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Abstract: A novel approach is developed to improve the convergence of Physics-Informed Neural Networks
(PINNS), aiming to employ them as real-time computational models within the framework of the digital twin for
manufacturing processes. This method entails the weighting of physical equations, boundary conditions, and
initial conditions to ensure their comparable magnitudes, with power being the chosen quantity in this study. The
approach is applied to thermal problems, which are crucial for predicting manufacturing part defects. Different
configurations, including complex boundary conditions and complex physics, were tested to assess the model’s
robustness. The W-PINN demonstrates good predictions and strong stability compared to the classical PINN.
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1. Introduction

The thermal history of matter plays a crucial role in various thermomechanical processes, partic-
ularly in additive manufacturing. In this context, the material undergoes multiple diverse thermal
loads, resulting in complex microstructures that significantly impact the performance of manufactured
parts [1-3]. Real-time prediction of microstructures is essential in the context of the digital twin, as it
enhances manufacturing process performance [4]. Traditional numerical models based on classical
methods (finite elements, finite volumes, finite difference) face limitations in terms of prediction
speed [5]. To overcome these limitations, substitution models such as neural networks, especially
Physics-Informed Neural Networks (PINNs), have been employed. PINNs integrate the system’s
physical equations into the learning process and have gained popularity since the work of Raissi et al.
in 2019, with numerous studies and dedicated libraries emerging. Despite their advantages, PINNss
encounter convergence issues that are often treated on a case-by-case basis.

The challenges of PINNs are further compounded by the intricate nature of the additive man-
ufacturing process. This process is not only costly and difficult to model but also presents specific
challenges for PINNs related to the dynamic changes in the part’s geometry during production. The
significant variability of part geometries in Laser Powder Bed Fusion (LPBF) almost necessitates the
development of a separate model for each part. Nevertheless, leveraging insights from the literature
can help develop approaches to address some of these challenges. For instance, managing geometry
changes can be achieved using PINNs based on convolutional neural networks (CNN) or utilizing
PointNets, as suggested by [6].

This project aims to simulate real-time additive manufacturing based on the multi-scale approach
proposed by [7] for thermal modeling of LPBF. The objective is to create a robust physics-informed
neural network (PINN) as a substitute for finite element models. By addressing complexities and
convergence issues, we propose in this paper a reliable method demonstrated on a 2D transient
problem—a crucial step for achieving real-time LPBF simulation using PINNs. The approach can be
coupled with nearly all strategies used to enhance the convergence of PINNS.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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2. Modeling and Methods

The model’s geometry is illustrated in Figure 1. The method involves appropriately scaling the
network and weighting physical equations, initial conditions, and boundary conditions. The transient
diffusion partial differential equation (PDE) is expressed as follows:
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T(x,9,0) = f(x,) (x,y) €O @
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Where material properties include density p = 7800 kgm~3, specific heat ¢ = 440Jkg ' K~, and
thermal conductivity A = 40Wm~1K~1.
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Figure 1. Geometry of the model.

The architecture of the PINN network is depicted in Figure 2.

;
@ o p @ at _3 a%T N 9T aT
® 2 fote =\ Gz ¥ 37 ) P
: : 5 L ax2 fin=T—=Tin oninlet
ooe fout =T —Tout on outlet
@ : ° ‘ 6—22 fie=T =T att =10
a o o dy
|

(2055 = [l fpaell + Wfinll + Wfouell + ficll )

Figure 2. Architecture of the PINN neural network.

To assess the network’s robustness, various configurations will be tested. The first group focuses
on models with Dirichlet boundary conditions, while the second group involves both Dirichlet and
Fourier boundary conditions (convective exchange boundary conditions with the external environ-
ment). The third group uses the same conditions as the second group but includes an advection
phenomenon.

Throughout the document, the ADAM optimization algorithm is used, testing the robustness of
this approach against the commonly recommended L-BFGS algorithm for PINNs [8,9]. Results from
PINNSs will be compared with numerical models developed using the finite element code Abaqus to
validate predictions.

3. Problem with Exclusive Use of Dirichlet Boundary Conditions

The model’s configuration and the delineation of the outlet and inlet boundaries are depicted in
Figure 1. The dimensions of the plate are 9 mm in length and 6 mm in width. At the inlet and outlet,
temperatures Tj,j; = 1200 °C and T,,4.; = 25 °C are prescribed, respectively. The initial temperature
is set to Tjyitiqr = 25°C, and the total physical simulation time is 0.3s. With these conditions, the
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diffusion thermal problem is surely constant along the y-direction, so it is not necessary to impose a
boundary condition on the wall boundary of the domain.

In the context of Problem 1, where only Dirichlet boundary conditions are employed, the operator
B functions as an identity, ¢(x, y) denotes the temperature imposed at the domain boundary, and the
equations are redefined as follows:

27 2
PC%?IA@;??;) (x,y) €Q, te[0,03]

T(x,9,0) = Tinitial (x,y) € Q 2
T(x,y,t) = Tintet (%, y) € 0nier, £ €[0,0.3]

T(x,y,t) = Touttet (x,y) € 0Quper, t € [0,0.3]

Introducing residuals denoted as R, we define:
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To normalize the network by making its inputs and outputs dimensionless, we adopt reference

quantities such as temperature Ty = Tj,,, the length Iy of the model geometry, and the time ¢ty = 0.3s.

The new dimensionless variables are expressed as: T* = Tlo, x* = %, Y= %, and t* = % Utilizing

these new variables, the physical equation transforms into:

To OT* To [ *T* 9*T*
= "( ) (4)
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Consequently, the dimensionless equation is derived as:

ot pc 1(2) dx*2 ay*z
The Root Mean Square Error (RMSE) of the residuals is expressed as:
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While the conventional approach uses dimensionless loss functions 6, our method multiplies them by
coefficients to bring them to a comparable scale. Hence, the loss functions are articulated as:

Losspge = ’CTO or AL (82T* + 82T*> ‘
b oF  ppl2 \ox? | gy
bossin = H 2( mld) H %
Lossout = Z;? (T* _ Toutter ‘
Loss;, — Zo ( B zmtml> H

where dt represents the model’s time increment.
Indeed, we express the PDE loss function Loss 4 in units of specific power and convert the loss
functions for the boundary and initial conditions into the same unit. This is done by transforming the

prediction error into the numerical derivative of temperature with respect to time (M) and
then multiplying the result by the specific heat ¢ to obtain a quantity in units of specific power. In other
words, we convert the losses from the boundary and initial conditions into a form that is equivalent to
the transient term in the PDE loss. Hereafter, we will refer to the PINN using our approach as W-PINN
(W for weighted).

In this section, only the W-PINN model will be used to test different activation functions. The
model was trained for 1100 epochs with a network comprising 6 hidden layers of 40 neurons each. The
ADAM optimization algorithm was used, along with various activation functions such as Exponential
Linear Unit (ELU), sigmoid, and tanh. It is worth noting that in numerical simulation, boundary
conditions are forcefully applied in the initial increment. To replicate this with neural networks, the
initial increment would need to be divided into multiple steps to accurately describe this evolution.
For simplicity, all boundary conditions are linearly applied from the initial value to the imposed value
throughout the entire simulation duration. All computations on neural networks were performed
on an NVIDIA A100-PCIE-40GB GPU server. The computation times are similar, averaging about 3
minutes.

The Figure 3 shows the loss functions for various activation functions. For the ELU and tanh
activation functions (Figure 3a,b, the evolution of the loss functions is nearly identical. At the beginning
of the epochs, the outlet loss function (Loss,y;) rises and then falls, indicating competition between
the terms of the main loss function (Loss). For the sigmoid activation function (Figure 3c), there is
a plateau for about 80 epochs before the loss functions start to decrease significantly, except for the
initial conditions loss function (Loss;.) and the physical equation loss function (Loss ), which rise
moderately before falling, also indicating competition between the different terms of the main loss
function (Loss). Overall, the loss functions for each activation function converge, with the convergence
being most effective for the tanh activation function, followed by the ELU function. The temperature
field of the W-PINN model was compared with that of the numerical simulation, as illustrated in
Figure 4. The initial, middle, and final frames are displayed for various activation functions. The
predictions appear satisfactory except for the final frame with the sigmoid function.
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Figure 3. Loss functions of Dirichlet Boundary Conditions problem.
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Figure 4. Comparison of the temperature field (°C) predicted by W-PINN with that of the finite element
model, using different activation functions.
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To gain further insights, outputs of the absolute error of the thermal field are depicted in Figure
5, revealing significant discrepancies between predictions of the model using the sigmoid activation
function and numerical results. Several case studies have highlighted limitations of the sigmoid
function compared to ELU and tanh. Therefore, it will not be used further in this document.

First frame Middle frame Last frame

W-PINN
(ELU) 200
L 150
W-PINN
(tanh) '
.50
W-PINN 0
(sigmoid)

Figure 5. Absolute error (°C) of the temperature field predicted by W-PINN for different activation
functions.

4. Problem with Dirichlet and Fourier Boundary Conditions

The multi-scale LPBF additive manufacturing model proposed by [7] simulates FSW welding
across various scales, considering the influence of the surrounding powder through Fourier boundary
conditions. In addition to incorporating these boundary conditions into the model, we start with a
warm initial condition of Tj,;t;,; = 1200 °C to simulate the cooling of the workpiece during additive
manufacturing. A Fourier boundary condition is applied at the outlet, while a Dirichlet boundary
condition of linear cooling to T;,;.; = 25°C is applied at the inlet. The external temperature T,y for
the Fourier boundary condition is set to decrease from Tey; = 1200 °C to Texr = 25 °C in accordance
with the previously mentioned rule for the progressive application of boundary conditions. To create a
more complex situation, a deliberately high wall heat transfer coefficient of 1 = 10000 Wm 2K~ is
used. Subsequently, we adjust the expression of the outlet loss function, which takes the form of:

Lossout = CE To _h_lOW

(8)

We retained the architecture of the previous network but used only ELU and tanh activation functions,
training for 100 000 epochs. Both the proposed W-PINN method and the standard PINN method were
simulated, with similar computation times averaging about 140 minutes.

As shown in Figure 6a,b the loss functions clearly indicate a convergence issue with the ELU
activation function. With the standard PINN method (Figure 6b), we observe instability in the functions,
with a significant spike in the Loss 4, function after 40 000 epochs. Additionally, the difference between
the loss functions values at the beginning and the end of the epochs is not substantial. Conversely,
with the proposed W-PINN approach, after an initial rapid decline, there is a slow decline or plateau,
followed by a second rapid decline, resulting in much lower values at the end of the epochs compared
to the beginning. Additionally, the functions are smoother and more monotonic. For the tanh activation
function shown in Figure 6¢,d, the W-PINN model also shows good convergence.
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Figure 6. Loss functions of Dirichlet and Fourier Boundary Conditions problem.

When observing the predicted temperature fields in Figure 7, the results seem to align with the
finite element simulation. In the final frame, it is evident that the target temperature of 25°C imposed
on the inlet boundary has been successfully achieved. Additionally, the Fourier boundary condition
applied at the outlet boundary has resulted in a vertical red band of higher temperatures centered
along the x-direction. However, it is difficult to compare the neural network models with each other
based on these visualizations. Therefore, the absolute error of the temperature field is investigated in
Figure 8. This visualization confirms that the ELU activation function yields poorer results. It can also
be observed that the largest errors are located at the inlet edge of the domain. However, regarding the
activation function tanh, the W-PINN model produces better results at the initial frame than the PINN
model which performs better at the middle and final frames.
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Figure 7. Comparison of the temperature field (°C) predicted by PINN and W-PINN with that of the
finite element model, using different activation functions.

Furthermore, Figure 9 demonstrates that the W-PINN model also performs well on the frames
following the initial frame. Analyzing all frames, we observe that the first half is well-predicted
by W-PINN, while the second half is better-predicted by PINN. This is reflected in the maximum
error curve of the predicted temperature field by both approaches, as shown in Figure 10. Given the
appearance of the two curves, we can conclude that the W-PINN method is generally more effective, as
its maximum error value is lower than that of the PINN for 13 out of the 20 frames. Moreover, where
the W-PINN's error is higher, the difference from the PINN is not significant.
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First frame Middle frame Last frame

ELU
PINN

W-PINN

tanh
PINN

W-PINN

Figure 8. Absolute error (°C) of the temperature field predicted by PINN and W-PINN for different
activation functions.

Frame 1 Frame 2 Frame 3

PINN

W-PINN

Figure 9. Absolute error (°C) of the temperature field predicted by PINN and W-PINN for tanh
activation functions in the initial frames.
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Figure 10. Maximum absolute error of the temperature field predicted by PINN and W-PINN for tanh
activation function.

5. Problem with Advection, Dirichlet and Fourier Boundary Conditions

In additive manufacturing, one might be interested in the flow of material in the context of
laser melting modeling, powder spreading, gas movement inside the chamber, exit velocities, and
material spreading during DED-type AM processes. Generally, the flow is modeled using an Eulerian
formulation and the problem is solved numerically. Sometimes, it is possible to bypass the complexity
of numerical approaches by assuming the material flow based on known principles. In such cases, only
the thermal problem is solved numerically, with an advection term accounting for material movement.
This means that thermal advection can be utilized in many thermal problems in fluid mechanics and
even in solid mechanics where the Eulerian formulation is used. In this section, advection has been

incorporated into the previous problem. The imposed parabolic advection velocity field is shown in
Figure 11.
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Figure 11. Velocity field profile in the domain.

The PDE loss function becomes:

c

Loss g, =

TO(E)T* thT*> ATO(aZT* aZT*>

E ot* +u5ﬁ - Eg ax*Z + ay*Z

| ©)
With the parabolic velocity field, the diffusion thermal problem is no more constant in y-direction.
Therefore, a boundary condition of zero heat flux across the wall is imposed. It is given by:

or_
dy

To OT*

0 - LoSSypa1 = CE@

(10)

It should be noted that for this boundary condition, we multiply the factor c% by the dimensionless
temperature gradient %, whereas for the others, it is multiplied by the dimensionless temperature
error. This expression (Equation 10) can be improved, but here we rely on the fact that the scale does

not change since the gradient ‘3;: is dimensionless.
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We retained the same network architecture, using only the tanh activation function and training
for 500 000 epochs. The computation times for the PINN and W-PINN models are 14 hours and 11
hours, respectively. The results of the loss function evolution are displayed in Figure 12. For the PINN
method, there is a fluctuation in the losses of the physical equation (Loss ). Throughout the epochs,
Loss g, fluctuates around the same value, indicating a lack of convergence. It is important to note
that the graph does not represent the initial epochs values, which typically have values significantly
different from those shown. This exclusion is made to ensure readable curves. Additionally, the losses
are dominated by Lossou for the PINN method, whereas for the W-PINN method, Losspde is more
prominent. The W-PINN model shows a more pronounced convergence, with its curve continuing to

decline.
leb6
0.6 1.5
0.5
[%2) %]
c C
S 0.41 S 101
g g
203 2
@ &
3 0.21 305
0.1
0.0 0.0
0 100000 200000 300000 400000 500000 0 100000 200000 300000 400000 500000
Epoch Epoch
(a) PINN (b) W-PINN

Figure 12. Loss functions of advection problem.

In Figure 13, which depicts the temperature fields, notable differences can be observed. The PINN
model is less predictive across the three frames: the first frame is characterized by two bright bands
indicating temperatures around 900 °C, while the middle and last frames show a more intense hori-
zontal blue cone, corresponding to a temperature of 25 °C. The maximum error curve for the thermal
field, shown in the Figure 14, clearly indicates that the W-PINN approach provides significantly better
predictions than the PINN approach. In conclusion, the W-PINN approach is very straightforward and
yields better results for all the cases studied. However, its speed advantage over the PINN approach in
problems involving convection remains to be verified.
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Figure 13. Comparison of the temperature field (°C) predicted by PINN and W-PINN with that of the
finite element model.


https://doi.org/10.20944/preprints202408.0528.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 August 2024 d0i:10.20944/preprints202408.0528.v1

12 of 13

0 180
< 1601
140
120
100

(o]
o

(o)}
o

Maximum absolute erro

2 4 6 8 10 12 14 16 18 20
Frame

Figure 14. Maximum absolute error of the temperature field predicted by PINN and W-PINN.

6. Conclusions

In this study, we explored the performance of Physics-Informed Neural Networks (PINNs) and
their variant, Weighted PINNs (W-PINNSs), in modeling thermal problems, incorporating various
boundary conditions and flow dynamics.

W-PINNSs significantly outperformed standard PINNSs in terms of convergence and accuracy
when applied to problems with Fourier and Dirichlet boundary conditions. W-PINNs demonstrated
smoother and more consistent convergence, with lower final loss values and better alignment with
finite element model predictions. When integrating advection into the thermal problem, PINNs faced
challenges with convergence, particularly in maintaining stable loss values over training epochs.
W-PINNS, on the other hand, showed superior performance in handling the added complexity of
advection, with more pronounced convergence and lower maximum error values.

Furthermore, the W-PINN model consistently provided more accurate temperature field predic-
tions across different activation functions, including ELU and tanh, particularly in scenarios involving
complex boundary conditions and material advection. This indicates that W-PINNs are generally more
reliable and effective for modeling industrial processes.

In conclusion, W-PINNSs offer a robust and efficient alternative to standard PINNs for complex
thermal problems. Their superior convergence behavior and accuracy make them a promising tool for
advanced simulation tasks involving varying boundary conditions and flow dynamics.
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