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Abstract: This paper realizes early bearing fault warning through bearing fault time series predic-

tion, and proposes a bearing fault time series prediction model based on optimized maximum cor-

relation kurtosis deconvolution (MCKD) and long short-term memory (LSTM) recurrent neural net-

work to ensure bearings operation reliability. The model is based on lifecycle vibration signal of the 

bearing, to begin, the cuckoo search (CS) is utilized to optimize the parameter filter length L and 

deconvolution period T of MCKD, taking into account the influence and periodicity of the bearing 

time series, the fault impact component of the optimized MCKD deconvolution time series is im-

proved. Then select the LSTM learning rate α depending on deconvolution time series. Finally, the 

dataset obtained through various preprocessing approaches are used to train and predict the LSTM 

model. The average prediction accuracy of the optimized MCKD-LSTM model is 26 percent higher 

than that of the original time series, proving the efficiency of this method, and the prediction results 

track the real fault data well, according to the XI'AN JIAOTONG University XJTU-SY bearing da-

taset. 

Keywords: deep learning; time series prediction; long short-term memory; recurrent neural net-

work; maximum correlation kurtosis deconvolution; cuckoo search. 

 

1. Introduction 

Rolling element bearing is called "industrial joint", which is widely used in the fields 

of transmission and hoisting, wind power generation, aerospace and other areas [1-3]. As 

the core component of the equipment, the frequency of bearing fault is extremely common 

[4-6], bearing performance has a direct impact on the reliability and safety of heavy ma-

chinery, as a result, reliable bearing fault time series prediction is extremely important for 

industrial production safety [7-9]. 

When bearing is used as the research object, the bearing outer ring performance mon-

itoring data contains information about bearing reliability [10], but the main problem with 

relying on bearing performance monitoring data to complete the bearing fault time series 

prediction is figuring out how to create the bearing fault time series prediction model. 

Moreover, the bearing fault time series is created by the convolution of vibration signals 

and different noise signals in the signal transmission process, which will impact the accu-

racy of the prediction model after training, as a result, the first part of this study looks at 

how to perform the preprocessing of the original time series. For the research on signal 

preprocessing, to solve the filtering of nonlinear vibration signals, Dong et al. [11] pre-

sented a non iterative denoising method combining spectral wavelet transform and 

detrended fluctuation analysis. Yan et al. [12] explored the discrete convolution wavelet 

transform (DCWT) for signal decomposition and reconstruction in signal processing, 

when the signal changes swiftly, however, the choice of wavelet basis function is severely 
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limited [13]. Many adaptive signal preprocessing approaches have been presented based 

on wavelet transform denoising, to demodulate the original vibration signal, Vikas et al. 

[14] employed the variational mode decomposition (VMD) to handle the multi-compo-

nent modulated non-stationary vibration signal of the transmission. To discover the 

modal properties of engineering structures, Bagheri et al. [15] proposed a dynamic re-

sponse decomposition based on variational mode decomposition. VMD was utilized by 

Mausam et al. [16] to partition the histogram of the input image into many band limited 

modes, and then the histogram was reconstructed using meaningful modes. Zhang et al. 

[17] investigated the fractal properties of rolling element bearing vibration signals and 

developed a bearing defect assessment and diagnosis. Furthermore, the decomposition 

mode parameter K and penalty coefficient η must be established in order to solve the dif-

fering parameter values have a significant impact on the decomposition effect. To calcu-

late the ideal K for water pipe leakage location, Li et al. [18] used the correlation between 

energy loss coefficient and nearby blade disks as an evaluation index. Zhao et al. [19] em-

ployed the envelope nesting approach to direct the potential center frequency, and then 

used permutation entropy and orthogonality to calculate the K. To alleviate the mode 

mixing of complicated vibration signals, Zhao et al. [20] presented the based on single-

objective salp swarm algorithm to optimize the penalty coefficient η of the VMD. Feng et 

al. [21] used the whale optimization algorithm (WOA) to optimize VMD parameters in 

order to achieve adaptive decomposition and noise reduction of vibration signals. The 

decomposition parameters of VMD, on the other hand, must be set according to the prop-

erties of signal. Mode over-decomposition and under decomposition are caused by incor-

rect parameter selection [22]. McDonald et al. [23] presented a new signal preprocessing 

method called maximum correlated kurtosis deconvolution (MCKD), which is ideal for 

processing early bearing fault signals with low signal-to-noise ratio and periodic impact 

characteristics [24]. To complete composite fault diagnosis, Hong et al. [25] used adaptive 

MCKD to decouple fault information and noise reduction signal. Zhang et al. [26] sug-

gested a signal noise reduction method based on the teager energy operator and the 

MCKD. Many scholars have optimised the filter length L and the order of shift M in 

MCKD on this basis. Lyu et al. [27] optimized the filter length and deconvolution period 

of MCKD for composite fault diagnosis of gear tooth wear and bearing outer ring fault 

using a quantum genetic algorithm (QGA). To complete the bearing composite fault diag-

nosis, Miao et al. [28] used the autocorrelation of the envelope signal to estimate the prior 

period T. To make MCKD obtain the best noise reduction performance, Yang et al. [29] 

employed permutation entropy as the measurement index for filter length L selection. 

In order to develop a bearing fault time series prediction model, Pan et al. [30] calcu-

lates the upper and lower boundaries of unknown elevation on a terrain profile using a 

double multiplicative neuron (DMN) model and an modified particle swarm optimization 

(MPSO) technique. For time series prediction, Raubitzek et al. [31] presented a fractal in-

terpolation method. For long term time series prediction, Liu et al. [32] proposed dual-

stage two-phase DSTP-based RNN (DSTP-RNN) and DSTP-RNN-Ⅱ. Human fall risk is 

predicted using the depth neural network model described by Savadkoohi et al. [33]. By 

input high-level abstract features into an LSTM network, Zhang et al. [34] proposed the 

CEEMD-PCA-LSTM hybrid prediction model to complete time series prediction. The 1d-

CNN model was proposed by Che et al. [35] for regression analysis of time series samples 

in order to establish a performance deterioration model, finally, bidirectional long short 

memory (Bi-LSTM) is employed to predict performance decline over time. Dempster-

Shafer regression technology was proposed by Niu et al. [36] to perform time series pre-

diction problems. 

Based on the previous study, this paper takes advantage of the MCKD strong noise 

reduction effect in periodic signals to denoise the bearing fault time series and acquire the 

deconvolution time series. After that, deconvolution time series are used to train the long 

short-term memory recurrent neural networks, and the optimized MCKD-LSTM predic-

tion model is created to predict the bearing fault time series. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 November 2021                   doi:10.20944/preprints202111.0377.v1

https://doi.org/10.20944/preprints202111.0377.v1


 

 

2. Maximum Correlated Kurtosis Deconvolution 

Mcdonald et al. proposed maximum correlated kurtosis deconvolution (MCKD) in 

2012 [23]. It successfully applies in gear flaking fault diagnosis by taking into account the 

impact and periodic characteristics of fault information. This algorithm assumes that y 

represents the impulse signal, h represents the response of y after transit through the trans-

mission path, and x represents the signal convoluted from various signals on the trans-

mission path, which represents the process as shown in formula (1): 

x h y=                                       (1) 

The essence of MCKD is to find a FIR filter to solve the input signal y through the 

output signal x, i.e. 

1
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=  =                          (2) 

Where f= [f1, f2, …, fL]T is the filter factor of length L. 

MCKD takes maximum correlation kurtosis as its evaluation criterion and calculates 

as follows: 
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In order to obtain the optimal inverse filter coefficient f, the first derivative of the 

objective function is zero, such as formula (4): 
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Therefore, the optimum filter coefficient can be obtained. 
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               (9) 

The specific steps to realize MCKD are as follows: 

1) Determine filter length L, The order of shift M and period T of impact signal.  

2) Calculate X0X
0 

T and X
m 

T  of the original signal x(n). 

3) Obtain filtered output signal y(n). 

4) Calculate m and  according to y(n). 

5) Update filter coefficient f. 
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If the signal f before and after filtering conforms to ( )MCK T   , stop the iteration 

and jump back to step (3). 

The deconvolution signal y of the actual acquisition signal x can be obtained by sub-

stituting the obtained inverse filter coefficients (2). 

3. Cuckoo Search 

The cuckoo search [37] is a new heuristic search algorithm that integrates the Lévy 

flights theory with the parasitic behavior of cuckoos. It has the characteristics of few pa-

rameters and fast convergence. Three ideal rules are assumed by the cuckoo algorithm. 

1) Each cuckoo lays only one egg at a time and places the eggs in a randomly selected 

nest, which is also known as a host nest. 

2) The parasitic nest with the highest quality eggs will be retained for the next gener-

ation. 

3) The number of possible nests is fixed, and the chance of discovering host eggs in a 

nest is p. 

When the host bird discovers the host egg, it either throws it out or abandons the nest 

to establish a new one in a new site. 

After randomly generating n nest placements, the Lévy flights search strategy illus-

trated creates a new nest location using formula (10): 
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Where, X
i 

t+ and X
i 

t  signify the ith cuckoo's nest site in the T and T+1 generations, respec-

tively, X
b 

t  is the optimal nest location currently searched, the value α0 is used to change 

the step size, α0=0.01 in this paper, µ and ν are random values generated using the normal 

distribution, H set to 0.5 be the default, Г is the normal gamma function. 

The nest with the higher fitness value is kept when the new nest location is found 

using the Lévy flight search strategy, then, based on the discovery probability p, a portion 

of the nest positions are eliminated, and a new nest position is constructed using the pre-

ferred random walk search strategy shown in formula (12): 
1 ( )t t t t

i i j kX X r X X+ = + −                     (12) 

Where, r is a random number between 0 and 1, and X
j 

t  and X
k 

t  are two candidate solutions 

chosen at random from the current population. 

4. Long Short-term Memory Recurrent Neural Network 

The gating mechanism is employed in the long short-term memory (LSTM) recurrent 

neural network [38], which is frequently used to process time series signals, and specific 

formula of LSTM is as follows: 

4.1. Forward Calculation Method of LSTM 

For a given time series signal x= (x1, x2, …, xt), and the hidden layer sequence ht-1= (h1, 

h2, …, ht-1), the candidate state value tc , input gate value it, forgetting gate value ft, output 

gate value ot, memory cell value ct, hidden layer sequence ht, and output sequence yt=(y1, 

y2, … , yt) at time t can be determined using the conventional LSTM model (as shown in 

Figure 1), which is: 

1tanh( )t c t c t cc W x U h b−= + +                   (13) 
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1( )t i t i t ii W x U h b −= + +                     (14) 

1( )t f t f t ff W x U h b −= + +                   (15) 

1( )t o t o t oo W x U h b −= + +                   (16) 

1t t t t tc i c f c −= +                     (17) 

tanh( )t t th o c=                       (18) 

t y t yy W h b= +                         (19) 

Where, W and U are weight matrices for time series (for example, Wc represents the can-

didate state weight matrix from the input layer to the hidden layer, and Uc represents the 

candidate state weight matrix from the hidden layer at time t-1 to the hidden layer at time 

t), the offset vector is b. (for example, bc represents the offset vector of the candidate state 

from the input layer to the hidden layer), σ is the sigmoid function, meanwhile, the sig-

moid function is the activation function of gating unit, the tanh function is the activation 

function of candidate state, and the time is represented by the subscript t. 

ft it c˜t ot

σ  σ  tanh σ  

·  tanh

ct

ht

ct-1 ·     

·

ht-1

·

    

xt
Multiplication of vector elements

Sum of vector elements

Splicing of vector elements
 

Figure 1. Structure diagram of LSTM. 

4.2. Reverse Computation Method of LSTM 

The three steps of the LSTM training algorithm are as follows: 

1) The output value of each neuron is calculated forward f(y)=f(wTx) 

2) The cost function is the mean square deviation function J, and the error term δj 

value of each neuron is calculated inversely, as follows: 
2
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2
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2
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2 2
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3) Reverse error gradient calculation, i.e. 

'( )jE f y =                            (26) 

4) Determine the Δw weight difference, i.e. 
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w E x =                             (27) 

Where, α is the learning rate, which in this case is 0.01 in this study. 

4.3. Metrics 

The mean square error (MSE) is used as the measuring standard in this research to 

assess the accuracy of the prediction model. MSE may be calculated using the following 

formula: 

2

ˆ 1

1
ˆ( )

N

i i

t

MSE y y
N =

= −                      (28) 

Where, ˆ iy and iy  are the fault time series test and model output values at time t̂ , re-

spectively, and N is the number of data points, by calculating the MSE of the training and 

test sets, this research quantitatively analyzes the fitting and prediction accuracy of model. 

5. Parameter Optimization Based on Cuckoo Search 

When utilizing the MCKD to minimize the noise in a bearing series signal, the filter 

length L and deconvolution period T must be set first. The parameter combination [L, T] 

of the MCKD can be searched by the CS to perform parameter adaptive screening, taking 

into account the interaction between affecting parameters. 

When using the CS to optimize parameters, it is important to choose the right fitness 

function based on the signal characteristics and take into account the periodic impact sig-

nal of the bearing signal, which can differ from the noise signal. In reference [39] proposes 

a dimensionless crest factor of envelope spectrum (Ec) index that takes into consideration 

the periodic properties of fault information in vibration signals. The mathematical expres-

sion of the index Ec, assuming the signal envelope spectrum amplitude X(j) (j = 1, 2,…, M), 

and the index Ec is as follows: 

max
c

rms

e
E

e
=                            (29) 

Where, emax is the highest value in the range [n×fr, fs/2] of the envelope signal obtained after 

Hilbert Demodulation, fr is the bearing signal's frequency conversion, and fs is the sam-

pling frequency. The effective value is erms, which is defined as the effective value of signal 

following Hilbert demodulation. In this research, n = 2 is chosen to avoid the influence of 

fr on Ec. 

The envelope spectrum peak factor Ec of the envelope signal acquired by Hilbert de-

modulation is determined using the MCKD operation on the fault signal at any nest Xi 

location (i.e. the optimum parameters), and the Ec is the fitness value of the bird nest. The 

envelope spectrum peak factor Ec is significant when periodic impact occurs in the decom-

position results, and the decomposition effect is optimal, on the other hand, if the enve-

lope spectrum peak factor Ec is relatively small, the decomposition effect is not well. As a 

result, the optimization object is set at the greatest Ec. The flow of the fault diagnosis 

method proposed in this paper is shown in Figure 2. 
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Figure 2. Prediction process of rolling element bearing fault time series based on optimized MCKD-LSTM. 

6. Experimental Signal Analysis 

The experimental data adopts the LDK UER204 rolling element bearings dataset of 

XJTU-SY bearing dataset [40] of XI'AN JIAOTONG UNIVERSITY, the bearing accelerated 

life test bed and outer ring crack of bearing are shown in Figure 3, the two unidirectional 

acceleration sensor models in the vertical and horizontal directions, PCB 352C33, collect 

the vibration signals through a DT9837 portable dynamic signals collector, the test sam-

pling frequency is 25.6kHz, the sampling interval is 1min, the number of sampling points 

is 32769, and the sampling time is 1.28s, the horizontal vibration signals in dataset bear-

ing1_1 are selected for analysis. 
（a）                                            (b) 

Digital force 

display

Motor speed 

controller

Shaft

AC motor
Supporting 

bearing

Accelerometer

(vertical)
Test bearing

Hydraulic 

loading system

Accelerometer

(horizontal)

  
Figure 3. Bearing accelerated life test bed and outer ring crack of bearing. (a) Bearing  

accelerated life test bed. (b) Outer ring crack of bearing. 

6.1. Data Preprocessing 

The vibration signal of the 50th series in the horizontal direction of Bearing1_1 is 

chosen for analysis in order to anticipate the bearing fault time series, the time-frequency 

domain diagram of a vibration signal is shown in Figures 4 (a) and (b). In the temporal 

domain, there are many impact components to consider, and there is no rule to follow, the 

frequency spectrum shows the frequency conversion 34.38Hz and its frequency doubling 

components, and in the high frequency band, there are several resonance frequency 

bands, the frequency components are complex, and the bearing outer ring fault has no 

distinct frequency, as a result, denoising the original time series is required to retrieve the 

time series including more impact information. 
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Figure 4. Time frequency domain diagram of original time series. (a) Time domain dia-

gram of original time series. (b) Spectrum of original time series. 

The MCKD is used to preprocess the original time series, with the order of shift M 

set to 1 and the iteration termination times G set to 20, the CS is used to optimize the filter 

length L and deconvolution period T in MCKD, the parameters of CS are set as follows: 

the dimension of solution D set to 2, the population size N set to 15, the host bird with a 

probability P set to 0.1, the upper and lower bounds are searched based on L>2fs/fc and 

T=fs/fc [41], where fs is the sampling frequency and fc is the characteristic frequency, and 

setting the optimization range as L=[100, 1500] and T=[50, 1000]. Figure 5(a) depicts the 

results, the peak factor of the local maximum envelope spectrum converges to 10.2478 at 

the 7th iteration, and the optimization parameter combination [L, T] corresponding to the 

peak factor of the local maximum envelope spectrum is [600, 235]. Denoise the original 

time series signal using MCKD parameters to obtain the deconvolution series signal and 

envelope spectrum, as illustrated in Figure 5 (b) and (c), it can be seen that the impact 

component intensity of the deconvolution series signal is increased in the time domain, 

the noise interference component is greatly reduced, and the frequency conversion com-

ponent 34.38Hz, 108.6Hz, and its frequency doubling emerge in the envelope spectrum. 

This frequency is close to the theoretical value of the bearing outer ring crack characteristic 

frequency of 107.91Hz, resulting in a significant reduction in noise. 
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Figure 5. Time frequency diagram of deconvolution time series. (a) Variation curves of 

different Ec indexes with iteration times. (b) Time domain diagram of deconvolution se-

ries. (c) Spectrum of deconvolution time series. 

Then, the deconvolution time series are taken as one- dimensional time series to train 

the bearing fault time series prediction model, all at once, one-dimensional vibration sig-

nals are selected based on the 50th original time series every ten series, six groups of time 

series are taken as the training set, and seven groups of time series are taken as the test set 

from 102 series every two sequences, the optimized MCKD is then utilized to denoise, 

after establishing the whole data set, it is input the LSTM model, which is used to train 

the model and predict bearing fault time series.  

To demonstrate the benefits of optimized MCKD-LSTM in bearing fault time series 

prediction, this study denoises the original fault series using EMD and optimized VMD, 

then completes the LSTM model training and bearing fault time series prediction compar-

ison with it. Because the impact signal will be included in the bearing lifecycle signal, the 

fault impact information of the bearing will be contained in some IMF components after 

the signal is processed by EMD, resulting in the kurtosis diagram of ten IMF components 

IMF1-IMF10 according to the kurtosis criterion shown in Figure 6. The five components 

with the highest kurtosis, IMF9, IMF6, IMF1, IMF2 and IMF10 are chosen for signal rear-

rangement as one-dimensional time series. Both the training and test sets are EMD pro-

cessed at the same time. 
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Figure 6. Kurtosis diagram of IMF components of time series signals (EMD) 

Similarly, VMD denoises the data set, but when it analyzes the signals, it must take 

into account the decomposition mode parameter K and the penalty term coefficient α, in 

general, the central frequency observation method [42] and EMD-VMD can be used to 

select the decomposition mode parameter K, and it is easy to ignore the relationship be-

tween K value and penalty term coefficient α. The CS can search the influence parameter 

combination [K, α] of VMD to perform adaptive parameter selection, taking into account 

the interaction between the influence parameters, finally, as shown in Figure 7(a), (b), and 

(c), the kurtosis diagrams corresponding to the three approaches of VMD-C, VMD-EMD, 

and VMD-CS are obtained, in Figure 7(a), the five components IMF8, IMF6, IMF5, IMF7, 

and IMF3 with the highest kurtosis are selected in order for signal reformation as one-

dimensional time series, in Figure 7(b), the five components IMF10, IMF9, IMF7, IMF6, 

and IMF4 with the highest kurtosis are selected in order for signal reformation as one-
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dimensional time series, in Figure 7(c), the three components IMF4, IMF3, and IMF2 with 

the highest kurtosis are selected one by one for signal reformation as one-dimensional 

time series. Finally, all data set have undergone noise reduction processing, and the data 

set listed in Table I have been determined. 
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Figure 7. Kurtosis diagram of IMF components of original time series. (a) Kurtosis dia-

gram of IMF components of time series (VMD-C). (b) Kurtosis diagram of IMF compo-

nents of time series (VMD-EMD). (c) Kurtosis diagram of IMF components of time series 

(VMD-CS) 

Table 1. The central frequencies of IMF components corresponding to different K values 

6.2. Parameter Selection 

Because the learning rate has such a large impact on the LSTM neural network model, 

the experimental results are analyzed when the learning rates are 0.01, 0.02, and 0.03 re-

spectively, to determine the learning rate of the LSTM model based on the bearing time 

Method EMD VMD VMD-EMD VMD-CS MCKD 

Training Set 6×1000 6×1000 6×1000 6×1000 6×1000 

Test Set 7×100 7×100 7×100 7×100 7×100 
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series, and to obtain the error loss and model accuracy of the LSTM model shown in Fig-

ure 8, the LSTM model shows an over fitting phenomenon at α set to 0.02, resulting in 

severe swings in prediction accuracy, but the prediction accuracy of the LSTM model is 

steady when the learning rate between 0.01 and 0.03, as seen in the picture. Table II shows 

a comparison of mean square error experimental data acquired at various learning rates. 

The mean square error of the LSTM model on test time series 1, 2, 3, 4, 5, 6, and 7 at α set 

to 0.01 is a respectively, and the prediction accuracy of each time series is greater than that 

α set to 0.03, hence this paper selects the learning rate α set to 0.01 as the training rate for 

the LSTM model. 

(a) 

0 200 400 600 800
1E-6

1E-4

0.01

1

100
E

rr
o

r 
lo

ss

Number of iterations

α=0.01  α=0.02 α=0.03

 
(b) 

2 4 6

0.00

0.04

0.08

0.12

0.16

M
ea

n
 s

q
u
ar

e 
er

ro
r

Test time series

 α=0.01  α=0.02 α=0.03

 
Figure 8. Variation of error loss and mean square error comparison of LSTM models at 

different learning rates. (a) Error loss of LSTM models at different learning rates. (b) Mean 

square error of LSTM models at different learning rates. 

 

Table 2. The central frequencies of IMF components corresponding to different K values 

Model 

Learning Rate 

Test Time Series 

1 2 3 4 5 6 7 

Mean Square Error 

0.01 0.01544 0.01972 0.02019 0.00986 0.01002 0.00089 0.01660 

0.02 0.12468 0.14582 0.09857 0.12179 0.12682 0.09063 0.10852 

0.03 0.02869 0.03561 0.03181 0.02381 0.02946 0.00608 0.02420 

 

6.3. Prediction Model 

The dataset produced from various data preprocessing are input into the LSTM 

model for prediction, and the error loss changes under various models are calculated as 
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shown in Figure 9(a), the error loss of the prediction result of the original time series input 

LSTM model is the minimum, as can be seen in the image, the loss obtained by the model 

is often greater than that acquired by the original time series after different preprocessing 

procedures are applied. In test time series 1, 3, 4, 5, and 6, the prediction accuracy of MSE 

obtained by optimizing MCKD-LSTM model is the highest (MSE is the lowest), as shown 

in the accuracy comparison results of prediction results under different models in Figure 

9(b). 
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Figure 9. Error loss and mean square error comparisons for different models. (a) Error loss 

for different models. (b) Mean square error for different models. 

In order to compare the validity of the proposed model, the prediction results of the 

original time series and the optimized MCKD-LSTM model are compared, as can be seen 

from the comparison between Figure 10 (a) and (b), the original time series prediction 

results have some deviation in the whole time series, but the optimized MCKD-LSTM 

model tracks the real fault data well, it can also be seen from the comparison of experi-

mental results of mean square error under different prediction models in Table Ⅲ: on test 

series 1, 3, 4, 5 and 6, the mean square error of the original time series is 0.02327, 0.02384, 

0.01691, 0.0349 and 0.00287 respectively. The prediction results of the optimized MCKD-

LSTM model are 0.01544, 0.02019, 0.00986, 0.01002 and 8.95153e-4 respectively, and the 

average prediction accuracy is improved by 26%. 
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Figure 9. Time series prediction results. (a) Prediction results of original time series. (b) 

Prediction results of deconvolution time series 

 

 Table 3. The central frequencies of IMF components corresponding to different K values 

 7. Conclusion 

Optimized MCKD-LSTM model for bearing series prediction is proposed in this re-

search. The model combines optimizing MCKD preprocessing of the original series and 

time series prediction using deconvolution signals, the effectiveness of this method is ver-

ified by XJTU-SY bearing dataset of XI'AN JIAOTONG UNIVERSITY, and the conclusions 

are as follows: 

1) When comparing the results of EMD, VMD-C, VMD-EMD, VMD-CS and MCKD 

on original time series, it can be seen that the impact component of the deconvolution time 

series obtained by optimizing MCKD is enhanced, and the fault characteristic frequency 

of the bearing outer ring is extracted. 

Model 

Test Time Series 

1 2 3 4 5 6 7 

Mean Square Error 

Original 

signal 
0.02327 0.01883 0.02384 0.01691 0.0349 0.00287 0.01101 

EMD 0.02875 0.02292 0.03114 0.0243 0.04327 0.0052 0.01509 

VMD-C 0.02756 0.02089 0.02828 0.02296 0.03895 0.00481 0.01344 

VMD-

EMD 
0.03043 0.01268 0.02442 0.02456 0.04411 0.00899 0.01143 

VMD-CS 0.03596 0.03376 0.0449 0.02826 0.04799 0.01213 0.0217 

MCKD 0.01544 0.01972 0.02019 0.00986 0.01002 8.95153E-4 0.0166 
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2) The accuracy and loss change of the model are affected by the learning rate of the 

neural network. Overfitting difficulties will occur if the change rate is too high or too low, 

affecting efficiency and prediction ability of the model, as a result of the experimental 

investigation, the learning rate of the LSTM prediction model of bearing time series is 

determined to be α=0.01. 

3) After deciding that the learning rate α set to 0.01, the optimized MCKD-LSTM 

model has the highest prediction accuracy, which is 26% higher than the original time 

series prediction, and the prediction results track the real fault data well. 
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