
Article Not peer-reviewed version

An Efficient Detection Mechanism of

Network Intrusions in IoT Environments

using Autoencoder and Data

Partitioning

Yiran Xiao * , Yaokai Feng * , Kouichi Sakurai

Posted Date: 14 August 2024

doi: 10.20944/preprints202408.0945.v1

Keywords: autoencoder; network intrusion detection; model accuracy improvement; Extreme Learning

Machine

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/3764812
https://sciprofiles.com/profile/908107
https://sciprofiles.com/profile/412967

Article

An Efficient Detection Mechanism of Network
Intrusions in IoT Environments Using Autoencoder
and Data Partitioning
Yiran Xiao 1,*, Yaokai Feng 2,* and Kouichi Sakurai 2

1 College of Information Science and Electrical Engineering, Kyushu University, Japan
2 Faculty of Information Science and Electrical Engineering, Kyushu University, Japan
* Correspondence: yiranxiao320@outlook.com(Y. Xiao); fengyk@ait.kyushu-u.ac.jp(Y. Feng);

Abstract: In recent years, with the development of the Internet of Things and distributed computing,
the "server-edge device" architecture has been widely deployed. This study focuses on leveraging
autoencoder technology to address the binary classification problem in network intrusion detection,
aiming to develop a lightweight model suitable for edge devices. Traditional intrusion detection
models face two main challenges when directly ported to edge devices: inadequate computational
resources to support large-scale models and the need to improve the accuracy of simpler models.
To tackle these issues, this research utilizes Extreme Learning Machine for its efficient training speed
and compact model size to implement autoencoders. Two improvements over the latest related
work are proposed: First, to improve data purity and ultimately enhance detection performance,
this study partitions the data into multiple regions based on the prediction results of these
autoencoders. Second, leveraging autoencoder characteristics to investigate further the data within
each region. We used the public dataset NSL-KDD to test the behavior of the proposed mechanism.
The experimental results show that when dealing with multi-class attacks, the model's performance
was significantly improved, the accuracy and the F1-score are improved by 3.5% and 2.9%,
respectively maintaining its lightweight nature.

Keywords: autoencoder; network intrusion detection; model accuracy improvement; Extreme
Learning Machine

1. Introduction

1.1. Background and Motivation

IoT (Internet of Things) refers to a network of interconnected devices facilitating communication
between devices themselves and with the cloud. With advancements in computer hardware and
increasing communication bandwidth, IoT has permeated our daily life. IoT technology enables
smart applications across various domains, significantly enhancing productivity. Examples include
integrated digital infrastructure in smart cities, vehicle traffic monitoring in intelligent transportation
systems, and automated control of household devices in smart homes, among others [1]. Although
often unnoticed, IoT has indeed infiltrated various fields.

Despite its ubiquitous presence, IoT development has not always been benign. According to
Gartner, approximately 20% of enterprises or related entities experienced at least one IoT-based
attack between 2015 and 2017 [2]. Some of these attacks had significant impact, such as the Mirai
botnet, predominantly comprising embedded and IoT devices, which launched large-scale attacks in
September 2016, crippling several prominent websites. Within the first 20 hours, the above-
mentioned Mirai botnet infected nearly 65,000 IoT devices, stabilizing at 200,000 to 300,000 infected
devices, marking one of the largest recorded attacks [3]. Additionally, incidents like the BlackEnergy
attack on Ukraine's power grid [4], the Stuxnet attack on centrifuges in Iran's nuclear facilities [5],

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 August 2024 doi:10.20944/preprints202408.0945.v1

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202408.0945.v1
http://creativecommons.org/licenses/by/4.0/

 2

and the exploitation of baby monitors for household surveillance [6] underscore ongoing security
challenges.

To bolster IoT device security, reliable Intrusion Detection Systems (IDS) are essential. IDS
generally fall into two categories: 1) signature-based IDS, and 2) anomaly-based IDS. Signature-based
IDS use predefined signatures or patterns to detect known attack types, triggering alerts when
network traffic or behavior matches these signatures. Anomaly-based IDS, on the other hand,
establish baselines of normal behavior and detect deviations indicative of potential attacks, often
leveraging machine learning to identify anomalous behavior.

Compared to anomaly-based IDS, signature-based IDS typically offer higher detection accuracy
but are limited to known attacks, rendering them ineffective against unknown threats. Moreover,
signature-based IDS require continual updates to their signature databases to combat new threats,
which can lead to system bloat and increased response times. Lastly, the manual intervention
required for signature-based IDS is impractical in IoT contexts [7]. Therefore, this study opts for an
anomaly-based IDS approach using machine learning to detect attacks.

The next challenge is selecting appropriate machine learning models for intrusion detection,
considering the constraints of IoT edge devices [8]: limited memory and computational resources
make complex model execution difficult. Additionally, IoT devices generate sparse network traffic
compared to common devices, often triggered by infrequent user interactions, and bandwidth
constraints are common. Furthermore, some IoT applications require rapid response times. Hence,
lightweight yet accurate models are crucial for deployment on IoT devices.

1.2. Related Work

1.2.1. Autoencoder and Its Application to Intrusion Detection

An autoencoder is a neural network with the learning objective of making the output identical
to the input. Its structure is divided into two parts: the encoder and the decoder. As shown in Figure
1, the encoder compresses the data into a low-dimensional space, and the decoder restores it to
reconstruct the original data. Because the autoencoder can effectively extract features from the data
during this process, early autoencoders were often used for data compression and feature learning.
After the Backpropagation (BP) algorithm was proposed [9], the autoencoder algorithm, as one of the
implementations of BP, also gained attention. The formal introduction of autoencoders as a type of
neural network structure came from Yann LeCun's research published in 1987 [10]. Since then,
autoencoders have continuously evolved and have spawned many variants. Today, one of the uses
of autoencoders is for unsupervised learning, handling binary classification tasks.

Figure 1. Schematic Diagram of the Autoencoder.

The steps for using an autoencoder for attack detection are as follows: First, train the
autoencoder using normal data. Then, input the data to be detected and calculate the reconstruction
error. Generally, for normal data, the reconstruction error is small, while for attack data, the
reconstruction error is large. Based on this reconstruction error, if it exceeds a pre-set threshold, the
data is identified as attack data. For instance, Hyunseung Choi et al. utilized four models—basic
autoencoder, denoising autoencoder, stacked autoencoder, and variational autoencoder—to train the
training data and classify normal and abnormal data by setting thresholds [11]. Autoencoders can
also be combined with other models. For example, Cosimo Ieracitano et al. proposed a deep classifier

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 August 2024 doi:10.20944/preprints202408.0945.v1

https://doi.org/10.20944/preprints202408.0945.v1

 3

based on autoencoders [12], where the low-dimensional feature vectors obtained from the encoding
stage are fed into a dense fully connected layer, and the Softmax activation function is used to classify
the data as normal or abnormal. It is evident that autoencoders play a significant role in the field of
attack detection.

1.2.2. On-Device Learning Anomaly Detector

ONLAD(On-Device Learning Anomaly Detector) [13] is an autoencoder model for detecting
network intrusions that employs ELM (Extreme Learning Machine) as its main component.

ELM is a machine learning algorithm for single-hidden layer feedforward neural networks,
proposed by Guang-Bin Huang et al. in 2004 [14]. Unlike traditional gradient descent methods that
iteratively update all weight parameters, ELM randomly selects input weights and analytically
determines output weights using matrix inversion. This approach avoids issues such as overfitting
and local minima associated with gradient descent methods, significantly improving learning speed
and generalization performance. Additionally, since ELM has only one hidden layer, the model is
relatively small in scale. It can be said that ELM is a lightweight machine learning model in terms of
both time and space efficiency.

Figure 2 illustrates the basic architecture of ONLAD. In the figure, 𝛼 represents the input weights, 𝛽 the output weights, 𝑏 the bias vector, and 𝐺 the activation function. The objective of ONLAD is to
generate the output 𝑦 from the input 𝑥 through the model and make 𝑦 as close as possible to the target 𝑡. Since ONLAD operates as an autoencoder, 𝑡 is the same as 𝑥. The process of generating 𝑦 can be
represented by the following formula: 𝑦ො = 𝐺(𝛼𝑥 + 𝑏)𝛽, (1)

After 𝛼 and 𝑏 are randomly initialized, they are not changed. The parameter 𝛽 is continuously
updated. Let 𝐻 denote the output of the hidden layer, which is 𝐺(𝑥𝛼 + 𝑏). The optimal output weights 𝛽̂ are calculated as follows: 𝛽መ = 𝐻ା𝑡, (2)

Here, 𝐻ା is the pseudoinverse of 𝐻.
In the 𝑖-th round of the learning process, the calculation of 𝛽𝑖 for updating the model parameters

is as follows: 𝑃௜ = 𝑃௜ିଵ − 𝑃௜ିଵ ⋅ 𝐻௜் (𝐼 + 𝐻௜𝑃௜ିଵ𝐻௜்)ିଵ𝐻௜𝑃௜ିଵ, 𝛽௜ = 𝛽௜ିଵ + 𝑃௜𝐻௜் (𝑡௜ + 𝐻௜𝛽௜ିଵ),
(3)

Specifically, at the very beginning, 𝑝଴ = (𝐻଴் 𝐻଴)ିଵ and 𝛽଴ = 𝑃଴𝐻଴் 𝑡଴.

Figure 2. ELM Architecture Diagram.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 August 2024 doi:10.20944/preprints202408.0945.v1

https://doi.org/10.20944/preprints202408.0945.v1

 4

1.2.3. Multiple Autoencoders Joint Decision-Making

In the above ONLAD scheme, researchers trained an autoencoder using normal data and used
this autoencoder for intrusion detection. However, different types of attacks have different
sensitivities to different features. For example, feature a contains a lot of information about DoS
attacks but almost no information about Probe attacks. In this case, if the same features are used to
train the model indiscriminately, the model's generalization ability will be poor. The solution is to
train a separate autoencoder model for each type of attack. This way, each autoencoder can focus on
detecting a specific type of attack and be trained based on the best features for that type of attack.

Therefore, in the paper [15], faced with the NSL-KDD dataset [16] (which includes normal data
and four types of attacks: DDoS, Probe, R2L, and U2R), four corresponding autoencoders were
trained for each type of attack. Each autoencoder was trained using the same normal data but with
different features. The specific features used by each autoencoder are shown in Table 1.

Table 1. Feature Selection for Each Type of Attack Data.

Type of
Attack Data Selected Feature

DoS
protocol_type, flag, wrong_fragment, num_compromised, root_shell, num_shells,

same_srv_rate

Probe logged_in, num_root, num_shells, in_host_login, srv_rerror_rate, srv_serror_rate,
srv_diff_host_rate

R2L service, urgent, num_root, num_shells, num_access_files, is_guest_login,
srv_serror_rate

U2R
flag, land, hot, num_failed_login, logged_in, num_compromised, su_attempted,

num_root, num_file_creations, num_outbound_cmds, is_guest_login, same_srv_rate,
dst_host_srv_count

When all four autoencoders determine the data to be normal, the detection result is normal. If
any one of the autoencoders determines the data to be abnormal, the data is classified as abnormal,
triggering an alert.

This tailored improvement makes the model more adept at handling complex, non-single type
attacks in network traffic.

1.3. Challenges in This Study

To develop a network intrusion detection system suitable for an IoT environments, we propose
two key requirements: first, the model should be as lightweight as possible; second, the model's
detection accuracy should be maximized. The first requirement can be achieved using the Extreme
Learning Machine mentioned earlier, as long as no significant additional load is added to the model
that would drastically increase time or space complexity. However, the previous research [15]
mentioned in Section 1.2 has shown shortcomings in addressing the second requirement. Ideally, the
distribution of data in the feature space should have clearly defined boundaries between normal and
attack data. However, due to the complexity of network traffic, in most scenarios, different types of
data often overlap, making it difficult to accurately detect the anomalies. Therefore, this study focuses
on reducing the complexity of data distribution in the feature space, aiming to improve the final
detection performance of the model.

1.4. Our Contributions

The main contributions of this work can be briefly summarized as follows:
• The concept of paired autoencoders is introduced, where an autoencoder trained on attack data

is paired with another trained on normal data.
• The data is partitioned into multiple regions to reduce the complexity of data distribution in

each region and finally to improve the detection performance. For this purpose, multiple

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 August 2024 doi:10.20944/preprints202408.0945.v1

https://doi.org/10.20944/preprints202408.0945.v1

 5

autoencoders are used for initial data prediction, and based on the prediction results, the data is
partitioned.

• The threshold characteristics of the autoencoders are leveraged to precisely detect data types
within each region.

• Even when dealing with traffic that contains a mix of different types of attacks, our proposal
performs well, as has been validated on the public dataset (NSL-KDD).

2. Literature Review

Before formally introducing the content of this research, this section will elaborate on some
relevant studies concerning network intrusion detection systems in IoT environments that have been
investigated in recent years.

Intrusion detection systems (IDS) can generally be classified into two types: signature-based and
anomaly-based. In traditional network security, signature-based IDS are more common, such as
firewalls on personal PCs. Naturally, they also have their applications in IoT environments. In a paper
by Philokypros P. Ioulianou et al. [17], a novel signature-based IDS is proposed. This system consists
of IDS sensors deployed near the sensor end and IDS routers responsible for running detection
modules and firewalls. The IDS sensors monitor and report suspicious activities to the IDS routers,
which match the forwarded packets with malicious signatures and establish firewall rules based on
the matching results.

Considering the possibility of internal attacks in collaborative intrusion detection systems (CIDS)
in IoT environments, Li et al. proposed a consensus framework combining blockchain technology
and signature-based IDS, called CBSigIDS (Collaborative Blockchained Signature-based Intrusion
Detection System) [18]. They assume that in this scenario, attackers have the opportunity to control
one or more nodes in the CIDS. To address this, each IDS node identifies attacks and periodically
shares a set of signatures encrypted with its private key with other nodes. Before accepting these
signatures, other nodes verify them against their local databases. Thus, by using blockchain
technology, CBSigIDS provides a verifiable signature-sharing method for CIDS without the need for
a trusted intermediary.

Nazim Uddin Sheikh et al. proposed a pattern matching algorithm to compare the DNA
sequences of data to be detected with signatures in the signature database [19]. Simply put, this
algorithm compares the session DNA sequences with signatures, calculating a similarity score. If the
similarity exceeds a preset threshold, the session is marked as an attack.

The above are all signature-based IDS, but this type of IDS has its own drawbacks: firstly, it
cannot detect unknown attacks; secondly, IoT edge devices may not be able to support large signature
databases. Therefore, more people choose anomaly-based IDS as a solution for IoT environments,
with machine learning being widely studied as an implementation method. Wai Weng Lo et al.
proposed a novel network intrusion detection system called E-GraphSAGE [20], which is based on
GNN(Graph Neural Networks). The GraphSAGE method can capture edge features and topological
information of the graph, achieving edge classification to detect malicious network traffic. This
method has achieved good results on four NIDS benchmark datasets such as BoT-IoT.

For GNN-based IDS in IoT environments, Zhou et al. proposed a new hierarchical adversarial
attack generation method [21]. This method uses salient graph technology to identify key elements
in the feature space and generates adversarial samples by minimally perturbing these key elements.
Additionally, they use a hierarchical node selection algorithm based on random walks to find the
most vulnerable nodes in IoT as attack targets. The combination of these two algorithms reduces the
detection accuracy of two state-of-the-art GNN models by 30%.

Muder Almiani et al. proposed a network intrusion detection model in a fog computing
environment [22]. This model adopts a two-layer detection structure, each layer using deep recurrent
neural networks with different internal structures and parameter settings. The first layer mainly
detects DoS attacks, while the second layer filters out hard-to-detect attacks such as R2L and U2R.

In the context of smart homes, Wang et al. proposed an intrusion detection system based on
Transformer [23]. The method used by this system utilizes a self-attention mechanism to learn

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 August 2024 doi:10.20944/preprints202408.0945.v1

https://doi.org/10.20944/preprints202408.0945.v1

 6

contextual embeddings of network features, capable of handling both continuous and categorical
features simultaneously. It achieved good results on the ToN IoT dataset, with 97.95% accuracy for
binary classification and 95.78% for multi-class classification.

Salam Fraihat et al. compared four feature selection algorithms—AOA, WSO, GWO, and BAT—
in their paper [24], and combined them with various machine learning models such as RF, NB, and
DT. They ultimately selected the optimal combination to build an IDS suitable for large-scale IoT
networks.

Most of the machine learning models used in the above studies are supervised learning models.
However, the preliminary research for this study, which is based on unsupervised learning models—
autoencoders, is described in papers [13,15]. The research in these two papers has been thoroughly
discussed in Section 1.2.

3. Our Proposal

3.1. Overviews

As shown in Figure 3, the overall process of our propal is as follows: First, multiple autoencoders
are trained using attack data and combined with the original autoencoders trained with normal data
for joint decision-making. Based on the decision results, the data to be detected is partitioned into
four regions: quasi-normal region, quasi-attack region, divergence region, and undetermined region.
The data in the divergence region can be further divided into multiple sub-regions which will be
explained in detail later. For a specific region, the best-performing autoencoder from all previously
trained autoencoders is selected as the classifier for that region, determining whether the data is
normal or an attack.

Figure 3. Proposed Architecture Diagram.

Next, we will provide a detailed introduction to each stage.

3.2. Training Multiple Autoencoders Using Attack Data and Normal Data, Respectively

Typically, autoencoders used for attack detection are trained only on normal (negative) data.
However, because the classification results of autoencoders are based on thresholds and proper

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 August 2024 doi:10.20944/preprints202408.0945.v1

https://doi.org/10.20944/preprints202408.0945.v1

 7

thresholds are very difficult to be predefined. Thus, there will always be some anomalous data below
the threshold since we don’t want to make the false positive rate very high. This leads to situations
where intrusion data is present but no alert is triggered, which is fatal for an Intrusion Detection
System (IDS). To minimize this issue, in this study, we additionally trained multiple autoencoders,
each with a training set consisting of various types of attack data paired with the best features for
that type of attack. In other words, these autoencoders are trained on positive data. Unlike traditional
autoencoders, the new autoencoder indicates an attack has been detected when the reconstruction
error is less than the threshold.

Now, we train multiple autoencoders using both normal and attack data distributions. For
example, for a dataset containing normal data and three types of attacks (denoted as Attack1, Attack2,
and Attack3), a total of six autoencoders need to be trained, including four models trained on normal
data and four models trained on attack data. We name these autoencoders as Attack1_neg,
Attack2_neg, Attack3_neg, Attack1_pos, Attack2_pos, and Attack3_pos. The part before the
underscore in the names represents the type of attack that the model is particularly good at detecting,
and the part after the underscore indicates whether the data used for training is negative or positive.
This naming convention shows that the models exist in pairs, so we refer to such pairs of models as
"paired autoencoders" (e.g., Attack1_neg and Attack2_pos).

3.3. First Layer — Data Partitioning

This section corresponds to the top right part of Figure 3, where the data to be detected is divided
into the following four regions. As shown in Figure 4, based on the joint decision-making of these
autoencoders, the data space can be divided into four regions: quasi-normal region, quasi-attack
region, divergence region, and undetermined region. We use a Venn diagram to describe the
behavior of a pair of autoencoders: consider the left ellipse as representing the autoencoder trained
on attack data and the right ellipse as representing the autoencoder trained on normal data. If data
points are distributed inside the circle, it means their reconstruction error on the corresponding
autoencoder is less than the threshold of that autoencoder; conversely, if they are distributed outside
the circle, their reconstruction error is greater than the threshold. In this way, the left difference set
in the Venn diagram in Figure 4 represents the data that both autoencoders classify as attacks, while
the right difference set represents the data that both autoencoders classify as normal. The intersection
represents the data that the _neg autoencoder classifies as normal and the _pos autoencoder classifies
as an attack, while the external complement set represents the data that the _neg autoencoder
classifies as an attack and the _pos autoencoder classifies as normal. By observing the distribution of
data in the Venn diagram, we can divide the data which need to be detected into different regions
according to the following method (Data can be inputted one by one or collected in sufficient quantity
and then inputted all at once (offline).):

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 August 2024 doi:10.20944/preprints202408.0945.v1

https://doi.org/10.20944/preprints202408.0945.v1

 8

Figure 4. Four Regions of Data Partitioning.

• If all paired autoencoders classify the data as normal, then the data is classified into the quasi-
normal region.

• If any paired autoencoder determines the data to be abnormal (i.e., both the autoencoder trained
with normal data and the autoencoder trained with attack data classify the data as abnormal),
then the data is classified into the quasi-attack region.

• Otherwise, If the performance of the data on any paired autoencoder is in the intersection, then
the data is classified into the divergence region.

• In all other cases, the data is classified into the undetermined region. For example, when there
is a pair of autoencoders, where the one trained on normal data classifies the data as an attack,
and the one trained on attack data classifies the data as non-attack.
In regions other than the divergence regions, the distribution of data in the feature space is

relatively simple, but the distribution of data in the divergence regions remains chaotic. There is often
a significant overlap in the distribution ranges of different types of data in the feature space. Therefore,
in the divergence regions, the data can be further divided into multiple areas according to the
following rules:
• Data falls within the intersection only in one paired autoencoders for one kind of attack;
• Data falls within the intersection in multiple paired autoencoders.

This classification method serves as an initial processing step for the detected data, so we refer
to it as the "data partitioning in the 1st layer". This approach has several advantages: first, it
essentially performs a rough classification of the data, with some partitions already having high data
purity. For example, the data in the quasi-normal region is classified as normal by all autoencoders,
making it highly likely that the data in this region is indeed normal; second, partitioning the data
reduces the complexity of the data in each region, making it more conducive to detection in the
second layer.

3.4. Second Layer — Precise Detection

After partitioning the data, the next step is to make precise predictions for the data in each region.
Previously, we obtained multiple autoencoders. Now, for a specific region, we can select the
autoencoder that has the best classification performance for that region's data as the classifier for that
region (classification performance is evaluated based on the accuracy on the validation set). This
"optimal classifier" may be trained on negative data or positive data. For example, in the case of three
types of attacks—Attack1, Attack2, and Attack3—the optimal classifier for a certain region is the one
which selected from Attack1_neg, Attack2_neg, Attack3_neg, Attack1_pos, Attack2_pos, and
Attack3_pos. The final prediction for each region, determined by the "optimal classifier," is what I
refer to as "precise detection in the second layer." It is important to note that due to the different
ranges of data samples, even if the same autoencoder is used, the thresholds for partitioning the data
in the first layer and the second layer should be different.

4. Experiments

4.1. Dataset

The dataset used in this study is the NSL-KDD dataset [16]. The NSL-KDD dataset is an
improved version of the KDD Cup 99 dataset [25], addressing issues such as redundant records and
imbalanced data in the original dataset. This dataset is widely used in the field of network intrusion
detection and aims to provide a more representative and usable dataset.

The NSL-KDD dataset is widely used not only in machine learning model evaluation and feature
selection but also in testing and validating new network intrusion detection methods. Its
improvements include the removal of redundant records, making the training and testing sets more
balanced and representative [26].

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 August 2024 doi:10.20944/preprints202408.0945.v1

https://doi.org/10.20944/preprints202408.0945.v1

 9

Additionally, the NSL-KDD dataset includes multiple training and testing subsets of varying
difficulty, such as KDDTrain+ and KDDTest+, which provide samples of different quantities and
complexities to help researchers more comprehensively evaluate the performance of intrusion
detection systems.

The records in the dataset are divided into normal and attack categories, with the attack types
further divided into four major categories: Probe, DoS, U2R, and R2L. Each data sample contains 41
features, which are mainly divided into the following categories:
• Basic features: Describe the basic attributes of a single TCP connection, such as duration,

protocol type, service type, etc. These features are derived from basic information at the IP and
TCP layers.

• Content features: Describe features related to the contents of the data packets, such as the
number of failed login attempts, number of access control files, etc. These features are mainly
used to detect U2R and R2L attacks, as these attacks often involve spoofing or abnormal login
behaviors.

• Time-based traffic features: Traffic features calculated based on a time window, such as the
time interval between connections, the number of connections to the same service within a time
window, etc. These features help detect DoS and Probe attacks, as these attacks often manifest
as a large number of connection requests in a short period.

• Host-based traffic features: Statistical features based on the host, such as the number of
connections to the same host, the number of connections to the same host within a specific time
window, etc. These features are used to identify attack behaviors targeting a single host.

4.2. Data Preprocessing

Firstly, it is important to clarify that in order to determine the threshold for the autoencoder and
select the best-performing classifier in each region, we need a validation set for parameter tuning. For
this purpose, we randomly select 20% of the data from KDDTrain+.txt as the validation set, leaving
the remaining 80% of the data to train the model. The data in KDDTest+.txt will be used as the test
set for final model evaluation.

Next, to partition the training data, we first divide the training set into two parts based on the
label: normal data and attack data. The attack data is further divided into four types of attacks
according to their labels. Before the data is fed into the training process, feature selection is performed
according to Table 1. Additionally, string feature values are encoded using one-hot encoding. It
should be noted that the validation set and test set data should undergo feature selection and
encoding before being input into the model. However, to ensure the consistency of the one-hot
encoding results, we will perform this encoding simultaneously with the training set.

4.3. Model Training and Selecting

First, train eight autoencoders (four pairs) using the training set data and adjust the thresholds
of each autoencoder based on their performance on the validation set. Compare the reconstruction
error of the validation set data on each autoencoder with the thresholds, and divide the data into
different regions accordingly.

For each region, use different autoencoders for classification. The autoencoder with the highest
accuracy is selected as the classifier for that region. The classifiers selected for each region are shown
in Table 2. As an example, the division of the validation set data for the quasi-normal region of
DoS_pos are illustrated in Figure 5. We used MSE(Mean Squared Error) as the reconstruction error,
and by continuously adjusting the threshold, we found that when the threshold is at the position of
the blue dashed line, it can better separate the normal data from the attack data. This achieves a better
detection effect than simply judging the data in this region as normal.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 August 2024 doi:10.20944/preprints202408.0945.v1

https://doi.org/10.20944/preprints202408.0945.v1

 10

Table 2. Selected Classifiers for Each Region.

Region Selected autoencoder
Quasi-normal region DoS_pos
Quasi-attack region DoS_pos
Undetermined region U2R_neg
Divergence region Region1 R2L_neg

Region2 U2R_neg
Region3 DoS_pos
Region4 R2L_neg
Region5 R2L_neg

Figure 5. Precise Detection in the Quasi-Attack Region.

4.4. Evaluation Metrics

1) Overall Accuracy & Overall F1-Score: Accuracy is used to measure the overall correctness of
a model's classifications, suitable for datasets with balanced class distributions. F1-Score is useful for
evaluating model performance on imbalanced datasets, particularly when balancing precision and
recall is important. They can be calculated using the following formulas: Overall Accuracy=(𝑇𝑃௔௟௟+ 𝑇𝑁௔௟௟+ F𝑃௔௟௟+ F𝑁௔௟௟)/(𝑇𝑃௔௟௟+ 𝑇𝑁௔௟௟), (4)Overall Precision=(𝑇𝑃௔௟௟)/(𝑇𝑃௔௟௟+ F𝑃௔௟௟), (5)Overall Recall=(𝑇𝑃௔௟௟)/(𝑇𝑃௔௟௟+ F𝑁௔௟௟), (6)Overall F1-Score=(2 ∗ 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑅𝑒𝑐𝑎𝑙𝑙)/(𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑅𝑒𝑐𝑎𝑙𝑙), (7)

where 𝑇𝑃௔௟௟ is the number of samples correctly predicted as positive among all the data. 𝑇𝑁௔௟௟ is
the number of samples correctly predicted as negative among all the data. F𝑃௔௟௟ is the number of
samples incorrectly predicted as positive among all the data. F 𝑁௔௟௟ is the number of samples
incorrectly predicted as negative among all the data.

2) Within-Region Accuracy: Assume that after the first layer of data partitioning, no precise
detection is performed, and data in the quasi-normal region, divergence region, and indeterminate
region are all predicted as normal (because these regions contain more normal labels than attack
labels), while data in the quasi-attack region are all predicted as attacks. Record the accuracy within
each region under this assumption (the ratio of correctly predicted data to the total data in the region),

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 August 2024 doi:10.20944/preprints202408.0945.v1

https://doi.org/10.20944/preprints202408.0945.v1

 11

and compare it with the accuracy within each region after introducing precise detection to
demonstrate the improvement brought by precise detection. The calculation formula is shown as
follows: Within-Region Accuracy=(𝑇𝑃௥௘௚+ 𝑇𝑁௥௘௚+ F𝑃௥௘௚+ F𝑁௥௘௚)/(𝑇𝑃௥௘௚+ 𝑇𝑁௥௘௚), (8)

where 𝑇𝑃௥௘௚ is the number of samples correctly predicted as positive among all the data. 𝑇𝑁௥௘௚ is
the number of samples correctly predicted as negative among all the data. F𝑃௥௘௚ is the number of
samples incorrectly predicted as positive among all the data. F𝑁௥௘௚ is the number of samples
incorrectly predicted as negative among all the data.

3) Training Duration and Model Size: Compare the training duration and model size in this
study with several commonly used machine learning models to demonstrate the lightweight nature
of the proposed model.

4.5. Experiment Result: Overall Accuracy and Overall F1-Score

Through experiments, we obtained the confusion matrices of the original model, the original
model with "precise detection" added, and the method proposed in this paper, as shown in Table 3.
From these three confusion matrices, we can derive the overall accuracy and overall F1-Score for each
model.

Table 3. Confusion Matrix of Models.

a) Confusion Matrix of previous research
 Attack(Predicted) Normal(Predicted)
Attack(Actual) 12136 696
Normal(Actual) 1446 8265
b) Confusion Matrix of precise detection models
 Attack(Predicted) Normal(Predicted)
Attack(Actual) 12143 689
Normal(Actual) 1442 8269
c) Confusion Matrix of precise this study
 Attack(Predicted) Normal(Predicted)
Attack(Actual) 12350 482
Normal(Actual) 878 8833

The overall accuracy and overall F1-Score of our proposed method are shown in Figure 6. Figure
6a) compares the accuracy of different models, while Figure 6b) compares the F1-Scores of these
models. In Figure 6a), the left vertical bar (blue) represents the accuracy of the original method [15],
the middle vertical bar (green) represents the accuracy after simply adding 'precise detection' to the
second layer of the original method (i.e., based on predictions from four autoencoders trained on
normal data, the data is divided into quasi-normal and quasi-attack regions, and the best classifier is
selected for each region to predict the final result), and the right vertical bar (purple) shows the
accuracy of our proposed method, which first trains paired autoencoders and then performs precise
detection within the four regions. Similarly, in Figure 6b), the blue bars represent the F1-Score of the
original method [15], the green bars represent the F1-Score of the 'precise detection' method, and the
purple bars show the F1-Score of our proposed method. From both figures, we can observe the
following points:

1) The original method has already achieved 90.49% accuracy and 91.89% F1-Score;
2) Simply adding precise detection only brings a slight improvement;
3) By combining data partitioning from the first layer with precise detection from the second

layer, the model's performance is significantly improved.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 August 2024 doi:10.20944/preprints202408.0945.v1

https://doi.org/10.20944/preprints202408.0945.v1

 12

a) Model Accuracy Comparison

b) Model F1-Score Comparison

Figure 6. Model Accuracy & F1-Score Comparison.

Discussion: this experiment result can be understood as follows: if precise detection is
performed solely based on the original method, the distribution of data in the quasi-normal and
quasi-attack regions in the feature space remains complex, making it difficult for a single autoencoder
to perform the classification. The advantages of combining data partitioning with precise detection
are as follows:

1) It provides more selectable autoencoders to serve as classifiers for precise detection;
2) The distribution of data in each region in the feature space becomes simpler, making

classification easier.

4.6. Experiment Result: Within-Region Accuracy

The experimental results of the accuracy within each region are shown in Table 4, where each
row represents the accuracy with and without precise detection in a specific region, as well as the
difference between them.

From Table 4, it can be seen that the accuracy in each region has increased to varying degrees
after adopting precise detection, with the accuracy in the divergence region increasing by
approximately 20%. In the worst-case scenario, even if the classifier in the second layer does not
function effectively, it will not reduce the accuracy in that region. It can be said that the introduction
of precise detection does not negatively impact the model's accuracy. As for the additional time
brought by precise detection, since the classifier uses existing models and does not require retraining,
it is negligible.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 August 2024 doi:10.20944/preprints202408.0945.v1

https://doi.org/10.20944/preprints202408.0945.v1

 13

Table 4. Comparison of Accuracy Within Regions.

Region Without Precise Detection With Precise Detection Increase Magnitude
Quasi-Normal Region 93.18% 96.31% 3.13%
Quasi-Attack Region 89.84% 94.66% 4.82%
Divergence Region 68.37% 89.05% 20.68%

Undertermined Region 96.48% 96.48% 0

4.7. Training Time and Model Size Analysis

As shown in Table 5, the model proposed in this study is compared with the SVM model, the
random forest model, and the model from previous research.

It can be seen that the proposed model has a significant advantage in terms of model size
compared to the SVM and random forest. In terms of training time, its performance is also superior
to that of the SVM and is on the same order of magnitude as that of the random forest. And, compared
to previous research, although the model size is twice that of the previous model, it is still relatively
small, and such an increase does not cause a significant burden. Moreover, since training is not
performed continuously, a slight increase in training time is acceptable. Considering the significant
improvement in model accuracy, this level of sacrifice does not pose a serious problem.

Table 5. Comparison of Training Time and Model Size.

Model Without Precise Detection Model Size
RF 12.6s 2.29MB

SVM(kernel = linear) 20min+
This Study 42.3s 484KB

Previous Research 29.5s 242KB

5. Conclusion and Future Work

In this study, we introduced an efficient classifier model for intrusion detection, leveraging
autoencoders specifically designed for deployment on edge devices within IoT networks.
Recognizing the limitations of traditional intrusion detection models on edge devices, such as
insufficient computational resources and the need for enhanced accuracy, we proposed a lightweight
model utilizing Extreme Learning Machine (ELM) for its swift training and compact size.

Our approach involved training multiple autoencoders using different types of attack data, as
well as normal data paired with varying feature sets. These autoencoders collectively performed
initial data prediction, partitioning data based on prediction results, and subsequently leveraging
their characteristics for precise detection within each classification region. This method not only
maintained the lightweight nature of the model but also improved its accuracy and F1-Score by 3.5%
and 2.9% compared to the original approach on the NSL-KDD dataset while maintaining a
lightweight advantage over traditional models like Random Forest and Support Vector Machine.

We evaluated the proposed model using the NSL-KDD dataset, which contains both normal and
various attack types (DoS, Probe, U2R, R2L). Our experimental setup involved training eight
autoencoders, including both normal and attack data, leading to the creation of "paired
autoencoders." These paired autoencoders facilitated the initial data partitioning into quasi-normal,
quasi-attack, divergence, and undetermined regions. The subsequent precise detection within these
regions further enhanced the model's performance.

The experimental results demonstrated that our model achieved superior overall accuracy,
particularly in the divergence region where accuracy improved by approximately 20%. Furthermore,
the proposed model exhibited significant advantages in terms of model size and training duration,
making it highly suitable for edge device deployment.

In summary, the binary classifier model based on autoencoders and ELM presented in this study
effectively addresses the challenges faced by traditional IDS models in IoT environments. By
combining data partitioning and precise detection, our approach not only ensures high detection

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 August 2024 doi:10.20944/preprints202408.0945.v1

https://doi.org/10.20944/preprints202408.0945.v1

 14

accuracy but also maintains a lightweight profile, crucial for practical implementation on edge
devices.

In the future, we will use more datasets to validate our model. Additionally, we will simulate a
distributed IoT environment and apply methods like federated learning to aggregate the model.
Regarding the model, we will balance accuracy and model size, appropriately reducing the number
of autoencoders in data spaces where the impact on detection accuracy is minimal, to ensure further
lightweight optimization.

References

1. Abdul-Qawy A S, Pramod P J, Magesh E, et al. The internet of things (iot): An overview[J]. International
Journal of Engineering Research and Applications, 2015, 5(12): 71-82.

2. Gartner Says Worldwide IoT Security Spending Will Reach $1.5 Billion in 2018 （

https://www.gartner.com/en/newsroom/press-releases/2018-03-21-gartner-says-worldwide-iot-security-
spending-will-reach-1-point-5-billion-in-2018）

3. Antonakakis M, April T, Bailey M, et al. Understanding the mirai botnet[C]//26th USENIX security
symposium (USENIX Security 17). 2017: 1093-1110.

4. Khan R, Maynard P, McLaughlin K, et al. Threat analysis of blackenergy malware for synchrophasor based
real-time control and monitoring in smart grid[C]//4th International Symposium for ICS & SCADA Cyber
Security Research 2016. BCS, 2016: 53-63.

5. Farwell J P, Rohozinski R. Stuxnet and the future of cyber war[J]. Survival, 2011, 53(1): 23-40.
6. Stanislav M, Beardsley T. Hacking iot: A case study on baby monitor exposures and vulnerabilities[J].

Rapid7 Report, 2015.
7. Eskandari M, Janjua Z H, Vecchio M, et al. Passban IDS: An intelligent anomaly-based intrusion detection

system for IoT edge devices[J]. IEEE Internet of Things Journal, 2020, 7(8): 6882-6897.
8. Nguyen T D, Marchal S, Miettinen M, et al. DÏoT: A federated self-learning anomaly detection system for

IoT[C]//2019 IEEE 39th International conference on distributed computing systems (ICDCS). IEEE, 2019:
756-767.

9. Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. nature,
1986, 323(6088): 533-536.

10. Le Cun Y, Fogelman-Soulié F. Modèles connexionnistes de l'apprentissage[J]. Intellectica, 1987, 2(1): 114-
143.

11. Choi H, Kim M, Lee G, et al. Unsupervised learning approach for network intrusion detection system using
autoencoders[J]. The Journal of Supercomputing, 2019, 75: 5597-5621.

12. Ieracitano C, Adeel A, Morabito F C, et al. A novel statistical analysis and autoencoder driven intelligent
intrusion detection approach[J]. Neurocomputing, 2020, 387: 51-62.

13. Tsukada M, Kondo M, Matsutani H. A neural network-based on-device learning anomaly detector for edge
devices[J]. IEEE Transactions on Computers, 2020, 69(7): 1027-1044.

14. Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: a new learning scheme of feedforward neural
networks[C]//2004 IEEE international joint conference on neural networks (IEEE Cat. No. 04CH37541). Ieee,
2004, 2: 985-990.

15. Yang Qin, Masaaki Kondo，”Federated Learning-Based Network Intrusion Detection with a Feature
Selection Approach”，IPSJ SIG Technical Report (in Japanese), Vol.2021-EMB-56 No.24, Pages 1-7, 2021

16. NSL_KDD dataset: http://nsl.cs.unb.ca/NSL-KDD/
17. Ioulianou P, Vasilakis V, Moscholios I, et al. A signature-based intrusion detection system for the internet

of things[J]. Information and Communication Technology Form, 2018.
18. Li W, Tug S, Meng W, et al. Designing collaborative blockchained signature-based intrusion detection in

IoT environments[J]. Future Generation Computer Systems, 2019, 96: 481-489.
19. Sheikh N U, Rahman H, Vikram S, et al. A lightweight signature-based IDS for IoT environment[J]. arXiv

preprint arXiv:1811.04582, 2018.
20. Lo W W, Layeghy S, Sarhan M, et al. E-graphsage: A graph neural network based intrusion detection

system for iot[C]//NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium. IEEE,
2022: 1-9.

21. Zhou X, Liang W, Li W, et al. Hierarchical adversarial attacks against graph-neural-network-based IoT
network intrusion detection system[J]. IEEE Internet of Things Journal, 2021, 9(12): 9310-9319.

22. Almiani M, AbuGhazleh A, Al-Rahayfeh A, et al. Deep recurrent neural network for IoT intrusion detection
system[J]. Simulation Modelling Practice and Theory, 2020, 101: 102031.

23. Wang M, Yang N, Weng N. Securing a smart home with a transformer-based iot intrusion detection
system[J]. Electronics, 2023, 12(9): 2100.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 August 2024 doi:10.20944/preprints202408.0945.v1

https://doi.org/10.20944/preprints202408.0945.v1

 15

24. Fraihat S, Makhadmeh S, Awad M, et al. Intrusion detection system for large-scale IoT NetFlow networks
using machine learning with modified Arithmetic Optimization Algorithm[J]. Internet of Things, 2023, 22:
100819.

25. KDD Cup dataset: https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
26. Bala R, Nagpal R. A review on kdd cup99 and nsl nsl-kdd dataset[J]. International Journal of Advanced

Research in Computer Science, 2019, 10(2).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 August 2024 doi:10.20944/preprints202408.0945.v1

https://doi.org/10.20944/preprints202408.0945.v1

