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Highlights 

What are the main findings? 

 Superior Segmentation Performance: The proposed modified U‐Net architecture (with attention‐

enhanced skip connections and inception modules) significantly outperforms three comparative 

approaches  in  brainstem  parcellation,  achieving  higher Dice  scores  across  all  substructures 

(medulla, pons, mesencephalon) and the whole brainstem. 

 Volume  Differences  Across  Groups:  Automated  segmentation  reveals  distinct  volumetric 

patterns,  with  controls  exhibiting  larger  volumes  (whole  brainstem:  1.62)  compared  to 

preclinical  (1.49)  and  patient  groups  (1.12),  suggesting  potential  atrophy  linked  to  disease 

progression. 

What is the implication of the main finding? 

 Clinical  Utility:  The  method’s  accuracy  and  robustness  support  its  potential  for  precise 

brainstem assessment  in neurodegenerative disorders, enabling earlier detection of structural 

changes (e.g., reduced medulla volume in patients: 0.26 vs. 0.31 in controls). 

 Technical  Advancements:  The  success  of  attention  mechanisms  and  inception  modules 

highlights  their  value  for  complex  anatomical  segmentation,  paving  the  way  for  similar 

adaptations in other small‐structure parcellation tasks. 

Abstract:  Spinocerebellar  ataxia  type  2  (SCA2)  is  a  neurodegenerative  disorder  marked  by 

progressive brainstem and  cerebellar atrophy,  leading  to gait ataxia. Quantifying  this atrophy  in 

magnetic resonance imaging (MRI) is critical for tracking disease progression in both symptomatic 

patients  and  preclinical  subjects.  However,  manual  segmentation  of  brainstem  subregions 

(mesencephalon,  pons,  and medulla)  is  time‐consuming  and  prone  to  human  error.  This work 

presents an automated deep  learning  framework  to assess brainstem atrophy  in SCA2. Using T1‐

weighted  MRI  scans  from  patients,  preclinical  carriers,  and  healthy  controls,  an  U‐shape 

convolutional neural network  (CNN) was  trained  to  segment brainstem  subregions and quantify 

volume loss. The model achieved strong agreement with manual segmentations (min DSC: 0.93), and 

significantly  reduced processing  time  from hours  to minutes. Results  revealed  severe  atrophy  in 

preclinical  and  symptomatic  cohorts, with  pons  volumes  reduced  by  nearly  50%  compared  to 

controls  (p<0.001).  The mesencephalon  and medulla  showed milder  degeneration,  underscoring 

regional vulnerability differences. This automated  approach  enables  rapid, precise  assessment of 
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brainstem atrophy, advancing early diagnosis and monitoring  in SCA2. By streamlining analysis, 

deep learning bridges translational gaps in neurodegenerative disease research. 

Keywords:  deep  learning;  brainstem  segmentation;  medical  imaging  processing;  brain  MRI 

segmentation; convolutional neural networks; U‐Net 

 

1. Introduction 

Spinocerebellar Ataxia  type  2  (SCA2)  is  a  rare neurodegenerative disorder  characterized by 

progressive  degeneration  of  the  brainstem  and  cerebellum.  As  one  of  the  most  prevalent 

spinocerebellar ataxias globally  [1–4],  it exhibits a notably high  incidence  in Holguin, Cuba  [1,5]. 

Clinical manifestations  include a cerebellar syndrome, slowing of  the saccadic ocular movements, 

cognitive disorders, sensory neuropathy, etc. 

Three  patterns  of macroscopic  atrophy  reflecting  damage  of  different  neuronal  system  are 

recognized  in  spinocerebellar  ataxias,  named  spinal  atrophy  (SA),  olivopontocerebellar  atrophy 

(OPCA)  and  cortico‐cerebellar  atrophy  (CCA)  [6].  Neuroimaging  has  played  a  pivotal  role  in 

diagnosing these atrophy patterns since 1995, when Kumas et al. [7] first described OPCA features in 

pediatric populations. Magnetic resonance imaging (MRI) remains the gold standard for structural 

segmentation  and  volumetric  analysis  due  to  its  superior  resolution  [8],  outperforming  other 

modalities such as single‐photon emission computed  tomography  (SPECT) and positron emission 

tomography (PET) in visualizing SA, OPCA, and CCA [9]. As emphasized by Klaes et al. [10], MRI is 

the most extensively validated biomarker candidate for spinocerebellar ataxias. 

Brainstem atrophy has been documented across both  symptomatic and prodromal  stages of 

SCA2 [1–3,11–19]. However, most studies rely on manual segmentation, a method constrained by 

time‐intensive workflows,  inter‐rater  variability,  and  scalability  limitations  in  large  cohorts.  To 

address  these  challenges,  this  work  introduces  an  automated  deep  learning  framework  for 

quantifying volumetric changes in SCA2 patients, preclinical carriers, and healthy controls. 

Convolutional neural  networks  (CNNs  or  convnets)  [20,21] have demonstrated  outstanding 

performances  at  tasks  such  as  hand‐written  digit  classification,  face  and  contour  detection  [22], 

automatic  video  processing  [23],  and  neurological  behavior  analysis  and  prediction  [24–26].  In 

neuroimaging, CNNs have been applied to brain lesion segmentation using 3D architectures [27], U‐

Net models [28–32] and adversarial training [33], leveraging hierarchical feature extraction. While 2D 

CNNs reduce computational costs [34–37], they often sacrifice accuracy compared to hybrid 2D‐3D 

approaches that optimize feature integration [38,39]. One of the most interesting advances includes 

cerebellum  parcellation  via  cascaded CNNs  [40,41],  highlighting  their  potential  for  fine‐grained 

neuroanatomical analysis. 

Building on prior work [42], this study applies CNNs to brainstem segmentation in MRI, with a 

focus on mesencephalon, pons, and medulla volumetric changes. To date, no studies have employed 

deep  learning  to  compare  brainstem  atrophy  between  symptomatic  SCA2  patients,  preclinical 

carriers, and controls in Cuba. This approach aims to establish a scalable, objective tool for identifying 

early biomarkers of SCA2 progression. 

2. Materials and Methods 

The proposed model architecture builds upon the method described in [42], utilizing a 3D U‐

Net‐like framework to perform volumetric segmentations. This design processes the input images in 

their  native  3D  spatial  context,  which  allows  to  preserve  anatomical  relationships.  The  main 

architecture contains four downsampling and upsampling operations. To enhance feature extraction, 

each  convolutional  layer  was  replaced  with  an  inception  module  [37],  which  optimizes 

computational  efficiency  by  processing  multi‐scale  features  in  parallel.  Additionally,  skip 

connections were refined using three consecutive Convolutional Block Attention Modules (CBAM) 
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[43], enabling the model to focus on spatially and channel‐wise relevant features in these branches. 

The overall model and inception architectures are illustrated in Figure 1, with detailed schematics of 

the CBAM blocks provided in Figure 2. 

 

Figure 1. Basic structure of the 3D U‐Net and inception used. 

 

Figure 2. Structures of Convolutional Block Attention Module (CBAM), Channel Attention Module (CAM) and 

Spatial Attention Module (SAM). 

The study employed a cohort of 42 MRI scans obtained from the Cuban Neurosciences Center. 

These scans correspond to 25 individuals, comprising five healthy controls, seven preclinical subjects, 

and 13 SCA2 patients. Given hardware limitations, the model was designed to balance computational 

efficiency with performance, ensuring feasibility on available infrastructure while maintaining robust 

segmentation accuracy. 

2.1. Image Preparation 

The  full preparation process for one single  image can be depicted  in Figure 3. All MRI scans 

underwent preprocessing to ensure consistency and improve segmentation accuracy. First, N4 bias 

field correction [44] was applied to address intensity inhomogeneities, enhancing image quality for 

subsequent analysis. Following this, each scan was registered to the ICBM 2009c nonlinear symmetric 

template [45] using Advanced Normalization Tools (ANTS) [46]. The registration process employed 

a  three‐stage  approach:  rigid,  affine,  and  symmetric  normalization  (SyN),  ensuring  optimal 

alignment of individual scans to the standardized template space. The Figure 3a shows the original 

image, and 3b displays the result of N4+MNIregistration. 

To  optimize  computational  efficiency,  MRI  scans  were  automatically  cropped  to  focus 

exclusively on the brainstem region. Using training set segmentations as reference, a standardized 

region  of  interest  (ROI) measuring  80×80×96  voxels was  extracted  for  each  scan.  This  approach 
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reduced  the  computational  load  by  93%,  decreasing  processed  volumes  from  approximately  8.5 

million voxels per full scan to ~614,000 voxels. The cropped ROIs enabled efficient model training 

and  inference while preserving all relevant anatomical data for brainstem analysis. The Figure 3d 

shows the result of the cropping operation. Following the crop, intensity normalization was applied 

for every image (Figure 3e). The reduced volumes were used as inputs to the 3D U‐Net. The Figure 

3f shows one fully preprocessed image overlapped with its manual segmentations. 

 

Figure  3.  Full  preprocessing  routine  for  a  single  image. Original  image  (a),  followed  by N4 Norm.+MNI 

Registration  (b)  and manual  labels  superposition  (c). Follows  the  result of  crop operation  (d) and  intensity 

normalization (e). In (f) the manually segmented labels in the cropped region, and (g) shows a 3D view. Label 

colors: medulla (red), pons (green), and mesencephalon (blue). 

2.2. Analysis Description 

The study was implemented in Python 3.9, utilizing TensorFlow [47] and Keras [48] for model 

development and training. The model was trained over 250 epochs using the Adam optimizer [49] 

with default parameters. To mitigate overfitting, a dropout rate of 0.2 was applied before the final 

layer. 

For training, the label maps are converted into C binary channels, and each channel represents 

a label. At the same time, each voxel can only belong to one label. The loss function used was one 

minus the average Dice score (DSC) across all channels, and the DSC is computed using equation (1), 

where N is the number of voxels in the image domain,  𝑥௖௜  is the  𝑖௧௛voxel in the  𝑐௧௛  channel of the 
prediction, and ε prevents division by zero [41]. 

𝐷𝑆𝐶 ൌ ଵ

஼
∑

ఌା∑ ଶ௫೎೔௬೎೔
ಿ
೔సభ

ఌା∑ ሺ௫೎೔ା௬೎೔ሻ
ಿ
೔సభ

஼
௖ୀଵ     (1)

The experiment was conducted on an NVIDIA RTX 3060 6GB GPU. The dataset was partitioned 

into 17 images for training, 3 for validation, and 22 for testing. To enhance model generalization, data 

augmentation  techniques  were  applied  during  training,  including  rotations,  translations,  and 

flipping. No augmentation was applied to testing images. 

Volumetric  comparisons were performed using  the percentage of  the  region of  interest with 

respect to the total intracranial volume (% TICV). 

3. Results 

The evaluation results, summarized in Table 1, demonstrate high segmentation accuracy across 

all regions of interest. Mean Dice similarity coefficients (DSC) exceeded 0.95 for all structures, with 

the highest score (0.97) achieved for the whole brainstem. The mesencephalon exhibited the lowest 

mean DSC (0.93), indicating consistent yet slightly reduced performance in this region. These results 

highlight the model’s robustness and reliability in segmenting brainstem subregions. 
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Figure 4 presents a qualitative comparison of segmentation results, showing a representative 

test image alongside its predicted segmentation. The proposed method was evaluated against three 

established approaches: (1) an upscaled version of the model architecture from [42], (2) the cerebellar 

parcellation network by Han et al. [41], and (3) the brainstem parcellation model by Magnusson et al. 

[50]. To ensure a fair comparison, all models were re‐trained under identical conditions, maintaining 

consistent  training protocols  (loss  functions, optimizer parameters, and  regularization  strategies). 

Quantitative results of this comparative analysis are presented in Table 1. 

Table 1. Mean dice scores and stdev achieved in evaluations. 

Label 
Mean DSC±stdev 

This research  [42]  Han et al.[41]  Magnusson et al.[50] 

Mesencephalon  0.96±0.022  0.91±0.023  0.93±0.019  0.89±0.031 

Pons  0.96±0.015  0.93±0.016  0.94±0.013  0.91±0.029 

Medulla  0.95±0.021  0.91±0.022  0.92±0.021  0.91±0.023 

Full brainstem  0.96±0.008  0.94±0.008  0.95±0.007  0.93±0.013 

 

Figure 4. From top to bottom: axial, sagittal, coronal and 3D views of segmentations for a test image. From left 

to right: preprocessed image, ground‐truth segmentations, and results of segmentation by this research, Han et 

al. [41], and Magnusson et al. [50]. 

The quantitative results in Table 1 demonstrate that the proposed method achieves consistently 

superior  segmentation  performance  across  all  brainstem  substructures  compared  to  existing 

approaches. The method attains higher DSC for the medulla (0.96 ± 0.022 vs. ≤0.93), pons (0.96 ± 0.015 

vs. ≤0.94), mesencephalon (0.95 ± 0.021 vs. ≤0.92), and full brainstem (0.96 ± 0.008 vs. ≤0.95), alongside 

reduced standard deviations, indicating enhanced robustness. These improvements can be attributed 

to the two key architectural changes made to the U‐Net: (1) the integration of attention mechanisms 

within  skip  connections  to  refine  feature  aggregation,  and  (2)  the  replacement  of  conventional 

convolutional  layers with  inception modules  to  capture multi‐scale  contextual  information more 

effectively. By addressing limitations related to structural heterogeneity and boundary ambiguity—
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common  challenges  in  brain  MRI  segmentation—the  method  offers  improved  accuracy  and 

consistency.  Its  performance  suggests  strong  potential  for  clinical  applications  requiring  precise 

anatomical delineation, such as degenerative disease monitoring. 

Quantitative evaluation of computational efficiency revealed segmentation times of <1 second 

per image when utilizing GPU acceleration (NVIDIA RTX 3060 MOBILE, 6GB GDDR6), while CPU‐

based processing (Intel Core i5‐10500H, 16GB DDR4 RAM) required 210±15 seconds per case. This 

represents  a  60‐120×  speed  improvement  compared  to  manual  segmentation  protocols  while 

maintaining diagnostic‐grade accuracy. 

Using the segmentation results for all the images of the initial cohort, volumetric changes were 

calculated for SCA2 patients, preclinical subjects, and healthy controls. Volumes were normalized as 

a percentage of the total intracranial volume (% TICV), with TICV computed using ROBEX [51]. The 

results,  illustrated  in Table 2, align with  findings  reported by Reetz et al.  [52].  In all cases, mean 

volumes for patients were lower than those for preclinical subjects, which in turn were lower than 

controls. 

Table 2. Mean volumes for manifest SCA2 patients, preclinical and control subjects. P: p‐values from Kruskal—

Wallis test. 

Brainstem section 
Mean volumes (% TICV)  P 

Patients  Preclinical  Controls 

Mesencephalon  0.4  0.44  0.48  0.007 

Pons  0.47  0.76  0.82  < 0.0001 

Medulla  0.26  0.29  0.31  0.00012 

Whole brainstem  1.12  1.49  1.62  < 0.0001 

The most pronounced differences were observed in the pons, with mean volumes of 0.47% TICV 

for patients, 0.76% TICV for preclinical subjects, and 0.82% TICV for controls. Notably, the median 

volume for controls was nearly double that of patients. Differences between preclinical subjects and 

controls were less pronounced. In the mesencephalon, mean volumes were 0.40% TICV for patients, 

0.44% TICV for preclinical subjects, and 0.48% TICV for controls. The medulla exhibited the smallest 

volumetric differences, with values of 0.26%, 0.29%, and 0.31% TICV for patients, preclinical subjects, 

and controls, respectively. At the whole brainstem level, mean volumes were 1.12%, 1.49%, and 1.62% 

TICV for patients, preclinical subjects, and controls, respectively, further highlighting the progressive 

nature of brainstem atrophy in SCA2. 

4. Discussion 

This study presented a deep  learning‐based  framework  for analyzing MRI scans  to quantify 

volumetric changes in the brainstem of SCA2 patients and preclinical subjects compared to healthy 

controls. To  the  best  of  our  knowledge,  this  represents  the  first  such  study  conducted  in Cuba, 

addressing a critical need for accessible and efficient  tools to study neurodegenerative diseases in 

resource‐constrained settings. 

The success of our approach stems from the inherent advantages of the 3D U‐Net for medical 

image segmentation. Unlike classical techniques (e.g., atlas‐based or graph‐cut methods) that rely on 

handcrafted  features—which  often  fail  to  capture  complex  anatomical  variability  [29]—CNNs 

automatically learn discriminative hierarchical features, enabling precise parcellation of challenging 

structures  like the brainstem substructures [53]. Our modified 3D U‐Net architecture  incorporates 

two  key  changes—attention mechanisms  in  skip  connections  and  inception modules  replacing 

standard convolutions. This advanced and complex architecture achieves expert‐level segmentation 

accuracy  (Dice  >0.95  for  all  brainstem  substructures).  The  attention  modules  enable  precise 

localization of anatomical boundaries by selectively emphasizing relevant spatial features, while the 

inception modules  capture multi‐scale  contextual  information  critical  for distinguishing  between 

adjacent brainstem subregions. 
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A notable limitation of the proposed approach  is its reliance on the registration phase. While 

registration was successful for all MRI scans in this study, its performance may vary with different 

datasets, potentially  leading to segmentation errors  if registration fails. Future work will focus on 

developing registration‐free pipelines to enhance robustness and generalizability. 

Despite  this  limitation,  the  results demonstrate  that deep  learning  techniques can effectively 

characterize brainstem atrophy, enabling rapid differentiation between patients, preclinical subjects, 

and  controls.  The  computational  efficiency  of  the  proposed  method  represents  a  significant 

advancement, with GPU‐based segmentation completing in under one second per image—a dramatic 

improvement over manual segmentation, which can require over an hour per case. Even without 

GPU acceleration, segmentation times of up to 3.5 minutes on a standard CPU still offer a substantial 

reduction in processing time compared to manual methods. 

These findings suggest that the proposed framework can be integrated into larger neuroimaging 

pipelines to assess volumetric changes in SCA2 patients and preclinical subjects. The development of 

user‐friendly software based on this approach could provide clinicians with a powerful tool for rapid 

diagnosis and monitoring of disease progression. By highlighting key atrophic changes and enabling 

longitudinal  evaluation,  such  tools  could  improve  patient  care  and  support  early  intervention 

strategies. 

In  the  broader  context  of  neurodegenerative  disease  research,  this  work  underscores  the 

potential of deep  learning  to bridge gaps  in neuroimaging  analysis, particularly  in  regions with 

limited access to advanced computational resources. Future research directions include expanding 

the  dataset  to  improve model  generalizability,  exploring multi‐modal  imaging  approaches,  and 

investigating the applicability to other neurodegenerative conditions. 

5. Conclusions 

This study introduced a deep learning‐based framework to quantify brainstem atrophy in SCA2 

patients,  preclinical  subjects,  and  healthy  controls,  representing  a  pioneering  effort  in Cuba.  By 

achieving mean Dice  scores  above  0.96  for  the whole  brainstem  and  0.95  for  its  subregions,  the 

approach demonstrates high accuracy in detecting significant volumetric differences, particularly in 

the  pons.  These  findings  highlight  the  potential  of  deep  learning  to  address  critical  gaps  in 

neuroimaging analysis. The method enables rapid, scalable assessments, reducing reliance on time‐

intensive manual segmentation and supporting earlier diagnosis and monitoring of SCA2. 
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