring Discrepancies Across TIL Density Levels 

Our heatmap analysis revealed notable variability in TIL scoring, particularly in cases with 
intermediate to high TILs, for both sTILs and iTILs. Pronounced colour shifts between yellow, orange, 
and red across similar cases reflected inconsistencies in the density estimate between observers, 
highlighting the subjectivity inherent in manual evaluation. To address this, one promising strategy 
is the implementation of artificial intelligence (AI)- driven models for automated TIL (aTILs) 
quantification. A recent systematic review identified 27 studies employing such approaches in breast 
cancer, with the majority utilizing deep learning architectures, such as convolutional neural networks 
(CNNs) and fully convolutional networks (FCNs), for tasks like image segmentation and lymphocyte 
detection. These models were generally trained using pathologist-annotated ground truth datasets, 
with 58% of the studies reporting moderate to strong correlation (R = 0.6–0.98) between AI-generated 
outputs and manual TILs scores [30], underscoring their potential to enhance reproducibility and 
diagnostic precision.  

Collectively, evidence from prior studies suggests that concordance between manual TIL (mTIL) 
assessment and automated (aTIL) scoring ranges from weak to strong, primarily influenced by the 
differences in algorithm design, training data, and study methodology. [4,5,31–38]. While these 
findings reinforce the growing potential of AI-based tools in pathology, they also highlight significant 
variability in performance. Notably, the automated models may struggle to replicate the nuanced 
judgment applied by experienced pathologists, particularly in histologically complex cases. This 
underscores the importance of ongoing validation, refinement, and clinical benchmarking of AI 
algorithms before their routine integration into diagnostic workflows can be justified.  

4.5. Impact of Consensus Review on Scoring Consistency 

Of the 64 cases assessed, 36 showed scoring discrepancies exceeding 10% between the two 
primary observers. Following adjudication by a third pathologist, interobserver agreement improved 
markedly, particularly for sTILs (ICC = 0.70-0.81) and iTILs (ICC = 0.81–0.84). This highlights the 
utility of structured consensus review in enhancing scoring reliability and reducing variability. 
Pairwise kappa analysis confirmed these improvements, with substantial agreement achieved in iTIL 
scoring at the 50% cut-off (κ = 1.00 between P1 and P3). Consensus review methodologies have 
proven valuable in diagnostic settings involving subjective assessments and may serve as a quality 
control measure in pathology workflows, especially in multicentre trials or AI training datasets [39]. 
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These improvements underscore the importance of incorporating consensus-based scoring into 
clinical and research workflows, particularly when addressing cases that exhibit significant 
interobserver variability. 

4.6. Contributing Factors to Interobserver Discrepancies  

To better understand the factors causing disagreements in scoring, the discrepant cases were 
reviewed in detail. Discussions with the participating pathologist were undertaken to gather expert 
perspectives on the potential histological factors underlying the lack of agreement. Discrepant cases 
highlight the challenges of interpreting histological features, including heterogeneous TIL 
distribution, a poorly defined tumor-stroma interface, and focal dense lymphoid infiltrates. 
Additionally, the presence of necrosis and immune cell mimics, such as apoptotic bodies or reactive 
stromal cells, may further interfere with accurate TIL identification and contribute to interobserver 
variability. Reactive plasma cells sometimes closely resembled tumor cells, leading to possible 
misinterpretation during assessment. Cases with extensive tumor necrosis made it challenging to 
distinguish between viable tumor tissue and the surrounding stroma, which in turn obscured the 
identification of infiltrating lymphocytes. These sources of error are inherently subjective and can 
mislead even experienced pathologists. In several cases, TILs were densely packed into small, focal 
areas, making it difficult to determine whether those regions accurately represented the overall 
immune response. This led to different observers choosing different regions for evaluation, which 
naturally contributed to scoring differences. These findings are consistent with previous reports 
indicating that tissue complexity, biological heterogeneity, and technical quality significantly 
influence TIL interpretation [21,40–42]. Such factors can lead to notable variability, even among 
experienced pathologists, particularly for ambiguous histological features. Structured training 
programs focused on these morphologic pitfalls, along with consensus guidelines on region-of-
interest (ROI) selection, could help reduce this variability and improve scoring consistency.   

In parallel, there is growing support for the integration of artificial intelligence (AI)-based tools, 
which offer the potential to improve consistency and objectivity in TIL quantification, especially in 
histologically complex or borderline cases. Despite advances in automated detection and multi-target 
segmentation, the clinical adoption of AI in pathology remains limited. Barriers include interobserver 
variability in annotated datasets, complex tissue morphology, inconsistent labelling standards, and 
the limited transparency of AI decision-making processes [43,44]. These challenges highlight the need 
for robust, interpretable, and scalable AI models that can be seamlessly embedded into real-world 
pathology workflows. This is particularly critical in TNBC, where accurate TIL quantification is 
essential for prognostic classification and treatment planning. 

Although this study did not directly evaluate AI, the findings provide a valuable benchmark for 
future studies that aim to compare manual scoring with automated approaches. Moving forward, 
combining expert review with AI-driven support systems could be key to improving the reliability 
of TIL assessment in both clinical and research settings. 

4.7. Limitations and Future Directions 

This study has several limitations that warrant consideration. First, the sample size was 
relatively modest (n = 64), which may limit the generalizability of the findings to broader TNBC 
populations. Second, although the pathologists involved had comparable experience and were 
trained in standardized scoring protocols, inherent subjectivity in manual TIL assessment could still 
influence outcomes. Third, while interobserver variability was thoroughly examined, the study did 
not assess intra-observer consistency, which is also relevant for clinical reproducibility. Additionally, 
although the potential of AI-assisted TIL scoring was discussed, no automated tools were directly 
evaluated in this study. This limits our ability to draw empirical conclusions about the comparative 
performance of manual versus automated approaches. Finally, the absence of clinical outcome 
correlation (e.g., survival or treatment response) restricts interpretation of the prognostic relevance 
of the observed scoring discrepancies. 
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While this study establishes the reliability and limitations of manual TIL scoring, future work 
should explore the integration of automated digital pathology tools for the quantification of TIL. 
Given the subjectivity and variability inherent to manual assessments, especially in morphologically 
complex regions, AI-based models offer an attractive pathway for reproducibility and scalability. 
Recent studies have demonstrated that deep learning approaches, CNNs and FCNs, can accurately 
segment lymphocytes and quantify TILs across large histological fields with minimal observer bias 
[35–38]. Tools such as QuPath, high-throughput analytics for learning and optimization (HALO) AI, 
and in-house trained pipelines have achieved moderate to strong correlation (r = 0.6–0.98) with 
pathologist-annotated ground truth. Incorporating such tools into our digitized TNBC slide dataset 
could provide valuable comparative insights into scoring consistency and highlight cases where AI 
either resolves or contributes to interobserver disagreement. 

A potential analytical pipeline would involve running AI-based TIL quantification on the same 
set of whole-slide images and evaluating agreement metrics (e.g., ICC, Bland–Altman, and Spearman 
correlation) against consensus human scores. Additionally, discordant or outlier cases, particularly 
those resolved through adjudication by a third pathologist, could be re-evaluated to determine if AI 
models align more closely with consensus outcomes. This would serve to benchmark the practical 
utility of AI in reducing scoring bias and improving throughput in clinical settings. 

Ultimately, validating AI outputs against high-fidelity consensus scores may enable the 
development of hybrid models, where human oversight is retained for ambiguous regions, and AI 
handles bulk quantification. Future efforts should focus on building explainable AI frameworks that 
incorporate histological context, handle variable TIL distributions, and provide confidence scores to 
guide clinical decision-making. 

5. Conclusions 

This study underscores the persistent interobserver variability in manual TIL assessment among 
pathologists, particularly for sTILs in TNBC cases. While moderate to substantial agreement was 
achieved, especially following consensus review, the findings reveal significant discrepancies in 
intermediate to high TIL density cases, driven by histological complexity and interpretive 
subjectivity. Such variability highlights the limitations of manual scoring even when standardized 
guidelines are applied. The results also emphasize the potential of integrating AI-assisted approaches 
to enhance the reproducibility and scalability of TIL quantification. As digital pathology continues to 
evolve, validated AI models can complement human expertise, particularly in challenging cases, to 
support consistent and high-throughput evaluation of TILs across clinical and research settings. 

Future research should focus on cross-validating AI outputs with expert consensus scores, 
incorporating clinical outcome data to refine cut-offs, and developing hybrid workflows that leverage 
both computational precision and pathologist oversight. By bridging manual expertise with 
automated tools, the field can move closer to establishing TILs as reliable, standardized biomarkers 
in personalized breast cancer management. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

TIL Tumour-Infiltrating Lymphocyte 

TNBC Triple-negative breast cancer  

TIL-WG International TILs Working Group  

H&E Haematoxylin & Eosin  

ICC Intraclass correlation coefficient (ICC)  

AI Artificial Intelligence  

sTIL Stromal TIL 

HER-2 Human Epidermal Growth Factor Receptor 2 

ROI Region of interest  

iTIL Intratumoural TIL 

HCTM Hospital Canselor Tuanku Muhriz  

FFPE Formalin fixed paraffin- embedded  

IHC Immunohistochemistry 

ER Oestrogen receptor  

PR Progesterone receptor  

FSIH Fluorescence in situ hybridization  

DDISH Dual-colour dual hapten in situ hybridization 

CNN Convolutional neural network 

FCN Fully convolutional network 

mTIL Manual TIL 

aTIL Automated TIL 

HALO High-throughput analytics for learning and optimization 
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