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Abstract 

Photoplethysmogram (PPG) signals are increasingly utilized in wearable and mobile healthcare 
applications due to their non-invasive nature and ease of use in measuring physiological parameters, 
such as heart rate, blood pressure, and oxygen saturation. Recent advancements have highlighted 
green-light photoplethysmogram (gPPG) as offering superior signal quality and accuracy compared 
to traditional red-light photoplethysmogram (rPPG). Given the deterministic chaotic nature of PPG 
signals’ dynamics, nonlinear time series analysis has emerged as a powerful method for extracting 
health-related information not captured by conventional linear techniques. However, optimal data 
conditions, including appropriate sampling frequency and minimum required time series length for 
effective nonlinear analysis, remain insufficiently investigated. This study examines the impact of 
downsampling frequencies and reducing time series lengths on the accuracy of estimating dynamical 
characteristics from gPPG and rPPG signals. Results demonstrate that a sampling frequency of 200 
Hz provides an optimal balance, maintaining robust correlations in dynamical indices while reducing 
computational load. Furthermore, analysis of varying time series lengths revealed that the dynamical 
properties stabilize sufficiently at around 170 seconds, achieving an error of less than 5%. A 
comparative analysis between gPPG and rPPG revealed no significant statistical differences, 
confirming their similar effectiveness in estimating dynamical properties under controlled conditions. 
These results enhance the reliability and applicability of PPG-based health monitoring technologies. 

Keywords: photoplethysmography; nonlinear dynamics; nonlinear time series analysis; data 
reduction; computational efficiency; wearable devices 
 

1. Introduction 

In recent years, with the increasing use of wearable devices and mobile devices in healthcare, 
the number of devices measuring the photoplethysmogram (PPG) signal has been on the rise[1–4]. 
PPG is a biological signal used in clinical practice and health monitoring, representing the pulse 
waves. The signal acquisition mechanism involves measuring changes in blood vessel volume that 
happen when the heart pumps blood by shining light onto the skin and detecting fluctuations in the 
transmitted or reflected light. [4,5]. The measurement is noninvasive and easy to perform. In the past, 
red and near-infrared light were used for PPG; however, over the last two decades, green light has 
been attracting attention due to its higher accuracy in detecting changes in blood flow, lower 
susceptibility to noise, and suitability for measurement at various locations [6–10]. Green light PPG 
(gPPG) has been shown to be equally promising for various applications as red light PPG (rPPG) 
[7,10,11]. 

PPG data can be analyzed to obtain relevant cardiovascular information, such as heart rate, 
blood pressure, oxygen saturation, and vascular stiffness index [4,7,12]. It has also been demonstrated 
that heart rate variability (HRV) derived from PPG can replace HRV measured by 
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electrocardiography (ECG) [13,14]. Typical ECG measurements involve multiple electrodes and 
cables, which can cause discomfort to the subject and are not suitable for use in locations where 
electrical interference may occur. PPG, in contrast, is very effective as it causes minimal discomfort 
and is easy to use anywhere. Many studies have shown that PPG can also be used for the early 
detection of cardiovascular diseases [15–18] and mental health assessment [19–22], and thus can be 
utilized for professional health management. Additionally, PPG measurements are cost-effective and 
straightforward to operate, highlighting their suitability for everyday health monitoring. Moreover, 
advances in technology have enhanced the accuracy and miniaturization of PPG sensors, enabling 
the collection of more health data during daily activities and supporting self-care. 

PPG, which is nowadays measured in various conditions, has been well investigated in terms of 
extracting heart rate variability (HRV). However, since the cardiovascular and respiration dynamics 
[23,24], especially the dynamics of PPG [11,25,26] have been shown to be deterministic chaos, 
nonlinear time series analysis has been applied in previous studies to extract information on health 
status directly from PPG dynamics. It has become clear that nonlinear dynamic features can be 
applied as health indicators [11,25–27]. Deterministic chaos is a phenomenon in which a system 
follows deterministic laws but exhibits unpredictable behavior, demonstrating a strong dependence 
on initial conditions and aperiodicity [28,29]. This type of information-rich and complex dynamics 
allows for the analysis of biological data, such as PPG signals, to identify potential health states that 
traditional linear models cannot capture. 

Nonlinear time series analysis of PPG data is performed on data reconstructed into a delay 
coordinate system to capture the nonlinear dynamics of the system [29,30]. The analysis is then 
performed using various methods, such as recurrence plots, Lyapunov exponents, and fractal 
dimension analysis [29]. Recurrence plots (RP) can be used to visualize and quantify nonlinear 
dynamic properties by performing recurrence quantification analysis (RQA) [31–33]. In PPG data, 
RQA was confirmed to provide robust and more sensitive results [34]. It has been used to improve 
the ability to estimate systolic and diastolic blood pressure [35], user authentication [36], stress 
assessment [21], discrimination between preterm and full-term newborns [34], and various other 
studies have validated it as a method for diagnosing health conditions (Table 1). 

Many studies up to this point have shown the usefulness of applying nonlinear time series 
analysis to PPG data, but they have been used in analyses with various time series lengths, such as 2 
seconds [37], 30 seconds [19], 100 seconds [38], 120 seconds [17], and 300 seconds [39]. In general, 
knowing the statistical properties of time series is a prerequisite for time series analysis, since 
infinitely long observation data can always reliably capture the statistical properties of the random 
variation of the target [29,40]. Therefore, a long time series length is also required in nonlinear time 
series analysis, and past studies have shown that RQA can usually be estimated more accurately with 
longer time series lengths [31,41]. However, in PPG, due to noise, movement artifacts, nonstationarity, 
and other effects, short time series are often used in the analysis [35,36]. Moreover, using shorter time 
series can significantly optimize the computation load when performing nonlinear time series 
analysis. 

To address the problem of the appropriate PPG time series length choice, a previous study [38] 
investigated the impact of rPPG time series length on its dynamical properties evaluation by RQA. 
In [38], it was demonstrated that the RQA index converged as the time series length increased. 
However, while the approach was validated using numerical models, the comparison was made with 
120 seconds as the standard reference for time series lengths that varied up to 120 seconds, which 
ensured error convergence to zero but was insufficient to determine a lower error limit. As seen in 
Table 1, considering the time series length used in various applied studies, the reference time series 
length in [42] was short and insufficient as an indicator for accurate estimation. Moreover, as the 
reference time series length in the previous study was short, an important problem of nonstationarity 
in PPG data was left undiscussed. Also, from the perspective of the PPG signal itself, the characteristic 
differences between various wavelengths of light sources, their effects on dynamic status evaluation, 
and the optimal time series length and sampling frequency for measurement and analysis remain 
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open for discussion. In this study, to facilitate more advanced analysis using PPG with reduced data, 
we utilize gPPG and rPPG to investigate the impact of PPG data time series length and compare them 
across different sampling frequencies using RQA. 

Table 1. Overview of PPG time series length used in previous studies. 

Topic of Case Study  Time Series Length Used 

Distinction between normal blood pressure and hypertension [37] 2.1 s 

Estimation model of systolic and diastolic blood pressure [35] 2~3 s 

Subject authentication method [36] 7 s 

Love at first sight impulse detection [43] 10 s 

Analgesia depth during anesthesia [44] 10 s 

Blood Pressure Estimation [15] 20 s 

Mental health assessment [19] 30 s 

Correlation with fear/anxiety [45] 30 s 

Automatic sleep staging [46] 30 s 

Blood sugar estimation [47] 60 s 

Early detection of cardiovascular disease [16] 60 s 

Automatic Emotion Recognition [48] 60 s 

Effects of Mental Stress [21] 100 s 

Fatigue Detection [49] 120 s 

Estimation of cardiovascular age [17] 120 s 

Automatic detection of hypertension [18] 120 s 

PPG time series length criteria [42] 120 s 

Early detection of depression [22] 180 s 

Estimation of blood glucose level [50] 180 s 

Effects of changes in gestational age [51] 180 s 

Effects of mental illness [20] 180 s 

The rPPG dynamics investigation [25] 300 s 

The rPPG and gPPG dynamics investigation [11] 300 s 

Estimation of blood pressure [39] 300 s 

Early hypertension detection [52] 300 s 

Effects of tractor noise on the cardiovascular system [53] 300 s 

Variation of fatigue during driving [54] 300 s 

Comparison between surgical patients and healthy subjects [55] 300 s 

Detection of sleep apnea syndrome [56] 300 s 

Therefore, the purpose of this study is to investigate the impact of data reduction methods on 
extracting dynamic characteristics from gPPG and rPPG data in two main aspects. The first is data 
down-sampling. In this study, comparisons are made between the common data sampling 
frequencies used in PPG devices: 400 Hz, 200 Hz, and 100 Hz. Second, data with varying time series 
length: compared to the previous study [42], a longer time series length is used as a standard for 
comparison. Thus, the reference value in this study is 300 seconds, which is used in many advanced 
PPG-related studies, as shown in Table 1. At the same time, this duration provides signal stationarity, 
as will be discussed in Section 2.4. 
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This study investigates the effects of these two points using gPPG and rPPG to clarify their 
differences in data requirements. It also aims to propose minimal suitable frequency and time series 
length settings for estimating PPG dynamic features through nonlinear time series analysis methods. 

2. Data 

2.1. Photoplethysmogram Signal 

Traditionally, photoplethysmography measures pulse waves by irradiating a light source onto 
the skin of a fingertip, earlobe, arm, etc., causing the light to be partially absorbed by the body’s 
tissues and detecting fluctuations in transmitted or reflected light. The PPG waveform formation 
mechanism is based on the fact that with each heartbeat, the blood volume in the vessels varies, 
affecting the rate of light absorption. The PPG recorded with transmitted light is called the 
transmission type and is measured using a fingertip or earlobe, through which light can pass. On the 
other hand, those that use reflected light are called reflection type and can be measured not only on 
the fingertips but also on the arms and other parts of the body. Near-infrared light (900 nm), red light 
(660 nm), and green light (530 nm) are commonly used as the light source [11]. When infrared or red 
light is used, its application is limited due to the influence of sunlight on infrared light. However, 
green light, which is less affected by external disturbances, has a high light absorption rate and is 
therefore suitable for outdoor use [57]. An illustration of each type of measurement method is shown 
in Figure 1. 

 

Figure 1. Illustration of PPG recording mechanism (left: transmission type, right: reflection type). 

The PPGs used in this study are the reflection type gPPG and the transmission type rPPG, which 
is similar to the rPPG signals used in [42]. The recording was performed using a green light (530nm) 
pulse wave sensor (Arduino [58]) with a sampling frequency of 500.0 Hz for gPPG, and a red (660 
nm) and near-infrared (900nm) pulse wave sensor with a sampling frequency of 409.6 Hz (Tokyo 
Devices, Inc.) for rPPG. 

2.2. Data Collection Experiment 

The subjects of the experiment were 18 healthy male and female students from Tokyo City 
University, all in their 20s, with no history of heart disease. After explaining the purpose of the study, 
the experimental method, and the associated risks, all subjects were asked to sign a consent form and 
provide their consent to participate in the experiment. The experiment was conducted in a quiet room 
maintained at room temperature (24±1 ℃). Before the start of the experiment, the subjects’ blood 
pressure and heart rate were measured using a digital blood pressure monitor (Omron HCR-7106) to 
confirm that they were within normal limits (systolic blood pressure 90-129 mmHg and diastolic 
blood pressure less or equal than 80 mmHg [59]). After a short rest period, the resting state of each 
subject was measured for 10 minutes. If the measurements were not successful, they were repeated 
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at a later time. The subjects were instructed to remain in a sitting position and to move as little as 
possible. As shown in Figure 2, rPPG was attached to the index finger of the right hand and gPPG to 
the middle finger. According to a previous study [5], differences in measurement position between 
these two fingers do not cause a significant difference in the PPG signal when recorded from healthy 
subjects. 

 

Figure 2. Experimental setup during data recording. 

2.3. Data Preprocessing 

In this study, the sampling frequencies of the acquired PPG data are 500 Hz for gPPG and 409.6 
Hz for rPPG. The PPGs are measured at various sampling frequencies, and 100-1000 Hz is used in 
the analysis [8,14,18,21,36]. Past studies have shown that 5 Hz is sufficient to calculate the average 
heart rate from PPG [60]. However, in analysis using the entire pulse waveform, the required 
sampling frequency is not clear, and various values are used as described above. 

The PPG amplitude spectrum obtained by the Fourier transform, which represents the intensity 
of each frequency component of the signal, is shown in Figure 3. According to the sampling theorem, 
a sampling frequency of at least twice the highest frequency of the signal is required, and in 
particular, a sampling frequency of at least 10 times is sufficient to display and record waveforms 
[29] accurately. 

For this reason, the frequencies compared in this study are 400 Hz to match the rPPG device 
with the highest sampling frequency, followed by 2x and 4x downsampling, i.e., 200 Hz and 100 Hz. 

All PPG signals underwent preprocessing that involved removing trends first, followed by 
filtering with a fourth-order Butterworth filter [61,62] to eliminate noise and extract the pulse wave 
shape, as used in previous studies [8,42,48,62]. Figure 4 illustrates the filter’s frequency response. 
Figures 5 and 6 display comparisons of raw and filtered PPG data for gPPG and rPPG, respectively. 
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Figure 3. An example of the amplitude spectrum (gPPG). 

 

Figure 4. Frequency response of the Butterworth filter (highcut = 0.04Hz, lowcut = 6Hz). 

 

Figure 5. Example of noise processing for the gPPG signal: (top) before processing; (bottom) after filter 
processing. 
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Figure 6. Example of noise processing for the rPPG signal: (top) unprocessed; (bottom) filtered. 

2.4. Data Selection 

2.4.1. Quality of PPG Data 

When handling PPG, noise can easily be generated, which may negatively impact measurement 
accuracy and lead to incorrect results. Additionally, it is important to ensure that the quality of the 
PPG data obtained is maintained throughout the 10-minute measurement period in this study. 
Therefore, we evaluated the measured PPG data using skewness, which has been shown in a previous 
study to be an effective quality index [63,64]. Skewness (𝑆ௌொூ) measures the symmetry (or lack of 
symmetry) of a probability distribution and is defined by Eq. (1). 𝑆ௌொூ ൌ 1𝑁෍൤𝑥௜ − 𝑢ො௫𝜎 ൨ଷ ,ே

௜ୀଵ ሺ1ሻ 
where N is the number of data points in the signal, 𝑢ො௫ is the mean of the data, and σ is the standard 
deviation of the signal. This measure processes abnormal changes in noisy PPG signals [63], and a 
time series length of 5 seconds is sufficient for its calculation [64]. 

In this study, comparisons were made for 600 seconds of data, shifting them in a 5-second 
window, and data showing abnormal changes were judged as measurement failures. Figures 7 and 
8 show an example of a plot of the 𝑆ௌொூ changes along with corresponding PPG time series, data 
sample shown in Figure 7 was recognized as normal, and Figure 8 demonstrates an example of a 
measurement failure. 
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Figure 7. An example of a normally measured PPG time: (top) Skewness; (bottom) part of PPG data. 

 

 

Figure 8. An example of PPG time series measurement failure: (top) Skewness; (bottom) part of PPG data. 

2.4.2. Estimation of Stationarity Through Heart Rate 

Another problem that arises when analyzing long PPG time series is the potential 
nonstationarity, such as changes in the subject’s state due to mental load during measurement, which 
raises a question of whether the PPG data obtained reflect a single state or not. To address this issue, 
we first perform HRV analysis. In general, when a person is under mental stress, the autonomic 
nervous system is affected [65]. HRV analysis is the most widely used and relatively efficient method 
for analyzing these changes. The waveform of PPG data consists of several peaks, similar to the 
electrocardiograms the highest peak is called the R wave, and the interval between the R wave and 
the next R wave is called the RR interval (RRI). Figure 9 shows a typical PPG waveform and Figure 
10 shows the PPG waveform with the largest peaks plotted in red. The RRI is calculated by finding 
the interval between these red dots.  

 
Figure 9. Typical PPG waveform. 
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Figure 10. Example of detecting the maximum peaks. 

The RRI data can be used to calculate the heart rate (HR) using Eq. (2). HRሺbpmሻ ൌ 60RRIሾ𝑠ሿ ሺ2ሻ 
An example of the RRI and HRs calculated from PPG data are illustrated in Figures 11. In general, 
the heart rate of a healthy adult is approximately 60~100 beats per minute (bpm) [66], although there 
are individual differences. 

  
(a) (b) 

Figure 11. An example of heart rate variability estimation: (a) RRI; (b) heart rate. 

2.4.3. HRV Analysis 

HRV analysis was conducted based on the extracted RRI data to verify whether the obtained 
PPG data were stationary during the data collection. HRV analysis includes time-domain indices and 
frequency-domain indices [65]. In this study, analysis is performed using both time-domain and 
frequency-domain indices. 

In general, analysis methods using frequency-domain indices are challenging to handle because 
they cannot be used for short periods of time and require detailed parameter settings, as a 
measurement of five minutes or longer is standard [65]. On the other hand, analysis methods using 
time-domain indicators require relatively short measurement times and can be performed with 
simple calculations [65]. Therefore, the state of the subject is evaluated by calculating the frequency-
domain index in a 5-minute window and the time-domain index in a window with an RRI of 120 
points. 

First, LF/HF is calculated from the power spectrum density as a frequency domain index. The 
power spectrum density can be calculated using the fast Fourier transform or the maximum entropy 
method, from which the low frequency component (LF) from 0.04 to 0.15 Hz and the high frequency 
component (HF) from 0.15 to 0.4 Hz can be calculated. The LF/HF is used as an index. In previous 
studies, LF/HF values of 0~2 are considered good, 2~5 are considered cautionary, and 5 or more are 
considered very cautionary as objective criteria for determining fatigue level [67,68]. Evaluation is 
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based on the fluctuations of LF/HF, although individual differences may occur, such as in people 
with autonomic nervous system disorders. 

Two examples of LF/HF for normal and abnormal HRV data are shown in Figures 12 and 13. 

 

Figure 12. An example of LF/HF of a stable measurement. 

 

Figure 13. An example of LF/HF of an unstable measurement. 

Next, sd2/sd1 was obtained from the Poincaré plot as a time domain index. The Poincaré plot, 
also called the Lorenz plot, is constructed with the nth RRI on the horizontal axis and the n+1st RRI on 
the vertical axis. Figure 14 shows an example of a Poincaré plot. This is an example where the state is 
determined to have changed since 300 seconds. The standard deviation on the y=-x axis is sd1, the 
standard deviation on the y=x axis is sd2, and sd2/sd1 is used as a time domain index. This value has 
a high correlation with LF/HF and can be treated as an index for stress analysis [65]. Similar to LF/HF, 
evaluation is made based on the variation of this value. As an example, sd2/sd1 obtained from normal 
(stable) and unstable measurements are shown in Figures 15 and 16 
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(a) (b) 

(c) (d) 

Figure 14. An example of Poincaré: (a) 60~180 points; (b) 180~300 points; (c) 300~420 points; (d) 420~540 points. 

 

Figure 15. An example of sd2/sd1 obtained from a stable measurement. 
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Figure 16. An example of sd2/sd1 obtained from an unstable measurement. 

2.4.4. Results of PPG Data Selection 

We assessed whether the subject’s state changed during the measurement using HRV analysis. 
Consequently, some subjects’ data were considered to have remained stable over the 10-minute 
experiment, while others showed significant changes during the recording. For the following 
analysis, only data in which the subject state did not change and that were identified to be of good 
quality were selected. Thus, in this study, data from 10 out of 18 subjects were used. 

The duration of the experiment was set to 10 minutes, assuming the subjects could remain in a 
resting state for 10 minutes at the beginning of the experiment. However, it is clear that there are 
individual differences in the amount of time they can remain in a stable, i.e., stationary, resting state. 
Thus, for some of the data, such as shown in Figure 16, the resting state changed during the 
experiment. In these data, the state of the subject changed significantly after more than 300 seconds 
from the start of the experiment. Therefore, 300 seconds, which is the standard value used in this 
study as described above, may be viewed as the time a person can remain in a resting state in a sitting 
position, taking into account individual differences. 

Therefore, from this HRV analysis, it can be inferred that 300 seconds is a good standard value 
for comparison when changing the length of the time series. 

3. Analysis Methods 

3.1. Reconstruction into a Delay Coordinate System 

In many real-world observations, it is impossible to observe all state variables of a nonlinear 
dynamical system simultaneously; therefore, reconstruction to a delay coordinate system is used in 
nonlinear time series analysis to reproduce the original system from the obtained time series [29,69]. 
Reconstruction to a delay coordinate system is a method based on Takens’ embedding theorem to 
reproduce the multidimensional nature of the system and to reveal the hidden dynamical structure. 
Since it is generally believed that the entire state variables of the pulse wave system cannot be 
observed, and only one-dimensional data can be observed by PPG, reconstruction to a delay 
coordinate system was performed [11,25,26]. The reconstruction into a delay coordinate system 
transforms the observed n-point-long time series data x(t) into an m-dimensional vector v(t) according 
to Eq. (3). 𝑣ሺ𝑡ሻ ൌ ൫𝑥ሺ𝑡ሻ, 𝑥ሺ𝑡 ൅ τሻ, … , 𝑥ሺ𝑡 ൅ ሺ𝑚 − 1ሻ𝜏ሻ൯, ሺ3ሻ 
where τ is the time delay value, m is the reconstruction dimension, and t = 1,2,3,...,n. 

The time delay value is often determined by autocorrelation [29]. In general, if the time delay 
value is too small, the correlation will be extremely high; therefore, an appropriate setting is 
necessary. In this study, the value of autocorrelation is calculated, and the time when it first becomes 
less than 1-1/e is used [42]. 
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Next, the reconstruction dimension is determined by the false neighborhood method [29]. This 
allows to find the dimension in which the percentage of points that were neighbors in the m-1-
dimensional space and are no longer neighbors in the m-dimensional space is close to zero. 

3.2. Recurrence Plot 

Recurrence plot (RP) visualizes the distance relationship between points on the attractor and is 
used for detecting dynamical behavior of time series [31–33]. RP is a two-dimensional binary image 
with a length of the total number of points on the attractor, N, and a matrix is created by Eq. (4): 𝑅௜,௝  ሺεሻ = ൜0, if ‖𝑣(𝑖)  −  𝑣(𝑗)‖ >  𝜀1, if ‖𝑣(𝑖)  −  𝑣(𝑗)‖ <  𝜀 (4) 

where 𝑅௜,௝ is i,jth pixel on RP, ε is the threshold value, and i,j are 1,2,3,...,N. In this study, the threshold 
value is set at a value where the recurrence rate (RR) of the recurrence plot obtained by Eq. (5) is close 
to 10% [31]: 𝑅𝑅(𝜀) = 1𝑁ଶ ෍ 𝑅௜,௝ே

௜,௝ୀଵ (𝜀). (5) 

3.3. Recursive Quantification Analysis (RQA) 

RQA can extract quantitative features in the RP, and while there are a variety of methods, in this 
study, we calculated four values that characterize the diagonal lines [31,33]. These indices are 
important for quantitatively evaluating the regularity and chaos of the system and are suitable for 
the analysis of the dynamics of time series, which is the objective of this study.  

D(l) is the number of diagonal lines of length l defined by Eq. (6). The RQA will be performed 
based on this value. 𝐷(𝑙) = ൫1 − 𝑅(𝑖 − 1, 𝑗 − 1)൯൫1 − 𝑅(𝑖 + 𝑙, 𝑗 + 𝑙)൯ෑ𝑅(𝑖 + 𝑘, 𝑗 + 𝑘)௟ିଵ

௞ୀ଴ (6) 

The first RQA index is determinism (DET), which is the ratio of points forming a diagonal line, 
as defined by Eq. (7). When a time series is deterministic, the DET value tends to be close to 1 [31]. 
Determinism means that the system is not created randomly but is driven by some rule. 𝐷𝐸𝑇 = ∑ 𝑙|𝐷(𝑙)|௟ஹଶ∑ 𝑙|𝐷(𝑙)|௟ஹଵ . (7) 

The second index is 𝐿௠௔௫. The orbit instability, or exponential orbit divergence, of a chaotic time 
series can be defined as the inverse of the longest diagonal in the RP, 𝐿௠௔௫, defined by Eq. (8). Short 𝐿௠௔௫  indicates complex dynamics with rapid divergence, while longer values tend to indicate 
periodic behavior [31]. It is also considered to be inversely proportional to the Lyapunov exponent 
[31]. 𝐿௠௔௫ = maxሼ𝑙|𝐷(𝑙) ≠ ∅ሽ . (8) 

The third index is L. The average prediction time of an attractor is estimated by the average 
length L of the diagonal line, which is calculated by Eq. (9) [31]. The average prediction time indicates 
how long the system is predictable, and a long L suggests that the system is regular. 𝐿 = ∑ 𝑙|𝐷(𝑙)|௟ஹଶ∑ |𝐷(𝑙)|௟ஹଶ (9) 

The fourth is entropy (ENTR), which is calculated by Eq. (10). ENTR is defined as the probability 
of finding a diagonal line of length l in the RP, as in Eq. (11) [31]. The higher the value of ENTR, the 
greater the complexity [31]. 𝐸𝑁𝑇𝑅 = −෍𝑝(𝑙) log𝑝(𝑙)௟ஹଶ (10) 𝑝(𝑙) = |𝐷(𝑙)|∑ |𝐷(𝑙)|௟ஹଶ (11) 

3.4. Error 
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The relative error, 𝐸௟, for each of the above four RQA values, S, is determined by Eq. (12) for a 
given time series length, l, and a reference time series length, T= 300 seconds, which choice is 
discussed in section 2.4.4. 𝐸௟ = |𝑆௟ − 𝑆்|𝑆் ൈ 100% (12) 

4. Results 

4.1. PPG Time Series Subsets 

The choice of time series starting point may affect the analysis results, therefore, in this study, to 
proceed with analysis, subsets were created by varying the length of the preprocessed data every 10 
seconds from 10 seconds (more than 10 cycles) to～ 200 seconds, with the initial position of the data 
shifted every 30 seconds. A reference data set for 300 seconds was also created in the same way. These 
were created for rPPG, gPPG at each frequency. As an example of the PPG data obtained, Figure 17 
shows 10 seconds of rPPG and gPPG at each investigated frequency for the same person after 
pretreatment. Inspection of the waveforms of the PPG data reveals that no significant information 
loss occurred as the sampling frequencies varied in this study. However, when comparing gPPG and 
rPPG, differences can be seen in the waveforms. 

 
Figure 17. An example of the PPG waveform of the PPG data (10 sec) at 400 Hz. 200 Hz, and 100 Hz sampling 
frequency. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 August 2025 doi:10.20944/preprints202508.0334.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.0334.v1
http://creativecommons.org/licenses/by/4.0/


 15 of 33 

 

4.2. Parameter Settings 

For each PPG time series, we set parameters, reconstruct the delay coordinate system, create 
RPs, and perform RQA. First, as parameter settings, we obtain the time delay value τ and the 
reconstruction dimension m required for reconstruction to the delay coordinate system. The results 
of the autocorrelation function calculation and the false neighborhood method are presented in 
Figures 18–21. These figures summarize the outcomes for 10, 60, and 120 seconds at each sampling 
frequency. 

First, in the autocorrelation graph, as the time series length increases, only a slight change can 
be seen. This applies to all data, each having its own specific value. The variation with sampling 
frequency indicates that when the frequency is halved or quartered, the autocorrelation decreases 
correspondingly by the same factors. 

Next, when examining the false neighborhood method results with longer time series, the false 
neighborhood ratio dropped to zero as the dimension increased from 4 to 5 at 10 seconds, suggesting 
four dimensions are sufficient. At 60 and 120 seconds, increasing the dimensions from 5 to 6 also 
resulted in a zero error neighborhood ratio, indicating five dimensions are sufficient. This pattern 
persisted even when lowering the sampling frequency. The results were similar for gPPG and rPPG. 

 
Figure 18. An example of the autocorrelation graph of the gPPG. 
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Figure 19. An example of the autocorrelation graph of the rPPG. 

 
Figure 20. An example of dimension estimation by the false neighborhood method for gPPG. 
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Figure 21. An example of dimension estimation by the false neighborhood method for rPPG. 

4.3. Reconstructed Attractor and RP 

Using the parameters obtained above, the reconstruction to the delay coordinate system and RP 
calculation was performed. The threshold of the RP was determined based on the RR, as described 
above, and was approximately 0.1 times the maximum distance between the points of the 
reconstructed attractor. 

Figures 22–25 show examples of the reconstructed attractors and RPs using the same subject’s 
data. The reconstructed attractor was 5-dimensional as defined in section 4.2, but for visualization 
purposes, up to four dimensions are used here, and colors indicate the values in the fourth dimension. 

The reconstructed attractors show a complex but recurrent behavior. The reconstructed attractor 
makes it easier to see the dependence on the frequency differences, which could not be seen with the 
PPG data as it is. Comparing the attractors of gPPG and rPPG, the shapes of the attractors seem to be 
similar, but they do not behave exactly the same, indicating that there are differences due to the 
wavelength of light and noise effects from the measurement equipment. To detect and quantify these 
features in detail, RPs were created, and RQA was performed. 
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Figure 22. An example of the reconstructed attractor for the gPPG data subsets. 

 
Figure 23. An example of the reconstructed attractor for the rPPG data subsets. 
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Figure 24. An example of the RP for the gPPG data subsets. 
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Figure 25. An example of the RP for the rPPG data subsets. 

4.4. RQA 

The RQA is used to quantify the dynamical characteristics from the RPs. Figures 26 and 27 show 
the changes in the values of each RQA result for the same subject. The changes in DET, L, and ENTR 
become more stable as the length of the time series increases. The value of 𝐿௠௔௫ for gPPG and rPPG 
stopped changing and remained constant when the time series length became longer. The results of 
gPPG and rPPG are not the same, especially the values of 𝐿௠௔௫ saturates faster for the rPPG. 

 

Figure 26. An example of the variation of the RQA indexes of the gPPG (400 Hz with 200 seconds time series 
length). 

 

Figure 27. An example of the variation of the RQA indexes of the rPPG (400 Hz with 200 seconds time series 
length). 

4.5. Effects of Down-Sampling 

First, we compare the effect of down-sampling at each frequency. Figures 28 and 29 show a box-
and-whisker plot of the RQA index values for each frequency (400 Hz, 200 Hz, and 100 Hz). The 
results show that all the indices show a decreasing trend when the frequency is lowered. A closer 
look at the effect of decreasing frequency shows that DET shows an increase in the variability of 
values, ENTR shows an overall decrease while the variability of values remains the same, and L and 
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𝐿௠௔௫ show a decrease in the variability of values and a more coherent distribution. Comparing the 
results for gPPG and rPPG, we can see that they show similar distributions. 

 

Figure 28. Distribution of RQA indices at each frequency for gPPG. 

 

Figure 29. Distribution of RQA indices at each frequency for rPPG. 

In this study, we ranked the indicators at each frequency and calculated correlation coefficients 
between the down-sampled results and the rankings. Spearman’s rank correlation test was used. The 
results showed that statistically significant rank correlations existed for all data. The correlation 
coefficients are shown in Tables 2 and 3. 
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The correlation coefficients show that there is a strong correlation overall, and that the down-
sampling did not change the relative relationship much. In particular, for L, ENTR, and DET, there 
was a fairly strong positive correlation for all frequency combinations. However, for both gPPG and 
rPPG, the correlation compared to 400 Hz at 𝐿௠௔௫ shows that the correlation is weaker than for the 
other indices. However, 200Hz and 100Hz show strong correlations, as do the other indices. This 
indicates that down-sampling must be approached carefully if the higher frequencies are accurate, 
but it is also possible that the 400 Hz setting includes too much information when generating the RPs, 
leading to values different from the original ones. Looking at the distribution of 𝐿௠௔௫ in Figures 28 
and 29, the data are too scattered to represent the same resting state. Therefore, the overall result was 
that the relative position did not change much after down-sampling, and that 200 Hz may be suitable, 
considering the change in the distribution of the data. 

Table 2. Spearman’s rank correlation test results of RQA indices for each frequency (gPPG). 

gPPG Lmax L ENTR DET 
400 Hz vs 200 Hz 0.78  0.98  0.98  0.98  
400 Hz vs 100 Hz 0.78  0.95  0.93  0.88  
200 Hz vs 100 Hz 0.94  0.95  0.91  0.89  

Table 3. Spearman’s rank correlation test results of RQA indices for each frequency (rPPG). 

rPPG Lmax L ENTR DET 
400 Hz vs 200 Hz 0.60  0.98  0.96  0.98  
400 Hz vs 100 Hz 0.50  0.96  0.92  0.96  
200 Hz vs 100 Hz 0.94  0.97  0.94  0.96  

4.6. Difference Between gPPG and rPPG by RQA 

In the previous section, the possibility that gPPG and rPPG have similar distributions was 
suggested based on the box-and-whisker diagram. In this section, a Wilcoxon signed rank test was 
additionally performed on the dataset with a correspondence for each subject. This is due to the fact 
that the Shapiro-Wilk test did not verify the normal distribution of each RQA index. The results are 
summarized in Table 4. 

The results show that there are no significant differences except for L and 𝐿௠௔௫  at 100 Hz, 
indicating that there are basically no significant differences between the values obtained by RQA for 
gPPG and rPPG at 400 Hz and 200 Hz. However, since the data at 100 Hz showed significant 
differences in the two indices, down-sampling to 100 Hz should be avoided because some 
information would be lost and a difference would be generated in the data where originally was no 
difference between gPPG and rPPG. However, the results in 4.5 show that there is a strong correlation 
with the 200 Hz data, and therefore, if one does not pay attention to the difference between gPPG 
and rPPG, there should be no particular problem in handling the data. 

Combined with the results of section 4.5, it can be inferred that a sampling frequency of 200 Hz 
is appropriate for handling different types of PPG, since it suppresses the variability of all RQA 
indices and does not produce significant differences between rPPG and gPPG. 

Table 4. Wilcoxon signed rank test results of RQA indices between gPPG and rPPG. 

  Lmax L ENTR DET 
400 Hz 𝑝 > 0.05 𝑝 > 0.05 𝑝 > 0.05 𝑝 > 0.05 
200 Hz 𝑝 > 0.05 𝑝 > 0.05 𝑝 > 0.05 𝑝 > 0.05 
100 Hz 𝑝 < 0.05 𝑝 < 0.05 𝑝 > 0.05 𝑝 > 0.05 

4.7. Effects of Time Series Length 
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Next, the effect of time series length is evaluated. To account for the realistic situation when the 
reference value is unknown, first, all data were analyzed with time series lengths of 10 to 200 seconds, 
and the error was calculated between the results for variable time series lengths and the reference 
value taken in the same 10 to 200 seconds range. Figures 30–32 show a color map of the errors for 400 
Hz, 200 Hz, and 100 Hz, respectively. The horizontal axis represents the time series lengths that were 
varied, and the vertical axis represents the time series lengths that were compared. For clarity, only 
the error values from 0.1 to 0 (10% to 0%) are color-coded. 

The results show that the error for DET is almost zero in all cases and remains largely unaffected 
by the length of the time series. In contrast, the error for ENTR is generally low but increases slightly 
as the length of the compared time series grows. L exhibits a higher error than the previous two, and 
this error escalates as either the length of the time series or the reference time series increases, shown 
by the green and yellow areas. The rPPG results feature fewer yellow areas, although the impact of 
frequency is less noticeable. For 𝐿௠௔௫ both gPPG and rPPG, the error is very high and increases even 
when the time series length differs by 50 seconds from the length being compared. Across all results, 
the region of lower error, marked by the purple area, expands as the length of the investigated and 
reference time series increases. As the frequency decreases, the high-error area (represented by 
yellow) shrinks, and the error drops. While gPPG and rPPG results are quite similar, the 400 Hz data 
show that rPPG has slightly smaller yellow areas. 

 
Figure 30. Color map of the average error for variable time series length for PPG (400 Hz): (left half) gPPG; 
(right half) rPPG. 
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Figure 31. Color maps of the average error for variable time series length for PPG (200Hz): (left half) gPPG; 
(right half) rPPG. 

 
Figure 32. Color maps of the average error for variable time series length for PPG (100Hz): (left half) gPPG; 
(right half) rPPG. 

4.8. Error for gPPG with the Standard Reference Value (300 Seconds) 

From this point on, the error from the reference value (300 seconds) is calculated for all data and 
compared with the time series length. First, the gPPG results are shown in Figures 33–35 and Table 
5. The results show that as the length of the time series increases, the error rate tends to decrease for 
all of the RQA indices. In terms of the degree of decrease, the error rates for DET and ENTR are quite 
low even at short time series lengths, and then decrease gradually. L drops from about 15% to about 
3%. 𝐿௠௔௫ has a high error rate at short time series lengths, but this rate decreases significantly as the 
time series length increases. This trend was also observed across different frequencies. 

The average error rate for DET was less than 1% at 10 seconds, and the higher the frequency, the 
lower the error rate. The ENTR 5% cutoff was 180 seconds at 400 Hz, 170 seconds at 200 Hz, and 170 
seconds at 100 Hz, and the lower the frequency, the lower the cutoff. The 𝐿௠௔௫ 5% cutoff was not 
reached at 400 Hz, but achieved at 200 Hz for 160 seconds and at 100 Hz for 150 seconds. 
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The standard deviations (σ) of the error rates for all RQA indices were smallest at 200 s. For the 
DET, ENTR, and L indices, standard deviations were large at short time series lengths and then 
decreased, while the 𝐿௠௔௫  it was small at short time series lengths, then increased, and finally 
significantly decreased reaching a minimal value. This trend was also observed for different 
frequencies. A closer look at the effect of frequency shows that DET and ENTR become smaller as the 
frequency increases, while L and 𝐿௠௔௫ become smaller as the frequency decreases. 

The errors from the reference value (300 seconds) for all RQA indices were less than 10% for 180 
seconds at 400 Hz, 120 seconds at 200 Hz, and 100 seconds at 100 Hz, and less than 5% for 170 seconds 
at 200 Hz, and 170 seconds at 100 Hz, respectively. 

 

Figure 33. Change in the average error rate (± 0.5σ) of gPPG (400 Hz) from the standard reference value. 

 

Figure 34. Change in the average error rate (± 0.5σ) of gPPG (200 Hz) from the standard reference value. 
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Figure 35. Change in the average error rate (± 0.5σ) of gPPG (100 Hz) from the standard reference value. 

Table 5. Summary of the average error rate (%) of gPPG RQA results compared with the reference value. 

time 
400 Hz 200 Hz 100 Hz 

Lmax L ENTR DET Lmax L ENTR DET Lmax L ENTR DET 
10s 64.557  14.577  2.881  0.002  59.423  13.777  3.202  0.015  59.970  12.723  3.773  0.108  
20s 49.232  13.567  2.256  0.002  42.189  12.545  2.508  0.014  41.224  10.939  2.911  0.101  
30s 41.739  13.067  2.109  0.001  33.824  12.212  2.460  0.013  31.595  11.823  2.884  0.096  
40s 37.282  12.756  2.039  0.001  29.463  12.012  2.347  0.012  26.874  11.144  2.618  0.089  
50s 34.412  12.358  1.878  0.001  24.410  11.690  2.142  0.011  22.293  11.040  2.478  0.086  
60s 32.731  11.671  1.769  0.001  21.657  11.238  2.065  0.011  18.165  10.616  2.426  0.084  
70s 30.191  10.897  1.680  0.001  18.543  10.497  1.950  0.010  15.014  9.827  2.188  0.080  
80s 26.836  10.309  1.572  0.001  15.044  9.795  1.787  0.010  12.017  9.180  2.047  0.076  
90s 23.885  9.525  1.445  0.001  14.085  9.130  1.645  0.009  11.092  8.500  1.890  0.073  
100s 20.458  8.685  1.300  0.001  11.797  8.247  1.476  0.009  9.790  7.878  1.698  0.069  
110s 19.406  8.226  1.230  0.001  10.167  7.792  1.381  0.008  9.072  7.330  1.614  0.066  
120s 16.807  7.829  1.144  0.001  9.258  7.466  1.278  0.008  7.574  7.059  1.514  0.062  
130s 13.878  7.099  1.032  0.001  7.220  6.801  1.174  0.007  7.002  6.398  1.362  0.058  
140s 12.753  6.673  0.976  0.001  5.735  6.415  1.111  0.007  5.322  6.033  1.308  0.054  
150s 12.162  6.375  0.923  0.001  5.221  6.098  1.039  0.006  4.410  5.763  1.250  0.051  
160s 10.919  5.710  0.835  0.001  4.185  5.497  0.953  0.006  3.664  5.233  1.144  0.048  
170s 10.231  5.181  0.767  0.001  3.055  4.989  0.859  0.005  2.747  4.658  1.044  0.044  
180s 9.616  4.690  0.705  0.001  2.322  4.512  0.790  0.005  2.649  4.233  0.959  0.041  
190s 8.279  4.132  0.634  0.001  2.085  3.996  0.712  0.004  2.616  3.781  0.868  0.037  
200s 7.350  3.629  0.541  0.001  1.613  3.529  0.615  0.004  2.304  3.293  0.743  0.033  

4.9. Error for rPPG with the Standard Reference Value (300 Seconds) 

The results of rPPG are shown in Figures 36–38 and Table 6. The results show a similar trend to 
that of gPPG, with the difference being that the mean error rate and standard deviation of L were 
higher at shorter times and then decreased, while the mean error rate and standard deviation of the 
other RQA indices were similar. However, the mean error rate at 200 seconds was lower for rPPG for 
DET and 𝐿௠௔௫, and lower for gPPG for ENTR and L. The standard deviation trends were similar.  

The mean error rate for DET was less than 1% at 10 seconds, and the higher the frequency, the 
lower the error rate. The L below 10% was achieved at 40 seconds for 400 Hz, 40 seconds at 200 Hz, 
and 40 seconds at 100 Hz, and below 5% at 140 seconds for 400 Hz, 150 seconds for 200 Hz, and 130 
seconds for 100 Hz. The 𝐿௠௔௫ results show that the 10% cutoff at 400 Hz, 200 Hz, and 100 Hz was 
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120 seconds, and the 5% cutoff was 170 seconds at 400 Hz and 200 Hz, and 180 seconds at 100 Hz, 
with lower frequencies having lower cutoffs. 

The error rate from the standard value (300 seconds) is less than 10% for all the RQA indices: 120 
seconds for 400 Hz, 200 Hz, and 100 Hz, and less than 5% for 170 seconds for 400 Hz and 200 Hz, and 
180 seconds for 100 Hz.  

 

Figure 36. Change in the average error rate (± 0.5σ) of rPPG (400 Hz) from the standard reference value. 

 

Figure 37. Change in the average error rate (± 0.5σ) of rPPG (200 Hz) from the standard reference value. 

 

Figure 38. Change in the average error rate (± 0.5σ) of rPPG (100 Hz) from the standard reference value. 
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Table 6. Summary of the average error rate (%) of rPPG RQA results compared with the reference value. 

time 
400Hz 200Hz 100Hz 

Lmax L ENTR DET Lmax L ENTR DET Lmax L ENTR DET 
10s 62.898  9.272  1.638  0.002  59.245  8.432  1.950  0.009  59.447  7.916  2.651  0.062  
20s 45.576  10.500  1.698  0.001  44.217  10.231  2.009  0.007  44.910  9.541  2.380  0.049  
30s 35.891  10.498  1.640  0.001  35.843  10.497  2.001  0.007  35.216  10.084  2.319  0.053  
40s 29.250  9.613  1.571  0.001  27.330  9.433  1.860  0.007  28.858  8.717  2.115  0.052  
50s 24.730  8.569  1.438  0.001  23.973  8.475  1.688  0.006  24.623  7.822  1.984  0.047  
60s 20.420  7.817  1.329  0.001  21.131  7.783  1.607  0.006  22.021  7.318  1.890  0.044  
70s 18.147  7.454  1.297  0.001  17.512  7.355  1.538  0.006  18.259  6.709  1.775  0.043  
80s 16.584  7.015  1.225  0.001  15.899  6.958  1.467  0.005  15.986  6.567  1.761  0.041  
90s 14.427  6.470  1.137  0.001  13.932  6.526  1.382  0.005  14.020  6.053  1.626  0.039  

100s 12.437  6.158  1.125  0.001  11.744  6.258  1.368  0.005  11.855  5.791  1.584  0.038  
110s 10.135  5.842  1.079  0.001  10.421  5.926  1.309  0.005  10.236  5.624  1.555  0.035  
120s 8.228  5.511  1.009  0.000  9.748  5.662  1.242  0.004  9.083  5.265  1.460  0.033  
130s 6.952  5.186  0.975  0.000  8.094  5.323  1.205  0.004  8.046  4.943  1.399  0.032  
140s 5.982  4.914  0.942  0.000  6.549  5.003  1.157  0.004  6.850  4.740  1.367  0.030  
150s 5.434  4.658  0.873  0.000  5.888  4.765  1.074  0.003  6.099  4.361  1.252  0.027  
160s 5.024  4.308  0.817  0.000  5.238  4.399  1.012  0.003  5.803  4.082  1.178  0.026  
170s 3.562  4.033  0.772  0.000  4.138  4.129  0.963  0.003  5.468  3.858  1.137  0.024  
180s 3.257  3.707  0.714  0.000  3.931  3.862  0.900  0.003  4.644  3.494  1.035  0.022  
190s 3.233  3.455  0.668  0.000  3.544  3.554  0.825  0.002  3.975  3.290  0.950  0.020  
200s 3.203  3.111  0.609  0.000  2.454  3.170  0.754  0.002  3.433  2.912  0.858  0.019  

5. Discussion 

The purpose of this study was to investigate data reduction methods for PPG data that would 
minimize the amount of data used, sufficient, however, for extracting dynamical characteristics by 
methods of nonlinear time series analysis that were represented in this study by RQA. Although the 
effect of down-sampling could not be directly estimated from the waveforms of the PPG data, it was 
possible to visualize the effect of down-sampling and changing the length of the time-series by 
reconstructing the data into a delay coordinate system and creating RPs. Then RQA was performed 
to quantify RPs and compare the characteristics of the data. 

First, the results of the down-sampling effect showed a decrease in the overall distribution of 
values for all RQA indices as the frequency decreased. However, for DET, the range of the 
distribution widened, and for L and 𝐿௠௔௫, the distribution clumped together. Furthermore, a rank 
correlation check on whether the relative position of each value had changed revealed that 
correlations existed for all indicators. For the 𝐿௠௔௫ correlation was weaker compared with the L. The 
distribution of the data at 400 Hz was considerably wider than that of the others, suggesting that the 
data were scattered too much, even though they were from the same resting state, and thus may have 
contained excessive information in creating the RPs. From the changes in the overall distribution of 
the indices and the results of the rank correlation, it can be inferred that 200 Hz is an optimal and 
sufficient sampling frequency for PPGs. 

Next, the effect of time series length was verified by comparing the results of 10 to 200 seconds 
with each other and with the standard value of 300 seconds. The results for the 10 to 200 second time 
series showed that DET had low errors for all time series lengths and was not affected by it. At the 
same time, ENTR had low errors as well and was not affected by the time series length. L, and 𝐿௠௔௫ 
tended to increase with distance from the compared time series length and to decrease with longer 
time series length, showing that the error was considerably affected by time series length. The results 
also showed that the error became lower as the frequency was lowered. For DET and ENTR, the errors 
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were low starting at 10 seconds, and for L and 𝐿௠௔௫  the errors were high at shorter time-series 
lengths, and the errors decreased as the time-series length increased. When the frequency was 
lowered, DET and ENTR showed an increase in error, while L and 𝐿௠௔௫ showed a decrease in error. 
In the 200 Hz results, the error rate for all values is less than 5% at 170 seconds, and the standard 
deviation is not high, so we suggest using the 170-second data as sufficient time series length rather 
than the 300-second data. Although we have proposed an error rate of 5% here, the acceptable error 
rate can be more clearly suggested by checking the difference in each index using the RQA, for 
example, by comparing the results of a subject at rest and under stress, or by comparing the results 
of a patient with a certain disease. 

Additionally, the comparison of these effects between gPPG and rPPG shows that there is no 
statistical difference in all the RQA indices, and the errors are not much different. It can be seen that 
there is no significant difference between the two measurement PPG setups. 

6. Conclusions 

Based on the above results, we propose the use of 200 Hz down-sampling and 170 s time series 
length for extracting dynamical information from PPGs by RQA in PPG if the state is constant. These 
results establish a basis for the data reduction, which is highly beneficial for various applications, 
such as health monitoring. At the same time, these results suggest the criteria for unifying the PPG 
data measurement requirements.  

However, it is necessary to take into account that these results may change with a change in the 
subject state. Therefore, further validation in future work should include comparison with results at 
higher frequencies and validation of the extent to which the RQA index in PPG data changes under 
stress loads and other conditions. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

PPG Photoplethysmogram 
rPPG Photoplethysmogram recorded with red light 
gPPG Photoplethysmogram recorded with green light 
HRV Heart Rate Variability 
RP Recurrence Plot 
RQA Recurrence Quantification Analysis 
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