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Abstract: The aim of this work is to improve the technology of obtaining coating based on plasticized 

polylactide from its aqueous suspensions. For this purpose, a film formation process with additional 

heating was developed  and  the  influence  of plasticizers  on  the  film  formation  temperature was 

investigated. It is shown that using only mechanical emulsification, it is possible to obtain a material 

with an average particle size of 2.4 microns, which is suitable for further research and modification 

for film materials. The introduction of epoxidized fatty acids (oleic and linolic) was found to reduce 

the film formation temperature by 20‐30 ° C compared to the unplasticized polymer, which puts them 

on a par with the classical plasticizer, polyethylene glycol, reducing the film formation temperature 

by 36 % at the same concentration. 
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1. Introduction 

There  is  a global  transition  from petroleum‐based plastics  to bio‐based  and biocompostable 

plastics. Many  countries have adopted  relevant  standards  for  the net zero  carbon  transition, and 

plastics have been shown to be low carbon throughout their life cycle [1].   

Polylactide is currently one of the most represented bio‐based plastics on the commercial market 

(probably  second  only  to  the  group  of  polyhydroxyalkanoates  [2]),  and  its  production  is  being 

increased by several companies, such as Nature Works LLC, which will reach a capacity of 150 kt in 

2021. The expected annual world production of PLA  in 2027  is 6.6 million tons [3]. However, this 

represents  close  to  1%  of  annual  plastic  production,  indicating  the  growth  potential  to  replace 

petroleum‐based plastics. 

Polylactide is currently used in packaging, biomedical devices, agricultural films, and additive 

manufacturing  technologies,  particularly  3D  printing.    However,  its  potential  in  the  coatings 

industry, which is considered one of the most important polymer applications, is not yet realized, 

primarily as a film‐forming agent. And there are several notable factors that limit this application. As 

is well known, the modern paint and coating industry works with several classes of systems: solvent‐

based systems  (anticorrosion coatings and some wood coatings, plastic coatings, etc.), high‐solids 

systems (without liquid carriers or with a significantly reduced quantity) and water‐based systems 

(the polymer particles are dispersed and stabilized in water). The latter solution is the most ecological, 

helping  to  reduce  the  content of harmful volatile organic  compounds. An obstacle  to  the use of 

polylactide in the composition of mortar paints is the relatively small number of solvents compatible 

with this polymer, which causes problems of adequate selection and impossibility of using traditional 

industrial systems of aromatic, medium‐polar solvents with reduced toxicity. However, an obstacle 
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to obtaining PLA dispersions is that PLA, unlike currently commercialized acrylic, polyurethane, or 

alkyd  dispersions  [4,5],  cannot  be  synthesized  in  a  similar way  from  a monomer  using  radical 

reactions. There is a global transition from petroleum‐based plastics to bio‐based and biocompostable 

plastics. Many  countries have adopted  relevant  standards  for  the net zero  carbon  transition, and 

plastics have been shown to be low carbon throughout their life cycle [1]. 

The method of solvent evaporation allows dispersions of polymer particles with a high solid 

content  to  be  obtained  and  consists  of  successive  preparation  of  a  polylactide  solution  and  its 

dispersion  (mechanical  and  ultrasonic)  in  aqueous  medium.  It  results  in  stabilization  of  the 

dispersion particles by surfactants and thickeners, and in the last step, the removal of solvent from 

the dispersion particles by continuous evaporation takes place  [6,7]. Although  this method uses a 

solvent, it can be captured and regenerated in analogy to the smoothing processes of printed 3D parts 

[8,9]. The dispersions obtained in this way can form films at elevated temperatures compared to room 

temperature, as the glass transition temperature (Tg) of modern polylactide grades is between 55 and 

65 ° C [10] and the minimum film formation temperature (MFFT) is between the Tg and the melting 

point of  the polymer  (Tm). For all applications of polylactide,  from coatings  that cure at elevated 

temperatures to those that do not require heating for film formation, reducing the MFFT is therefore 

an  important  challenge. Plasticizers are known  to  reduce Tg and Tm by  reducing  intermolecular 

interactions between polymer chains, so their introduction can be considered a promising tool for 

reducing MFFT. 

There are  several known ways  to plasticize polylactide: 1) by  combining  it with other more 

elastic polymers, eg natural  rubber  [11], polycaprolactone  [12] or poly‐butylene succinate adipate 

[11], both by melt compounding and chemical grafting; 2) by introducing monomeric or oligomeric 

plasticizers, eg polyethylene glycol (PEG) [13], citrates [14] and adipates [15], or oligomeric lactic acid, 

which has been shown to decrease Tg of PLA by 35 °C at 25 wt. % content [16]. The low‐molecular‐

weight  plasticizers  are more  technological  because  the  additive  concentration  can  be  controlled 

according to the desired glass transition temperature reduction so that other  important properties 

such as hardness, heat resistance, tackiness, etc. are not affected. 

The best known and most studied plasticizer for PLA is polyethylene glycol [17], but it is also 

water soluble, which can cause its transfer from dispersed PLA particles to the aqueous phase. The 

same is true for plasticizers such as glycerin, ethylene glycol, etc. Such a transition would not be a 

problem if the plasticizers were concentrated on the surface of the PLA particles after evaporation of 

the water, but because they are low‐molecular‐weight liquids, they can be absorbed by the substrate 

or coalesce into droplets separate from the polymer, forming macroheterogeneous regions. Another 

problem  is  the  gradual migration  of  this  plasticizer,  especially  in  humid  conditions  [18].  Thus, 

effective plasticizers for polylactide particles are derived from aqueous dispersions that are not water 

soluble. 

The aim of this work is to improve the technology of obtaining coatings based on plasticized 

polylactide from its aqueous suspensions. For this purpose, aqueous dispersions of polylactide were 

obtained, the application process was developed, film formation was studied, and the influence of 

plasticizers on the film formation temperature was investigated. The efficiency of plasticizers for PLA 

based on water‐insoluble epoxidized fatty acids (oleic and linoleic) was demonstrated. 

2. Materials and Methods 

2.1. Materials 

The polylactide used  in this study was Ingeo Biopolymer 4060D (NatureWorks, USA) with a 

density of 1.24 g/cm3, a glass transition temperature of 55–60 °С, an average molecular weight (Mw) 

of 190 kD, and a D‐lactide content of 12%. This grade was chosen for its relatively low glass transition 

point, which arises from the amorphous structure and exceeds its suitability for film applications.   

PEG‐400, dibutyl phthalate (DBP), ethylene glycol (EG), and glycerin were used as plasticizers. 

PEG‐400 is one of the most widely used and effective plasticizers for PLA polymers [19–21] it was 
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chosen  as  a  reference.  Although  DBP  is  a  fossil‐based  phthalate  plasticizer,  it  is  known  to  be 

compatible with a wide range of polymers, so it was chosen as a historical reference. Ethylene glycol 

and glycerol have been used in some research [22]. All named substances were purchased from the 

local supplier HLR Ukraine (Chemlaborreactiv LLC). 

Oleic acid and linoleic acid were used for the synthesis of epoxy‐oleic acid and epoxy‐linoleic 

acid,  respectively.  The  solvent  used was  dichloromethane  (methylene  chloride)  (Thermo  Fisher 

Scientific). Meta‐chloroperoxybenzoic acid (m‐CPBA) (Sigma‐Aldrich), sodium bicarbonate (Sigma‐

Aldrich), and anhydrous sodium sulfate (Sigma‐Aldrich) were used for the synthesis of epoxy‐oleic 

and epoxy‐linoleic acids, respectively. High‐performance liquid chromatography‐grade hexane and 

ethyl acetate (Sigma‐Aldrich) were used for chromatography. 

2.2. Epoxidized Plasticizers Synthesis and Characterization 

Oleic acid (5 g, 0.018 mol, 1 eq.) was mixed with 50 mL of dry dichloromethane (CH2Cl2) in a 

three‐necked flask at room temperature, followed by m‐CPBA (4.6 g, 0.022 mol, 1.2 eq., 70 wt. %) 

under  constant  stirring.  The  reaction was  left  to  stir  for  16  hours  at  room  temperature.  After 

completion of the reaction, the mixture was washed with 50 mL of unsaturated NaHCO3 solution 

and distilled water (3×30 mL), dried over anhydrous Na2SO4, filtered, and  the solvent evaporated 

under vacuum. Purification was carried out by column chromatography (hexane/ethyl acetate 9:1) to 

give 4.1 g (80‐90%) of oleic acid epoxide, which was confirmed by NMR spectroscopy (Figure 1a): δ 

2.91 (s, 2H), 2.37 (t, J = 7.5 Hz, 2H), 1.7–1.58 (m, 3H), 1.5 (s, 7H), 1.43–1.15 (m, 23H), 0.94–0.87 (m, 3H). 

The same method was used to synthesize epoxy linoleic acid, and the result was confirmed by NMR 

spectroscopy (Figure 1b). 

The analysis of proton magnetic resonance (1H NMR) spectra revealed significant changes in the 

chemical  environment  of  hydrogen  atoms,  confirming  the  successful  course  of  the  epoxidation 

reaction.  In  the  spectrum  of  the  initial  unsaturated  carboxylic  acid  (compound  C18H34O2), 

characteristic signals are recorded in the range of δ ~ 5.3 ppm, corresponding to the protons of the 

alkene  group  (–CH=CH–).  After  the  reaction  to  form  the  compound  (C18H34O3),  these  signals 

disappear completely, indicating the disappearance of the multiple bonds. Instead, new peaks in the 

range of δ ~2.7‐3.2 ppm appear in the product spectrum, typical of protons associated with the epoxy 

fragment  (–CH–O–CH–). A similar synthesis and characterization of  linoleic acid was performed. 

Also, FTIR spectra were obtained for synthesized epoxidized organic acids (Appendix A.1). 

   

(a)  (b) 

Figure 1. 1H–NMR spectra: (a) epoxidized oleic acid; (b) epoxidized linoleic acid. 

2.3. Polylactide Dispersions Obtaining 

Initially, 0.17 g of sodium dodecyl sulfate (SDS) was dissolved in 42.86 ml of distilled water at 

25 °C using a top‐drive stirrer at a speed of no more than 40 rpm. Maintaining a low stirring speed 

was critical to prevent heavy foaming, which made it difficult to distribute the components evenly. 

After the surfactant (SDS) was completely dissolved, 40 ml of a 15 wt. % solution of PLA 4060D in 

dichloromethane was gradually added to the mixture. Dichloromethane was chosen as the solvent 
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because of its optimal evaporation rate. The stirring process lasted for 3 hours with a gradual increase 

of the water bath temperature from 25 to 60 °C by 5 °C every 15 minutes, after which the system was 

held at 60 °C for the rest of the time. The dispersion was then stirred at low speed and vacuumed to 

remove residual dichloromethane. Dry particles from the dispersion were obtained by centrifugation 

followed by drying on an adhesive coating at room temperature. This process resulted in micrometer‐

sized PLA particles suitable for further research and modification for film materials. 

2.4. Characterization Methods 

Chemical analysis was performed by ¹H NMR spectroscopy (400 MHz, CDCl3; Bruker Avance 

III HD 400 MHz, equipped with a 5 mm broadband probe). 

The  surface  topography  of  the  obtained  films was  studied  using  a MIRA3  LMU  scanning 

electron microscope (Tescan, Brno, Czech Republic) at 10 kV acceleration voltage and 12 pA current. 

To reduce  the surface charge,  the samples were coated with a 10 nm thick tungsten  layer using a 

precision  coating  and  etching  system  (682  PECS,  Gatan,  Inc.,  Pleasanton,  CA,  USA).  Optical 

microscopy  images were  obtained  on  a  Konus  Academy‐2  upright  optical microscope  using  a 

calibrated  UCMOS  1300  digital  camera  (Sigeta  Optics,  Kiev,  Ukraine)  and  ToupView  software 

(ToupTek, Zhejiang, China). 

Hansen solubility parameters for PLA and epoxidized plasticizers were determined using the 

following  solvents: water,  dichloromethane,  isopropyl  alcohol,  hexane,  ethyl  acetate,  n‐butanol, 

cyclohexane, dimethylformamide, o‐xylene, and dimethyl sulfoxide or their mixtures. To determine 

the solubility parameters of PLA, dichloromethane and tetrahydrofuran were used as solvents. Ethyl 

acetate and isopropyl alcohol were used as solvents to determine the solubility parameters of epoxy‐

oleic  acid  and  epoxy‐linoleic  acid. All  these  solvents  except water were  purchased  from  Sigma‐

Aldrich (Merck). 

The  coordinates  of  the  solubility points  and  centers  in D, P, H  coordinates  (Hansen  sphere 

calculation) were calculated with Excel (Microsoft, Redmond, USA) using the HSP Excel spreadsheet 

prepared by Dr. Diaz de los Rios [23,24]. 

3. Results and Discussion 

3.1. Re‐Dispersable PLA Particles Characterization 

The obtained stabilized dispersion of polylactide solution in dichloromethane has an average 

particle size of about 3 μm and an average mass of about 8 μm (Figure 2). The particles are stable in 

the purification and washing process; no coalescence is observed during the processing. 
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Figure 2. Polylactide dichloromethane water dispersions particle size distribution. 

The  particles  obtained  from  the  synthesis  are  spherical  with  a  rather  high  degree  of 

polydispersity  (Figure  3a).  The  size  of  the  primary  particles  varies  from  0.3  to  20  μm,  they  are 

significantly aggregated but without visible interstices, indicating the possibility of redispersion in 

the liquid. 

     

(a)  (b)  (c) 

Figure 3. Morphology of synthesized PLA particles. 

At least some of the large particles obtained by this method are hollow (Figure 3b, upper right) 

with a wall thickness of 0.2–0.4 μm. This may be due to the peculiarities of the process of removing 

the solvent, dichloromethane, from the emulsion droplets during particle formation. The polymer 

from the solution concentrates and precipitates at  the  interface, forming a shell, while the solvent 

occupies the core of the particle, which remains hollow after removal. The method of synthesizing 

hollow particles by evaporating the solvent from the emulsion is mentioned in some reviews [25–27] 

and  experimental works  [28,29]. The  surface of  large particles  is  less uniform  than  that of  small 

particles and contains thin spots, craters, in which sometimes holes are formed (Figure 3c).   
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As  can be  seen  from  the particle  size distribution  curves  (Figure  4), despite  the presence of 

visually coarse particles of 20 μm, the number‐average particle size (d50%) is 2.4 μm and the main 

particle fraction is 1–7 μm. This distribution is close to that of dispersion particles, which contradicts 

the fact that a significant amount of particle volume (solvent) was evaporated during the preparation. 

Such size stability may be explained by the formation of a particle’s shell with a hollow (or porous) 

inner volume. 

The  particles  obtained  from  the  synthesis  are  spherical  with  a  rather  high  degree  of 

polydispersity  (Figure  4a).  The  size  of  the  primary  particles  varies  from  0.3  to  20  μm,  they  are 

significantly aggregated but without visible interstices, indicating the possibility of redispersion in 

the liquid. 

   

(a)  (b) 

Figure 4. Granulometry of synthesized PLA particles: (a) differential; (b) cumulative curves. 

The resulting emulsions were centrifuged, and the precipitate from the particles was washed 

several times with deionized water. The particles were then dried on a filter and additionally at 60 

°C and sieved through a 44 μm sieve. The powder obtained is rather hygroscopic and was therefore 

stored in a desiccator. 

3.2. Film Formation 

To obtain a uniform layer of particles on the glass substrate, the particles were redispersed in 

water, and  the suspension was applied  to  the glass surface. After slow evaporation of  the excess 

moisture at 80 °C, a uniform layer of densely packed particles (Figure 5) with a thickness of 120 μm 

was obtained. In this layer, the presence of pores and cracks (Figure 5a) caused by the contraction of 

the wet suspension during water removal  is noticeable. Figure 5b shows that at the surface of the 

layer, there are mainly small particles, which can be explained by the action of Stokesʹ law during the 

sedimentation of polymer particles in water. 
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(a)  (b) 

Figure 5. Morphology of the layer of dried particles on the substrate. 

This effect is an artifact of the deposition technique and will be absent if, for example, a layer is 

obtained by air spraying. 

To  study  the process of particle  fusion  and  the  formation of  a  continuous  layer  at  elevated 

temperatures, the glass sample obtained from the suspension was placed on a metal surface heated 

to 160 °C on one side, while the other side was in contact with air. This made it possible to create a 

temperature gradient in the sample (Figure 6a) and to record different stages of the transition from 

particles to a continuous film. 

 

(a) 

   

(b)  (c) 
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(d)  (e) 

Figure 6. Optical microscopy of film formation steps. 

In  general,  the  effect  can  be  divided  into  stages  such  as  the  fusion  of  particles  into  larger 

aggregates (Figure 6b → Figure 6c), which occurs due to the transition of the polymer into a viscous‐

fluid state and the surface tension of the melt. Collapse of interparticle voids and surface flattening 

due  to melt  spreading  (Figure 6c → Figure 6d). Finally,  the  formation of a  solid  film due  to  the 

removal of residual trapped air (Figure 6d → Figure 6e). Both particle fusion and the removal of air 

from the melt are determined by the melt viscosity, which is a function of temperature. The removal 

of air bubbles is a time‐dependent process and therefore requires that the material be held at elevated 

temperatures for some time. As can be seen in Figure 6a, these process steps are accompanied by a 

transition of the material from opaque white to transparent white, which is caused by a change in the 

number of light scattering planes.   

At the level of individual particles (Figure 7), an increase in the number of holes in the craters 

(Figure 7a) is observed even after a slight heating to 100 °C, which is caused by the coincidence of the 

increase  in  the molecular mobility of macromolecular segments and  their highly oriented state  in 

these meshes of the particle. Further holding at elevated temperature results in fusion of the particle 

shells (Figure 7b), but the melt viscosity is still high at this stage. As the viscosity decreases, rounding 

of the pore walls between the particles is observed (Figure 7c), then there is almost complete closure 

of the pores, except for large contract defects (Figure 7d), which are further tightened and flattened 

along with surface irregularities (Figure 7e). 

   

(a)  (b) 
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(c)  (d) 

 

(e) 

Figure 7. Film formation from PLA suspension particles. 

The fusion process of these particles is similar to that used in powder bed fusion technologies 

(see e.g. [30,31]), with the main factors being melt viscosity and its surface tension [32]. In addition to 

lowering  the  particle  fusion  temperature,  the  use  of  low‐molecular‐weight  plasticizers will  also 

reduce the melt viscosity and thus the film formation time. 

3.3. Plasticizer Effectiveness Assessment 

The  affinity  of  the  plasticizer  to  the  polymer  was  evaluated  using  the  Hansen  solubility 

parameter approach. For PLA 4060D, epoxidized acids, it was determined experimentally by cloud 

point  technique, which  allows  for  determining  the  solubility  spheres  (Figure  8),  and  for  other 

plasticizers, extracted from literature (Table 1). 
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(a)  (b)  (c) 

     

(d)  (e)  (f) 

     

(g)  (h)  (i) 

Figure 8. Hansen solubility spheres projection: (a), (b), (c) – PLA 4060D; (d), (e), (f) – epoxy oleic acid; (g), (h), (i) 

– epoxy linoleic acid. 

Table 1.   

Sample  δD  δP  δH  R0  Ra  RED  Reference 

PLA 4060D  16.5  9.9  6.4  8.5       

Epoxy oleic acid  16.6  11.1  9.8    3.6  0.42   

Epoxy linoleic acid  16.6  11.4  10.5    4.4  0.51   

PEG‐400  14.6  7.5  9.4    5.4  0.64  [33] 

Dibutyl phthalate  17.8  8.6  4.1    3.7  0.44  [34] 

Ethylene glycol  17.0  11.0  26.0    19.7  2.31  [34] 

Glycerol  17.4  12.1  29.3    23.1  2.71  [34] 

Since the Hansen model assumes that Ra>Ro is a condition for polymer‐plasticizer compatibility, 

all these plasticizers are compatible with polylactide. At the same time, the epoxidized acids of all 

these samples are closest (except for dibutyl phthalate) to the center of the PLA solubility sphere. 
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The transparency temperature was determined for different polymer‐plasticizer pairs. For this, 

the plasticizer and PLA particles were mixed in a stirrer in dry manner for 20 minutes. It was not 

possible to use an auxiliary solvent to disperse the plasticizer because liquids less polar than water 

(isopropyl alcohol, xylene, ethyl acetate) cause coagulation of the particles. 

The  prepared  powder  was  sieved  through  a  44  μm  sieve  to  ensure  uniform  plasticizer 

distribution. The resulting powder was then placed between two microscopic glasses on the surface 

of the heating table. The melting of PLA particles, as it is shown in Figure 7 above, is a process that is 

accompanied by the decrease of the light scattering surfaces quantity and therefore it is visually seen 

when  the  system  reaches  the  stage  that  is  shown  in  Figure  7d.  It was  noticed  that  the  time  of 

conditioning at each temperature is important because the particle sintering is a viscosity‐dependent 

process and may require time at low temperatures. To account for this fact, the temperature gradually 

increased by 2 °C and left for 5 min before the next step.   

As  shown  in  Figure  9,  all  the plasticizers  considered  have  some melting point  suppression 

ability. The most effective is PEG 400: at an extremely high load of 30 wt. % the transparency point 

reaches 83 °C, at loads of 10 and 15 wt. % the melt film formation occurs around 100 °C. Itʹs known 

that  the  introduction  of plasticizers  reduces  the mechanical properties  of polymers  (and PLA  in 

particular [35]), so the minimum effective concentration should be chosen. 

 

Figure 9. Transparency points for PLA‐plasticizer mixtures. 

The  synthesized  epoxidized  linoleic  acid  comes  closest  to  PEG‐400  efficiency.  It  achieves 

comparable efficiencies with 5 wt. % more loading. Epoxidized oleic acid is less effective in melting 

point suppression and requires 7‐8 wt. % more to be comparable to PEG‐400. Monomeric ethylene 

glycol  and  glycerin  are  significantly  less  effective  than  epoxidized  plasticizers,  which  may  be 

explained by a higher RED, indicating a lower affinity compared to other plasticizers. However, this 

assumption does not hold for dibutyl phthalate, which has a RED value of 0.44.    

Thus,  during  the  study,  a  dispersed material was  obtained which  can  be  the  basis  for  the 

production  of  coatings  by  powder method  or  from  aqueous  dispersions.  It  is  shown  that  the 

plasticizers  (epoxidized  fatty  acids)  synthesized  in  this  work  can  reduce  the  film  formation 

temperature by 20‐30 °C compared to the unplasticized polymer, which puts them on a par with PEG. 

These plasticizers are insoluble in water, so they can potentially be incorporated into the particles at 

the synthesis stage in the polymer solution. 
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The ways to improve the results of the work are, of course, the use of more efficient dispersion 

methods, which will reduce  the particle size and  thus,  in  the  long run, reduce  the  film  formation 

temperature. As  shown  in  [36],  at  a  particle  size  of  200–500  nm,  film  formation  is  observed  at 

temperatures  above  60  °C. Considering  the  possibilities  of  plasticizers,  this  temperature  can  be 

reduced at least to a temperature slightly above room temperature. 

Alternatively, the technology can be adapted from the scenario of thermally cured coatings or 

powder  coatings, which  consists  of  sequentially  applying  the  dispersion  to  the  product  by  any 

suitable method, drying the aqueous phase, and then dosed heating, e.g., by infrared radiation.   The 

amount of heat applied to the film can be adjusted to provide the required heating and cooling rates, 

as shown in [37,38], and can be used to regulate crystallization and, consequently, the mechanical 

properties of the polymer matrix. Plasticizers in the composition of coating particles will reduce the 

film formation temperature so that they can be used for 3D printed articles based on PLA. 

Undoubtedly, to obtain a full‐fledged technology of coatings based on polylactide, it is necessary 

to study the possibility of obtaining filled composites, more precise regulation of melt viscosity to 

increase flowability, as well as control of shrinkage during crystallization, which is not so critical in 

the production of free films, but a big problem in obtaining coatings on substrates. 

4. Conclusions 

The paper considers the method of obtaining polylactide films based on aqueous dispersions of 

redispersed powders, the process of film formation with additional heating, as well as the influence 

of plasticizers on this process.   

It is shown that using only mechanical emulsification, it is possible to obtain a material with an 

average particle size of 2.4 μm. At least a fraction of the particles obtained by this method are hollow.   

It was found that the introduction of synthesized plasticizers – epoxidized oleic and linoleic fatty 

acids  on  the  temperature  of  film  formation:  the  first  at  20  wt.  %  concentration  reduces  this 

temperature by  25  °C,  and  the  second by  30  °C, which  is  comparable  to  the  effectiveness of  the 

classical plasticizer – polyethylene glycol, reducing it by 36 °C at the same concentration. At the same 

time, these plasticizers are insoluble in water and completely bio‐based. 

The  results of  the study can be used  to develop  the  technology of water‐dispersion coatings 

based on polylactide, both those intended for curing at ambient temperature and those that require 

heating. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

PLA  Polylactide 

PEG  Minimum film forming temperature 

DBP  Dibutyl phthalate 

EG  Ethylene glycol 

m‐CPBA  Meta‐chloroperoxybenzoic acid 

SDS  Sodium dodecyl sulfate 

RED  Relative energy difference 

Appendix A 

 

Figure A1. FTIR spectra of epoxy oleic acid and epoxy linoleic acid. 
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