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Abstract: This paper realizes early bearing fault warning through bearing fault time series predic-
tion, and proposes a bearing fault time series prediction model based on optimized maximum cor-
relation kurtosis deconvolution (MCKD) and long short-term memory (LSTM) recurrent neural net-
work to ensure bearings operation reliability. The model is based on lifecycle vibration signal of the
bearing, to begin, the cuckoo search (CS) is utilized to optimize the parameter filter length L and
deconvolution period T of MCKD, taking into account the influence and periodicity of the bearing
time series, the fault impact component of the optimized MCKD deconvolution time series is im-
proved. Then select the LSTM learning rate o depending on deconvolution time series. Finally, the
dataset obtained through various preprocessing approaches are used to train and predict the LSTM
model. The average prediction accuracy of the optimized MCKD-LSTM model is 26 percent higher
than that of the original time series, proving the efficiency of this method, and the prediction results
track the real fault data well, according to the XI'AN JIJAOTONG University XJTU-SY bearing da-
taset.

Keywords: deep learning; time series prediction; long short-term memory; recurrent neural net-
work; maximum correlation kurtosis deconvolution; cuckoo search.

1. Introduction

Rolling element bearing is called "industrial joint", which is widely used in the fields
of transmission and hoisting, wind power generation, aerospace and other areas [1-3]. As
the core component of the equipment, the frequency of bearing fault is extremely common
[4-6], bearing performance has a direct impact on the reliability and safety of heavy ma-
chinery, as a result, reliable bearing fault time series prediction is extremely important for
industrial production safety [7-9].

When bearing is used as the research object, the bearing outer ring performance mon-
itoring data contains information about bearing reliability [10], but the main problem with
relying on bearing performance monitoring data to complete the bearing fault time series
prediction is figuring out how to create the bearing fault time series prediction model.
Moreover, the bearing fault time series is created by the convolution of vibration signals
and different noise signals in the signal transmission process, which will impact the accu-
racy of the prediction model after training, as a result, the first part of this study looks at
how to perform the preprocessing of the original time series. For the research on signal
preprocessing, to solve the filtering of nonlinear vibration signals, Dong et al. [11] pre-
sented a non iterative denoising method combining spectral wavelet transform and
detrended fluctuation analysis. Yan et al. [12] explored the discrete convolution wavelet
transform (DCWT) for signal decomposition and reconstruction in signal processing,
when the signal changes swiftly, however, the choice of wavelet basis function is severely
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limited [13]. Many adaptive signal preprocessing approaches have been presented based
on wavelet transform denoising, to demodulate the original vibration signal, Vikas et al.
[14] employed the variational mode decomposition (VMD) to handle the multi-compo-
nent modulated non-stationary vibration signal of the transmission. To discover the
modal properties of engineering structures, Bagheri et al. [15] proposed a dynamic re-
sponse decomposition based on variational mode decomposition. VMD was utilized by
Mausam et al. [16] to partition the histogram of the input image into many band limited
modes, and then the histogram was reconstructed using meaningful modes. Zhang et al.
[17] investigated the fractal properties of rolling element bearing vibration signals and
developed a bearing defect assessment and diagnosis. Furthermore, the decomposition
mode parameter K and penalty coefficient 1 must be established in order to solve the dif-
fering parameter values have a significant impact on the decomposition effect. To calcu-
late the ideal K for water pipe leakage location, Li et al. [18] used the correlation between
energy loss coefficient and nearby blade disks as an evaluation index. Zhao et al. [19] em-
ployed the envelope nesting approach to direct the potential center frequency, and then
used permutation entropy and orthogonality to calculate the K. To alleviate the mode
mixing of complicated vibration signals, Zhao et al. [20] presented the based on single-
objective salp swarm algorithm to optimize the penalty coefficient 1 of the VMD. Feng et
al. [21] used the whale optimization algorithm (WOA) to optimize VMD parameters in
order to achieve adaptive decomposition and noise reduction of vibration signals. The
decomposition parameters of VMD, on the other hand, must be set according to the prop-
erties of signal. Mode over-decomposition and under decomposition are caused by incor-
rect parameter selection [22]. McDonald et al. [23] presented a new signal preprocessing
method called maximum correlated kurtosis deconvolution (MCKD), which is ideal for
processing early bearing fault signals with low signal-to-noise ratio and periodic impact
characteristics [24]. To complete composite fault diagnosis, Hong et al. [25] used adaptive
MCKD to decouple fault information and noise reduction signal. Zhang et al. [26] sug-
gested a signal noise reduction method based on the teager energy operator and the
MCKD. Many scholars have optimised the filter length L and the order of shift M in
MCKD on this basis. Lyu et al. [27] optimized the filter length and deconvolution period
of MCKD for composite fault diagnosis of gear tooth wear and bearing outer ring fault
using a quantum genetic algorithm (QGA). To complete the bearing composite fault diag-
nosis, Miao et al. [28] used the autocorrelation of the envelope signal to estimate the prior
period T. To make MCKD obtain the best noise reduction performance, Yang et al. [29]
employed permutation entropy as the measurement index for filter length L selection.

In order to develop a bearing fault time series prediction model, Pan et al. [30] calcu-
lates the upper and lower boundaries of unknown elevation on a terrain profile using a
double multiplicative neuron (DMN) model and an modified particle swarm optimization
(MPSO) technique. For time series prediction, Raubitzek et al. [31] presented a fractal in-
terpolation method. For long term time series prediction, Liu et al. [32] proposed dual-
stage two-phase DSTP-based RNN (DSTP-RNN) and DSTP-RNN-II. Human fall risk is
predicted using the depth neural network model described by Savadkoohi et al. [33]. By
input high-level abstract features into an LSTM network, Zhang et al. [34] proposed the
CEEMD-PCA-LSTM hybrid prediction model to complete time series prediction. The 1d-
CNN model was proposed by Che et al. [35] for regression analysis of time series samples
in order to establish a performance deterioration model, finally, bidirectional long short
memory (Bi-LSTM) is employed to predict performance decline over time. Dempster-
Shafer regression technology was proposed by Niu et al. [36] to perform time series pre-
diction problems.

Based on the previous study, this paper takes advantage of the MCKD strong noise
reduction effect in periodic signals to denoise the bearing fault time series and acquire the
deconvolution time series. After that, deconvolution time series are used to train the long
short-term memory recurrent neural networks, and the optimized MCKD-LSTM predic-
tion model is created to predict the bearing fault time series.
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2. Maximum Correlated Kurtosis Deconvolution

Mcdonald et al. proposed maximum correlated kurtosis deconvolution (MCKD) in
2012 [23]. It successfully applies in gear flaking fault diagnosis by taking into account the
impact and periodic characteristics of fault information. This algorithm assumes that y
represents the impulse signal, & represents the response of y after transit through the trans-
mission path, and x represents the signal convoluted from various signals on the trans-
mission path, which represents the process as shown in formula (1):

=hxy (1)

The essence of MCKD is to find a FIR filter to solve the input signal y through the

output signal x, i.e.

L
y="f*x= Z fi X (2)
k=1

Where f=[fi, f2, ..., fi]" is the filter factor of length L.
MCKD takes maximum correlation kurtosis as its evaluation criterion and calculates

as follows:
M
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In order to obtain the optimal inverse filter coefficient f, the first derivative of the
objective function is zero, such as formula (4):

9 K, (M)=0, k=12,,L @)
df,

Therefore, the optimum filter coefficient can be obtained.
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The specific steps to realize MCKD are as follows:

1) Determine filter length L, The order of shift M and period T of impact signal.
2) Calculate XoX; and X; of the original signal x(n).

3) Obtain filtered output signal y(n).

4) Calculate om and S according to y(n).

5) Update filter coefficient f.
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If the signal f before and after filtering conforms to ACK,, (T) <&/ stop the iteration

and jump back to step (3).
The deconvolution signal y of the actual acquisition signal x can be obtained by sub-
stituting the obtained inverse filter coefficients (2).

3. Cuckoo Search

The cuckoo search [37] is a new heuristic search algorithm that integrates the Lévy
flights theory with the parasitic behavior of cuckoos. It has the characteristics of few pa-
rameters and fast convergence. Three ideal rules are assumed by the cuckoo algorithm.

1) Each cuckoo lays only one egg at a time and places the eggs in a randomly selected
nest, which is also known as a host nest.

2) The parasitic nest with the highest quality eggs will be retained for the next gener-
ation.

3) The number of possible nests is fixed, and the chance of discovering host eggs in a
nest is p.

When the host bird discovers the host egg, it either throws it out or abandons the nest
to establish a new one in a new site.

After randomly generating n nest placements, the Lévy flights search strategy illus-
trated creates a new nest location using formula (10):

X = Xi‘+ao|¢| ”(X‘ X;) (10)
1%
Where:
p
T+ ﬂ)xsin(mﬁ)
P = (11)

ﬁ*ﬁxﬂxzz)

Where, X,, and X, signify the ith cuckoo's nest site in the T and T+1 generations, respec-
tively, X, is the optimal nest location currently searched, the value o is used to change
the step size, c0=0.01 in this paper, u and v are random values generated using the normal
distribution, H set to 0.5 be the default, I is the normal gamma function.

The nest with the higher fitness value is kept when the new nest location is found
using the Lévy flight search strategy, then, based on the discovery probability p, a portion
of the nest positions are eliminated, and a new nest position is constructed using the pre-
ferred random walk search strategy shown in formula (12):

t+1 t t t
X7 =X, +I’(Xj—Xk) 12)
Where, r is a random number between 0 and 1, and X, and X\ are two candidate solutions
chosen at random from the current population.

4. Long Short-term Memory Recurrent Neural Network

The gating mechanism is employed in the long short-term memory (LSTM) recurrent
neural network [38], which is frequently used to process time series signals, and specific
formula of LSTM is as follows:

4.1. Forward Calculation Method of LSTM
For a given time series signal x= (x1, x2 ..., xt), and the hidden layer sequence ht1= (h1,
ha, ..., ht1), the candidate state value C,, input gate value i, forgetting gate value fi, output

gate value o;, memory cell value ¢y, hidden layer sequence h, and output sequence y=(y1,
Y2, ..., y) at time t can be determined using the conventional LSTM model (as shown in
Figure 1), which is:

¢ =tanh(W.x, +U_h_, +h,) (13)
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i, =c(Wx, +Uh_,+b) (14)
ft:O-(\A/th+Ufht—1+bf) (15)
0, =oW,x +U h_; +Db,) (16)
c,=10¢+fOc, (17)
h, =0, ©tanh(c,) (18)

Y, =W,h +b, (19)

Where, W and U are weight matrices for time series (for example, W. represents the can-
didate state weight matrix from the input layer to the hidden layer, and U. represents the
candidate state weight matrix from the hidden layer at time #-1 to the hidden layer at time
t), the offset vector is b. (for example, b represents the offset vector of the candidate state
from the input layer to the hidden layer), o is the sigmoid function, meanwhile, the sig-
moid function is the activation function of gating unit, the tanh function is the activation

‘_ _____________________ |
Ci1 ® >

Sum of vector elements

@ Splicing of vector elements

Figure 1. Structure diagram of LSTM.

X @ Multiplication of vector elements

4.2. Reverse Computation Method of LSTM

The three steps of the LSTM training algorithm are as follows:

1) The output value of each neuron is calculated forward f(y)=f(w"x)

2) The cost function is the mean square deviation function /, and the error term ;
value of each neuron is calculated inversely, as follows:

18 ’
J=— — f 20
on 2 -t (20)
57 =(y, - f(y)) 1)
8, =4, tanh(c,)o,(1-0,) (22)
5I,t = 51T o (1- tanh(ct)z)cH f. - f) (23)
5fT,t = é‘tTOt (1—tanh(ct)2)6[it a-i) (24)
5:1 = é‘tT 0, (1_ tanh(ct)z)it ft (1_6t2) (25)

3) Reverse error gradient calculation, i.e.

AE =5, (y) (26)

4) Determine the Aw weight difference, i.e.
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AW = s AE X (27)
Where, a is the learning rate, which in this case is 0.01 in this study.

4.3. Metrics

The mean square error (MSE) is used as the measuring standard in this research to
assess the accuracy of the prediction model. MSE may be calculated using the following
formula:

L
MSE = =>"(§, - ¥;)? (28)
N =

Where, ¥;and Y, are the fault time series test and model output values at time t, re-

spectively, and N is the number of data points, by calculating the MSE of the training and
test sets, this research quantitatively analyzes the fitting and prediction accuracy of model.

5. Parameter Optimization Based on Cuckoo Search

When utilizing the MCKD to minimize the noise in a bearing series signal, the filter
length L and deconvolution period T must be set first. The parameter combination [L, T]
of the MCKD can be searched by the CS to perform parameter adaptive screening, taking
into account the interaction between affecting parameters.

When using the CS to optimize parameters, it is important to choose the right fitness
function based on the signal characteristics and take into account the periodic impact sig-
nal of the bearing signal, which can differ from the noise signal. In reference [39] proposes
a dimensionless crest factor of envelope spectrum (E.) index that takes into consideration
the periodic properties of fault information in vibration signals. The mathematical expres-
sion of the index Ec, assuming the signal envelope spectrum amplitude X(j) =1, 2,..., M),
and the index Ec is as follows:

E, = Smax (29)
€

Where, emax is the highest value in the range [nxf;, fs/2] of the envelope signal obtained after

Hilbert Demodulation, f: is the bearing signal's frequency conversion, and fs is the sam-

pling frequency. The effective value is exms, which is defined as the effective value of signal

following Hilbert demodulation. In this research, n = 2 is chosen to avoid the influence of

fron E..

The envelope spectrum peak factor E. of the envelope signal acquired by Hilbert de-
modulation is determined using the MCKD operation on the fault signal at any nest Xi
location (i.e. the optimum parameters), and the E. is the fitness value of the bird nest. The
envelope spectrum peak factor Ec is significant when periodic impact occurs in the decom-
position results, and the decomposition effect is optimal, on the other hand, if the enve-
lope spectrum peak factor E. is relatively small, the decomposition effect is not well. As a
result, the optimization object is set at the greatest E.. The flow of the fault diagnosis

rms
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Figure 2. Prediction process of rolling element bearing fault time series based on optimized MCKD-LSTM.

6. Experimental Signal Analysis

The experimental data adopts the LDK UER204 rolling element bearings dataset of
XJTU-SY bearing dataset [40] of XI'AN JJAOTONG UNIVERSITY, the bearing accelerated
life test bed and outer ring crack of bearing are shown in Figure 3, the two unidirectional
acceleration sensor models in the vertical and horizontal directions, PCB 352C33, collect
the vibration signals through a DT9837 portable dynamic signals collector, the test sam-
pling frequency is 25.6kHz, the sampling interval is 1min, the number of sampling points
is 32769, and the sampling time is 1.28s, the horizontal vibration signals in dataset bear-
ingl_1 are selected for analysis.

(a) (b)

- - ——

Digital force Motor sﬁd:a ‘Accelerometer |
display controller = (vertical)

N\
Supporting Hydraulic Accelerometer
AC motor bearing ] loading system (horizontal)

Figure 3. Bearing accelerated life test bed and outer ring crack of bearing. (a) Bearing
accelerated life test bed. (b) Outer ring crack of bearing.

6.1. Data Preprocessing

The vibration signal of the 50th series in the horizontal direction of Bearingl_1 is
chosen for analysis in order to anticipate the bearing fault time series, the time-frequency
domain diagram of a vibration signal is shown in Figures 4 (a) and (b). In the temporal
domain, there are many impact components to consider, and there is no rule to follow, the
frequency spectrum shows the frequency conversion 34.38Hz and its frequency doubling
components, and in the high frequency band, there are several resonance frequency
bands, the frequency components are complex, and the bearing outer ring fault has no
distinct frequency, as a result, denoising the original time series is required to retrieve the
time series including more impact information.
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Figure 4. Time frequency domain diagram of original time series. (a) Time domain dia-
gram of original time series. (b) Spectrum of original time series.

The MCKD is used to preprocess the original time series, with the order of shift M
set to 1 and the iteration termination times G set to 20, the CS is used to optimize the filter
length L and deconvolution period T in MCKD, the parameters of CS are set as follows:
the dimension of solution D set to 2, the population size N set to 15, the host bird with a
probability P set to 0.1, the upper and lower bounds are searched based on L>2fs/fc and
T=fs/fc [41], where fs is the sampling frequency and f. is the characteristic frequency, and
setting the optimization range as L=[100, 1500] and T=[50, 1000]. Figure 5(a) depicts the
results, the peak factor of the local maximum envelope spectrum converges to 10.2478 at
the 7th iteration, and the optimization parameter combination [L, T] corresponding to the
peak factor of the local maximum envelope spectrum is [600, 235]. Denoise the original
time series signal using MCKD parameters to obtain the deconvolution series signal and
envelope spectrum, as illustrated in Figure 5 (b) and (c), it can be seen that the impact
component intensity of the deconvolution series signal is increased in the time domain,
the noise interference component is greatly reduced, and the frequency conversion com-
ponent 34.38Hz, 108.6Hz, and its frequency doubling emerge in the envelope spectrum.
This frequency is close to the theoretical value of the bearing outer ring crack characteristic
frequency of 107.91Hz, resulting in a significant reduction in noise.
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Figure 5. Time frequency diagram of deconvolution time series. (a) Variation curves of
different Ec indexes with iteration times. (b) Time domain diagram of deconvolution se-
ries. (c) Spectrum of deconvolution time series.

Then, the deconvolution time series are taken as one- dimensional time series to train
the bearing fault time series prediction model, all at once, one-dimensional vibration sig-
nals are selected based on the 50th original time series every ten series, six groups of time
series are taken as the training set, and seven groups of time series are taken as the test set
from 102 series every two sequences, the optimized MCKD is then utilized to denoise,
after establishing the whole data set, it is input the LSTM model, which is used to train
the model and predict bearing fault time series.

To demonstrate the benefits of optimized MCKD-LSTM in bearing fault time series
prediction, this study denoises the original fault series using EMD and optimized VMD,
then completes the LSTM model training and bearing fault time series prediction compar-
ison with it. Because the impact signal will be included in the bearing lifecycle signal, the
fault impact information of the bearing will be contained in some IMF components after
the signal is processed by EMD, resulting in the kurtosis diagram of ten IMF components
IMF1-IMF10 according to the kurtosis criterion shown in Figure 6. The five components
with the highest kurtosis, IMF9, IMF6, IMF1, IMF2 and IMF10 are chosen for signal rear-
rangement as one-dimensional time series. Both the training and test sets are EMD pro-
cessed at the same time.

T T T
IMF9
6 L
g 4k
5
X
2}
0 6 9
IMFs

Figure 6. Kurtosis diagram of IMF components of time series signals (EMD)

Similarly, VMD denoises the data set, but when it analyzes the signals, it must take
into account the decomposition mode parameter K and the penalty term coefficient ¢, in
general, the central frequency observation method [42] and EMD-VMD can be used to
select the decomposition mode parameter K, and it is easy to ignore the relationship be-
tween K value and penalty term coefficient a. The CS can search the influence parameter
combination [K, a] of VMD to perform adaptive parameter selection, taking into account
the interaction between the influence parameters, finally, as shown in Figure 7(a), (b), and
(), the kurtosis diagrams corresponding to the three approaches of VMD-C, VMD-EMD,
and VMD-CS are obtained, in Figure 7(a), the five components IMF8, IMF6, IMF5, IMF7,
and IMF3 with the highest kurtosis are selected in order for signal reformation as one-
dimensional time series, in Figure 7(b), the five components IMF10, IMF9, IMF7, IMF6,
and IMF4 with the highest kurtosis are selected in order for signal reformation as one-
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dimensional time series, in Figure 7(c), the three components IMF4, IME3, and IMF2 with
the highest kurtosis are selected one by one for signal reformation as one-dimensional
time series. Finally, all data set have undergone noise reduction processing, and the data
set listed in Table I have been determined.

(a)

Kurtosis

IMFs
(b)

Kurtosis

()

Kurtosis

1 2 3 4
IMFs

Figure 7. Kurtosis diagram of IMF components of original time series. (a) Kurtosis dia-
gram of IMF components of time series (VMD-C). (b) Kurtosis diagram of IMF compo-
nents of time series (VMD-EMD). (c) Kurtosis diagram of IMF components of time series
(VMD-CS)

Table 1. The central frequencies of IMF components corresponding to different K values

Method EMD VMD VMD-EMD  VMD-CS MCKD
Training Set ~ 6x1000 6x1000 6x1000 6x1000 6x1000
Test Set 7x100 7x100 7x100 7x100 7x100

6.2. Parameter Selection

Because the learning rate has such a large impact on the LSTM neural network model,
the experimental results are analyzed when the learning rates are 0.01, 0.02, and 0.03 re-
spectively, to determine the learning rate of the LSTM model based on the bearing time
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series, and to obtain the error loss and model accuracy of the LSTM model shown in Fig-
ure 8, the LSTM model shows an over fitting phenomenon at o set to 0.02, resulting in
severe swings in prediction accuracy, but the prediction accuracy of the LSTM model is
steady when the learning rate between 0.01 and 0.03, as seen in the picture. Table Il shows
a comparison of mean square error experimental data acquired at various learning rates.
The mean square error of the LSTM model on test time series 1, 2, 3, 4, 5, 6, and 7 at « set
to 0.01 is a respectively, and the prediction accuracy of each time series is greater than that

a set to 0.03, hence this paper selects the learning rate a set to 0.01 as the training rate for
the LSTM model.

(a)
L L L L
—0=0.01 —0=0.02 —0=0.03
100 1
1 -
g
§ 0.01 .
|
1E-4 .
1E-6 %5 200 400 600 800
Number of iterations
(b)
0.16 T T T
—0=0.01 ——0=0.02 —/ 0=0.03
5012 f -
&
o
£0.08 | 4
7
S 0.04
= o0 /\/\/
000 i /I_IRI/ i

2 4 6
Test time series
Figure 8. Variation of error loss and mean square error comparison of LSTM models at
different learning rates. (a) Error loss of LSTM models at different learning rates. (b) Mean
square error of LSTM models at different learning rates.

Table 2. The central frequencies of IMF components corresponding to different K values

Test Time Series

2 3 4 5 6 7

Model

Learning Rate

Mean Square Error

0.01 0.01544 0.01972  0.02019  0.00986  0.01002  0.00089  0.01660
0.02 0.12468  0.14582  0.09857  0.12179  0.12682  0.09063  0.10852
0.03 0.02869  0.03561  0.03181  0.02381  0.02946  0.00608  0.02420

6.3. Prediction Model

The dataset produced from various data preprocessing are input into the LSTM
model for prediction, and the error loss changes under various models are calculated as
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shown in Figure 9(a), the error loss of the prediction result of the original time series input
LSTM model is the minimum, as can be seen in the image, the loss obtained by the model
is often greater than that acquired by the original time series after different preprocessing
procedures are applied. In test time series 1, 3, 4, 5, and 6, the prediction accuracy of MSE
obtained by optimizing MCKD-LSTM model is the highest (MSE is the lowest), as shown
in the accuracy comparison results of prediction results under different models in Figure

9(b).
(a)
I I I
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wn
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Figure 9. Error loss and mean square error comparisons for different models. (a) Error loss
for different models. (b) Mean square error for different models.

In order to compare the validity of the proposed model, the prediction results of the
original time series and the optimized MCKD-LSTM model are compared, as can be seen
from the comparison between Figure 10 (a) and (b), the original time series prediction
results have some deviation in the whole time series, but the optimized MCKD-LSTM
model tracks the real fault data well, it can also be seen from the comparison of experi-
mental results of mean square error under different prediction models in Table III: on test
series 1, 3, 4, 5 and 6, the mean square error of the original time series is 0.02327, 0.02384,
0.01691, 0.0349 and 0.00287 respectively. The prediction results of the optimized MCKD-
LSTM model are 0.01544, 0.02019, 0.00986, 0.01002 and 8.95153e-4 respectively, and the
average prediction accuracy is improved by 26%.

(a)
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Figure 9. Time series prediction results. (a) Prediction results of original time series. (b)
Prediction results of deconvolution time series

Table 3. The central frequencies of IMF components corresponding to different K values

7. Conclusion

Optimized MCKD-LSTM model for bearing series prediction is proposed in this re-
search. The model combines optimizing MCKD preprocessing of the original series and
time series prediction using deconvolution signals, the effectiveness of this method is ver-
ified by XJTU-SY bearing dataset of XI'AN JJAOTONG UNIVERSITY, and the conclusions
are as follows:

1) When comparing the results of EMD, VMD-C, VMD-EMD, VMD-CS and MCKD
on original time series, it can be seen that the impact component of the deconvolution time
series obtained by optimizing MCKD is enhanced, and the fault characteristic frequency
of the bearing outer ring is extracted.

Test Time Series
Model 1 2 3 4 5 6 7

Mean Square Error

OsriI;:Z?I 0.02327 0.01883 0.02384 0.01691 0.0349 0.00287 0.01101
EMD 0.02875 0.02292 0.03114 0.0243 0.04327 0.0052 0.01509
VMD-C 0.02756 0.02089 0.02828 0.02296 0.03895 0.00481 0.01344
VMD-
EMD

VMD-CS 0.03596 0.03376 0.0449 0.02826 0.04799 0.01213 0.0217

MCKD 0.01544 0.01972 0.02019 0.00986 0.01002  8.95153E-4 0.0166

0.03043 0.01268 0.02442 0.02456 0.04411 0.00899 0.01143
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2) The accuracy and loss change of the model are affected by the learning rate of the
neural network. Overfitting difficulties will occur if the change rate is too high or too low,
affecting efficiency and prediction ability of the model, as a result of the experimental
investigation, the learning rate of the LSTM prediction model of bearing time series is
determined to be a=0.01.

3) After deciding that the learning rate a set to 0.01, the optimized MCKD-LSTM
model has the highest prediction accuracy, which is 26% higher than the original time
series prediction, and the prediction results track the real fault data well.
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