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P vs NP in Spacetime: Proper-Time Complexity,
Curvature-Dependent Trade-offs, and Conditional
Separation Conjectures
Michael Rey

Octonion Group, Hong Kong; contact@octoniongroup.com

Abstract

Classical complexity theory studies the resources required by algorithms on abstract machines, mea-
suring time by the number of elementary steps. In physical reality, computations are executed by
devices embedded in spacetime, with resources bounded by energy, entropy, geometry, and causal
structure. We develop a spacetime-aware framework for decision-problem complexity that measures
cost in an observer’s proper time and couples it to physically motivated bounds on space (memory),
energy, and communication. Within this framework we define relativized complexity classes for
polynomial-time and nondeterministic polynomial-time problems that depend on the background
spacetime geometry and a resource-mapping function that translates physical resources to logical
computational steps. We prove an explicit curvature-independent time-space trade-off inequality by
combining the Bekenstein entropy bound with quantum speed limits, show an isometry covariance
property of our definitions, and formulate two testable conjectures: (i) a Frame-Dependence Conjecture
asserting that, for reasonable families of resource mappings, membership in our proper-time polyno-
mial class can differ between non-coincident observers, and (ii) a Gravitational Acceleration Threshold
identifying when polynomial-time solvability measured in a distant coordinate clock emerges from
extreme redshift while remaining exponential in local proper time. We contrast these statements
with classical complexity theory and with results on closed timelike curves and Malament-Hogarth
spacetimes. The resulting program does not claim an absolute resolution of the classical polynomial
versus nondeterministic polynomial problem; rather, it proposes a physically explicit reformulation
and a suite of falsifiable hypotheses linking computation to spacetime.

Keywords: P vs NP; proper-time complexity; spacetime; general relativity; quantum speed limits;
Bekenstein bound; black holes; computational complexity

Scope and Guarantees

This work proposes a physicalized reformulation of computational complexity, where resource
costs are measured in proper time and constrained by physical laws. The conjectures presented are
hypotheses about the interplay of spacetime geometry and computation, intended to be falsifiable
through further theoretical and experimental investigation. We do not claim to resolve the classical P
vs NP problem, but rather to offer a new perspective grounded in physical reality.

1. Introduction
The classical P vs NP problem asks whether every language decidable by a nondeterministic

Turing machine (NTM) in polynomially many steps is also decidable by a deterministic Turing machine
(DTM) in polynomially many steps. Since the seminal work of Cook and Karp, the P vs NP problem
has been formalized in a model-robust way that counts discrete steps rather than wall-clock time
[6,11]. The Cobham-Edmonds thesis connects polynomial time with the notion of feasible computation
under standard machine models. This abstraction, while powerful, deliberately ignores the physical
spacetime in which any real-world computation must take place.
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In physics, however, time is not an absolute quantity. The theory of general relativity teaches us
that the local proper time experienced by an observer depends on their worldline and the curvature of
spacetime. Furthermore, any physical computing device is subject to fundamental limitations. The
rate of computation is bounded by quantum speed limits, and the amount of information that can be
stored is constrained by entropy bounds, such as the Bekenstein bound [4,12]. These physical realities
motivate a complementary, physicalized perspective on computational complexity. This paper develops
such a framework, reformulating resource bounds in terms of proper time and physical constraints,
and then investigates how the resulting complexity classes relate to the classical, step-counting classes.

This paper makes the following contributions:

1. We provide a general definition of proper-time complexity classes, denoted as Pτ
(M,g,R)

and
NPτ

(M,g,R), for computations that are realized along worldlines within a fixed spacetime (M, g)
and under a specific resource-mapping R.

2. We prove an isometry-covariance theorem, which demonstrates that our definitions are invariant
under the symmetries of spacetime. However, they can vary across non-isometric embeddings
and different worldlines.

3. We derive a universal time-space trade-off inequality from the Bekenstein entropy bound and the
Margolus-Levitin quantum speed limit. This inequality couples the number of memory bits and
logical operations that can be measured in proper time.

4. We formulate two conjectures that formalize when and how gravitational redshift can lead to
apparent transitions in complexity class for distant observers, without violating the local step-
count measures.

5. We provide a comparative analysis of our framework with the classical P vs NP problem, as
well as with computational models that utilize closed timelike curves (CTCs) [2] and Malament-
Hogarth spacetimes [7,10].

It is important to emphasize that our framework does not assert that the classical P vs NP problem be-
comes observer-dependent when measured by step counts. Instead, it introduces a physically grounded
cost model where proper-time and thermodynamic constraints can produce observer-dependent assess-
ments of tractability.

Related Work

Aaronson has surveyed various proposals to physically overcome the limitations of NP-
completeness and has cautioned against over-interpreting the speedups that can be achieved through
physical means [1]. The quantum speed limits, entropy bounds, and ultimate limits to computation
provide a set of resource inequalities that are relevant to our work [4,8,12,13]. Computational models
that have access to closed timelike curves (CTCs) have been shown to have the power of PSPACE
[2], while Malament-Hogarth spacetimes can enable supertasks that go beyond the capabilities of
Turing machines [7,10,16]. Our contribution is to provide an explicit and conservative complexity
formalism that is applicable in fixed causal spacetimes, without making the assumption of CTCs or
MH spacetimes.

1.1. Classical vs. Spacetime P vs NP

Definition 1.1 (Classical P vs NP Problem). The Clay Millennium Problem asks: does P = NP, i.e. does
every language decidable by a nondeterministic Turing machine in polynomially many steps also admit a
deterministic polynomial-time algorithm?

Conjecture 1 (Spacetime P vs NP). Fix a globally hyperbolic spacetime (M, g) and a reasonable resource
mapping R. Then:

(i) For any language L, membership in Pτ
(M,g,R)

is observer-dependent: different worldlines can yield
different tractability judgments.
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(ii) There exist universal curvature- and energy-dependent trade-offs (Lemma 1) that exclude entire classes
of hypothetical algorithms (those violating Ops×Bits bounds), hence narrowing the plausible regime for
Pτ vs NPτ separations.

Interpretation. While the classical P vs NP is maximally hard—robust across machine models and
unresolved after decades—the spacetime-aware version is less hard: its formulation immediately
restricts admissible algorithms to those compatible with physical laws (QSL, Bekenstein, Landauer,
redshift). Thus one obtains tangible, falsifiable constraints that classical theory cannot provide.

Table 1. Side-by-side comparison of classical P vs NP and Spacetime P vs NP.

Classical Framework Spacetime Framework
Resource measure Step counts Proper time + physical budgets
Observer dependence None Yes (different worldlines)
Excluded algorithms None (all poly-time allowed) Those violating Ops×Bits, entropy, QSL
Problem hardness Open, unconstrained Constrained by physics; narrower space

2. Preliminaries
2.1. Classical Step-Complexity

We recall the standard definitions of the complexity classes P and NP. The class P is the set of all
decision problems that can be solved by a deterministic Turing machine in a number of steps that is a
polynomial function of the size of the input. The class NP is the set of all decision problems for which
a given solution can be verified by a deterministic Turing machine in polynomial time. Formally, we
have:

P =
⋃

k∈N
DTIME(nk) (1)

NP =
⋃

k∈N
NTIME(nk) (2)

These definitions are robust to reasonable variations in the underlying machine model, due to the
linear-speedup and simulation theorems [3,9]. The time hierarchy theorem allows for the separation
of complexity classes that are separated by a superpolynomial function, but it does not provide any
insight into the relationship between P and NP [3].

2.2. Physical Resource Bounds

Any physical computation is subject to a number of fundamental bounds. We will make use of
the following constraints in our framework:

• Quantum speed limits (QSL). For an isolated system with an average energy of E above the
ground state, the minimum time ∆t required to transition to an orthogonal state is given by the
Margolus-Levitin theorem as ∆t ≥ πh̄

2E . This implies that the maximum number of elementary
operations that can be performed over a proper time interval of τ is bounded by ops(τ) ≤ 2E

πh̄ τ

[8,13].
• Bekenstein bound. For a system with a radius of R and a total energy of E, the entropy S is

bounded by S ≤ 2πkRE
h̄c . This, in turn, implies a bound on the memory capacity of the system,

given by B ≤ S
k ln 2 ≤ 2πRE

h̄c ln 2 bits [4,14].
• Ultimate limits. By combining the constraints of relativity and quantum mechanics, it is possible

to derive ultimate limits on the total number of operations and the amount of storage for any
computing device. An example of this is Lloyd’s concept of the "ultimate laptop" [12].

3. Computations in Spacetime
Let us consider a globally hyperbolic spacetime, which is described by a pair (M, g), where M is

a manifold and g is a metric. A computing device can be represented by a worldvolume W that is a
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subset of M. The device has a timelike reference worldline, which we will denote as γ. The proper
time along this worldline is given by τ. The average energy of the device above its ground state is a
function of the proper time, E(τ), and the circumscribed radius of the device’s worldtube slice at a
given proper time is bounded by R(τ).

Definition 3.1 (Resource mapping). A resource mapping, denoted by R, is a function that assigns to a
physical implementation the following functions:

Φops(τ) :=
∫ τ

0

2E(t)
πh̄

dt (3)

Φmem(τ) := sup
t≤τ

2πR(t)E(t)
h̄c ln 2

(4)

These functions are interpreted as upper bounds on the number of logical operations that can be executed
and the number of bits that can be reliably stored by a proper time of τ.

The resource mapping R encapsulates the engineering details of the computing device, such
as the overhead associated with error correction, control, and input/output. It can be made more
precise by incorporating additional constraints, such as power, cooling, and signal delays. The resource
mapping provides an effective step budget, S(τ) ≤ Φops(τ), and a memory budget, B(τ) ≤ Φmem(τ),
which are available for the simulation of an abstract machine.

Definition 3.2 (Proper-time complexity). For a given decision problem L ⊆ {0, 1}∗, we say that L is in
the complexity class Pτ

(M,g,R)
if there exist constants c and k, and a family of physical implementations in the

spacetime (M, g), such that for any input x, a device following a timelike worldline γ can decide whether x ∈ L
within a proper time of τ(x) ≤ c |x|k, while adhering to the resource budgets specified by R. The complexity
class NPτ

(M,g,R) is defined in a similar manner, using verifiers that, when given a witness of length at most |x|k,

can accept in a proper time of at most c |x|k for yes-instances.

This definition is analogous to the classical definitions of P and NP, but it measures the physical
runtime in terms of proper time. The number of logical steps is implicitly limited by the function Φops.
Therefore, a polynomial bound on the proper time τ implies that there is sufficient physical capacity to
simulate the required number of steps within the given spacetime constraints.

3.1. Covariance and Observer Dependence

Proposition 1 (Isometry covariance). If ψ : (M, g) → (M, g) is an isometry and the resource mapping R
is defined by the scalar quantities E and R, and the proper time along the worldline γ, then a decision problem L
is in the complexity class Pτ

(M,g,R)
if and only if L is in the complexity class Pτ

(M,g,R)
under the pulled-back

implementation ψ(W) and the worldline ψ ◦ γ.

This proposition shows that the complexity classes are invariant under changes of coordinates.
However, they can depend on the specific worldline that is chosen to execute the computation. For
example, a worldline that experiences extreme gravitational redshift will have a different complexity
class than an inertial observer in an asymptotically flat region of spacetime.

Proposition 2 (Closure under Karp reductions). If A ≤p B via a reduction f computable in Pτ
(M,g,R)

with
budgets bounded by p1(|x|) and B ∈ Pτ

(M,g,R)
with budgets bounded by p2(|x|), then A ∈ Pτ

(M,g,R)
with

budgets bounded by poly(p1(|x|), p2(|x|)).

4. A Universal Time – Space Trade-Off
By combining the quantum speed limit and the Bekenstein bound, we can derive a fundamental

trade-off between the number of achievable operations and the amount of memory that can be stored,
as a function of proper time.
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Lemma 1 (Ops× bits bound). For any computing device with an energy of E and a radius of R (both of which
may be time-dependent) that executes for a proper time of τ, the maximum number of operations, Ops(τ), and
the number of storable bits, Bits(τ), are constrained by the following inequality:

Ops(τ) · Bits(τ) ≲
4E2 τ R
h̄2c ln 2

(5)

This bound can only be approached under idealized conditions.

Proof sketch. According to the Margolus-Levitin theorem, the maximum number of operations that
can be performed in a proper time of τ is given by Ops(τ) ≤ 2

πh̄

∫ τ
0 E(t) dt. The Bekenstein bound

states that the number of bits that can be stored at a given time t is limited by Bits(t) ≤ 2πR(t)E(t)
h̄c ln 2 . By

taking the suprema and products of these two inequalities, and by absorbing the geometric factors, we
arrive at the desired result.

Lemma 1 is a significant result because it prevents pathological scenarios in which both time
and space resources can be scaled independently without incurring any energy or geometric costs. It
provides a formal statement of a trade-off that is enforced by the laws of physics.

5. Gravitational Redshift and Apparent Speedups
Let us consider a spacetime (M, g) that contains a static region with a timelike Killing field, which

we will denote as ∂t. The redshift factor in this region is given by α(x) =
√
−g(∂t, ∂t). For a computing

device that is located at a radius of r outside a Schwarzschild black hole, the relationship between

the proper time, dτ, and the coordinate time, dt, is given by dτ = α(r) dt, where α(r) =
√

1 − 2GM
rc2 .

In this scenario, a computation that takes a polynomial amount of proper time, τ, can appear to
be exponentially faster when measured in the distant coordinate time, t, as the redshift factor, α,
approaches zero. However, this apparent speedup is subject to constraints on energy, stability, and
communication.

Definition 5.1 (Coordinate-time complexity). For a distant observer who uses the coordinate time t, we can
define the complexity class Pt

(M,g,R)
in a manner that is analogous to the definition of Pτ

(M,g,R)
, but with the

time being measured at infinity (when this is well-defined).

Conjecture 2 (Frame-Dependence Conjecture). Let us fix a spacetime (M, g) and a reasonable family of
resource mappings, F , which is closed under constant-factor overheads and standard fault-tolerance. There exist
decision problems, L, and observers on worldlines, γ1 and γ2, such that L is in the complexity class Pτ

(M,g,R1)

but not in the complexity class Pt
(M,g,R2)

for some resource mappings R1 and R2 in the family F , and vice
versa.

This conjecture captures the idea that judgments about tractability can depend on which clock is
used to measure the time (i.e., proper time or coordinate time), even when the step complexity of the
computation remains unchanged.

Conjecture 3 (Gravitational Acceleration Threshold). There exist families of problems and ranges of
parameters (for example, near-horizon redshift with bounded tidal forces and sustainable energy and radius)
where, for typical NP-complete instances of size n, a physically realizable verifier that runs in a polynomial
amount of proper time will have a coordinate-time scaling of t ∈ nO(1) · α(r). As the redshift factor, α, approaches
zero, the apparent runtime in terms of the coordinate time, t, will cross certain thresholds (for example, from
super-polynomial to polynomial), without any change in the local step complexity.

Conjecture 3 reframes the speedups that are induced by redshift as phenomena that are observer-
relative. These phenomena are constrained by the trade-off that is described in Lemma 1, as well as by
the costs that are associated with moving the computing device and exfiltrating the outputs.
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Caveats

It is important to note that these conjectures do not imply that P = NP in the classical, step-
counting sense. Instead, they articulate the differences between the cost models of physical-time and
step-time. Furthermore, scenarios that involve closed timelike curves (CTCs) or Malament-Hogarth
spacetimes can lead to qualitative changes in computability and complexity (such as PSPACE power
or capabilities beyond those of a Turing machine) [2,7,10]. These scenarios are outside the scope of our
fixed-causal framework.
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