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Abstract: In recent years, with the development of the Internet of Things and distributed computing, 
the "server-edge device" architecture has been widely deployed. This study focuses on leveraging 
autoencoder technology to address the binary classification problem in network intrusion detection, 
aiming to develop a lightweight model suitable for edge devices. Traditional intrusion detection 
models face two main challenges when directly ported to edge devices: inadequate computational 
resources to support large-scale models and the need to improve the accuracy of simpler models. 
To tackle these issues, this research utilizes Extreme Learning Machine for its efficient training speed 
and compact model size to implement autoencoders. Two improvements over the latest related 
work are proposed: First, to improve data purity and ultimately enhance detection performance, 
this study partitions the data into multiple regions based on the prediction results of these 
autoencoders. Second, leveraging autoencoder characteristics to investigate further the data within 
each region. We used the public dataset NSL-KDD to test the behavior of the proposed mechanism. 
The experimental results show that when dealing with multi-class attacks, the model's performance 
was significantly improved, the accuracy and the F1-score are improved by 3.5% and 2.9%, 
respectively maintaining its lightweight nature. 

Keywords: autoencoder; network intrusion detection; model accuracy improvement; Extreme 
Learning Machine 

 

1. Introduction 

1.1. Background and Motivation 

IoT (Internet of Things) refers to a network of interconnected devices facilitating communication 
between devices themselves and with the cloud. With advancements in computer hardware and 
increasing communication bandwidth, IoT has permeated our daily life. IoT technology enables 
smart applications across various domains, significantly enhancing productivity. Examples include 
integrated digital infrastructure in smart cities, vehicle traffic monitoring in intelligent transportation 
systems, and automated control of household devices in smart homes, among others [1]. Although 
often unnoticed, IoT has indeed infiltrated various fields. 

Despite its ubiquitous presence, IoT development has not always been benign. According to 
Gartner, approximately 20% of enterprises or related entities experienced at least one IoT-based 
attack between 2015 and 2017 [2]. Some of these attacks had significant impact, such as the Mirai 
botnet, predominantly comprising embedded and IoT devices, which launched large-scale attacks in 
September 2016, crippling several prominent websites. Within the first 20 hours, the above-
mentioned Mirai botnet infected nearly 65,000 IoT devices, stabilizing at 200,000 to 300,000 infected 
devices, marking one of the largest recorded attacks [3]. Additionally, incidents like the BlackEnergy 
attack on Ukraine's power grid [4], the Stuxnet attack on centrifuges in Iran's nuclear facilities [5], 
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and the exploitation of baby monitors for household surveillance [6] underscore ongoing security 
challenges. 

To bolster IoT device security, reliable Intrusion Detection Systems (IDS) are essential. IDS 
generally fall into two categories: 1) signature-based IDS, and 2) anomaly-based IDS. Signature-based 
IDS use predefined signatures or patterns to detect known attack types, triggering alerts when 
network traffic or behavior matches these signatures. Anomaly-based IDS, on the other hand, 
establish baselines of normal behavior and detect deviations indicative of potential attacks, often 
leveraging machine learning to identify anomalous behavior. 

Compared to anomaly-based IDS, signature-based IDS typically offer higher detection accuracy 
but are limited to known attacks, rendering them ineffective against unknown threats. Moreover, 
signature-based IDS require continual updates to their signature databases to combat new threats, 
which can lead to system bloat and increased response times. Lastly, the manual intervention 
required for signature-based IDS is impractical in IoT contexts [7]. Therefore, this study opts for an 
anomaly-based IDS approach using machine learning to detect attacks. 

The next challenge is selecting appropriate machine learning models for intrusion detection, 
considering the constraints of IoT edge devices [8]: limited memory and computational resources 
make complex model execution difficult. Additionally, IoT devices generate sparse network traffic 
compared to common devices, often triggered by infrequent user interactions, and bandwidth 
constraints are common. Furthermore, some IoT applications require rapid response times. Hence, 
lightweight yet accurate models are crucial for deployment on IoT devices. 

1.2. Related Work 

1.2.1. Autoencoder and Its Application to Intrusion Detection 

An autoencoder is a neural network with the learning objective of making the output identical 
to the input. Its structure is divided into two parts: the encoder and the decoder. As shown in Figure 
1, the encoder compresses the data into a low-dimensional space, and the decoder restores it to 
reconstruct the original data. Because the autoencoder can effectively extract features from the data 
during this process, early autoencoders were often used for data compression and feature learning. 
After the Backpropagation (BP) algorithm was proposed [9], the autoencoder algorithm, as one of the 
implementations of BP, also gained attention. The formal introduction of autoencoders as a type of 
neural network structure came from Yann LeCun's research published in 1987 [10]. Since then, 
autoencoders have continuously evolved and have spawned many variants. Today, one of the uses 
of autoencoders is for unsupervised learning, handling binary classification tasks. 

 
Figure 1. Schematic Diagram of the Autoencoder. 

The steps for using an autoencoder for attack detection are as follows: First, train the 
autoencoder using normal data. Then, input the data to be detected and calculate the reconstruction 
error. Generally, for normal data, the reconstruction error is small, while for attack data, the 
reconstruction error is large. Based on this reconstruction error, if it exceeds a pre-set threshold, the 
data is identified as attack data. For instance, Hyunseung Choi et al. utilized four models—basic 
autoencoder, denoising autoencoder, stacked autoencoder, and variational autoencoder—to train the 
training data and classify normal and abnormal data by setting thresholds [11]. Autoencoders can 
also be combined with other models. For example, Cosimo Ieracitano et al. proposed a deep classifier 
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based on autoencoders [12], where the low-dimensional feature vectors obtained from the encoding 
stage are fed into a dense fully connected layer, and the Softmax activation function is used to classify 
the data as normal or abnormal. It is evident that autoencoders play a significant role in the field of 
attack detection. 

1.2.2. On-Device Learning Anomaly Detector 

ONLAD(On-Device Learning Anomaly Detector) [13] is an autoencoder model for detecting 
network intrusions that employs ELM (Extreme Learning Machine) as its main component. 

ELM is a machine learning algorithm for single-hidden layer feedforward neural networks, 
proposed by Guang-Bin Huang et al. in 2004 [14]. Unlike traditional gradient descent methods that 
iteratively update all weight parameters, ELM randomly selects input weights and analytically 
determines output weights using matrix inversion. This approach avoids issues such as overfitting 
and local minima associated with gradient descent methods, significantly improving learning speed 
and generalization performance. Additionally, since ELM has only one hidden layer, the model is 
relatively small in scale. It can be said that ELM is a lightweight machine learning model in terms of 
both time and space efficiency. 

Figure 2 illustrates the basic architecture of ONLAD. In the figure, 𝛼 represents the input weights, 𝛽 the output weights, 𝑏 the bias vector, and 𝐺 the activation function. The objective of ONLAD is to 
generate the output 𝑦 from the input 𝑥 through the model and make 𝑦 as close as possible to the target 𝑡. Since ONLAD operates as an autoencoder, 𝑡 is the same as 𝑥. The process of generating 𝑦 can be 
represented by the following formula: 𝑦ො = 𝐺(𝛼𝑥 + 𝑏)𝛽, (1)

After 𝛼 and 𝑏 are randomly initialized, they are not changed. The parameter 𝛽 is continuously 
updated. Let 𝐻 denote the output of the hidden layer, which is 𝐺(𝑥𝛼 + 𝑏). The optimal output weights 𝛽̂ are calculated as follows: 𝛽መ = 𝐻ା𝑡, (2)

Here, 𝐻ା is the pseudoinverse of 𝐻. 
In the 𝑖-th round of the learning process, the calculation of 𝛽𝑖 for updating the model parameters 

is as follows: 𝑃௜ = 𝑃௜ିଵ − 𝑃௜ିଵ ⋅ 𝐻௜் (𝐼 + 𝐻௜𝑃௜ିଵ𝐻௜் )ିଵ𝐻௜𝑃௜ିଵ, 𝛽௜ = 𝛽௜ିଵ + 𝑃௜𝐻௜்  (𝑡௜ + 𝐻௜𝛽௜ିଵ), 
(3)

Specifically, at the very beginning, 𝑝଴ = (𝐻଴் 𝐻଴)ିଵ and 𝛽଴ = 𝑃଴𝐻଴் 𝑡଴. 

 
Figure 2. ELM Architecture Diagram. 
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1.2.3. Multiple Autoencoders Joint Decision-Making 

In the above ONLAD scheme, researchers trained an autoencoder using normal data and used 
this autoencoder for intrusion detection. However, different types of attacks have different 
sensitivities to different features. For example, feature a contains a lot of information about DoS 
attacks but almost no information about Probe attacks. In this case, if the same features are used to 
train the model indiscriminately, the model's generalization ability will be poor. The solution is to 
train a separate autoencoder model for each type of attack. This way, each autoencoder can focus on 
detecting a specific type of attack and be trained based on the best features for that type of attack. 

Therefore, in the paper [15], faced with the NSL-KDD dataset [16] (which includes normal data 
and four types of attacks: DDoS, Probe, R2L, and U2R), four corresponding autoencoders were 
trained for each type of attack. Each autoencoder was trained using the same normal data but with 
different features. The specific features used by each autoencoder are shown in Table 1. 

Table 1. Feature Selection for Each Type of Attack Data. 

Type of 
Attack Data Selected Feature 

DoS 
protocol_type, flag, wrong_fragment, num_compromised, root_shell, num_shells, 

same_srv_rate  

Probe logged_in, num_root, num_shells, in_host_login, srv_rerror_rate, srv_serror_rate, 
srv_diff_host_rate 

R2L service, urgent, num_root, num_shells, num_access_files, is_guest_login, 
srv_serror_rate 

U2R 
flag, land, hot, num_failed_login, logged_in, num_compromised, su_attempted, 

num_root, num_file_creations, num_outbound_cmds, is_guest_login, same_srv_rate, 
dst_host_srv_count 

When all four autoencoders determine the data to be normal, the detection result is normal. If 
any one of the autoencoders determines the data to be abnormal, the data is classified as abnormal, 
triggering an alert. 

This tailored improvement makes the model more adept at handling complex, non-single type 
attacks in network traffic. 

1.3. Challenges in This Study 

To develop a network intrusion detection system suitable for an IoT environments, we propose 
two key requirements: first, the model should be as lightweight as possible; second, the model's 
detection accuracy should be maximized. The first requirement can be achieved using the Extreme 
Learning Machine mentioned earlier, as long as no significant additional load is added to the model 
that would drastically increase time or space complexity. However, the previous research [15] 
mentioned in Section 1.2 has shown shortcomings in addressing the second requirement. Ideally, the 
distribution of data in the feature space should have clearly defined boundaries between normal and 
attack data. However, due to the complexity of network traffic, in most scenarios, different types of 
data often overlap, making it difficult to accurately detect the anomalies. Therefore, this study focuses 
on reducing the complexity of data distribution in the feature space, aiming to improve the final 
detection performance of the model. 

1.4. Our Contributions 

The main contributions of this work can be briefly summarized as follows: 
• The concept of paired autoencoders is introduced, where an autoencoder trained on attack data 

is paired with another trained on normal data. 
• The data is partitioned into multiple regions to reduce the complexity of data distribution in 

each region and finally to improve the detection performance. For this purpose, multiple 
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autoencoders are used for initial data prediction, and based on the prediction results, the data is 
partitioned. 

• The threshold characteristics of the autoencoders are leveraged to precisely detect data types 
within each region. 

• Even when dealing with traffic that contains a mix of different types of attacks, our proposal 
performs well, as has been validated on the public dataset (NSL-KDD). 

2. Literature Review 

Before formally introducing the content of this research, this section will elaborate on some 
relevant studies concerning network intrusion detection systems in IoT environments that have been 
investigated in recent years. 

Intrusion detection systems (IDS) can generally be classified into two types: signature-based and 
anomaly-based. In traditional network security, signature-based IDS are more common, such as 
firewalls on personal PCs. Naturally, they also have their applications in IoT environments. In a paper 
by Philokypros P. Ioulianou et al. [17], a novel signature-based IDS is proposed. This system consists 
of IDS sensors deployed near the sensor end and IDS routers responsible for running detection 
modules and firewalls. The IDS sensors monitor and report suspicious activities to the IDS routers, 
which match the forwarded packets with malicious signatures and establish firewall rules based on 
the matching results. 

Considering the possibility of internal attacks in collaborative intrusion detection systems (CIDS) 
in IoT environments, Li et al. proposed a consensus framework combining blockchain technology 
and signature-based IDS, called CBSigIDS (Collaborative Blockchained Signature-based Intrusion 
Detection System) [18]. They assume that in this scenario, attackers have the opportunity to control 
one or more nodes in the CIDS. To address this, each IDS node identifies attacks and periodically 
shares a set of signatures encrypted with its private key with other nodes. Before accepting these 
signatures, other nodes verify them against their local databases. Thus, by using blockchain 
technology, CBSigIDS provides a verifiable signature-sharing method for CIDS without the need for 
a trusted intermediary. 

Nazim Uddin Sheikh et al. proposed a pattern matching algorithm to compare the DNA 
sequences of data to be detected with signatures in the signature database [19]. Simply put, this 
algorithm compares the session DNA sequences with signatures, calculating a similarity score. If the 
similarity exceeds a preset threshold, the session is marked as an attack. 

The above are all signature-based IDS, but this type of IDS has its own drawbacks: firstly, it 
cannot detect unknown attacks; secondly, IoT edge devices may not be able to support large signature 
databases. Therefore, more people choose anomaly-based IDS as a solution for IoT environments, 
with machine learning being widely studied as an implementation method. Wai Weng Lo et al. 
proposed a novel network intrusion detection system called E-GraphSAGE [20], which is based on 
GNN(Graph Neural Networks). The GraphSAGE method can capture edge features and topological 
information of the graph, achieving edge classification to detect malicious network traffic. This 
method has achieved good results on four NIDS benchmark datasets such as BoT-IoT. 

For GNN-based IDS in IoT environments, Zhou et al. proposed a new hierarchical adversarial 
attack generation method [21]. This method uses salient graph technology to identify key elements 
in the feature space and generates adversarial samples by minimally perturbing these key elements. 
Additionally, they use a hierarchical node selection algorithm based on random walks to find the 
most vulnerable nodes in IoT as attack targets. The combination of these two algorithms reduces the 
detection accuracy of two state-of-the-art GNN models by 30%. 

Muder Almiani et al. proposed a network intrusion detection model in a fog computing 
environment [22]. This model adopts a two-layer detection structure, each layer using deep recurrent 
neural networks with different internal structures and parameter settings. The first layer mainly 
detects DoS attacks, while the second layer filters out hard-to-detect attacks such as R2L and U2R. 

In the context of smart homes, Wang et al. proposed an intrusion detection system based on 
Transformer [23]. The method used by this system utilizes a self-attention mechanism to learn 
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contextual embeddings of network features, capable of handling both continuous and categorical 
features simultaneously. It achieved good results on the ToN IoT dataset, with 97.95% accuracy for 
binary classification and 95.78% for multi-class classification. 

Salam Fraihat et al. compared four feature selection algorithms—AOA, WSO, GWO, and BAT—
in their paper [24], and combined them with various machine learning models such as RF, NB, and 
DT. They ultimately selected the optimal combination to build an IDS suitable for large-scale IoT 
networks. 

Most of the machine learning models used in the above studies are supervised learning models. 
However, the preliminary research for this study, which is based on unsupervised learning models—
autoencoders, is described in papers [13,15]. The research in these two papers has been thoroughly 
discussed in Section 1.2. 

3. Our Proposal 

3.1. Overviews 

As shown in Figure 3, the overall process of our propal is as follows: First, multiple autoencoders 
are trained using attack data and combined with the original autoencoders trained with normal data 
for joint decision-making. Based on the decision results, the data to be detected is partitioned into 
four regions: quasi-normal region, quasi-attack region, divergence region, and undetermined region. 
The data in the divergence region can be further divided into multiple sub-regions which will be 
explained in detail later. For a specific region, the best-performing autoencoder from all previously 
trained autoencoders is selected as the classifier for that region, determining whether the data is 
normal or an attack. 

 

Figure 3. Proposed Architecture Diagram. 

Next, we will provide a detailed introduction to each stage. 

3.2. Training Multiple Autoencoders Using Attack Data and Normal Data, Respectively 

Typically, autoencoders used for attack detection are trained only on normal (negative) data. 
However, because the classification results of autoencoders are based on thresholds and proper 
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thresholds are very difficult to be predefined. Thus, there will always be some anomalous data below 
the threshold since we don’t want to make the false positive rate very high. This leads to situations 
where intrusion data is present but no alert is triggered, which is fatal for an Intrusion Detection 
System (IDS). To minimize this issue, in this study, we additionally trained multiple autoencoders, 
each with a training set consisting of various types of attack data paired with the best features for 
that type of attack. In other words, these autoencoders are trained on positive data. Unlike traditional 
autoencoders, the new autoencoder indicates an attack has been detected when the reconstruction 
error is less than the threshold. 

Now, we train multiple autoencoders using both normal and attack data distributions. For 
example, for a dataset containing normal data and three types of attacks (denoted as Attack1, Attack2, 
and Attack3), a total of six autoencoders need to be trained, including four models trained on normal 
data and four models trained on attack data. We name these autoencoders as Attack1_neg, 
Attack2_neg, Attack3_neg, Attack1_pos, Attack2_pos, and Attack3_pos. The part before the 
underscore in the names represents the type of attack that the model is particularly good at detecting, 
and the part after the underscore indicates whether the data used for training is negative or positive. 
This naming convention shows that the models exist in pairs, so we refer to such pairs of models as 
"paired autoencoders" (e.g., Attack1_neg and Attack2_pos). 

3.3. First Layer — Data Partitioning 

This section corresponds to the top right part of Figure 3, where the data to be detected is divided 
into the following four regions. As shown in Figure 4, based on the joint decision-making of these 
autoencoders, the data space can be divided into four regions: quasi-normal region, quasi-attack 
region, divergence region, and undetermined region. We use a Venn diagram to describe the 
behavior of a pair of autoencoders: consider the left ellipse as representing the autoencoder trained 
on attack data and the right ellipse as representing the autoencoder trained on normal data. If data 
points are distributed inside the circle, it means their reconstruction error on the corresponding 
autoencoder is less than the threshold of that autoencoder; conversely, if they are distributed outside 
the circle, their reconstruction error is greater than the threshold. In this way, the left difference set 
in the Venn diagram in Figure 4 represents the data that both autoencoders classify as attacks, while 
the right difference set represents the data that both autoencoders classify as normal. The intersection 
represents the data that the _neg autoencoder classifies as normal and the _pos autoencoder classifies 
as an attack, while the external complement set represents the data that the _neg autoencoder 
classifies as an attack and the _pos autoencoder classifies as normal. By observing the distribution of 
data in the Venn diagram, we can divide the data which need to be detected into different regions 
according to the following method (Data can be inputted one by one or collected in sufficient quantity 
and then inputted all at once (offline).): 
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Figure 4. Four Regions of Data Partitioning. 

• If all paired autoencoders classify the data as normal, then the data is classified into the quasi-
normal region. 

• If any paired autoencoder determines the data to be abnormal (i.e., both the autoencoder trained 
with normal data and the autoencoder trained with attack data classify the data as abnormal), 
then the data is classified into the quasi-attack region. 

• Otherwise, If the performance of the data on any paired autoencoder is in the intersection, then 
the data is classified into the divergence region. 

• In all other cases, the data is classified into the undetermined region. For example, when there 
is a pair of autoencoders, where the one trained on normal data classifies the data as an attack, 
and the one trained on attack data classifies the data as non-attack. 
In regions other than the divergence regions, the distribution of data in the feature space is 

relatively simple, but the distribution of data in the divergence regions remains chaotic. There is often 
a significant overlap in the distribution ranges of different types of data in the feature space. Therefore, 
in the divergence regions, the data can be further divided into multiple areas according to the 
following rules: 
• Data falls within the intersection only in one paired autoencoders for one kind of attack; 
• Data falls within the intersection in multiple paired autoencoders. 

This classification method serves as an initial processing step for the detected data, so we refer 
to it as the "data partitioning in the 1st layer". This approach has several advantages: first, it 
essentially performs a rough classification of the data, with some partitions already having high data 
purity. For example, the data in the quasi-normal region is classified as normal by all autoencoders, 
making it highly likely that the data in this region is indeed normal; second, partitioning the data 
reduces the complexity of the data in each region, making it more conducive to detection in the 
second layer. 

3.4. Second Layer — Precise Detection 

After partitioning the data, the next step is to make precise predictions for the data in each region. 
Previously, we obtained multiple autoencoders. Now, for a specific region, we can select the 
autoencoder that has the best classification performance for that region's data as the classifier for that 
region (classification performance is evaluated based on the accuracy on the validation set). This 
"optimal classifier" may be trained on negative data or positive data. For example, in the case of three 
types of attacks—Attack1, Attack2, and Attack3—the optimal classifier for a certain region is the one 
which selected from Attack1_neg, Attack2_neg, Attack3_neg, Attack1_pos, Attack2_pos, and 
Attack3_pos. The final prediction for each region, determined by the "optimal classifier," is what I 
refer to as "precise detection in the second layer." It is important to note that due to the different 
ranges of data samples, even if the same autoencoder is used, the thresholds for partitioning the data 
in the first layer and the second layer should be different. 

4. Experiments 

4.1. Dataset 

The dataset used in this study is the NSL-KDD dataset [16]. The NSL-KDD dataset is an 
improved version of the KDD Cup 99 dataset [25], addressing issues such as redundant records and 
imbalanced data in the original dataset. This dataset is widely used in the field of network intrusion 
detection and aims to provide a more representative and usable dataset. 

The NSL-KDD dataset is widely used not only in machine learning model evaluation and feature 
selection but also in testing and validating new network intrusion detection methods. Its 
improvements include the removal of redundant records, making the training and testing sets more 
balanced and representative [26]. 
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Additionally, the NSL-KDD dataset includes multiple training and testing subsets of varying 
difficulty, such as KDDTrain+ and KDDTest+, which provide samples of different quantities and 
complexities to help researchers more comprehensively evaluate the performance of intrusion 
detection systems. 

The records in the dataset are divided into normal and attack categories, with the attack types 
further divided into four major categories: Probe, DoS, U2R, and R2L. Each data sample contains 41 
features, which are mainly divided into the following categories: 
• Basic features: Describe the basic attributes of a single TCP connection, such as duration, 

protocol type, service type, etc. These features are derived from basic information at the IP and 
TCP layers. 

• Content features: Describe features related to the contents of the data packets, such as the 
number of failed login attempts, number of access control files, etc. These features are mainly 
used to detect U2R and R2L attacks, as these attacks often involve spoofing or abnormal login 
behaviors. 

• Time-based traffic features: Traffic features calculated based on a time window, such as the 
time interval between connections, the number of connections to the same service within a time 
window, etc. These features help detect DoS and Probe attacks, as these attacks often manifest 
as a large number of connection requests in a short period. 

• Host-based traffic features: Statistical features based on the host, such as the number of 
connections to the same host, the number of connections to the same host within a specific time 
window, etc. These features are used to identify attack behaviors targeting a single host. 

4.2. Data Preprocessing 

Firstly, it is important to clarify that in order to determine the threshold for the autoencoder and 
select the best-performing classifier in each region, we need a validation set for parameter tuning. For 
this purpose, we randomly select 20% of the data from KDDTrain+.txt as the validation set, leaving 
the remaining 80% of the data to train the model. The data in KDDTest+.txt will be used as the test 
set for final model evaluation. 

Next, to partition the training data, we first divide the training set into two parts based on the 
label: normal data and attack data. The attack data is further divided into four types of attacks 
according to their labels. Before the data is fed into the training process, feature selection is performed 
according to Table 1. Additionally, string feature values are encoded using one-hot encoding. It 
should be noted that the validation set and test set data should undergo feature selection and 
encoding before being input into the model. However, to ensure the consistency of the one-hot 
encoding results, we will perform this encoding simultaneously with the training set. 

4.3. Model Training and Selecting 

First, train eight autoencoders (four pairs) using the training set data and adjust the thresholds 
of each autoencoder based on their performance on the validation set. Compare the reconstruction 
error of the validation set data on each autoencoder with the thresholds, and divide the data into 
different regions accordingly. 

For each region, use different autoencoders for classification. The autoencoder with the highest 
accuracy is selected as the classifier for that region. The classifiers selected for each region are shown 
in Table 2. As an example, the division of the validation set data for the quasi-normal region of 
DoS_pos are illustrated in Figure 5. We used MSE(Mean Squared Error) as the reconstruction error, 
and by continuously adjusting the threshold, we found that when the threshold is at the position of 
the blue dashed line, it can better separate the normal data from the attack data. This achieves a better 
detection effect than simply judging the data in this region as normal. 
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Table 2. Selected Classifiers for Each Region. 

Region Selected autoencoder 
Quasi-normal region DoS_pos 
Quasi-attack region DoS_pos 
Undetermined region U2R_neg 
Divergence region Region1 R2L_neg 

Region2 U2R_neg 
Region3 DoS_pos 
Region4 R2L_neg 
Region5 R2L_neg 

 
Figure 5. Precise Detection in the Quasi-Attack Region. 

4.4. Evaluation Metrics 

1) Overall Accuracy & Overall F1-Score: Accuracy is used to measure the overall correctness of 
a model's classifications, suitable for datasets with balanced class distributions. F1-Score is useful for 
evaluating model performance on imbalanced datasets, particularly when balancing precision and 
recall is important. They can be calculated using the following formulas: Overall Accuracy=(𝑇𝑃௔௟௟+ 𝑇𝑁௔௟௟+ F𝑃௔௟௟+ F𝑁௔௟௟)/( 𝑇𝑃௔௟௟+ 𝑇𝑁௔௟௟), (4)Overall Precision=(𝑇𝑃௔௟௟)/( 𝑇𝑃௔௟௟+ F𝑃௔௟௟), (5)Overall Recall=(𝑇𝑃௔௟௟)/( 𝑇𝑃௔௟௟+ F𝑁௔௟௟), (6)Overall F1-Score=(2 ∗ 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑅𝑒𝑐𝑎𝑙𝑙)/( 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑅𝑒𝑐𝑎𝑙𝑙), (7)

where 𝑇𝑃௔௟௟ is the number of samples correctly predicted as positive among all the data. 𝑇𝑁௔௟௟ is 
the number of samples correctly predicted as negative among all the data. F𝑃௔௟௟ is the number of 
samples incorrectly predicted as positive among all the data. F 𝑁௔௟௟  is the number of samples 
incorrectly predicted as negative among all the data. 

2) Within-Region Accuracy: Assume that after the first layer of data partitioning, no precise 
detection is performed, and data in the quasi-normal region, divergence region, and indeterminate 
region are all predicted as normal (because these regions contain more normal labels than attack 
labels), while data in the quasi-attack region are all predicted as attacks. Record the accuracy within 
each region under this assumption (the ratio of correctly predicted data to the total data in the region), 
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and compare it with the accuracy within each region after introducing precise detection to 
demonstrate the improvement brought by precise detection. The calculation formula is shown as 
follows: Within-Region Accuracy=(𝑇𝑃௥௘௚+ 𝑇𝑁௥௘௚+ F𝑃௥௘௚+ F𝑁௥௘௚)/( 𝑇𝑃௥௘௚+ 𝑇𝑁௥௘௚), (8)

where 𝑇𝑃௥௘௚ is the number of samples correctly predicted as positive among all the data. 𝑇𝑁௥௘௚ is 
the number of samples correctly predicted as negative among all the data. F𝑃௥௘௚ is the number of 
samples incorrectly predicted as positive among all the data. F𝑁௥௘௚  is the number of samples 
incorrectly predicted as negative among all the data. 

3) Training Duration and Model Size: Compare the training duration and model size in this 
study with several commonly used machine learning models to demonstrate the lightweight nature 
of the proposed model.  

4.5. Experiment Result: Overall Accuracy and Overall F1-Score 

Through experiments, we obtained the confusion matrices of the original model, the original 
model with "precise detection" added, and the method proposed in this paper, as shown in Table 3. 
From these three confusion matrices, we can derive the overall accuracy and overall F1-Score for each 
model. 

Table 3. Confusion Matrix of Models. 

a) Confusion Matrix of previous research 
 Attack(Predicted) Normal(Predicted) 
Attack(Actual) 12136 696 
Normal(Actual) 1446 8265 
b) Confusion Matrix of precise detection models 
 Attack(Predicted) Normal(Predicted) 
Attack(Actual) 12143 689 
Normal(Actual) 1442 8269 
c) Confusion Matrix of precise this study 
 Attack(Predicted) Normal(Predicted) 
Attack(Actual) 12350 482 
Normal(Actual) 878 8833 

The overall accuracy and overall F1-Score of our proposed method are shown in Figure 6. Figure 
6a) compares the accuracy of different models, while Figure 6b) compares the F1-Scores of these 
models. In Figure 6a), the left vertical bar (blue) represents the accuracy of the original method [15], 
the middle vertical bar (green) represents the accuracy after simply adding 'precise detection' to the 
second layer of the original method (i.e., based on predictions from four autoencoders trained on 
normal data, the data is divided into quasi-normal and quasi-attack regions, and the best classifier is 
selected for each region to predict the final result), and the right vertical bar (purple) shows the 
accuracy of our proposed method, which first trains paired autoencoders and then performs precise 
detection within the four regions. Similarly, in Figure 6b), the blue bars represent the F1-Score of the 
original method [15], the green bars represent the F1-Score of the 'precise detection' method, and the 
purple bars show the F1-Score of our proposed method. From both figures, we can observe the 
following points: 

1) The original method has already achieved 90.49% accuracy and 91.89% F1-Score; 
2) Simply adding precise detection only brings a slight improvement; 
3) By combining data partitioning from the first layer with precise detection from the second 

layer, the model's performance is significantly improved. 
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a) Model Accuracy Comparison 

 
b) Model F1-Score Comparison 

Figure 6. Model Accuracy & F1-Score Comparison. 

Discussion: this experiment result can be understood as follows: if precise detection is 
performed solely based on the original method, the distribution of data in the quasi-normal and 
quasi-attack regions in the feature space remains complex, making it difficult for a single autoencoder 
to perform the classification. The advantages of combining data partitioning with precise detection 
are as follows:  

1) It provides more selectable autoencoders to serve as classifiers for precise detection; 
2) The distribution of data in each region in the feature space becomes simpler, making 

classification easier. 

4.6. Experiment Result: Within-Region Accuracy 

The experimental results of the accuracy within each region are shown in Table 4, where each 
row represents the accuracy with and without precise detection in a specific region, as well as the 
difference between them. 

From Table 4, it can be seen that the accuracy in each region has increased to varying degrees 
after adopting precise detection, with the accuracy in the divergence region increasing by 
approximately 20%. In the worst-case scenario, even if the classifier in the second layer does not 
function effectively, it will not reduce the accuracy in that region. It can be said that the introduction 
of precise detection does not negatively impact the model's accuracy. As for the additional time 
brought by precise detection, since the classifier uses existing models and does not require retraining, 
it is negligible. 
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Table 4. Comparison of Accuracy Within Regions. 

Region Without Precise Detection With Precise Detection Increase Magnitude 
Quasi-Normal Region 93.18% 96.31% 3.13% 
Quasi-Attack Region 89.84% 94.66% 4.82% 
Divergence Region 68.37% 89.05% 20.68% 

Undertermined Region 96.48% 96.48% 0 

4.7. Training Time and Model Size Analysis 

As shown in Table 5, the model proposed in this study is compared with the SVM model, the 
random forest model, and the model from previous research. 

It can be seen that the proposed model has a significant advantage in terms of model size 
compared to the SVM and random forest. In terms of training time, its performance is also superior 
to that of the SVM and is on the same order of magnitude as that of the random forest. And, compared 
to previous research, although the model size is twice that of the previous model, it is still relatively 
small, and such an increase does not cause a significant burden. Moreover, since training is not 
performed continuously, a slight increase in training time is acceptable. Considering the significant 
improvement in model accuracy, this level of sacrifice does not pose a serious problem. 

Table 5. Comparison of Training Time and Model Size. 

Model Without Precise Detection Model Size 
RF 12.6s 2.29MB 

SVM(kernel = linear) 20min+  
This Study 42.3s 484KB 

Previous Research 29.5s 242KB 

5. Conclusion and Future Work 

In this study, we introduced an efficient classifier model for intrusion detection, leveraging 
autoencoders specifically designed for deployment on edge devices within IoT networks. 
Recognizing the limitations of traditional intrusion detection models on edge devices, such as 
insufficient computational resources and the need for enhanced accuracy, we proposed a lightweight 
model utilizing Extreme Learning Machine (ELM) for its swift training and compact size.  

Our approach involved training multiple autoencoders using different types of attack data, as 
well as normal data paired with varying feature sets. These autoencoders collectively performed 
initial data prediction, partitioning data based on prediction results, and subsequently leveraging 
their characteristics for precise detection within each classification region. This method not only 
maintained the lightweight nature of the model but also improved its accuracy and F1-Score by 3.5% 
and 2.9% compared to the original approach on the NSL-KDD dataset while maintaining a 
lightweight advantage over traditional models like Random Forest and Support Vector Machine. 

We evaluated the proposed model using the NSL-KDD dataset, which contains both normal and 
various attack types (DoS, Probe, U2R, R2L). Our experimental setup involved training eight 
autoencoders, including both normal and attack data, leading to the creation of "paired 
autoencoders." These paired autoencoders facilitated the initial data partitioning into quasi-normal, 
quasi-attack, divergence, and undetermined regions. The subsequent precise detection within these 
regions further enhanced the model's performance. 

The experimental results demonstrated that our model achieved superior overall accuracy, 
particularly in the divergence region where accuracy improved by approximately 20%. Furthermore, 
the proposed model exhibited significant advantages in terms of model size and training duration, 
making it highly suitable for edge device deployment. 

In summary, the binary classifier model based on autoencoders and ELM presented in this study 
effectively addresses the challenges faced by traditional IDS models in IoT environments. By 
combining data partitioning and precise detection, our approach not only ensures high detection 
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accuracy but also maintains a lightweight profile, crucial for practical implementation on edge 
devices. 

In the future, we will use more datasets to validate our model. Additionally, we will simulate a 
distributed IoT environment and apply methods like federated learning to aggregate the model. 
Regarding the model, we will balance accuracy and model size, appropriately reducing the number 
of autoencoders in data spaces where the impact on detection accuracy is minimal, to ensure further 
lightweight optimization. 
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