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Abstract

This study introduces a Spatio-Temporal Graph Attention Network (STGAT) for non-stationary fi-
nancial systems to address challenges in stock price prediction, such as non-stationarity and complex
dependencies, by integrating a gated causal temporal convolution module and a novel graph attention
module. STGAT employs causal time-modeling to prevent future information leakage, a dynamic
industry-correlation graph attention mechanism for adaptive weight learning, and a multi-scale MIMO
framework for industry-grouped feature extraction. Its symmetric integration of temporal and spatial
modeling balances time-series dynamics with inter-stock correlations. Experiments on the New York
Stock Exchange’s commercial banking and metals sectors demonstrate that STGAT substantially out-
performs XGBoost, LSTM, and SARIMA in predictive accuracy, particularly in high-volatility scenarios.
This research underscores the efficacy of graph neural networks in modeling interconnected financial
systems and offers insights for advancing portfolio optimization and risk management.

Keywords: STGAT; stock price prediction; spatio-temporal graph neural network; graph attention
network; causal convolution; financial market modeling

MSC: 68T07; 68R10; 91G45

1. Introduction

In the dynamic evolution of financial markets, stock price forecasting has always been a core issue
in theoretical research and practical applications [1]. Its importance is not only reflected in its value as
a guide for investors’ personal asset allocation, but also as a key basis for financial institutions’ risk
management, asset pricing, and investment strategy formulation. Accurate stock price forecasting can
help investors capture potential gains from market fluctuations and avoid systemic risks. However,
forecasting activities are complex and subject to many uncertainties [2], making understanding future
stock prices extremely challenging.

Traditional stock price prediction methods, such as ARIMA models and statistical regression
analysis [3], are constrained by linearity assumptions and the requirement of data smoothness, making
them inadequate for capturing the inherent complexity and non-stationarity of financial markets. Stock
prices are subject to abrupt fluctuations driven by macroeconomic policies, earnings announcements,
geopolitical events, and other external shocks, resulting in pronounced non-linear dynamics and
volatility clustering that traditional models struggle to represent effectively.
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While machine learning approaches [4] overcome some linearity limitations, they often depend
on handcrafted features and lack the capacity to model intricate inter-stock relationships or adapt to
evolving market structures, thus limiting their generalizability and robustness. Consequently, these
traditional and machine learning methods frequently fall short in delivering accurate, reliable, and
timely stock price forecasts.

The booming development of deep learning has brought revolutionary breakthroughs to financial
market analysis [5]. Among them, the Recurrent Neural Network (RNN) [6] and its classic variant,
the Long Short - Term Memory network (LSTM) [7], can capture the dynamics of stock prices in
the time dimension with their sequence modeling capabilities. The RNN realizes the modeling of
temporal dependencies through the recurrent connection of the hidden layer. However, in scenarios
with long - distance dependencies, the problem of gradient vanishing is significant. In contrast, the
LSTM effectively solves the long - term memory bottleneck of the traditional RNN through the gating
mechanism composed of the forget gate, input gate, and output gate.

However, complex correlations among stocks in the financial market (such as industry linkages
and sector rotations) urgently require more efficient structured modeling tools. Thus, Graph Neural
Networks (GNNs) have become a new paradigm [8]. GNNs naturally represent the dependency
relationships among stocks through the topological structure of nodes and edges, and can effectively
capture non - Euclidean space correlations such as upstream and downstream of the industrial chain
and sector collaboration.

Based on this, Spatio - Temporal Graph Attention Networks (STGATs) [9] further integrate time
- series dynamics and graph - structure representation. Through the attention mechanism, they
adaptively focus on key nodes and temporal patterns. This not only breaks through the limitations
of traditional methods in spatial correlation modeling but also strengthens the ability to fuse multi -
scale spatio - temporal features, providing a highly promising solution for improving the accuracy and
robustness of stock price prediction.

This paper proposes a spatio-temporal graph attention network (STGAT) for non-stationary
financial systems, and builds a set of spatio-temporal adaptive prediction framework specifically
designed for stock price prediction, and achieves technological innovation in Spatial Temporal
Modeling and Model Architecture, the following are the main innovations:

1.  Causal Temporal Modeling Mechanism The Gated Causal Convolution network is adopted,
strictly following the causal constraints of financial time series to avoid the leakage of future
information.

2. Dynamic Industry Association Graph Attention Model An adaptive graph attention architecture
that integrates industry rotation factors is constructed. Through the edge - attribute attention
mechanism of GATv2, the association weights between financial entities are dynamically learned.
The model takes industry classification information and market correlation matrices as edge -
attribute inputs, and through the attention mechanism, it automatically distinguishes the true
associations driven by industry fundamentals from the false correlations caused by market
sentiment.

3. Multi - scale Industry Sector MIMO Framework A multi - input multi - output prediction
architecture based on industry sectors is designed, breaking through the limitations of single -
asset independent modeling. Through the industry grouping mechanism, homogeneous financial
entities are clustered into sub - graphs, and the graph attention layer is used to capture the intra -
group synergy and inter - group transmission relationships.

In an empirical study of the commercial banking and energy sectors of the New York Stock
Exchange, the STGAT model demonstrates significantly more predictive power than traditional
benchmark models such as SARIMA, LSTM, and XGBOOST. The central innovation of this study is
that it rejects the traditional view of stocks as isolated individuals and instead models the stock market
as an interconnected network. This network-based perspective contributes to a deeper understanding
of how various relational factors affect stock prices.
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This research not only expands the methodological boundaries of financial forecasting but also
demonstrates the strong potential of graph neural networks in modeling complex financial systems.
The findings provide important theoretical support and practical guidance for portfolio optimization,
risk management, and other financial applications, and are expected to promote further development
of quantitative analysis and decision support in the field of finance.

2. Literature Review

Early financial forecasting primarily relied on traditional statistical models. The ARIMA
model [10], while effective for modeling smooth time series and applied to stock price forecast-
ing [11], is limited by its linear assumptions and inability to handle the non-stationarity and abrupt
changes common in financial markets. To address volatility, Engle introduced the ARCH model [12],
later extended to GARCH by Bollerslev [13], which models volatility clustering. However, these
models remain constrained by their linear frameworks and cannot fully capture the complex nonlinear
relationships in financial data.

With the advent of machine learning, models such as support vector machines (SVMs) [14]
and random forests [15] enabled the modeling of nonlinear patterns in time series data. Despite
this advancement, these methods heavily depend on manual feature engineering, requiring domain
expertise and limiting their generalizability and scalability.

The advent of deep learning has significantly advanced time series modeling. LSTM, proposed by
Hochreiter and Schmidhuber [16], addresses the gradient vanishing/exploding issues in RNNs through
gating mechanisms, enabling the capture of long-range dependencies. In financial forecasting, LSTM
has demonstrated strong potential for modeling long-term correlations [17]. Temporal Convolutional
Networks (TCN) [18] utilize dilated convolutions to expand the receptive field and support parallel
computation, improving efficiency over traditional RNNs and making them suitable for low-latency
scenarios such as high-frequency trading. WaveNet [19] employs causal convolutions to ensure
temporal causality and prevent information leakage from the future, setting a benchmark for time
series modeling. However, these models primarily focus on single-sequence data and struggle to
capture cross-asset or spatial relationships, underscoring the need for approaches that can model
complex dependencies across multiple sequences.

The rise of graph neural networks (GNN) is naturally adapted to the financial market "entity
association network " features (e.g., stock industry chain associations, institutional position networks,
and credit bond collateral relationships): the basic GCN proposed by Kipf & Welling [20] pioneered
the graph convolution operator to achieve node information propagation. These techniques draw
from cluster analysis for non-stationary climate classification and Al models for extreme temperature
forecasting, providing insights into handling financial spatio-temporal dependencies in STGAT [21,22].
GAT proposed by Velickovic et al. [23], which introduces an attention mechanism to dynamically
allocate neighbour node weights and accurately identify association strength differences; GATv2
optimized by Brody et al. [24], which improves dynamic attention-computational logic, becomes the
current state-of-the-art architecture in the field of graph learning.

In order to break through the modelling limitations of a single model and single variable in
financial and other scenarios, the researchers also tried to build hybrid models with multivariate inputs
by combining multiple deep learning and classical models.

Spatio - Temporal Graph Neural Networks (STGNN) focus on the "spatio - temporal coupling”
characteristics of financial data, and fill the research gap through spatio - temporal joint modeling.
In the field of traffic flow prediction, Yu et al. [9] proposed STGCN which pioneered the fusion
architecture of graph convolution and 1D - CNN to depict spatio - temporal dependencies, and Wu
et al. [25] proposed Graph WaveNet which introduced an adaptive adjacency matrix to dynamically
capture time - varying spatial correlations, laying the foundation for technology transfer in financial
scenarios. In terms of financial application exploration, Sawhney et al. [26] proposed STHAN - SR
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which integrated spatio - temporal attention mechanisms and hypergraph structures to adapt to
complex financial correlations, attempting to depict the dynamic interactions of the asset network.

Kanwal et al. [27] proposed a hybrid deep learning model, BICuDNNLSTM-1dCNN, integrating
CUDA-accelerated bidirectional LSTM and one-dimensional CNN to capture both long-term temporal
dependencies and short-term local patterns in stock price time series, demonstrating superior predic-
tion accuracy across five datasets compared to four state-of-the-art models, although noting limitations
in data scale dependency and hyperparameter optimization complexity.

Jin [28] proposes GraphCNNPred, a hybrid model integrating graph neural networks (GAT/GCN)
and convolutional neural networks (CNN), which leverages feature correlation graphs and temporal
convolutional layers to predict trends in stock market indices (S&P 500, NASDAQ, etc.), achieving
a 4%-15% improvement in F measure over baseline algorithms and demonstrating effective trading
strategy performance with a Sharpe ratio exceeding 3.

Liu and Paterlini [29] proposed an LSTM-GCN model that integrates a graphical convolutional
network (GCN), which is used to capture spatial dependencies in supplier-customer value chain
relationships, and a long- and short-term memory network (LSTM), which is used to simulate the
temporal dynamics of stock returns in relation to the Euro Stoxx 600 Index and the S&P 500 Index. The
model improves forecast accuracy and risk-adjusted returns compared to the baseline model for the
Euro Stoxx 600 and S&P 500 datasets.

Wenbo Yan and Ying Tan [30] propose a time-correlation graph pre-training network TCGPN,
which integrates time series and node dependencies through a time-correlation fusion encoder, com-
bines self-supervised time-completion and semi-supervised graph recovery tasks to optimise repre-
sentations, and solves the problem of large-scale node memory by using a node/graph/time-masked
data augmentation strategy, which has been proposed in CSI300/Performance breakthroughs in non-
periodic time series forecasting on CSI300/ CSI500 stock datasets with lightweight MLP fine-tuning.

Currently, there are several aspects of financial prediction models that can be optimized. In the
causal constraint dimension, traditional convolution faces the problem of future data leakage [9], while
RNN models encounter obstacles in parallelization, which negatively affects both the reliability and
efficiency of forecasting. Second, in terms of dynamic relationship modeling, traditional methods rely
excessively on static graph structures and have a single source of correlation, limited to the use of price
correlation or industry classification [28]. However, dynamic changes such as industry restructuring
and black swan events occur frequently in financial markets, and the market environment is complex
and volatile. Under such circumstances, forecasting models perform poorly in dealing with unexpected
events and also ignore the interactions between stocks, especially those in the same industry sector.
Furthermore, in terms of model magnitude, most of today’s models focus on a single stock or a single
indicator, and rarely consider a specific industry sector or system level [27].

This paper proposes a spatio-temporal Graph Attention Network (STGAT) for non-stationary
financial systems. It provides an innovative solution that combines logical self-consistency and market
adaptability for stock price prediction.

3. Theory Fundamentals
3.1. Graph Theory and Graph Convolutional Networks

Graph theory provides the mathematical foundation for modeling graph-structured data [31]. In
mathematics, a graph is denoted as G = (V, E), where the node set

VZ{U],UQ,...,UN} (1)

represents entities, and the edge set E represents the relationships between entities. The adjacency
matrix A € RVN*N describes the connection strength between nodes, and the degree matrix D is a
diagonal matrix with elements D;; = }; Aj;.
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Graph Convolutional Networks (GCN) extend the convolution operation to graph structures via
spectral or spatial domain methods [20]. Spectral domain GCN is based on the eigen decomposition of
the graph Laplacian matrix

L=D-A )

which maps signals from the spatial domain to the frequency domain for processing. For example,
the simplified GCN layer proposed by Kipf and Welling is expressed as:

U+ — U(A*%AD’%HU)W(Z)) 3)

where A = A + I (adding self-loops), D is the degree matrix of A, W(!) is the learnable weight
matrix, and ¢ is the activation function. This approach implicitly captures dependencies between
nodes through the adjacency matrix, enabling the propagation of features over the graph structure.

3.2. Convolutional Neural Network

Convolutional Neural Networks (CNNs) [32] were originally designed for processing grid-
structured data such as images, with their core advantage lying in capturing local features through
shared convolutional kernels. In time series processing, one-dimensional convolution (1D Conv) in
CNNs extracts local patterns along the temporal axis through sliding windows, offering advantages of
parameter efficiency and parallel computation.

The Temporal Convolutional Network (TCN) [18] extends CNNs for temporal modeling by
introducing causal convolution and dilated convolution. Causal convolution ensures that the output at
the current time step depends only on past inputs, satisfying the causality requirement for time series
prediction. Dilated convolution expands the receptive field by setting a dilation factor d, enabling the
kernel to capture longer-range temporal dependencies:

K-1
F(s) =Y f(k)-xe_gk (4)
k=0

where K is the convolution kernel size and x is the input sequence. By stacking multiple dilated
convolutional layers with exponentially increasing dilation factors, TCN efficiently captures long-term
temporal patterns without increasing the number of parameters.

3.3. The Fusion of Spatio-Temporal Graph Convolutional Network

spatio-temporal Graph Convolutional Networks (STGCN) [9] integrate the advantages of graph
theory and CNNSs to simultaneously process spatial dependencies and temporal dynamics in data.
The core concept of STGCN involves designing specialized spatio-temporal convolution modules that
separately capture spatial relationships in graph structures and temporal evolution in sequential data.

In the spatial dimension, STGCN typically employs GCN or its variants (e.g., ChebNet, GAT)
for graph structure modeling. In the temporal dimension, it utilizes CNNs (e.g., TCN) or RNNs
(e.g., LSTM) to process temporal features. For instance, the STGCN framework proposed by Yu et al.
decomposes spatio-temporal convolution into two sequential operations: spatial graph convolution
and temporal convolution:

Xt+1 = U'(G(Xt, Ws) * T(Xt, Wt)) (5)

where G(-) denotes the spatial graph convolution operation, T(-) represents the temporal convo-
lution operation, and W, and W; are learnable weights for spatial and temporal dimensions respectively.
This decomposition enables the model to learn simultaneously node dependency relationships in space
and evolution patterns in time.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.1736.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 d0i:10.20944/preprints202507.1736.v1

6 0f 20

4. STGAT: Model Structure and Innovation

This innovative architecture enables STGAT to simultaneously capture 1) long-term evolutionary
trends and short-term volatility patterns in the time dimension, 2) complex market linkage effects in
the spatial dimension, and 3) local features of unexpected market events.As such, it is expected to
enhance the training of the model and is expected to produce good forecasting results.

We propose an innovative spatio-temporal graph attention network (STGAT) that aims to sig-
nificantly improve the accuracy of stock price prediction while effectively capturing the complex
spatio-temporal dependencies in financial markets.

The model we design contains two core components that work in tandem: a gated temporal
convolution module and an augmented graph attention module, which together build a hierarchical
feature extraction architecture. The former employs strict causal constraints and an innovative gating
mechanism to capture long-term evolutionary patterns in the temporal dimension, preserving key
features and suppressing noise, while the latter learns complex spatial relationships among stocks
using a multi-attention mechanism, which adjusts the attention coefficients with the help of edge
attributes.

The two modules work together through a “time-convolution-graph-attention-time-convolution”
sandwich symmetry structure, and the model achieves hierarchical feature abstraction through a
cascading spatio-temporal block architecture: the first block extracts the underlying spatio-temporal
patterns, and the second captures the higher-order market dynamics. The final prediction layer
generates accurate forecasts through feature fusion coupled with a fully connected network.

This innovative architecture enables STGAT to simultaneously capture 1) long-term evolutionary
trends and short-term volatility patterns in the time dimension, 2) complex market linkage effects in
the spatial dimension, and 3) local features of unexpected market events. As such, it is expected to
enhance the training of the model and produce robust forecasting results.

Figure 1 illustrates the schematic of our model. This model architecture takes the spatio-temporal
Graph Attention Network (STGAT) as the core. After the input data is processed by cascaded STGAT
blocks, the output layer generates the results.

- Residual Connection
¢ A Y
Vs A}
7 \
1 Fusion Y \
f D \
1 1
1 I
!
\
A Y
N
- -~
: «
Input . 4 N
: ‘ .
. ‘ Y
. ’
JL L /" STGAT Block | \
STGAT Block = _ ° Temporal GATv2 Temporal
S~ I} ConvLayer Layer ConvLayer
J_L : > e Causal Gated ® Dynamic ® Causal Gated
P ¢ Convolution D attention D Convolution :>
STGAT Block -~ !
: ®Residual Feature ® Query ®Residual Feature
J L : Fusion Perception Fusion
Output Layer .

Figure 1. The figure illustrates the hierarchical architecture of the spatio-temporal Graph Attention Network
(STGAT), which enables hierarchical extraction and fusion of spatio-temporal features through cascading blocks.
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First, the Temporal ConvLayer, which contains causal gated convolution and residual feature
fusion, is used to extract temporal patterns. Another temporal convolution layer is employed to fuse
features. Residual connections within the temporal block further enhance feature propagation.

Subsequently, the GATv2 layer, equipped with dynamic attention and query - awareness capa-
bilities, learns complex spatial relationships among stocks. Within the spatial block, operations such
as GATv2, ReLU, BN layer, and Dropout are configured to effectively capture the spatio-temporal
dependencies of financial data.

The combination of causal convolution and gating mechanisms (Sigmoid, Hadamard Product)
optimizes information transmission, enabling hierarchical feature abstraction and accurate prediction.

4.1. Temporal Convolutional Layer

Building on the traditional TCN framework, which uses causal convolution to ensure temporal
causality and dilated convolution to capture long-range dependencies, the temporal convolution layer
introduces a dual-branch structure integrating gating mechanisms and residual connections. This
design maintains TCN's ability to model dynamic temporal dependencies while enhancing the focus
on key temporal patterns through the gating mechanism, addressing the challenge of inadequate
attention to local critical information in non-stationary sequences in traditional TCNs.

e  Causal Conv: Causal convolution [33] is the core operation of the temporal convolutional layer. It
strictly adheres to temporal causality, ensuring that the output at each time step depends solely
on historical and current inputs, excluding future data. This design supports accurate forecasting
in tasks such as time-series prediction and action segmentation.

e  Gating Mechanism: The Gated Linear Unit (GLU) [34] controls information flow through a gating
mechanism, defined as:

GLU(x) = (Wix + by) @ 0(Wox + by) (6)

The input undergoes two linear transformations: one produces a feature vector, and the other
generates a gating signal (0 to 1) via the Sigmoid function. The gating signal is element-wise
multiplied by the feature vector to selectively filter relevant features. For efficiency, the input
can be split along the feature dimension. GLU'’s flexibility and variants enable its application to
diverse tasks, enhancing the model’s ability to focus on critical information.

This model leverages the Gated Linear Unit (GLU) to optimize temporal feature processing.

The temporal convolution layer employs a dual-branch structure. One branch applies Sigmoid
activation to the causal convolution output, generating a gating coefficient between 0 and 1 to
regulate information flow. The other branch processes the causal convolution output to produce
the main feature, which is gated by the coefficient via the Hadamard product and combined with
the residual component.

During feature fusion, the residual component is optimized to enhance effective temporal features.
Residual connections stabilize training and preserve essential features, making this approach a
spatio-temporal variant of the GLU mechanism.

4.2. Spatial Convolution Layer

The main function of the spatial convolution layer is to capture the features of data in the spatial
dimension, that is, the relationships between nodes. Through the graph attention mechanism, it
adaptively learns the importance among nodes, thereby better extracting the spatial information in
graph-structured data.

*  GATv2: GATv2 (Graph Attention Network v2) [24] is an improved version of the traditional
Graph Attention Network (GAT), and the core innovation is to solve the "masking bias" problem
of the attention mechanism in the original GAT. Traditional GAT applies masks to invisible nodes
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(e.g. non-neighbour nodes) when calculating the attention weights, which leads to bias in the
attention calculation process. GATv2, on the other hand, by redesigning the calculation of the
attention mechanism, makes the model no longer rely on masks when calculating the attention
weights, so that it can deal with all the nodes in a fairer way, and improves the model’s expressive
and generalisation abilities. This optimization builds on advanced graph attention techniques,
enhancing spatial relationship modeling in STGAT [35].

The core operation of GATV2 is represented as follows:

exp (LeakyReLU (a” [Wh; || Wij]))

— 7
Ten i) exp(LeakyReLU(aT [Wh; || Wiy])) @

061']'

where h; and h; represent the feature vectors of nodes i and j, W is a learnable weight matrix, and
a represents the attention mechanism.

e  Explicit Edge Attributes: Traditional GATv2 [24] relies solely on node features, limiting its
use of edge semantic information, graph structure, and domain knowledge. By incorporating
edge attributes, such as industry correlation weights and stock relevance coefficients, into the
GATV2 layer’s attention calculation, our model enhances domain knowledge integration and
graph structure modeling. This approach dynamically adjusts attention weights, shifting from
node-centered to edge-node synergistic modeling. It effectively addresses complex applications,
such as financial modeling, where edge attributes carry rich semantic information.

4.3. Output Layer

The output layer of the STGAT model employs a hierarchical fully-connected architecture with a
ReLU activation function, which maps the spatio-temporal features extracted by the previous STGAT
module into task-specific predictions. The output layer consists of two consecutive "fully-connected -
ReLU" layers followed by a final linear projection layer, which dynamically aggregates multi-scale
temporal and spatial dependencies through a learnable weight matrix to efficiently transform high-
dimensional graph structural features into predictions of future time steps.

5. Experimental Design and Process

Figure 2 illustrates the stock price analysis pipeline using the Spatio-Temporal Graph Attention
Network (STGAT). The NYSE stock price dataset is preprocessed, including feature extraction, nor-
malization, and graph structure construction, then split into training and test sets. The training set is
processed through an input layer, stacked STGAT blocks, and an output layer for model training. The
test set undergoes inference, followed by post-processing, enabling model evaluation and visualization
to achieve spatio-temporal correlation-driven stock prediction.
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Figure 2. This flowchart illustrates the STGAT pipeline for stock price prediction, integrating data preprocessing,

model training, inference, and evaluation.

5.1. Data Description

The dataset integrates New York Stock Exchange (NYSE) stock data (2000-2024) and Fortune
500 company data (2024), including ticker symbols and industry information. We merged the NYSE
dataset with Fortune 500 industry details. Stocks were filtered based on consistent trading days and
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trade frequency to ensure data validity. Ultimately, 273 stocks with complete industry sector data were
selected, forming a comprehensive dataset for spatio-temporal stock price analysis.
We select the following financial indicators:

*  Basic trading indicators: Open, High, Low, Close, Volume

®  Technical indicators: EMA (Exponential Moving Average), RSI_14 (Relative Strength Index with
14-day period)

¢ Daily return: Return

5.2. Data Processes

Below is an overview of our experimental process, covering data preprocessing, fitting the data
into a deep learning (DL) model, and finally evaluating the trained model.

All numerical features are normalized using Min-Max scaling to the range [0, 1]:

X — Xmin

Normalized(x) = 8)

Xmax — X¥min
This mitigates the impact of different feature scales on model performance.
Temporal samples are generated using a sliding window approach with window size w = 10:

¢  Fach window contains features from t —w + 1 to ¢
*  The label for each window is the target value at time t 4- 1
e If future data is unavailable, the label is set to 0

The sampling process can be formalized as:

Sample; = ([Xi—wi1, Xi—wt2, -, Xi] Yit1) )
where x; denotes the feature vector at time ¢, and y; 4 is the corresponding label.

5.3. Graph Structure Construction

This graph structure integrates spatial and temporal dependencies through a three-stage process as
following. The approach enhances stock relationship modeling by incorporating matching preclusion
principles for robust graph connectivity [36,37].

5.3.1. Node Feature Construction

Nodes are composed of stocks with complete trading dates on the New York Stock Exchange.
Each node feature includes numerical features such as opening price, highest price, lowest price,
closing price, trading volume, EMA, RSI_14, and Return. After MinMax normalization, time series
information is extracted through a sliding window of size 10. The window data is used as the node
input, and the target value of the corresponding next time step is used as the label. Finally, all node
data is integrated through tensor operations to form a four - dimensional tensor structure of [number
of samples, number of nodes, time steps, number of features].

5.3.2. Spatial Edge Construction
We define two types of edges to model spatial relationships. For each pair of nodes v; and v}, their
final edge weight w;; is computed as the sum of individual edge weights from different relationship
types:
*  Industry-based Edges: Encode domain prior knowledge. Stocks in the same sector are connected
with a fixed weight of 1.0:

i'ljldustry _ 10/ if SeCtOI'(Z)i) = SeCtOI'(Z)]‘) (10)
! 0, otherwise
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e  Correlation-based Edges: Data-driven edges computed from Pearson correlation coefficients of
daily closing prices:
corr _ Pij/ if |p1]| > 0.7 (11)

wj;
0, otherwise

where p;; is the Pearson correlation coefficient between the closing prices of v; and v;.

The combined edge weight between nodes v; and v; is:

___ industry corr
Wij = wj; + wj; (12)

All edges are undirected, enforced by adding reciprocal pairs (v;,v;) and (v}, v;) to ensure the
symmetry of the graph convolution operation.

5.3.3. Temporal Extension

The spatial edge set E; is replicated across time steps within the sliding window. For each time
step t (1 <t < w, where w = 10 is the window size), node indices are offset by f X N (N is the number
of stocks) to distinguish nodes across time:

Uf = UittxN (13)

Temporal edges are constructed by replicating spatial edges at each time step with preserved
weights:

E: = {(Uf,v}) : (v?, U?) € Es and w(vf,v]t-) =w(?, v?)} (14)

The final spatio-temporal edge set is:
w
E=|JE (15)
t=1

This process fuses spatial connectivity with temporal dynamics, forming a structured input for
spatio-temporal graph neural networks.
Algorithm 1 shows the logic of spatial edge construction and temporal expansion.

5.4. Experimental Setup and Evaluation

The training framework is implemented using a custom trainer (CustomTrainer), integrating
data partition, model optimization, and performance evaluation. Key configurations are as follows:

5.4.1. Data Partition and Optimization Strategy

Data Partition: The dataset is partitioned into training and test sets at a 9:1 ratio, with the test set
used to evaluate model generalization.
Optimizer: The Adam optimizer is employed with the following configurations:

e Learning rate: 1 x 103
e Weight decay: 1 x 10~*
AMSGrad variant enabled for training stability.

Batch Processing: A batch size of 512 is used, with efficient data loading and shuffling imple-
mented via DataLoader.

5.4.2. Loss Function and Evaluation Metrics
Loss Function: The Mean Squared Error (MSE) is used as the optimization objective:
1 n

MSE = — ) (vi — 9:)? (16)
i1
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Algorithm 1: Spatio-temporal Graph Construction

Input: Industry information I, Price correlation matrix C, Window size w, Number of stocks
N
Output: Spatio-temporal edge set E with combined weights

1 Es+—O; // Initialize spatial edge set
2 E+~Q; // Initialize spatio-temporal edge set
3W<—Q; // Edge weight dictionary

// Construct spatial edges with combined weights (Eq. 12)
foreach pair (v;,v;) € combinations(V,2) do
%] 0
if I(v;) = I(v;) then
| wij < wi; +1.0; // Industry edge (Eq. 10)
if |Ci]‘| > (0.7 then
| wij < wij +Cij ; // Correlation edge (Eq. 11)
10 if w;; > 0 then
11 Es < EsU{(v;, v]-), (ZJ]', v;)}; // Undirected edges
W(Ul', ?)]) — wij W(U]', ?Ji) — %]
13 end
14 end

o ® g & U

12

// Temporal extension (Eq. 13)
15 fort < Otow —1do
16 foreach (v;, v]-) € Es do

17 vf —v;+txN; // Temporal node offset
18 v;- < vj 4t x N weight <~ W(v;,v;) E <~ EU {(vf, v]t., weight), (v?,vf, weight)}

19 end

20 end

21 return E

where y; and §J; denote the ground truth and predicted values, respectively, and # is the number
of samples.

Evaluation Metric: The Root Mean Square Error (RMSE) is consistent with the unit of the ground
truth, providing an intuitive measure of average prediction. It is defined as:

RMSE = MSE (17)

The Mean Absolute Error (MAE) is a pivotal regression evaluation metric that quantifies the
average magnitude of prediction errors without considering their direction. Mathematically, it is
defined as:

1
MAE = —3  yi il (18)
i=1

5.5. Comparison Models in the Experiment

In order to evaluate the performance of the Spatiotemporal Graph Attention Network (STGAT)
model proposed in this study, we compare it with the traditional Autoregressive Integrated Moving
Average model (SARIMA), Long Short-Term Memory network (LSTM), and Gradient Boosting Tree
model (XGBoost).

*  SARIMA: As a classic time series analysis method, SARIMA performs well in handling data
with seasonality and trend. The model structure constructed based on statistical principles can
effectively capture the internal laws of the data.
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¢ LSTM: As a powerful recurrent neural network, LSTM solves the problems of gradient van-
ishing and gradient explosion in traditional recurrent neural networks by introducing a gating
mechanism, and can better handle the dependency relationships in long - sequence data.

*  XGBOOST: XGBoost [38,39] is an ensemble learning algorithm. It iteratively trains multiple weak
classifiers to finally form a powerful prediction model, which has high accuracy in handling
complex non - linear relationships.

6. Experimental Results and Analysis

As mentioned before, we will start from the relatively macro perspective of industry sectors to
study the stock prediction effect of the model. In the experiment, we take two different stock industry
datasets as examples, namely the commercial bank dataset and the energy industry dataset. We report
the research results in the following two subsections. First, regarding the commercial banks sector, and

second, the metal sector.

6.1. Performance on Commercial Banking Sector

To evaluate the forecasting performance of models for commercial bank share prices, we compare
STGAT, XGBoost, LSTM, and SARIMA across 15 banks, using root-mean-square error (RMSE) and
mean absolute error (MAE) as primary metrics. We derive key observations from Figure 3 and 4,
highlighting their predictive accuracy.
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Figure 3. RMSE values of fifteen stocks in commercial banks
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Figure 4. MAE values of fifteen stocks in commercial banks

Combined with the bar chart and experimental data, in the task of commercial bank stock price
prediction, the STGAT model shows significant advantages.

Using mean absolute error (MAE) and root mean square error (RMSE) metrics, STGAT consistently
outperforms XGBoost, LSTM, and SARIMA across 15 banks in high-volatility scenarios (e.g., GS and
JPM) and stable scenarios (e.g., RF). For GS bank, STGAT achieves an MAE of 23.39 and RMSE of 33.58,
substantially lower than XGBoost (MAE 114.61, RMSE 117.77) and LSTM (MAE 75.55, RMSE 89.51),
highlighting its ability to capture complex volatility patterns.

Stock price volatility varies significantly across banks, with higher errors for high-volatility banks
(e.g., GS, JPM) and lower errors for low-volatility banks (e.g., RF) across all models. STGAT maintains
low MAE and RMSE across diverse volatility conditions, demonstrating superior robustness and
adaptability compared to other models, thus confirming its effectiveness for stock price prediction.

Comparing the predicted and original stock prices of four models is highly informative for
commercial bank stock price prediction. Figures 5 and 6 plot the original and predicted stock prices for
the models on commercial bank stocks KEY and RF, illustrating their forecasting accuracy over time.

KEY in commercial banks

27.54 = Actual Price

——— STGAT Prediction
25.0 1 SARIMA Prediction
XGBOOST Prediction
——— LSTM Prediction

2022-01 2022-04 2022-07 2022-10 2023-01 2023-04 2023-07 2023-10 2024-01 2024-04 2024-07
Date

Figure 5. Comparison of original and predicted values of KEY in commercial banks
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RF in commercial banks
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Figure 6. Comparison of original and predicted values of RF in commercial banks

In Figure 5, STGAT’s root-mean-square error (RMSE, approximately 1.57) is 15-32% lower than
XGBoost’s (2.28), LSTM’s (1.83), and SARIMA’s (2.11), demonstrating superior predictive accuracy.

For KEY stock, STGAT accurately captures inflection point slopes during the 2023 Q2 downturn
(18 to 12) and early 2024 rebound (10 to 15). In contrast, XGBoost exhibits step-wise fitting errors
due to piecewise linear modeling, and SARIMA fails to capture nonlinear rebounds due to its linear
assumptions. This highlights STGAT's ability to effectively model time-series structures, achieving
significant improvements in volatile scenarios through its architecture.

In Figure 6, RF stock prices exhibit moderate stability with narrow fluctuations and consistent
trends. STGAT’s RMSE (approximately 4.89) surpasses XGBoost (5.27), LSTM (5.49), and SARIMA
(6.32). STGAT precisely captures short-term inflection points, e.g., the March 2022 pullback (1-2
trading days earlier than XGBoost), and aligns closely with actual prices in smooth sequences, avoiding
SARIMA’s underestimated trends and XGBoost’s slope distortions. This confirms STGAT’s robust
adaptation to dynamic trends in moderately stable scenarios via spatio-temporal correlation modeling.

6.2. Performance on Metal Sector

To further evaluate model generalization for stock price prediction in the energy sector, we
compare STGAT, XGBoost, LSTM, and SARIMA across six energy companies. Figures 7 and 8 present
key observations, highlighting their predictive performance.
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Figure 7. RMSE values of six stocks in metal sector
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Figure 8. MAE values of six stocks in metal sector

Model errors vary significantly across metals sector stocks, e.g., AA, CLF, and RS, reflecting how
individual stock volatility affects prediction difficulty.

For most stocks, such as AA and CMC, STGAT achieves lower RMSE and MAE than XGBoost,
LSTM, and SARIMA, demonstrating superior capability in capturing complex volatility patterns.
However, for highly volatile stocks like RS, all models exhibit higher errors, indicating challenges in
predicting complex volatility.

STGAT shows better stability and accuracy in predicting metals sector stock prices across diverse
volatility levels, confirming its adaptability for financial time-series forecasting. Nonetheless, its
performance in highly volatile scenarios, such as RS, can be further improved.

Figures 9 and 10 illustrate the original and predicted stock prices for four models on metals sector
stocks AA and CLF, enabling a case study of these stocks.

AAin Metals

—— Actual Price

90 —— STGAT Prediction
SARIMA Prediction
80 1 XGBOOST Prediction
~—— LSTM Prediction

2022-01 2022-04 2022-07 2022-10 2023-01 2023-04 2023-07 2023-10 2024-01 2024-04 2024-07
Date

Figure 9. Comparison of original and predicted values of AA in metal sector
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Figure 10. Comparison of original and predicted values of CLF in metal sector

For AA stock, STGAT’s RMSE (4.35) and MAE (3.55), and for CLF stock, RMSE (2.98) and MAE
(1.99), are significantly lower than those of XGBoost, LSTM, and SARIMA, confirming STGAT’s
superior predictive accuracy.

Based on fitted curve details, STGAT accurately captures short-term inflection points for AA in
2022 Q2, mitigating XGBoost’s lag and SARIMA'’s slow response. For CLF in 2022 Q2 peak and 2023 Q3
bottom, STGAT precisely aligns with inflection point slopes and time nodes, effectively filtering noise
and reconstructing trends, thus overcoming local overfitting and trend underestimation in traditional
models.

6.3. Ablation Study

To evaluate the contributions of the Spatio-Temporal Graph Attention Network (STGAT) compo-
nents, we conducted ablation experiments. These experiments systematically removed or replaced key
modules—specifically, the temporal convolution module, the spatial graph attention (GATv2) layer,
and the final fully connected layer—to quantify their impact on predictive performance.

In the temporal convolution ablation, we substituted the temporal module with an identity
mapping, disabling temporal modeling to assess its role in stock price prediction. For the spatial graph
attention ablation, we excluded the GATV2 layer, relying solely on temporal convolution to evaluate
spatial correlation significance. In the fully connected layer ablation, we omitted the final dimension
transformation, directly outputting convolutional features.

All ablated models were designed to maintain the original STGAT’s network depth and parameter
count, trained for 200 epochs with a batch size of 512 and an Adam optimizer (learning rate 0.0005).
This setup ensures robustness, leveraging diagnosability insights to validate component contributions
under network faults [40,41]. Performance was assessed using root-mean-square error (RMSE) on the
test set, enabling quantitative comparison of predictive accuracy. Results for stocks, e.g., KEY, RF, AA,
and CLF, are shown in Figures 11 and 12.

KEY RF
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Figure 11. Comparison of all ablated models in KEY and RF
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Figure 12. Comparison of all ablated models in AA and CLF

Ablation experiments confirm the essential role of each Spatio-Temporal Graph Attention Network
(STGAT) component in stock price prediction. Across datasets (e.g., KEY, RE, AA, CLF), STGAT
achieves consistently lower RMSE, e.g., 1.84 for RF.

Removing the temporal convolution module significantly increases RMSE, e.g., from 2.43 to 6.33
for KEY and 1.84 to 5.13 for RF, underscoring temporal modeling’s role in capturing stock price trends
and fluctuations.

Excluding the spatial graph attention (GATv2) module moderately raises RMSE, e.g., from 2.43 to
2.79 for KEY and 1.84 to 2.01 for RF, highlighting its importance in aggregating cross-stock correlations
and industry patterns. Omitting the fully-connected layer increases RMSE, e.g., from 2.43 to 3.46 for
KEY and 1.84 to 2.16 for RF, indicating its role in optimizing predictions through feature transformation.
These components collectively enable STGAT's effective stock price forecasting.

6.4. Time Complexity

The Spatio-Temporal Graph Attention Network (STGAT) integrates spatio-temporal features in a
hybrid architecture. Its computational complexity is analyzed across its core components.

Temporal Dimension Complexity: The temporal convolution layer employs causal dilated
convolution, with time complexity given by:

O(B x N x T x Cip X K X Cout)

where B is the batch size, N is the number of nodes, T is the time step length, Ci, and Coyt are input
and output channels, and K; is the temporal kernel size.

Spatial Dimension Complexity: The graph attention layer (GATv2) constitutes the primary
computational cost of STGAT, with complexity:

O(B x T x (|[E| x C+ N? x H X Cpeaq))

where B is the batch size, T is the time step length, |E| is the edge count, N is the node count, H is the
number of attention heads, and Cpe,q is the head dimension. In a fully connected graph, |E| ~ O(N 2),
creating a computational bottleneck.

Table 1 compares the computational time of STGAT and baseline models across the entire experi-
ment.

As graph size increases, training time rises significantly. Table 1 shows STGAT’s training time is
not the highest among models, but its predictive accuracy justifies the additional computational cost
compared to baseline models.
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Table 1. Training time in seconds.

Model Total time Unit
Commercial Bank Sector | Metals sector

STGAT 1344 530 seconds

XGBOOST 1503 213 seconds

LSTM 397 180 seconds

SARIMA 813 231 seconds

7. Conclusion

This study introduces a Spatio-Temporal Graph Attention Network (STGAT) for non-stationary
financial systems. By integrating gated causal temporal convolution with an enhanced graph attention
module, STGAT effectively captures complex spatio-temporal dependencies in financial markets. It
incorporates causal time modeling, industry-related graph attention, and a multi-scale industry-sector
framework, surpassing traditional single-asset models by constructing dynamic correlation networks
based on intra-industry stock relationships.

Experiments on the New York Stock Exchange’s commercial banking and metals sectors demon-
strate STGAT’s superior predictive accuracy compared to XGBoost, LSTM, and SARIMA, particularly
in high-volatility scenarios. Ablation studies confirm the critical contributions of each component to
performance.

This research underscores the efficacy of graph neural networks in modeling stock markets as
interconnected networks, offering insights for advancing financial prediction methods and optimizing
investment portfolios. Future work will explore multi-modal data fusion, large-scale computational
efficiency, cross-market generalization, and enhanced model interpretability to further strengthen
STGAT’s applicability.
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