
 

 

Article 

A Vision-Based System for Inspection of Expansion 
Joints in Concrete Pavement  

Ibragimov Eldor 1, Jong-Jae Lee 1, Heungbae Gil 2 and Jung Hee Lee 2,* 

1 Dept. of Civil & Env. Eng., Sejong University, SISTech Co. Ltd, eldor1992@mail.ru; jongjae@sejong.ac.kr  

2 ICT Convergence Research Division, Korea Expressway Corporation Research Institute; hgil@ex.co.kr 

* Correspondence: konide@ex.co.kr  

Abstract: The appropriate maintenance of highway roads is critical for the safe operation of road 

networks and conserves maintenance costs. Multiple methods have been developed to investigate 

the surface of roads for various types of cracks and potholes, among other damage. Like road surface 

damage, the condition of expansion joints in concrete pavement is important to avoid unexpected 

hazardous situations. Thus, in this study, a new system is proposed for autonomous expansion joint 

monitoring using a vision-based system. The system consists of the following three key parts: (1) a 

camera-mounted vehicle, (2) indication marks on the expansion joints, and (3) a deep learning-based 

automatic evaluation algorithm. With paired marks indicating the expansion joints in a concrete 

pavement, they can be automatically detected. An inspection vehicle is equipped with an action 

camera that acquires images of the expansion joints in the road. You Only Look Once (YOLO) 

automatically detects the expansion joints with indication marks, which has a performance accuracy 

of 95%. The width of the detected expansion joint is calculated using an image processing algorithm. 

Based on the calculated width, the expansion joint is classified into the following two types: normal 

and dangerous. The obtained results demonstrate that the proposed system is very efficient in terms 

of speed and accuracy. 

Keywords: vision-based system; deep learning; image processing; road surface damage; expansion 

joint, concrete pavement 

 

1. Introduction 

Expansion joints in concrete pavements can control further cracking, provide load transfers, 

isolate structures that move or behave differently, and provide lane or shoulder delineations, among 

other benefits. The placement of expansion joints at the appropriate locations prevents random 

pavement cracking. Concrete pavement distress at expansion joints can occur owing to improper joint 

design, construction, or maintenance. These distresses include faulting, pumping, spalling (due to 

any of several mechanisms), corner breaks, blow-ups, and mid-panel cracking (when caused by 

excessive joint spacing or improper joint construction). Seasonal temperature changes also cause 

shrinkage of the expansion joints. 

If the expansion joint damages and road conditions are not inspected and repaired in the early 

stages, drivers can be exposed to potential accidents. In addition, the lack of a quick response to the 

damage of expansion joints can lead to an exponential rise in maintenance costs [1], requiring the 

replacement of the entire road, which will cause unnecessary expenses and traffic disruptions [2]. To 

prevent these issues, road conditions should be regularly monitored. The Korea Expressway 

Corporation (KEC) oversees the operation and management of all national highways in Korea. KEC 

manages approximately 4,227 km of pavement on highway roads, 59% of which is concrete 

pavement. Approximately 4,500 expansion joints are placed in the concrete pavement and are 

regularly inspected. 

KEC has manually conducted road inspections of the expansion joints, which is time-consuming 

and dangerous for field inspectors, especially when conducted on high-speed roads. The demand for 

a fast, accurate, and safe system for the assessment of expansion joints has emerged. To fulfill this 
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demand, KEC painted specific marks to indicate the expansion joints. Along with the indication 

marks, an automatic monitoring system for the condition assessment of the expansion joints has been 

developed. The system leverages recent advances in deep learning-based approaches for pattern 

recognition, as evidenced by its robustness and fast performance in road damage identification [3-7]. 

The field of object detection has witnessed the emergence of a multitude of algorithms in recent years, 

each possessing unique strengths and limitations. These algorithms can be broadly categorized into 

two groups: single-stage and two-stage detectors. 

  Single-stage detectors, such as YOLO [8], Single Shot MultiBox Detector (SSD), SPP-Net [9] and 

RetinaNet [10], have the advantage of speed and computational efficiency. These algorithms 

perform object detection in a single forward pass through the network, allowing for real-time 

results. However, this speed comes at the cost of accuracy. Single-stage detectors tend to have 

lower accuracy compared to two-stage detectors because they do not have a mechanism for 

refining object proposals. 

 Two-stage detectors, such as Faster R-CNN [11], Region-based Fully Convolutional Networks 

(R-FCN) [12], and Mask R-CNN [13], on the other hand, offer improved accuracy at the cost of 

increased computational resources. These algorithms consist of two stages: the first stage 

proposes regions of interest, while the second stage classifies objects within those regions. The 

two-stage architecture allows for a more precise object detection process because the object 

proposals generated in the first stage can be refined in the second stage. 

Since the proposed system requires real-time monitoring of recording and streaming, it is crucial 

to choose a hardware system that is lightweight and efficient in terms of inference time. As for 

performance, YOLO networks are considered to be the best [14] among the various object detection 

algorithms. In this study, the YOLOv3-tiny network was chosen [15] due to its small network size 

and its wide use in onboard systems for solving pavement damage detection problems. 

The condition of the expansion joint is evaluated by applying a width calculation method after 

the detection phase. This method uses image processing techniques, including image segmentation 

and skeleton algorithms. Before estimating the width, binary segmentation of the expansion joint 

must be performed. While deep learning-based segmentation methods [16-20] provide accurate 

results, they also consume significant resources. To overcome this, an image processing-based 

approach is proposed, which uses thresholding and morphological operations to improve the binary 

segmentation of the expansion joint [21-23]. This approach has the advantage of lower resource usage 

and power consumption, making it a more feasible option for lightweight systems. The skeleton 

algorithms [24-26] play a crucial role in determining the geometry of shapes and are essential in 

measuring the width informationaccurately [27-28]. 

The development of the inspection system requires the careful selection of hardware 

equipment considering power consumption and scanning speed. There are several types of road 

inspection systems already developed for different purposes [29-33]. The proposed system uses 

conventional technologies for an efficient and accurate system. The onboard vision system provides 

real-time processing with AI-powered and image processing algorithms. 

2. The Proposed Expansion Joint Monitoring System 

In this study, an automatic inspection system for expansion joints in concrete pavement was 

developed. The system consists of the following three key parts: (1) a camera-mounted vehicle, (2) 

indication marks on expansion joints, and (3) a deep learning-based automatic evaluation algorithm. 

Details regarding each part of the system are presented in the following sub-sections. 

2.1. Inspection vehicle 

To gather data, a camera-mounted vehicle system, shown in Figure 1, was developed. It is 

composed of a GoPro 9 camera, cable GPS (BU-353S4), LTE modem, monitor, power switch, PC 

(Nuvo-7160GC), and battery. GoPro 9, which has a 60 frame per second (fps) frame rate and FHD 

video quality, was used as the inspection camera in the main configuration. 
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Table 1. Detailed hardware specifications of Nuvo-7160GC 

               Nuvo-7160GC 

GPU 

CPU 

Memory 

Storage 

Dimensions 

Performance 

Power 

Temperature range  

NVIDIA T1000 8G 

Intel® Core™ i7-870 

16 GB 

500 GB 

240 mm (W) x 225 mm (D) x 111 mm (H) 

4 - 6 TFLOPS 

8V - 35V 

-25°C ~ 60°C   

 

An action camera was mounted on the top of the vehicle targeting the surface of the road, facing 

approximately 3 degrees downward. The vanishing point was set to 1/3-1/4 from the top to better 

understand the surrounding situation. The captured images were stored on the onboard PC for 

analysis and the final processed results were sent to the server via the LTE modem. 

 

Figure 1. Camera-mounted road inspection vehicle and its camera view. 

2.2. Indication marks on expansion joint 

The KEC marked paired indication marks on the road expansion joints using two different 

shapes, which were an arrow and a pentagon, as shown in Figure 2. They are painted on the top and 

bottom of the expansion joints to monitor the shrinkage of this specific expansion zone. Moreover, 

one paired expansion joint indication mark is painted on the middle lane among every three adjacent 

lanes by considering the field of view (FOV) of the installed camera, since the developed inspection 

vehicle can capture three lanes at once. The number of expansion joint pairs at one site is accordingly 

increased when the road is wide with more than three lanes. 

Additionally, faulty road marks are also labelled to increase detection accuracy as shown in 

Figure 2 (c). Sometimes, the road marking workers made faulty road marks that look like expansion 

joint indication marks. To avoid misdetection of this kind of road mark, it is labelled as the third class 

called “noise.” 
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(a) 

 

(b)  

 

(c)  

Figure 2. Expansion joint mark types: (a) arrow and (b) pentagon, (c) noise. 

2.3. Expansion joint assessment software 

The developed software runs the following three processes: (1) pre-processing for the images 

from video streaming, (2) main data processing for detection and segmentation of expansion joints, 

and (3) post-processing for assessment of expansion joint conditions. Main data processing is 

conducted in two steps sequentially: detection of expansion joints using a deep learning method and 

segmentation of the expansion joint in-between the detected bounding boxes for estimating its width. 

Figure 3 is a flowchart of the proposed expansion joint assessment software. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 May 2023                   doi:10.20944/preprints202305.0701.v1

https://doi.org/10.20944/preprints202305.0701.v1


 

 

Figure 3. Flowchart of the real-time condition assessment of expansion joints. 

2.3.1. Phase I: Data acquisition 

The road images are recorded and streamed in a real-time manner using an action camera 

mounted on top of the inspection vehicle. A frame skipping algorithm was devised considering the 

vehicle’s running speed to omit duplicate frames for a more efficient analysis. Then, the captured 

image frame is transformed using an inverse perspective mapping algorithm to project a skewed 

front view image to a bird’s-eye view image. 

(1) Frame skipping algorithm  

The main role of the frame skipping algorithm is to alleviate system resource usage by removing 

unnecessary frames for the real-time processing of the streaming video. Since the camera can capture 

images with 60 fps, all frames do not need to be inputted into the detection algorithm. To automatize 

this process, the frame skipping algorithm is devised to omit several frames according to the speed 

of inspection vehicle. The skip frame number can be calculated by the following equation: 

� =
� ∗ �

�
  (1)

where P indicates the skip parameter, f is the frame number, and V is vehicle’s velocity. The skip 

parameter P is set to 6 by considering the physical size of the region of interest (RoI) in a captured 

image. As shown in Table 1, the frame skipping algorithm fully relies on the vehicle’s speed, and it 

is notable that the skip frame number is case sensitive, since it can be adjusted according to the target 

object size. The detection algorithm operates by locating each pair of expansion joints in succession. 

In the case where a single expansion joint is detected in a given frame, the default skip parameter is 

adjusted to 3 to facilitate the identification of its corresponding second pair. 
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Table 2. Skip frame numbers based on different speed ranges 

Speed, V [km/h] Scanned distance per second 

[cm] 

Skip frame number, S 

[Integer, decimal] 

20 555.6 18(18.0) 

30 833.3 12(12.0) 

40 1111.1 9 (9.0) 

50 1388.9 7 (7.2) 

60 1666.7 6 (6.0) 

70 1944.4 5 (5.14) 

80 2222.2 4 (4.5) 

90 2500 4 (4.0) 

100 2777.8 3 (3.6) 

 

(2) Inverse perspective mapping  

The expansion joints cannot be properly observed from the skewed front view owing to the 

angular position of the camera. Because the objective of this study is to identify information regarding 

the shrinkage of the expansion joints, this view is insufficient for further investigations. Therefore, a 

perspective transformation method was applied, which changes the viewpoint of the camera to the 

top view as shown in Figure 4. This technique is well known as inverse perspective mapping (IPM) 

[34], or bird’s-eye view. IPM transformation can be expressed mathematically by an equation. The 

original image coordinates (x, y) are transformed into top-down view coordinates (tx, ty) with the 

following formula: 

 

 �� = � ∗
�

ℎ
 (2) 

�� = � ∗
�

ℎ
 (3) 

 

where f represents the focal length of the camera, and h is the height of the camera above the ground 

plane. These values are typically established based on the camera setup and desired results. 

Figure 5 shows example images using the IPM algorithm. Rather than using the full-sized image 

with 1080x1920 pixels, the region of interest (RoI) of the expansion joint area is set to have 400x1920 

pixels centered at each image as shown in Figure 5. The RoI size is determined by considering the 

approximate location of the expansion joint marks and frame skipping algorithm that is mentioned 

above. Finally, the cropped section marked with a green box in Figure 5(c) is used for the following 

detection algorithm. 

 

Figure 4. Illustration of the perspective transformation method (bird’s-eye view). 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 May 2023                   doi:10.20944/preprints202305.0701.v1

https://doi.org/10.20944/preprints202305.0701.v1


 

 

(a)           (b)               (c) 

Figure 5. Captured images using IMP: (a) Raw image in which the blue box corresponds to RoI, (b) Bird’s-eye 

view by IMP, (c) RoI marked with a green rectangular box. 

2.3.2. Phase II: Data processing  

For effective real-time inspections, it is crucial to consider lightweight algorithms in terms of 

performance and processing time. Therefore, YOLOv3-tiny was used for the detection of the 

expansion joint marks. Basically, YOLOv3-tiny uses an anchor-based technique that goes through 

each patch of the image and applies multiple anchors to it. After the cropped image is fed to input, 

YOLOv3-tiny generates three types of outputs, including bounding box, objectness, and class 

predictions. 

 

(1)  Core architecture (backbone) of YOLOv3-tiny 

The YOLOv3-tiny algorithm uses deep convolutional neural networks as feature extractors, 

which uses darknet-based architecture. The backbone network generates three layers of a feature 

pyramid, which contains two scales of feature maps at the end as an output as depicted in Figure 6. 

Several convolutional layers are inserted before each final feature tensor is generated. The size of the 

input image for the network is 416x416, and the last layer of the network outputs two scaled feature 

maps with 13x13 and 26x26 dimensions. The output of the up-sampled features of the second scale is 

joined by the earlier stage of the feature map scale with a 56x56 dimension to obtain more relevant 

semantic data. Additional convolutional layers are added to obtain a similar prediction. The first scale 

block has general context information with a poor resolution, and detects larger-sized objects. The 

final scale block has double the feature information that focuses on smaller objects. 

 

Figure 6. YOLOv3-tiny network architecture. 
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(2)  Clustering of anchor boxes and location prediction 

Anchor boxes are defined to accurately identify the target object. Several anchor boxes are 

generated for each grid of the image, which requires a high computation cost. Instead of computing 

all the anchors like R-CNN, the anchors are clustered based on the K-means clustering method in 

YOLO. The k-means clustering method uses the centroids of the bounding box and intersection over 

union (IoU) values as the input parameters. The centroid value is calculated by the following 

equation: 

�(���, ��������) = 1 − ���(���, ��������) (2)

Here, d indicates the chosen centroid for clustering, and IoU is the overlap ratio of the two bounding 

boxes. 

YOLOv3-tiny is built with three anchor boxes applied to each scale of different sizes. These 

anchor boxes can generate bounding box information that outputs the objectness score of the target 

during detection and classification. The predicted bounding boxes are fed into a logistic regression 

to prioritize the possible objects that are close to the IoU, which measures the overlap value between 

the prediction bounding box and the ground truth. To eliminate the detection of less likely objects in 

the process, a threshold value of 0.7 was defined. Similarly, for the classification of an object, a logistic 

classifier was applied.  

2.3.3. Phase III: Expansion joint condition assessment 

Finally, the expansion joint condition assessment is carried out based on the KEC guidelines for 

concrete pavement. The condition of the expansion joints is evaluated according to the expansion 

joint width. After the detection step, the expansion joint area is cropped using the middle points of 

two bounding box coordinates and called Expansion Joint Image in Figure 7. Then the series of image 

processing algorithms are applied to the expansion joint condition assessment. Figure 7 shows the 

sequence of image processing algorithms applied in this study. 

 

Figure 7. Flowchart of expansion joint condition assessment. 

(1)  Gaussian blur  

Before directly applying the segmentation method, Gaussian blur is used for image texture 

smoothing to reduce the noise level. This step is important for the edge information of the object, 

which is useful for segmentation. 

(2)  Expansion joint segmentation  

To segment expansion joints, we propose the following two steps: (1) a binary segmentation 

algorithm for extracting pixels that only belong to the joints, and (2) postprocessing using 

morphological operations. 

 Thresholding based binary segmentation  

First, the input image is converted to a grayscale image. Then, the threshold value is calculated 

by using the mean (µ) and standard deviation (σ) values as follows: 
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µ =  
1

��
� � �(�, �)

�

���

�

���

    (4)

σ =  �
1

�� − 1
� � �(�, �) − µ)� 

�

���

�

���

   (5)

� =  µ − �σ  (6)

where � is a grayscale image with a size of � × � and �(�, �) is the intensity at position (�, �). � is 

a coefficient that is set to two based on empirical experiments. Finally, pixels that have values greater 

than � are replaced by “1” or “0,” otherwise ending up with a binary image. 

 Morphological operations.  

This process plays a role as a noise filtering and cleaning step for the segmentation of the object. 

Morphological operations such as dilation, erosion and opening have been applied [35] to a binary 

segmented area of the expansion joint to remove isolated noise and small dots.  

(3)  Expansion joint extraction and skeletonization 

 Expansion joint extraction 

The segmented expansion joint part is extracted by using detection bounding box coordinates. 

The detected marks are ignored from the segmentation, and then marks only remain between 

expansion joints, as can be seen in Figure 7. 

 Skeletonization 

A skeleton is used to obtain the topological properties of the shape such as length, direction, and 

width. Therefore, we applied a skeletonizing algorithm [36] for the width calculation. In our study, 

we deployed a parallel iterative thinning method for skeletonization [37]. The skeleton algorithm 

processes the binary segmented images; it iterates through the image pixels and decreases the pixel 

width by its direction up to one pixel. Therefore, it fits well for our study. Furthermore, the shapes of 

the segmented area appear as “single linear lines,” which makes extracting the shape easier. The 

skeleton of a binary segmented image can be successfully extracted using the skeleton algorithm. 

(4)  Width calculation 

Finally, we simply calculated the average width of expansion joints using the equation as 

follows:  

� =
�

�
 (7)

where � is the number of pixels in a segmented area, � is the number of pixels in a segmented area’s 

skeleton, and W is the average width of an expansion joint. 

3. Experimental Verification of the Proposed Method 

The evaluation plan for the proposed object detection system includes an assessment of the 

dataset and training configuration for the detection module, as well as an overall evaluation of the 

system. The paragraph also highlights that the proposed detection method YOLOv3-tiny will be 

compared with other state-of-the-art methods for object detection. Additionally, an experimental 

evaluation of the system will be conducted using video data to further assess its performance. 

3.1. Datasets 

The training data for the detection module was gathered at various locations on the national 

highway roads in Korea and labeled using an annotation tool [38]. In total, 6243 images were labeled 

including three classes that were called arrow, pentagon, and noise.  
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 The proposed system for monitoring expansion joints in concrete pavement has been tested on 

Korea’s national highways. To prepare test data unused for training, the camera-mounted inspection 

vehicle surveyed a branch of the national highway and recorded seven video files at 60 fps along 

with concrete pavement as shown in Figure 8. The recorded duration is 101 minutes and the inspected 

distance is more than 140 km. A total of 227 expansion joints were manually labeled by field engineers 

for all recorded data and were used to evaluate the system. 

 

 

Figure 8 Gathered data for evaluation. 

3.2. Expansion joint mark detection 

3.2.1 Training configuration and evaluation methods 

The training procedure of the detection model was performed using the Pytorch framework on 

a Linux operating system. The GPU used for this process was the GeForce RTX 3090. The dataset 

used for training was divided into two parts, with 80% of the data being used for training and 20% 

for validation purposes. The network configuration parameters for the detection model include a 

total epoch number of 300, a learning rate of 0.001, and a batch size of 256. These parameters were 

carefully selected and fine-tuned to achieve optimal performance during the training process.  

The efficiency of the trained model is assessed by following evaluation metrics:  

 mAP 50: mean average precision at a confidence threshold of 50% 

 mAP 50-95: mean average precision at a confidence threshold between 50-95% 

 Precision: percentage of true positive detections among all detections 

 Recall: percentage of true positive detections among all ground truth objects 

 FPS: frames per second, a measure of the model’s processing speed 

  

3.2.2 Experimental comparison  

In this section, a comparison was made between the proposed detection method, YOLOv3-

tiny, and other state-of-the-art object detection models, namely YOLOv4-tiny [39], YOLOv5-small 

[40], YOLOv7-tiny [41], and YOLOv8-small [42]. Each version of YOLO offers several models that 

serve various purposes. For example, YOLOv5 has different variants such as YOLOv5 small, 

YOLOv5 medium, and YOLOv5 large, where the primary distinguishing factor is the network's 

size. According to the authors' observations, a larger network yields better accuracy but has lower 

inference speed. Thus, as the developed system operates in real time, the small versions of YOLO 

models were chosen for the experiment. The evaluation was conducted using the same dataset and 

training configuration to ensure a fair comparison.  

 

 

 

Video file 
Distance 

(km) 

Duration 

(min) 

No. of 

expansion 

joints 

GH010181 24.70 16 21 

GH010182 29.90 22 28 

GH010183 25.20 18 69 

GH010184 27.00 20 62 

GH010185 12.60 9 15 

GH010186 12.60 9 12 

GH010187 9.70 7 20 
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Table 3. Performance of training on validation data 

Evaluation metric Precision Recall mAP50 mAP 50-95 FPS 

YOLOv3-tiny 96.5 95.4 98.0 50.1 556 

YOLOv4-tiny 71.5 97.6 97.9 50.8 333 

YOLOv5-small 96.2 96.5 98.3 51.1 476 

YOLOv7-tiny 96.9 95.7 98.1 47.7 312 

YOLOv8-small 97.0 95.1 98.2 51.3 476 

 

Table 3 shows the performance of each model evaluated in terms of the evaluation metrics. 

YOLOv3-tiny achieved high precision and mAP50 scores, with 96.5 and 98.0, respectively, but its 

performance was not significantly higher than some of the other models. YOLOv5-small achieved 

almost similar results to YOLOv3-tiny, with a precision score of 96.2 and mAP50 score of 98.3, but its 

fps score was lower. YOLOv7-tiny had a lower mAP50-95 score than YOLOv3-tiny, indicating that it 

may have more false positives. YOLOv4-tiny achieved the highest recall score, but its precision score 

was significantly lower than YOLOv3-tiny, while the mAP score was a bit higher. YOLOv8-small had 

a higher mAP50-95 score than YOLOv3-tiny, but its recall score was slightly lower. 

Importantly, YOLOv3-tiny had the highest fps score of 556, which is significantly higher than 

YOLOv4-tiny and YOLOv7-tiny, and comparable to YOLOv5-small and YOLOv8-small. This 

indicates that the proposed detection method is well-suited for real-time applications that require 

fast detection and response times. 

Overall, the proposed detection method shows competitive results with slightly different range 

values for evaluation metrics. However, in terms of inference speed, YOLOv3-tiny dominates among 

all other current detection algorithms, which is important for real-time processing systems.  

3.2.3 Video test data evaluation 

The evaluation was applied individually to each video file by identifying true positive, false 

positive, false negative, and true negative values for the expansion joints. These values were 

evaluated by the intersection union value of the predicted bounding box and ground truth 

information of each expansion joint. The threshold value for IoU was set to 0.7 for both validation 

and test data. Test results are shown in Table 4. The overall performance of the trained model is 

summarized by precision, recall and mAP scores as shown in Table 5. The proposed approach 

achieved 97% mAP for the detection of expansion joint marks. Figure 10 shows sample images of 

detected results. 

Table 4. Detection results for the test data 

File name Ground truth TP TN FP FN 

GH010181 21 21 0 0 0 

GH010182 28 25 3 0 0 

GH010183 69 63 6 0 0 

GH010184 62 62 0 2 4 

GH010185 15 13 2 0 0 

GH010186 12 11 1 1 0 

GH010187 20 19 1 0 1 

Total 227 214 13 3 5 
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Table 5. Performance of the detection model on test data 

Evaluation metric  Precision Recall mAP 50 

YOLOv3-tiny 94.11 94.75 96.70 

 

Figure 9. From left to right, the classes pentagon, arrow, and road mark; the top images are the raw images 

used for the detection network and the bottom images are the detection results. 

 

Figure 10. Sample evaluation results of the expansion joint conditions for good and dangerous categories. 

From left to right, each row presents the following: input, Gaussian blur, binary segmentation, skeletonization, 

and calculated width in pixel; the images in the top two rows are examples of the good condition, whereas 

those on the bottom indicate dangerous conditions. 

The condition of expansion joints was classified into two groups (good and dangerous) by the 

calculated width. The physical pixel resolution is around 1 centimeter (cm), and the threshold value 

is set up as 3 considering the relationship between temperature variations and expansion joint 

allowable movement. If the width of an expansion joint in the extracted image is above 3 pixels, it is 

classified as good; when the width is below 3 pixels, it is classified as dangerous. Figure 11 shows the 

overall condition assessment results for all test data. To validate the assessment results, the ground 

truth of the expansion joint images was labeled as either good or dangerous by field inspectors. The 

proposed method showed good agreement with the field inspectors’ manual inspection results with 

95% accuracy. It has been proved that the proposed system can automatically detect concrete 

pavement expansion joints and assess the width condition with high accuracy. 
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Figure 11. Overall condition assessment of the expansion joints for the test data. 

4. Conclusion 

Considering the need for a safe and efficient inspection system for expansion joints in concrete 

pavement, this study demonstrates a systematic method for their evaluation. The performance of the 

method is evaluated using actual pavement images collected from national highways in Korea.  

The inspection system uses the unique indication marks on the expansion joints, as well as the 

developed AI powered algorithm and image processing methods. The proposed method involves the 

following four main stages: data collection, expansion joint detection, width calculation, and 

condition assessment of the expansion joints. A novel frame skipping algorithm is devised to improve 

system resource efficiency by omitting duplicate frames according to the vehicle’s speed. For 

expansion detection in a real-time manner, YOLOv3-tiny detected two types of expansion joint 

indication marks: arrow and pentagon. The width of the expansion joints was calculated by 

segmentation and skeletonization of the detected expansion joint area.  

The implementation of the proposed method in this study used original data collected from 

national highways in Korea. The data included more than 6,000 labeled images for detection and 

three hundred images for width calculation. Subsequently, the detected expansion joints were 

classified into “Good” and “Dangerous” conditions based on their width. The performance of the 

proposed method has been verified with pilot tests on 140-km-long national highways with 227 

expansion joints. The proposed approach achieved 97% mAP for the detection of expansion joint 

marks and 95% agreement with estimation. From these results, it has been proved that the proposed 

system can automatically inspect the condition of concrete pavement expansion joints with high 

accuracy.  

The traditional inspection system for expansion joints is time-consuming and dangerous because 

it is manually conducted. By using the proposed system, the inspection can now be conducted 

automatically. The automatic inspection system is a safe and efficient tool that KEC is still developing 

to apply to various field inspections. The proposed method offers a safer method for data collection, 

faster data processing, and accurate assessments of expansion joint conditions, in addition to 

preventing accidents or extra expenditures from occurring.  
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