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Highlights

What are the main findings?

e  Superior Segmentation Performance: The proposed modified U-Net architecture (with attention-
enhanced skip connections and inception modules) significantly outperforms three comparative
approaches in brainstem parcellation, achieving higher Dice scores across all substructures
(medulla, pons, mesencephalon) and the whole brainstem.

e  Volume Differences Across Groups: Automated segmentation reveals distinct volumetric
patterns, with controls exhibiting larger volumes (whole brainstem: 1.62) compared to
preclinical (1.49) and patient groups (1.12), suggesting potential atrophy linked to disease
progression.

What is the implication of the main finding?

e  C(linical Utility: The method’s accuracy and robustness support its potential for precise
brainstem assessment in neurodegenerative disorders, enabling earlier detection of structural
changes (e.g., reduced medulla volume in patients: 0.26 vs. 0.31 in controls).

o  Technical Advancements: The success of attention mechanisms and inception modules
highlights their value for complex anatomical segmentation, paving the way for similar
adaptations in other small-structure parcellation tasks.

Abstract: Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disorder marked by
progressive brainstem and cerebellar atrophy, leading to gait ataxia. Quantifying this atrophy in
magnetic resonance imaging (MRI) is critical for tracking disease progression in both symptomatic
patients and preclinical subjects. However, manual segmentation of brainstem subregions
(mesencephalon, pons, and medulla) is time-consuming and prone to human error. This work
presents an automated deep learning framework to assess brainstem atrophy in SCA2. Using T1-
weighted MRI scans from patients, preclinical carriers, and healthy controls, an U-shape
convolutional neural network (CNN) was trained to segment brainstem subregions and quantify
volume loss. The model achieved strong agreement with manual segmentations (min DSC: 0.93), and
significantly reduced processing time from hours to minutes. Results revealed severe atrophy in
preclinical and symptomatic cohorts, with pons volumes reduced by nearly 50% compared to
controls (p<0.001). The mesencephalon and medulla showed milder degeneration, underscoring
regional vulnerability differences. This automated approach enables rapid, precise assessment of

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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brainstem atrophy, advancing early diagnosis and monitoring in SCA2. By streamlining analysis,
deep learning bridges translational gaps in neurodegenerative disease research.

Keywords: deep learning; brainstem segmentation; medical imaging processing; brain MRI
segmentation; convolutional neural networks; U-Net

1. Introduction

Spinocerebellar Ataxia type 2 (SCA2) is a rare neurodegenerative disorder characterized by
progressive degeneration of the brainstem and cerebellum. As one of the most prevalent
spinocerebellar ataxias globally [1-4], it exhibits a notably high incidence in Holguin, Cuba [1,5].
Clinical manifestations include a cerebellar syndrome, slowing of the saccadic ocular movements,
cognitive disorders, sensory neuropathy, etc.

Three patterns of macroscopic atrophy reflecting damage of different neuronal system are
recognized in spinocerebellar ataxias, named spinal atrophy (SA), olivopontocerebellar atrophy
(OPCA) and cortico-cerebellar atrophy (CCA) [6]. Neuroimaging has played a pivotal role in
diagnosing these atrophy patterns since 1995, when Kumas et al. [7] first described OPCA features in
pediatric populations. Magnetic resonance imaging (MRI) remains the gold standard for structural
segmentation and volumetric analysis due to its superior resolution [8], outperforming other
modalities such as single-photon emission computed tomography (SPECT) and positron emission
tomography (PET) in visualizing SA, OPCA, and CCA [9]. As emphasized by Klaes et al. [10], MRI is
the most extensively validated biomarker candidate for spinocerebellar ataxias.

Brainstem atrophy has been documented across both symptomatic and prodromal stages of
SCA2 [1-3,11-19]. However, most studies rely on manual segmentation, a method constrained by
time-intensive workflows, inter-rater variability, and scalability limitations in large cohorts. To
address these challenges, this work introduces an automated deep learning framework for
quantifying volumetric changes in SCA2 patients, preclinical carriers, and healthy controls.

Convolutional neural networks (CNNs or convnets) [20,21] have demonstrated outstanding
performances at tasks such as hand-written digit classification, face and contour detection [22],
automatic video processing [23], and neurological behavior analysis and prediction [24-26]. In
neuroimaging, CNNs have been applied to brain lesion segmentation using 3D architectures [27], U-
Net models [28-32] and adversarial training [33], leveraging hierarchical feature extraction. While 2D
CNNs reduce computational costs [34-37], they often sacrifice accuracy compared to hybrid 2D-3D
approaches that optimize feature integration [38,39]. One of the most interesting advances includes
cerebellum parcellation via cascaded CNNs [40,41], highlighting their potential for fine-grained
neuroanatomical analysis.

Building on prior work [42], this study applies CNNs to brainstem segmentation in MRI, with a
focus on mesencephalon, pons, and medulla volumetric changes. To date, no studies have employed
deep learning to compare brainstem atrophy between symptomatic SCA2 patients, preclinical
carriers, and controls in Cuba. This approach aims to establish a scalable, objective tool for identifying
early biomarkers of SCA2 progression.

2. Materials and Methods

The proposed model architecture builds upon the method described in [42], utilizing a 3D U-
Net-like framework to perform volumetric segmentations. This design processes the input images in
their native 3D spatial context, which allows to preserve anatomical relationships. The main
architecture contains four downsampling and upsampling operations. To enhance feature extraction,
each convolutional layer was replaced with an inception module [37], which optimizes
computational efficiency by processing multi-scale features in parallel. Additionally, skip
connections were refined using three consecutive Convolutional Block Attention Modules (CBAM)
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[43], enabling the model to focus on spatially and channel-wise relevant features in these branches.
The overall model and inception architectures are illustrated in Figure 1, with detailed schematics of
the CBAM blocks provided in Figure 2.

3D U-Net

|-+

I 1nception I 3x3x3 Conv + ReLU
I 3x3x3 MaxPool B Instance Normalization
I 3x3x3 TranspConv + ReLU SoftMax
Concat
I cBaM
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Figure 1. Basic structure of the 3D U-Net and inception used.
0 j|llll- I
I Multiplication MaxPool I Add
Channel Attention Module (CAM) AveragePool I Sigmoid
I spatial Attention Module (SAM) B Dense Concat
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Figure 2. Structures of Convolutional Block Attention Module (CBAM), Channel Attention Module (CAM) and
Spatial Attention Module (SAM).

The study employed a cohort of 42 MRI scans obtained from the Cuban Neurosciences Center.
These scans correspond to 25 individuals, comprising five healthy controls, seven preclinical subjects,
and 13 SCA?2 patients. Given hardware limitations, the model was designed to balance computational
efficiency with performance, ensuring feasibility on available infrastructure while maintaining robust
segmentation accuracy.

2.1. Image Preparation

The full preparation process for one single image can be depicted in Figure 3. All MRI scans
underwent preprocessing to ensure consistency and improve segmentation accuracy. First, N4 bias
field correction [44] was applied to address intensity inhomogeneities, enhancing image quality for
subsequent analysis. Following this, each scan was registered to the ICBM 2009c nonlinear symmetric
template [45] using Advanced Normalization Tools (ANTS) [46]. The registration process employed
a three-stage approach: rigid, affine, and symmetric normalization (SyN), ensuring optimal
alignment of individual scans to the standardized template space. The Figure 3a shows the original
image, and 3b displays the result of N4+MNIregistration.

To optimize computational efficiency, MRI scans were automatically cropped to focus
exclusively on the brainstem region. Using training set segmentations as reference, a standardized
region of interest (ROI) measuring 80x80x96 voxels was extracted for each scan. This approach
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reduced the computational load by 93%, decreasing processed volumes from approximately 8.5
million voxels per full scan to ~614,000 voxels. The cropped ROIs enabled efficient model training
and inference while preserving all relevant anatomical data for brainstem analysis. The Figure 3d
shows the result of the cropping operation. Following the crop, intensity normalization was applied
for every image (Figure 3e). The reduced volumes were used as inputs to the 3D U-Net. The Figure
3f shows one fully preprocessed image overlapped with its manual segmentations.

Figure 3. Full preprocessing routine for a single image. Original image (a), followed by N4 Norm.+MNI
Registration (b) and manual labels superposition (c). Follows the result of crop operation (d) and intensity
normalization (e). In (f) the manually segmented labels in the cropped region, and (g) shows a 3D view. Label

colors: medulla (red), pons (green), and mesencephalon (blue).

2.2. Analysis Description

The study was implemented in Python 3.9, utilizing TensorFlow [47] and Keras [48] for model
development and training. The model was trained over 250 epochs using the Adam optimizer [49]
with default parameters. To mitigate overfitting, a dropout rate of 0.2 was applied before the final
layer.

For training, the label maps are converted into C binary channels, and each channel represents
a label. At the same time, each voxel can only belong to one label. The loss function used was one
minus the average Dice score (DSC) across all channels, and the DSC is computed using equation (1),
where N is the number of voxels in the image domain, x.; is the i**voxel in the ¢*"* channel of the
prediction, and & prevents division by zero [41].

DSC = %ZC £+§Ijvliv=1 2X¢i¥ci (1)

=1
¢ e+ (xcityei)

The experiment was conducted on an NVIDIA RTX 3060 6GB GPU. The dataset was partitioned
into 17 images for training, 3 for validation, and 22 for testing. To enhance model generalization, data
augmentation techniques were applied during training, including rotations, translations, and
flipping. No augmentation was applied to testing images.

Volumetric comparisons were performed using the percentage of the region of interest with
respect to the total intracranial volume (% TICV).

3. Results

The evaluation results, summarized in Table 1, demonstrate high segmentation accuracy across
all regions of interest. Mean Dice similarity coefficients (DSC) exceeded 0.95 for all structures, with
the highest score (0.97) achieved for the whole brainstem. The mesencephalon exhibited the lowest
mean DSC (0.93), indicating consistent yet slightly reduced performance in this region. These results
highlight the model’s robustness and reliability in segmenting brainstem subregions.
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Figure 4 presents a qualitative comparison of segmentation results, showing a representative
test image alongside its predicted segmentation. The proposed method was evaluated against three
established approaches: (1) an upscaled version of the model architecture from [42], (2) the cerebellar
parcellation network by Han et al. [41], and (3) the brainstem parcellation model by Magnusson et al.
[50]. To ensure a fair comparison, all models were re-trained under identical conditions, maintaining
consistent training protocols (loss functions, optimizer parameters, and regularization strategies).
Quantitative results of this comparative analysis are presented in Table 1.

Table 1. Mean dice scores and stdev achieved in evaluations.

Label Mean DSCzstdev
This research [42] Han et al.[41] Magnusson et al.[50]
Mesencephalon 0.96+0.022 0.91+0.023 0.93+0.019 0.89+0.031
Pons 0.96+0.015 0.93+0.016 0.94+0.013 0.91+0.029
Medulla 0.95+0.021 0.91+0.022 0.92+0.021 0.91+0.023
Full brainstem 0.96+0.008 0.94+0.008 0.95+0.007 0.93+0.013

Figure 4. From top to bottom: axial, sagittal, coronal and 3D views of segmentations for a test image. From left
to right: preprocessed image, ground-truth segmentations, and results of segmentation by this research, Han et
al. [41], and Magnusson et al. [50].

The quantitative results in Table 1 demonstrate that the proposed method achieves consistently
superior segmentation performance across all brainstem substructures compared to existing
approaches. The method attains higher DSC for the medulla (0.96 + 0.022 vs. <0.93), pons (0.96 + 0.015
vs. £0.94), mesencephalon (0.95 + 0.021 vs. <0.92), and full brainstem (0.96 + 0.008 vs. <0.95), alongside
reduced standard deviations, indicating enhanced robustness. These improvements can be attributed
to the two key architectural changes made to the U-Net: (1) the integration of attention mechanisms
within skip connections to refine feature aggregation, and (2) the replacement of conventional
convolutional layers with inception modules to capture multi-scale contextual information more
effectively. By addressing limitations related to structural heterogeneity and boundary ambiguity —
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common challenges in brain MRI segmentation—the method offers improved accuracy and
consistency. Its performance suggests strong potential for clinical applications requiring precise
anatomical delineation, such as degenerative disease monitoring.

Quantitative evaluation of computational efficiency revealed segmentation times of <1 second
per image when utilizing GPU acceleration (NVIDIA RTX 3060 MOBILE, 6GB GDDR6), while CPU-
based processing (Intel Core i5-10500H, 16GB DDR4 RAM) required 210+15 seconds per case. This
represents a 60-120x speed improvement compared to manual segmentation protocols while
maintaining diagnostic-grade accuracy.

Using the segmentation results for all the images of the initial cohort, volumetric changes were
calculated for SCA2 patients, preclinical subjects, and healthy controls. Volumes were normalized as
a percentage of the total intracranial volume (% TICV), with TICV computed using ROBEX [51]. The
results, illustrated in Table 2, align with findings reported by Reetz et al. [52]. In all cases, mean
volumes for patients were lower than those for preclinical subjects, which in turn were lower than
controls.

Table 2. Mean volumes for manifest SCA2 patients, preclinical and control subjects. P: p-values from Kruskal —

Wallis test.
. . Mean volumes (% TICV) P
Brainstem section - T .
Patients Preclinical Controls
Mesencephalon 0.4 0.44 0.48 0.007

Pons 0.47 0.76 0.82 <0.0001

Medulla 0.26 0.29 0.31 0.00012

Whole brainstem 1.12 1.49 1.62 <0.0001

The most pronounced differences were observed in the pons, with mean volumes of 0.47% TICV
for patients, 0.76% TICV for preclinical subjects, and 0.82% TICV for controls. Notably, the median
volume for controls was nearly double that of patients. Differences between preclinical subjects and
controls were less pronounced. In the mesencephalon, mean volumes were 0.40% TICV for patients,
0.44% TICV for preclinical subjects, and 0.48% TICV for controls. The medulla exhibited the smallest
volumetric differences, with values of 0.26%, 0.29%, and 0.31% TICV for patients, preclinical subjects,
and controls, respectively. At the whole brainstem level, mean volumes were 1.12%, 1.49%, and 1.62%
TICV for patients, preclinical subjects, and controls, respectively, further highlighting the progressive
nature of brainstem atrophy in SCA2.

4. Discussion

This study presented a deep learning-based framework for analyzing MRI scans to quantify
volumetric changes in the brainstem of SCA2 patients and preclinical subjects compared to healthy
controls. To the best of our knowledge, this represents the first such study conducted in Cuba,
addressing a critical need for accessible and efficient tools to study neurodegenerative diseases in
resource-constrained settings.

The success of our approach stems from the inherent advantages of the 3D U-Net for medical
image segmentation. Unlike classical techniques (e.g., atlas-based or graph-cut methods) that rely on
handcrafted features—which often fail to capture complex anatomical variability [29] —CNNs
automatically learn discriminative hierarchical features, enabling precise parcellation of challenging
structures like the brainstem substructures [53]. Our modified 3D U-Net architecture incorporates
two key changes—attention mechanisms in skip connections and inception modules replacing
standard convolutions. This advanced and complex architecture achieves expert-level segmentation
accuracy (Dice >0.95 for all brainstem substructures). The attention modules enable precise
localization of anatomical boundaries by selectively emphasizing relevant spatial features, while the
inception modules capture multi-scale contextual information critical for distinguishing between
adjacent brainstem subregions.
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A notable limitation of the proposed approach is its reliance on the registration phase. While
registration was successful for all MRI scans in this study, its performance may vary with different
datasets, potentially leading to segmentation errors if registration fails. Future work will focus on
developing registration-free pipelines to enhance robustness and generalizability.

Despite this limitation, the results demonstrate that deep learning techniques can effectively
characterize brainstem atrophy, enabling rapid differentiation between patients, preclinical subjects,
and controls. The computational efficiency of the proposed method represents a significant
advancement, with GPU-based segmentation completing in under one second per image —a dramatic
improvement over manual segmentation, which can require over an hour per case. Even without
GPU acceleration, segmentation times of up to 3.5 minutes on a standard CPU still offer a substantial
reduction in processing time compared to manual methods.

These findings suggest that the proposed framework can be integrated into larger neuroimaging
pipelines to assess volumetric changes in SCA2 patients and preclinical subjects. The development of
user-friendly software based on this approach could provide clinicians with a powerful tool for rapid
diagnosis and monitoring of disease progression. By highlighting key atrophic changes and enabling
longitudinal evaluation, such tools could improve patient care and support early intervention
strategies.

In the broader context of neurodegenerative disease research, this work underscores the
potential of deep learning to bridge gaps in neuroimaging analysis, particularly in regions with
limited access to advanced computational resources. Future research directions include expanding
the dataset to improve model generalizability, exploring multi-modal imaging approaches, and
investigating the applicability to other neurodegenerative conditions.

5. Conclusions

This study introduced a deep learning-based framework to quantify brainstem atrophy in SCA2
patients, preclinical subjects, and healthy controls, representing a pioneering effort in Cuba. By
achieving mean Dice scores above 0.96 for the whole brainstem and 0.95 for its subregions, the
approach demonstrates high accuracy in detecting significant volumetric differences, particularly in
the pons. These findings highlight the potential of deep learning to address critical gaps in
neuroimaging analysis. The method enables rapid, scalable assessments, reducing reliance on time-
intensive manual segmentation and supporting earlier diagnosis and monitoring of SCA2.
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