
 

synonymous,  so  the  pioneer  works  in  geostatistics  are  considered  as  breakthroughs  in  the  entire
early  days  (until  80’s  of  20th  century)  the  geomathematics  and  geostatistics  were  considered  as 

  Development of geomathematics during past is a very dynamic and non-linear process. In the 

1. Introduction

palaeontology; Croatia
Keywords: geomathematics;  geostatistics;  subsurface  geological  mapping;  biostatistics;

in creating better geological models.
with other, non-numerical (indicator, categorical) geological knowledge, are of enormous assistance 
application of geomathematical tools in geology. The results, cautiously validated and correlated 
other  species  and  their  paleoenvironments.  All  examples  highlight  examples  of  the  valuable 
allowing to achieve paleoenvironmental reconstructions of size of relevant fossils, as dinosaurs or 
Miocene,  hydrocarbon  reservoirs.  Biostatistics  has  been  presented  on  very  different  samples, 
mapping  has  been  presented  on  limited  petrophysical  datasets  from  the  Northern  Croatian, 
two  representative  case  study  groups  with  original  samples  from  Northern  Croatia.  Subsurface 
surface geology, and very different datasets regarding variable and number of data, here are chosen 
and  address  a  wide  spectrum  of  fundamental  science.  Because  geology  includes  subsurface  and 
significant importance in fossil biota. Data, methods and problems in geosciences is a vast subject, 
palaeontology  and  case  studies  from  Croatia  are  also  presented,  where  biometric  studies  are  of 
of  the  Pannonian  Basin  System  (abbr.  CPBS).  Recent  advances  in  biostatistics  applied  in 
datasets. Cross-validation may be selected as the main selection criteria, applied to the Croatian part 
were  used  to  obtain  the  best  possible  outcome  in  reservoir  modelling,  in  the  cases  with  small 
different  subsurface  interpolation  methods,  tested,  validated  and  recommended  for  application, 
applications,  representing  important  geomathematical  subfields  in  the  Croatian  geology.  The 
were  used  in  subsurface  geological  mapping  and  palaeontology  and  different  biostatistics 
appropriate procedure is presented in this paper. Two different geomathematical subfield datasets 
prognosis,  either  through  deterministical  or  stochastical  approaches.  The  selection  of  the 
key for any geomathematical analysis is the definition of a typical model to be applied for further 
Abstract: Geomathematics is extremely important in geosciences, particularly in the geology. The 
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geomathematics applied in geosciences. The first results of the geostatistical research (different from 
research in the field of “spatial statistics”) had been published by [1,2,3] where the Kriging is 
described for the first time. The same algorithm had already been applied earlier by [4] for estimation 
of gold nuggets concentrations in the South African mines. The Matheron’s foundation has been 
based on the least square method and linear Gaussian model, what stayed as base until the present 
day. Following the linear models, authors as [5] and [6] also developed non-parametric and non-
linear geostatistics. In parallel, geostatistics is developed together with the applied statistics by [7]. 
[8] made an important step toward unification of geostatistics and other data analysis methods in 
geology, describing three main branches of spatial statistics – geostatistics, spatial variations and 
spatial point processes. That is what we today call – geomathematics. 

Here, it is important to mention that the use of geostatistics (even statistics) is closely related 
with exploration and production of hydrocarbon reservoirs (e.g., [9,10]). In the late 80's of 20th 
century, geostatistics offered new algorithms, allowing to obtain much better reservoir 
characterisation, in particular visualisation. However, from the early days in geostatistics and later 
geomathematics, the main factor in selection of a method was a number and distribution of data. 
Those two problems are often intertwined, although distribution of data is considered as a fundament 
for any later analysis.  

As in any data-based analysis, geomathematics is highly dependent on hard data, i.e., 
measurements, aiming to predict values in non-sampled volumes (Figure 1.1). The problem had been 
solved differently. As geological variables are mostly presented in deterministic ways, the knowledge 
about (sub)surface is always partial. In fact, the models are stochastic but too complex so that 
available mathematical approximations, restricted with limited data, could be presented in such way. 
The geomathematics offered the approaches designed for object-based models, where objects are 
datasets analysed and visualised with different spatial methods (e.g., 11,12]). Most of them are 
deterministical (Kriging) but some approaches could be stochastical (simulations). 

 

Figure 1.1. Relation between geostatistical approach and number of data. 

Any classification of such models can be categorised. Here we decided to divide them into: 
1. Full deterministical, models where volume is well known, without uncertainties, possible 

correlated, and settings are known and established. Such knowledge is rare, but many areas are 
approximated in such a way. 

2. Stochastical volumes, where uncertainties cannot be full described and permanently exists. 
However, the probability model allows to make predictions and estimations with different 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 April 2020                   doi:10.20944/preprints202004.0471.v1

https://doi.org/10.20944/preprints202004.0471.v1


3 of 21 

 

geomathematical algorithms. Such are the most of analysed (sub)surface volumes, but 
stochastical approach asks for more experiences and, contradictory, more data than 
deterministical approach. 

3. Unpredictable volumes, where analysed variables could not be described by any algorithm or 
just the number of data is not enough high so that any observation is valid and general.  
The key goal for any geomathematical analysis is the definition of a typical model that can be 

applied for further prognosis in similar or same conditions. Any such prognosis needs to be based 
on valid choices, grounded on previous case studies where decision trees are made. Such choices are 
always based on the number of inputs, regarding variables and dataset size. Generally, the explored 
geological volume is longer researched so that the object of researching could be easier improved 
with, both, deterministical or stochastical approach. Decision depends on experience, knowledge and 
readiness to accept uncertainties in future estimations. Any multivariable approach is benefit (like 
Co-Kriging) but asks for well documented connections among depended variables. Significant 
inherited (measurements limitations, equipment error) and man-made (biased sampling) 
uncertainties forced stochastics, but limitation of such approach is a must-have spatial model. 
However, it is not a condition at all for simpler algorithms like Inverse distance weighting (IDW), 
Modified Shepard’s Method (MSM), Nearest neighbourhood (NN) or similar. The largest limitation 
is the number of data (Figure 1.2), especially if the primary variable is such to be defined in the entire 
dataset. The scares or non-representative dataset greatly limit application of statistics. Even statistical 
representative sets (e.g., n>30) are much easier when analysed with parametric statistics that requires 
Gaussian distribution. Oppositely, non-parametric statistics is only a choice, which can limit the 
number of tests and mapping, in particular. 
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Figure 1.2. Simple decision tree for geomathematical analysis. 

However, and despite all limitations, geomathematics has many favourable and robust tools and 
algorithms for analysis of almost all geological datasets. It is especially valid if geomathematics is 
considered as a field divided into three sub-fields: geostatistics, statistics applied to geosciences and 
neural networks applied to geoscientific data. 

The main challenge is a selection of an appropriate procedure. How to find such tools, but only 
in a very tiny spectre of geomathematics and geosciences, has been presented in this work, through 
the examples of two different geomathematical subfield datasets. The first one refers to the subsurface 
geological mapping, as described above, and the second one refers to palaeontology and biostatistics. 

The starting point in the paleontological research is the assumption presented by day biota and 
processes which are the key to understand the Earth history. Therefore, the biological research 
methods and facts, such as biostatistics (biological statistics or biometry), are common in taxonomical 
and palaeoecological studies in palaeontology due to the assumption that species can be defined by 
its morphology, including the measurable parameters. 

The development of biostatistics dates back to the 19th century, with Francis Galton (1822−1911), 
”the father of biostatistics and eugenics“. His methodology, used in the analysis of biological 
variation, is considered as the foundation for the application of statistics to biology [13]. The term 
“biometry“ was coined by the zoologist W.F.R. Wilson (1860−1906), who was working with Karl 
Pearson on the application of statistical methods in biology [13]. The application of biometry in the 
systematic description of plants and animals was pointed out by [14], where he describes the 
necessity of specific descriptions of taxon characteristics, in order to precisely describe the specimen. 
The rising impact of biometry resulted in the establishment of the Biometric Society on September 6, 
1947 at Woods Hole, USA, as described by [15]. The first president of the Biometric Society was Sir 
Ronald Aylmer Fisher (1890−1962). The Society was later renamed to International Biometric Society. 
The Biometric Section of the American Statistical Association started publishing the Biometrics 
Bulletin in 1945, which was renamed to Biometrics, in 1947. 

Two significantly different datasets and applications in geological subsurface mapping and 
biostatistics (biometrics) presented in this paper, represent, in the last decade, as well as currently, 
the most progressive and publicised geomathematical subfields in the Croatian geology. 

2. Mathematical basics of algorithms applied in the presented case studies 

2.1. Kriging method 

The Kriging (as well as the Co-Kriging and stochastical simulations) is a group of statistical 
estimation methods. The specificity of the Kriging (e.g., [5,16,17]) is the definition as the best linear 
unbiased estimator (abbr. BLUE), although it is valid only for specific datasets. The strength of 
Kinging approach is due to the weighting coefficient calculation, the procedure based on the 
minimisation of Kriging variance. The linear means that estimation has been done by combination of 
hard data; the unbiased makes sure that the estimation expected value is the real as for the entire 
possible population. The estimator defines applied methodology. The linear estimation is shown in 
Equation 2.1: 





n

i
iik ZZ

1


                (2.1) 

Where: 
Zk - value of the regionalised variable calculated at location “k“; 
Zi - value of the regionalised variable measured at location “i“; 
i - weighting coefficient calculated by Kriging matrices for location “i“. 

The necessary condition for the Kriging estimation is that the measured Zi values are 
characterised with normal distribution or, at least, that such property is assumed for that variable in 
the case of a large number of measurements. Compared with simpler estimation algorithms, the 
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Kriging, is more time-consuming interpolation method, but also better tool for handling with highly 
clustered data. Oppositely, the Kriging results in very weak works with small datasets (n<20), unable 
to give origin to meaningful spatial models. The spatial (variogram) tool is powerful when applied 
with enough data and background knowledge. AS mentioned earlier, the main advantage of the 
Kriging is the weighting coefficient calculation. After the spatial model has been set up, the 
calculation of coefficient is not dependence on their value, but exclusively on distance between 
measured points and location where the value is not known. Such value is also called “statistical 
distance”, referring on their derivation from variogram, not from values. The Kriging equations 
(Equation 2.2) are calculated using matrices. In two of them (W, B), the values are given with 
variogram values, which depends on distances among observed locations: 
     BW                   (2.2) 

There are numerous Kriging techniques, each of them differenced by some modification in 
matrices. The most used in Croatian case studies are herein designated by Simple, Ordinary, Indicator 
and Universal Kriging. The Simple Kriging is the basis for all the other available techniques. The 
matrix is presented in Equation 2.3: 
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    (2.3) 
Although the basic technique, it is the only one that do not satisfy the condition of unbiased 

estimation, because it is the only equation without constraint. Such constraint(s) could be linear or 
non-linear. 

The most often used technique is presented in Equation 2.4 with additional constraint – 
Lagrange multiplier (), aiming to find the local minima and maxima of the function, subjected to 
equality constraints, i.e., to minimise the Kriging variance. 
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    (2.4) 

2.2. Inverse distance weighting (IDW) interpolation method 

IDW is a widely used interpolation method, both for small and large datasets. The unknown 
value is calculated based on all known points and inversely proportional to their distances (Equation 
2.5, e.g. [18,19,20]) and is defined as: 

1 2

1 2

1 2
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1 1 1
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n
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n
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n

zz z
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d d d

 


 
                (2.5) 

Where: 
ZIU - estimated value, 
d1…dn - distance between estimated value and known value 1…n, 
p - power (distance) exponent, 
z1…zn - known values at locations 1…n. 

The mapping results are greatly influenced by power exponent, which could stress the influence 
of more distance points and smooth the map (for p<=2) or force very local estimation (p>2) and even, 
for large “p“, result in zonal estimation, i.e., in map like Voronoi polygons. This method has been 
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proved for mapping problems in the Croatian part of the Pannonian Basin System (abbr. CPBS) for 
all datasets where clustering was not largely imposed, and for datasets smaller than 15 points too 
(e.g., [21,22]). 

2.3. Basics of the Nearest neighbourhood (NN) estimation method 

NN is the simplest statistical estimation method when unknown point is estimated only from 
the closest known value. The results are valued polygons, like Voronoi diagram. The distance 
between the points is Euclidian (Equation 2.6): 

   2 2

1 1( , ) ... n nd x T X T X T    
           (2.6) 

Where: 
d - distance, 
n - n-th pair of points, 
x and T - unknown and measured points. 

The method is meaningful to apply only for very small datasets, like 5 or less points. The output 
is not a map, but schematic polygon view. 

2.4. Basics of the Natural neighbourhood (NaN) estimation method 

NaN is the modification of the NN and results are also shown as Voronoi diagrams (polygons). 
The unknown point is estimated from the several nearest points (e.g., [23,24,25]) using Equation 2.7: 

1

( , ) (w (X ,Y ))
n

i i i
i

X x y A

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             (2.7) 

Where:  
X(x,y) - estimated value in point (x,y), 
A(Xi,Yi) - known value in point (Xi,Yi), 
wi  - proportion of polygon „i“ in total area. 

2.5. Modified Shepard’s Method (MSM) 

The MSM interpolation is a modification of the IDW method, with the aim of reducing the 
expressive local values (outliers, extremes) that could cause “bull-eyeing” or “butterfly shape” 
effects. The method was developed by [26] and it is why is named as Shepard’s method. The 
modification of the method was carried out in the works of, e.g., [27] and [28]. The estimation is done 
by Equation 2.8: 
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where:  
F - MSM function;  
W - relative weights;  
Qk - bivariate quadratic function;  
x, y  - data coordinates;  
n - number of data.  

MSM used so called relative weights determined (Equation 2.9): 
2
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R d
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R d
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              (2.9) 

Where:  
W  - relative weights;  
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dk    - Euclidean distance between points at locations (x, y) and (xk, yk);  
Rω   - radius of influence around node (xk, yk).  

2.6. Cross-validation as numerical estimation of mapping error 

The cross-validation is a numerical procedure, which can be applied also as error-based 
comparison tool for several maps with the same input, but sequentially interpolated with two or 
more methods. The procedure is repeated as many times as there are measured (hard) values, 
dropping one known point out and calculating the estimation in the same location from the rest of 
the hard data (Equation 2.10). The result is often named as Mean Square Error (abbr. MSE, e.g., [21,29, 
30,31]). This value is often used as criteria for the most appropriate map selection in the case of small 
datasets in the CPBS (e.g., [32,33]). 

2

1

1
( )

n

i
i

MSE SV P
n 

 
              (2.10) 

Where: 
MSE - Mean Square Error value, 
n  - number of known values,  
SV  - measured value of point „i“, 
P  - estimated value of point „i“, 
i  - i-th point. 

2.7. Shannon-Wiener index or Shannon diversity index (H) 

In paleoecological analyses, one of the goals is to explore species richness and diversity in the 
analysed data sets, and to compare biological diversity between the samples with an uneven number 
of species and individuals. In the examples presented in this paper, authors showed part of the 
research on the biodiversity of microfossils Foraminifera, where Shannon-Wiener or Shannon 
diversity index (H) is used as one of the measures of species diversity in one sample, and between 
samples [34]. The “H” is calculated by the Equation 2.11 [34]: 
𝐻 = −∑ 𝑝௜ × ln𝑝௜

ோ
௜ୀଵ               (2.11) 

Where: 
pi  - a proportion of individuals belonging to the ith species in the sample, 
ln  - a natural logarithm.  

Equation 2.11 shows dependence of H (Shannon index) on pi (proportion of individuals, and if 
all species in the sample are equally represented, H is at its maximum [34]. 

3. Recent advances in geomathematical mapping in small datasets and case studies from Croatia 

During 2019 and 2020, broad testing of small datasets mapping has been applied [33,35] to the 
Croatian part of the Pannonian Basin System (abbr. CPBS). A small subsurface sample set is 
considered to be a set of measurements which includes [33] less than 20 inputs data. Furthermore, 
such datasets could be subdivided in groups with respect to number of data input: a) 1-5, b) 6-10 & 
c) 11-19. One example is selected here when the reservoir mapping is done by mathematically and 
simpler methods (compared with previously widely used Kriging) and results are accepted as the 
best possible outcomes for further reservoir developing. The permeability maps of the Lower Pontian 
“K” reservoir (Lower Pontian age, 18 data) of the field "B" are shown in Figure 3.1. 
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Figure 3.1. Results of IDW, NN and NaN methods (from top to bottom) of the permeability (left) and 
injected volumes (right) in the “K” reservoir [33]. 

All maps obtained with different methods (Figure 3.1) are validated with a cross-validation 
(Table 3.1) and visual assessment (where the larger “bull-eyes” areas mean worse interpolation). 

Table 3.1. Summary results of cross-validation for IDW, NN, NaN and MSM methods [33]. 

Variable 
Number 

of data 

Value of Cross-Validation 

Inverse Distance 

Weighting 

Nearest 

Neighbourhood 

Natural 

Neighbour 

Injected volumes 3 2.86 · 1011 3.96 · 1011 - 

Permeability 18 480.8 1397.4 1044.7 

 
Two interpolation (IDW, NaN) and one zonal (NN) method, gave different mapping results as 

well as cross-validation errors, as expected. Interestingly, each of them led to at least one useful 
information about analysed reservoirs, i.e., about connection between permeability and injected 
water volumes, including the role of some fault zone. The IDW method algorithm remains the main 
interpolation method of mapping for small reservoir dataset in the Northern Croatia. Other 
interpolation methods, NN, NaN, may be additional information. But the main advantage was that 
such datasets could be divided into three classes regarding their mapping, as follows: (a) 1-5, (b) 6-
10 and (c) 11-19 inputs. The “class a” could not be analysed with the NaN method because it is often 
not possible to calculate the cross-validation and the interpolated area is very small regarding unit 
margins. In the “class b” and “class c”, all three methods gave results, and the main selection criteria 
could be cross-validation. 
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[32] also analysed the possibility of artificially increasing the input data set using the “jack-
knifed” method. The presented analysis is the first of such a kind in the Sava Depression (Northern 
Croatia). It represents the continuation of previous geostatistical analyses conducted in that 
depression and the entire CPBS. The “jack-knifed” method was applied on porosity of reservoir "K" 
(19 data) of the "B" field (Figure 3.2).  

 

Figure3.2. Experimental semivariograms and porosity maps for the "K" reservoir obtained by the 
Ordinary Kriging (OK) method: a) without the "jack-knifed" method and b) with the "jack-knifed" 
method [32]. 

The obtained porosity maps were analysed by comparing the cross-validation values and 
expression of the “bull-eyes” effect. The results of the analysis of the “jack-knifing” method are 
summarized in Table 3.2. 

Table 3.2. Comparison of cross-validation values for OK maps based on original and “jack-knifed” 
semivariograms [32]. 

Field/ 
reservoir 

OK 
(original 

semivariogram) 

OK  
(jack-knifed 

semivariogram) 
Recommendation 

“B”/“K” 
0.001320 
(linear) 

0.000970  
(Gaussian) 

OK with jack-knifed 
semivariogram 

 
The results in Table 3.2 confirm the possibility of applying the "jack-knifing" method to 

reservoirs with small data input and should be compared with the maps obtained by the IDW 
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method. Oppositely in another analysed reservoir, the OK was not accepted as interpolation method, 
but IDW has been accepted. It was the case when jack-knifed did not yield any progress in spatial 
modelling and the Kriging has been abandoned as an approach. 

The permanent problem of small datasets could be oversized with new data. Such data can be 
obtained with new sampling, but also with the creation of new artificial data, based on the statistical 
properties of original dataset. The jack-knifing is one of such method, appropriate for datasets of 15–
30 points, where the basic, descriptive statistics are more or less representative (variance and mean), 
and the Gaussian distribution can be assumed. In the presented analysis, the original semivariogram 
results were highly uncertain, with large oscillations, a small number of data pairs per class and 
unknown nugget. Consequently, the linear model was the only acceptable theoretical model to use. 
Due to fact that small dataset could not be statistically representative, the new kriged maps 
interpolated from “jack-knifed” semivariograms has been tested (a) visually (maps without the “bull-
eye” or “butterfly” effects are better) and (b) numerically, using cross-validation and comparing with 
simpler method of the IDW. Obviously, the results were better in one of the two cases where such 
validation has been applied.  

The next examples are taken from [35] and compare the differences between the results obtained 
with IDW and MSM (Modified Shepard Method) methods. The IDW does not use weighting 
coefficient, i.e., each value is “weighted” by a simple (powered) inversely proportional distance from 
the measured point. The MSM uses relative weights. The porosity, permeability and thickness maps, 
interpolated with IDW and MSM are given in Figure 3.3. They show the oil reservoir “K” of the Lower 
Pontian age in the Sava Depression. 

The maps obtained by the IDW and SMS methods could be assessed in two ways. One is 
numerical, using cross-validation. The another is quick-look searching for observable feature of 
highly expressed local value, i.e., bull-eye or butterfly shape effects. The expected advantage of the 
MSM is the larger smoothing of the shapes, what is confirmed in that analysis (Figure 3.3). The 
numerical cross-validation strongly favoured the IDW (Table 3.3).  
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Figure 8. The mapping of the Lower Pontian “K” reservoir, the Sava Depression, Northern Croatia. 
Left – IDW results, right – MSM results. Top – porosity, middle permeability, down – thickness [35]. 

The difference resulted from the different mathematical backgrounds of that two methods 
(Malvić et al. 2020), because the IDW takes into account all measured points or work with general 
searching radius (or radii for ellipsoid), but the MSM works with local searching by default. It is why 
cross-validation was higher for MSM - for porosity 289 %, permeability 7 %, and thickness 49 %.  

Table 3.3. Cross-validation of the IDW and SMS methods applied in reservoir "K" [35]. 

Description No data 
Cross-validation 

Inverse Distance (IDW) Modified Shepard’s Method (MSM) 

Porosity 19 0.00119 0.00345 

Permeability 18 480.8 516.1 

Thickness 14 40.7 60.5 
 

Both methods, obviously led to appropriate quick assessment of the reservoir. However, it was 
also shown that visual assessment is sometimes the more important criteria than purely numerical 
cross-validation, what is a crucial conclusion for subsampled reservoirs of the CPBS, and stressed the 
importance of human and geological expertise, and not purely application of interpolation 
algorithms. Consequently, [35] recommended the MSM for subsurface geological mapping of 
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Neogene reservoirs in Northern Croatia in (a) Number of samples smaller than 20 measured values, 
and/or (b) for early exploration phase or later development phase when the number of measurements 
of selected property is small, but a quick insight in spatial distribution of such variable is necessary. 

4. Recent advances in biostatistics applied in palaeontology and case studies from Croatia and 
the wider region 

Paleontological studies published by numerous authors, including those from Croatia, almost 
always include basic numerical analyses in recognizing the different taxa. In Croatia, [36] measured 
the dimensions of the bivalve shells (length, width, length/width ratio of the shell, apical angle) in 
order to recognize the bivalve subspecies. In her dissertation and several published papers (e.g. [37]), 
A. Sokač applied biometry in order to present the differences in growth pattern of male and female 
ostracods. One of the earliest graphically substantiated biometric analysis on the fossil assemblage 
from Croatia was published by [38], who studied taxonomy and biometry of Eocene corals. The 
authors distinguished two coral species based on the biometric analyses of the smallest and the 
largest diameter of the calyx, and the height of the coral calyx plotted in a scatter diagram. Looking 
at the dispersal of the measured parameters, two areas of dispersal could be recognized, indicating 
the existence of different species between measured specimens. 

During the last decades, a number of global researches were focused on the paleoecology of 
terrestric, fresh-water or marine biota. In Northern Croatia, Miocene deposits from the Paratethys 
epicontinental Sea comprise the marine invertebrate fauna, mostly foraminifers, mollusks and 
ostracods, which were often subject to biostatistics analyses (e.g. [39,40,41,42]). The following data, 
common in palaeoecological studies, are presented in the referred papers: plankton/benthos ratio, 
number of species, relative abundance of benthic species within the community, species diversity of 
benthic foraminifera estimated by the Shannon–Wiener index (H), Dominance (D), Fisher α index 
(α), Oxygen index and the Infauna/epifauna ratio. Shannon-Wiener index or Shannon diversity index 
(H) estimates the species diversity in the assemblage, as described in chapter 2.6 of this paper (after 
[34]). Dominance (D) reflects a distribution of a particular species in the assemblage, and the 
dominant species are those presented with >10% in the sample [34]. Fisher α index (α) shows the 
relation of the number of species to the number of the individuals, and to explore the number of 
species by each individual, a log series distribution is used [34]. This index is used for 
palaeoecological determinations, because specific values are characteristic for each environment. 
Depending on the index value range, we can analyse the palaeoecological changes in the 
environment.  

The above mentioned analyses were enhanced by defining and comparing the benthic 
foraminiferal fauna from different localities conducting the Cluster Analysis and Non-metric 
Multidimensional Scaling by means of PAST (PAlaeontology STatistic) Program 
(https://folk.uio.no/ohammer/past/; e.g., [40]; Figure 4.1). 
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Figure 4.1. Example of statistical comparison of fauna from different localities using Cluster Analysis 
and Non-metric Multidimensional Scaling analyses (after [40]). 

There are a number of other papers dealing with paleoenvironmental reconstructions of fossil 
communities based on the biometry of benthic foraminifera. Growth characteristics are used as a 
parameter for the palaeoecological and phylogenetical studies in the wider region (e.g., [43,44]). For 
example, [45] calibrated test flattening of the foraminifera species Heterostegina depressa as a 
bathymetric signal (Figure 4.2), using its growth functions and thickness. Similar study can be applied 
to the Miocene large nummulitids from Northern Croatia. 

 

 

Figure 4.2. Example of using growth characteristics as an indicator on the bathymetry [45]. 
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Biometric studies are also commonly applied in taxonomic study of mollusks. For example, a 
thorough revision based upon this method was made by [46] on gastropod families Conidae and 
Conorbidae from the Paratethys Sea. The authors measured several shell parameters (shell length, 
maximum diameter, aperture height, height of maximum diameter, spire angle, apertural length, the 
angle of the last whorl, length width ratio, relative diameter ratio, position of maximum diameter 
ratio, relative height of spire ratio, subsutural flexure, mean and standard deviation), analysed by 
Principal component analysis (PCA). Applying this analysis, authors compared similar species of 
Conidae and showed the separation of the species and morphospace occupied by genera (Figure 4.3). 

 
Figure 4.3. Separation of the species and morphospace occupied by genera as shown by the Principal 
component analysis (after [46]). 
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Studies from Croatia were mostly focused on gastropods and scaphopods (e.g., [47,48,49]). 
Several parameters are measured (height and length of the shell, apical angle), defining the basic 
numerical data useful in species determination, morphometric characteristics of the group, 
correlation with recent species, comparison with other localities and palaeoecological interpretations.   

[47] studied the Miocene planktic gastropods from northern Croatia and, based on the measured 
shell elements, compared their data with the available published measures of that fossil group found 
in the Miocene deposits of the neighbouring areas (Figure 4.4). 

A 

B 

C 

Figure 4.4. Morphometric characteristics and comparison of the planktic gastropods between 
different localities based on the measured morphometric elements of the shell (after [47]). A: 
Measured parameters on the gastropod shell: H (height of the shell), W (width of the shell), α (apical 
angle), A1 and A2 (aperture diameters). B. Comparison of planktic gastropod from different areas 
(black and white triangles) based on the measured values of the shell height and width. C. 
Comparison of planktic gastropod species from different areas (dark and light grey columns) based 
on the measured values of the apical angle of the gastropod shells. 
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Bioerosive traces on skeletal remains, in most cases traces of predation, are also rather common 
topic in biostatistical analyses. Measures and shapes of the drill-holes can indicate the possible 
predator and help to get better insight in the predator-prey relationship, as described in numerous 
papers (e.g., [50] and references therein). 

One more example of biostatistics analysis is presented in [51]. The authors measured the 
orientations of oyster attachments on ammonite shells, concluding that the oysters attached 
themselves while the ammonites were living (Figure 4.5). The results are helpful in palaeoecological 
studies of fauna in oxygen depleted environments. 

 
Figure 4.5. Analysis of oyster attachments positions on the ammonite shell [51]. 

Biostatistical analyses are also common in studies of vertebrates. In Croatia, research included 
the study of dinosaur footprints. The measured parameters of footprints included width and length 
of the footprint, and length of the second, third and fourth finger (e.g. [52] and references therein). 
These studies give insight on the dimensions of the animal (height) and type of their movement 
(walking) based on the calculations of the movement speed (e.g., [53,54,55] and references therein; 
Curman, 2017), which gives better insight into the biodynamic of the animal. [56] demonstrated the 
application of the Geometric Morphometrics as a tool for the shape analysis of the dinosaur footprints 
and trackways geometric differences (Figure 4.6). 
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Figure 4.6. Application of the Geometric Morphometrics on the dinosaur footprints analysis [56]. 

We can conclude that biostatistical analyses generally occurred very early in paleontological 
studies. In Croatia, their number exhibits the pattern of periodicity. Basic numeric analyses of fossil 
assemblages were published in the mid-1990s, marking the first peak of biometric studies in Croatia. 
The second peak was during the first decade of the 2000s, with most research done on microfossils 
(foraminifers and accompanying ostracods). We can say that the third pulse is happening from 2016 
onwards, considering the various groups of fossil biota.  
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The analyses are mostly made to give more insight in the paleoecology of populations or fossil 
assemblages, and to help in the species determination. To present the analysed parameters, common 
statistical tools are used, mostly MS Office Excel and PAST (PALaeontological Statistics) programs.  

5. Discussion and conclusion 

The topic “Advances in Geosciences” is so broad that any paper publication would hardly cover 
only the small portion of significant milestones that shaped and led the progress in geosciences in 
general. The spectre of geosciences includes so many “fundamental” sciences that the ways of 
progress are very different, regarding data, methods and problems. Geosciences could be found in 
social (e.g., geography), technical (e.g., geodesy) and natural (e.g., geology) sciences. It is why the 
authors selected only one science (geology) with only one small segment (subsurface and surface 
geology) and tiny analytical, numerical methods (small datasets in mapping, larger in biostatistics). 
Even in such case, the presented cases are given mostly from the researching area where authors 
worked mostly in the last decade, i.e., original samples taken from the surface and subsurface of the 
Northern Croatia. 

But both examples present the areas where, at least in Croatia, huge progresses are made and 
referencing methods for later researchers are set up. After more than 15 years of extensive and 
successful application of the different Kriging techniques in the subsurface mapping of the CPBS, the 
problem of small dataset where geostatistics cannot be reliable applied has been solved. The several 
simpler algorithms are tested, validated and recommended for application, namely Inverse Distance 
Weighting, Nearest Neighbourhood, Natural Neighbourhood and Modified Shepard Method. For 
such small datasets, the importance of mutual application for cross-validation and visual assessment 
had been stressed. Additionally, the Kriging was simultaneously tested as alternative or such 
algorithms, even in cases when variogram model cannot be calculated as reliable value, even as 
omnidirectional one. The extensive experiments with jack-knifing method have been done on 
variogram, creating artificial data from original dataset. In some cases, jack-knifed variograms gave 
competitive the Kriging results, but geostatistics was eliminated as the first choice in mapping 
analysis of small subsurface datasets. 

Application of biostatistics has been presented on very different samples, collected from shallow 
subsurface or surface outcrops. Here the numerical values characterised not petrophysics, but 
morphological variables of different fossil groups (foraminifers, molluscs, vertebrates). In the 
presented examples on molluscs, the parameters like height and length of the shell are measured 
giving set of numerical values for determination of morphometrics and consequently species which 
gave more insight on Miocene palaeoecological conditions and environments in the Northern 
Croatia, especially during the existence of the Paratethys Sea. On larger scale, biostatistical analysis 
in Croatia helped to reconstruct the size and height of, e.g., dinosaur, using footprints measurements. 
Two outbursts of the Croatian biostatistical (biometric) analyses, presented with relevant 
publications, are noted. The first was in the mid-1990s, and the second was during the first decade of 
the 2000s, with most research done on microfossils (foraminifers and accompanying ostracods). 
Recently, the Croatian researchers entered in the third fruitful period from 2016 onwards, currently 
analysing the various marine fossil biota aiming to determine species and their paleoenvironments. 

Both examples showed the useful application of geomathematical tools in geology. The first 
group showed how the small datasets (n<10 data) can be reliably mapped. The second presented how 
morphometric and surface features could be collected, numerically analysed and applied in 
paleoenvironmental reconstructions. The uncertainties, of course, remained due to data properties. 
The most problematics is clustering, which can be hardly handled when datasets are small and/or 
spatially noisy. In such cases, two crucial statistical properties cannot be reliably checked or 
established. That are proof of the normal distribution and statistical representativeness of dataset 
(mean, variance of population). However, the results, carefully validated and correlated with other, 
non-numerical (indicator, categorical) geological knowledge, are of great help in creating better 
geological models. 
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