
Article

Not peer-reviewed version

A Mathematical Approach to the Theory of Finite Automata

[Chac Kwan](#) *

Posted Date: 9 September 2025

doi: [10.20944/preprints202509.0560.v1](https://doi.org/10.20944/preprints202509.0560.v1)

Keywords: theoretical computer science; computability theory; finite automata; Pumping Lemma; discrete mathematics; Myhill-Nero theorem

Preprints.org is a free multidisciplinary platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

A Mathematical Approach to the Theory of Finite Automata

Chac Kwan

Independent Researcher; ckwan4@yahoo.com

Abstract

There is a lack of rigorous mathematical treatment in the theory of finite automata. This paper provides a rigorous mathematical approach to automata theory which doesn't currently exist in the literature of theoretical computer science. Basic definitions are developed in mathematical terms and used as the foundation for constructing mathematical proofs for theorems. It provides a model for instructors to write better lecture notes and authors to write better textbooks for educational purpose. It also corrects some critical errors and erroneous arguments that can be found in many textbooks which are widely used in the education of theoretical computer science.

Keywords: theoretical computer science; computability theory; finite automata; Pumping Lemma; discrete mathematics; Myhill-Nero theorem

1. Deterministic Finite Automaton (DFA)

Definition 1.

A deterministic finite automaton denoted by DFA is a 5-tuple,

$M = (Q, \Sigma, \delta, q_0, F)$, where

- (i) Q is a finite set of states;
- (ii) Σ is a finite alphabet;
- (iii) $\delta : Q \times \Sigma \rightarrow Q$ is the transition function;
- (iv) $q_0 \in Q$ is the start state; and
- (v) $F \subset Q$ is the set of accept states.

Let $w = w_1 w_2 w_3, \dots, w_n$ be a string over Σ where each $w_i \in \Sigma$ and $n \geq 1$.

M accepts w if and only if $\exists r_0, r_1, r_2, \dots, r_n \in Q$ s.t. the following conditions are satisfied:

- (a) $r_0 = q_0$;
- (b) $\delta(r_i, w_{i+1}) = r_{i+1}$ for $i = 0, 1, 2, \dots, n - 1$; and
- (c) $r_n \in F$

For $n = 0$, $w = \epsilon$. Only conditions (a) and (c) are applicable and they become $r_0 = q_0$ and $r_0 \in F$. We therefore define M to accept ϵ if the start state is also an accept state.

On the other hand, since there is no ϵ -movement in a DFA, the only way the DFA can accept an empty string is to accept it at the start state.

Accordingly, M accepts ϵ if and only if the start state is also an accept state.

If we write $r_i \xrightarrow{w_{i+1}, \delta} r_{i+1}$ instead of $\delta(r_i, w_{i+1}) = r_{i+1}$ for $i = 0, 1, 2, \dots, n - 1$, then conditions (a), (b) and (c) can be written as follows:

$q_0 = r_0 \xrightarrow{w_1, \delta} r_1 \xrightarrow{w_2, \delta} r_2 \dots r_{n-1} \xrightarrow{w_n, \delta} r_n, r_n \in F$

We say M recognizes language A if $A = \{w \in \Sigma^* \mid M \text{ accepts } w\}$ and it is written as $L(M) = A$

Definition 2.

A language is called regular if it is recognized by a DFA.

Definition 3.

For any language L ,

$$L^0 = \{\epsilon\}, L^1 = L, L^2 = LL, \dots, L^{m+1} = L^m L \text{ for } m > 0.$$

$$L^* = L^0 \cup L^1 \cup L^2 \cup \dots = \bigcup_{k=0}^{\infty} L^k$$

$$= \{w \mid w = w_1 w_2 w_3 \dots w_n; w_i \in L \text{ for } 1 \leq i \leq n; n \geq 1\} \cup \{\epsilon\}$$

Definition 4.

Inductive Transition Function

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA.

$$\hat{\delta} : Q \times \Sigma^* \longrightarrow Q \text{ s.t.}$$

$$(i) \hat{\delta}(q, \epsilon) = q \quad \forall q \in Q$$

$$(ii) \hat{\delta}(q, wa) = \delta(\hat{\delta}(q, w), a) \quad \forall a \in \Sigma, w \in \Sigma^*, q \in Q$$

Definition 5.

$$\forall p, q \in Q, w \in \Sigma^*, p \xrightarrow{w, \hat{\delta}} q \iff q = \hat{\delta}(p, w)$$

Proposition 1.

$$\hat{\delta}(q, a) = \delta(q, a) \quad \forall q \in Q, a \in \Sigma$$

< Proof >

$$\hat{\delta}(q, a) = \hat{\delta}(q, \epsilon a)$$

$$= \delta(\hat{\delta}(q, \epsilon), a) \quad (\text{Definition 1.4(ii)})$$

$$= \delta(q, a) \quad (\text{Definition 1.4(i)})$$

Theorem 1. (DFA Acceptance)

For any DFA, $M = (Q, \Sigma, \delta, q_0, F)$

$$\hat{\delta}(q_0, w) \in F \iff M \text{ accepts } w \quad \forall w \in \Sigma^*$$

< Proof >

Claim: If $w = w_1 w_2 \dots w_n$ where $n \geq 0$ and

$$q_0 = r_0 \xrightarrow{w_1, \delta} r_1 \xrightarrow{w_2, \delta} r_2 \dots r_i \xrightarrow{w_{i+1}, \delta} r_{i+1} \dots r_{n-1} \xrightarrow{w_n, \delta} r_n, \text{ then } \hat{\delta}(r_0, w) = r_n$$

This Claim can be proved by induction on n .

For $n = 0$, $w = \epsilon$ and the computation becomes $q_0 = r_0$.

$$\hat{\delta}(q_0, w) = \hat{\delta}(q_0, \epsilon)$$

$$= q_0 \quad (\text{By Definition 1.4(i)})$$

$$= r_0$$

Therefore, the statement is true for $n = 0$.

Assume the statement is true for $n = k$, where $k \geq 0$.

That is, $\hat{\delta}(r_0, w_1 w_2 \dots w_k) = r_k$

$$\hat{\delta}(r_0, w_1 w_2 \dots w_k w_{k+1}) = \delta(\hat{\delta}(r_0, w_1 w_2 \dots w_k), w_{k+1}) \quad (\text{Definition 1.4(ii)})$$

$$= \delta(r_k, w_{k+1}) \quad (\text{Induction Hypothesis})$$

$$= r_{k+1} \quad (\text{Definition of } r_{k+1})$$

Therefore, the statement is true for $n = k + 1$.

If M accepts $w = w_1 w_2 \dots w_n$, where $w_i \in \Sigma$ for $1 \leq i \leq n$ and $n \geq 1$ or ($w = \epsilon$ and $n = 0$)

$$\exists r_0, r_1, r_2, \dots, r_n \in Q \text{ st}$$

$$q_0 = r_0 \xrightarrow{w_1, \delta} r_1 \xrightarrow{w_2, \delta} r_2 \dots r_i \xrightarrow{w_{i+1}, \delta} r_{i+1} \dots r_{n-1} \xrightarrow{w_n, \delta} r_n, r_n \in F$$

By Claim, $\hat{\delta}(r_0, w_1 w_2 \dots w_n) = r_n$

$$\text{Therefore, } \hat{\delta}(q_0, w) = r_n \quad (r_0 = q_0; w = w_1 w_2 \dots w_n)$$

Since $r_n \in F$,

$$\hat{\delta}(q_0, w) \in F$$

Therefore, M accepts $w \implies \hat{\delta}(q_0, w) \in F$

Conversely, if $\hat{\delta}(q_0, w) \in F$

$\hat{\delta}(q_0, w_1 w_2 \cdots w_n) \in F$
 Take $r_0 = q_0$
 $r_{i+1} = \delta(r_i, w_{i+1}) \quad \forall i = 0, 1, 2, \dots, n-1$
 $q_0 = r_0 \xrightarrow{w_1, \delta} r_1 \xrightarrow{w_2, \delta} r_2 \cdots r_i \xrightarrow{w_{i+1}, \delta} r_{i+1} \cdots r_{n-1} \xrightarrow{w_n, \delta} r_n$
 By Claim, $\hat{\delta}(r_0, w_1 w_2 \cdots w_n) = r_n$
 Since $\hat{\delta}(q_0, w_1 w_2 \cdots w_n) \in F, r_n \in F$.
 Therefore, M accepts w .
 Therefore, $\hat{\delta}(q_0, w) \in F \implies M$ accepts w .
 Therefore, $\hat{\delta}(q_0, w) \in F \iff M$ accepts w .
 This completes the proof.

Theorem 2.

For any DFAs, M and M' where

$$\begin{aligned} M &= (Q, \Sigma, \delta, q_0, F) \\ M' &= (Q, \Sigma, \delta', q_0, F') \\ \forall q \in Q, a \in \Sigma, w \in \Sigma^* \\ \delta'(q, a) = \delta(q, a) &\implies \hat{\delta}'(q, w) = \hat{\delta}(q, w) \end{aligned}$$

< Proof >

The proof is by induction on $|w| \geq 0$.

For $|w| = 0, w = \epsilon$.

By Definition 1.4(i),

$$\hat{\delta}(q, \epsilon) = q \text{ and } \hat{\delta}'(q, \epsilon) = q$$

Therefore, $\hat{\delta}(q, \epsilon) = \hat{\delta}'(q, \epsilon)$

Assume the statement is true for $|w| = k \geq 0$.

$$\begin{aligned} \hat{\delta}(q, wa) &= \delta(\hat{\delta}(q, w), a) \\ &= \delta'(\hat{\delta}(q, w), a) && (\delta'(q, a) = \delta(q, a)) \\ &= \delta'(\hat{\delta}'(q, w), a) && (\text{Induction Hypothesis}) \\ &= \hat{\delta}'(q, wa) && (\text{Definition 1.4(ii)}) \end{aligned}$$

The statement is also true for $|w| = k + 1$

2. Nondeterministic Finite Automaton (NFA)

Definition 6.

A nondeterministic finite automaton (NFA) is a 5-tuple,

$$N = (Q, \Sigma, \delta, q_0, F), \text{ where}$$

(i) Q is a finite set of states;

(ii) Σ is a finite alphabet;

(iii) $\delta : Q \times \Sigma_\epsilon \longrightarrow P(Q)$ is the transition function, where

$$\Sigma_\epsilon = \Sigma \cup \{\epsilon\}, P(Q) = \text{the power set of } Q = \{S \mid S \subset Q\}.$$

(iv) $q_0 \in Q$ is the start state; and

(v) $F \subset Q$ is the set of accept states.

Let $w = w_1 w_2 w_3 \cdots w_m$ where $w_i \in \Sigma_\epsilon$ for $1 \leq i \leq m$ and $m \geq 1$.

N accepts w if and only if $\exists r_0, r_1, r_2, \dots, r_m \in Q$ s.t. the following conditions are satisfied:

(a) $r_0 \in \{q_0\}$

(b) $r_{i+1} \in \delta(r_i, w_{i+1})$ for $i = 0, 1, 2, \dots, m-1$

(c) $r_m \in F$

For $m = 0, w = \epsilon$.

Only conditions (a) and (c) are applicable and they become $r_0 = q_0$ and $r_0 \in F$.

We therefore define N to accept ϵ if the start state is also an accept state.

If we write $r_i \xrightarrow{w_{i+1}, \delta} r_{i+1}$ instead of $r_{i+1} \in \delta(r_i, w_{i+1})$ for $i = 0, 1, 2, \dots, m-1$, then conditions (a), (b) and (c) can be written as follows:

$q_0 = r_0 \xrightarrow{w_1, \delta} r_1 \xrightarrow{w_2, \delta} r_2 \cdots r_i \xrightarrow{w_{i+1}, \delta} r_{i+1} \cdots r_{m-1} \xrightarrow{w_m, \delta} r_m, \quad r_m \in F.$
 Note that when $m = 0$, this computation becomes $q_0 = r_0$ and $r_0 \in F$.

Definition 7. (Inductive Transition Function)

Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA.

$\hat{\delta} : P(Q) \times \Sigma_\epsilon^* \rightarrow P(Q)$ such that

- (i) $\hat{\delta}(A, \epsilon) = A \quad \forall A \in P(Q)$
- (ii) $\hat{\delta}(A, wa) = \bigcup_{q \in \hat{\delta}(A, w)} \delta(q, a) \quad \forall a \in \Sigma_\epsilon, w \in \Sigma_\epsilon^*, A \in P(Q).$

Definition 8.

$\forall p, q \in Q, w \in \Sigma_\epsilon^*, \quad p \xrightarrow{w, \hat{\delta}} q \iff q \in \hat{\delta}(\{p\}, w).$

Proposition 2.

If $N = (Q, \Sigma, \delta, q_0, F)$ is an NFA, then

$\forall a \in \Sigma_\epsilon, p \in Q, \hat{\delta}(\{p\}, a) = \delta(p, a).$

< Proof >

$$\begin{aligned} \hat{\delta}(\{p\}, a) &= \hat{\delta}(\{p\}, \epsilon a) \\ &= \bigcup_{q \in \hat{\delta}(\{p\}, \epsilon)} \delta(q, a) \quad (\text{Definition 1.10 (ii)}) \\ &= \bigcup_{q \in \{p\}} \delta(q, a) \quad (\text{Definition 1.10 (i)}) \\ &= \delta(p, a) \end{aligned}$$

Proposition 3.

If $N = (Q, \Sigma, \delta, s_0, F)$ is an NFA,

$\forall w \in \Sigma_\epsilon^* \text{ where } w = w_1 w_2 w_3 \cdots w_n ; w_i \in \Sigma_\epsilon \text{ for } 1 \leq i \leq n \text{ and } n \geq 1 \text{ or } w = \epsilon \text{ for } n = 0.$

$(\exists r_0, r_1, r_2, \dots, r_n \in Q \text{ s.t. } s_0 = r_0 \xrightarrow{w_1, \delta} r_1 \xrightarrow{w_2, \delta} r_2 \cdots r_{n-1} \xrightarrow{w_n, \delta} r_n) \iff r_n \in \hat{\delta}(\{s_0\}, w)$

< Proof >

This proposition can be proved by induction on n .

Let $P(n)$ denote the statement:

$(\exists r_0, r_1, r_2, \dots, r_n \in Q \text{ s.t. } s_0 = r_0 \xrightarrow{w_1, \delta} r_1 \xrightarrow{w_2, \delta} r_2 \cdots r_{n-1} \xrightarrow{w_n, \delta} r_n); \text{ and}$
 $Q(n)$ denote the statement: $r_n \in \hat{\delta}(\{s_0\}, w).$

For $n = 0, w = \epsilon$.

$$\begin{aligned} P(0) &\iff (\exists r_0 \in Q \text{ s.t. } s_0 = r_0) \\ &\iff r_0 \in \{s_0\} \\ &\iff r_0 \in \hat{\delta}(\{s_0\}, \epsilon) \quad (\text{Definition 1.10(i)}) \\ &\iff r_0 \in \hat{\delta}(\{s_0\}, w) \quad (w = \epsilon) \\ &\iff Q(0) \end{aligned}$$

Assume $P(k) \iff Q(k)$ for any $k \geq 0$.

$P(k+1) \iff (\exists r_0, r_1, r_2, \dots, r_k, r_{k+1} \in Q \text{ s.t. } s_0 = r_0 \xrightarrow{w_1, \delta} r_1 \xrightarrow{w_2, \delta} r_2 \cdots r_{k-1} \xrightarrow{w_k, \delta} r_k \xrightarrow{w_{k+1}, \delta} r_{k+1})$

$P(k+1) \implies P(k) \quad (\text{From computation path of } P(k+1))$

$\implies Q(k) \quad (\text{Induction Hypothesis})$

$\implies r_k \in \hat{\delta}(\{s_0\}, w) \text{ where } w_1 w_2 w_3 \cdots w_k = w \quad (\text{Definition of } Q(k))$

Since

$$\hat{\delta}(\{s_0\}, w w_{k+1}) = \bigcup_{q \in \hat{\delta}(\{s_0\}, w)} \delta(q, w_{k+1}) \quad (\text{Definition 1.10(ii)})$$

and $r_k \in \hat{\delta}(\{s_0\}, w)$,

$\delta(r_k, w_{k+1}) \subset \hat{\delta}(\{s_0\}, w w_{k+1})$

$r_k \xrightarrow{w_{k+1}, \delta} r_{k+1} \quad (\text{From computation path of } P(k+1))$

Therefore, $r_{k+1} \in \delta(r_k, w_{k+1}) \subset \hat{\delta}(\{s_0\}, w w_{k+1})$

Therefore, $r_{k+1} \in \hat{\delta}(\{s_0\}, ww_{k+1})$

Therefore, $P(k+1) \implies Q(k+1)$.

Conversely,

$Q(k+1) \implies r_{k+1} \in \hat{\delta}(\{s_0\}, ww_{k+1})$

$\implies r_{k+1} \in \bigcup_{q \in \hat{\delta}(\{s_0\}, w)} \delta(q, w_{k+1})$

$r_{k+1} \in \delta(r_k, w_{k+1})$ for some $r_k \in \hat{\delta}(\{s_0\}, w)$

$r_k \in \hat{\delta}(\{s_0\}, w) \implies Q(k)$

$\implies P(k)$ (Induction Hypothesis)

$\implies (\exists r_0, r_1, r_2, \dots, r_k \in Q \text{ s.t. } s_0 = r_0 \xrightarrow{w_1, \delta} r_1 \xrightarrow{w_2, \delta} r_2 \dots r_{k-1} \xrightarrow{w_k, \delta} r_k)$

$r_{k+1} \in \delta(r_k, w_{k+1}) \implies r_k \xrightarrow{w_{k+1}, \delta} r_{k+1}$

Combining the two computation paths,

$s_0 = r_0 \xrightarrow{w_1, \delta} r_1 \xrightarrow{w_2, \delta} r_2 \dots r_{k-1} \xrightarrow{w_k, \delta} r_k \xrightarrow{w_{k+1}, \delta} r_{k+1}$

Therefore, $Q(k+1) \implies P(k+1)$ and the proof is complete.

Proposition 4.

$\forall x, y \in \Sigma_\epsilon^* \text{ & } A \in P(Q), \hat{\delta}(A, xy) = \hat{\delta}(\hat{\delta}(A, x), y)$

< Proof >

The proof is by induction on $n = |y|$.

Let $T(n)$ denote the statement corresponding to $n = 0, 1, 2, \dots$

For $|y| = 0, y = \epsilon$.

$\hat{\delta}(A, x\epsilon) = \hat{\delta}(A, x)$

$= \hat{\delta}(\hat{\delta}(A, x), \epsilon)$ (Definition 1.10(i))

$T(0)$ is true.

Assume $T(k)$ is true for $|y| = k \geq 0$.

That is $\hat{\delta}(A, xy) = \hat{\delta}(\hat{\delta}(A, x), y)$ for $|y| = k \geq 0$

For any $a \in \Sigma_\epsilon$, $y \in \Sigma_\epsilon^*$, $|y| = k$

LHS of $T(k+1) = \hat{\delta}(A, xy a)$

$= \bigcup_{q \in \hat{\delta}(A, xy)} \delta(q, a)$ (By Definition 1.10(ii))

$= \bigcup_{q \in \hat{\delta}(\hat{\delta}(A, x), y)} \delta(q, a)$ (By Induction Hypothesis)

$= \hat{\delta}(\hat{\delta}(A, x), ya)$ (By Definition 1.10(ii))

$= \text{RHS of } T(k+1)$

Therefore, $T(k) \implies T(k+1)$.

Proposition 5.

$\forall A_i \subset Q, x \in \Sigma_\epsilon^*, i = 1, 2, \dots, n, n \in N, \hat{\delta}\left(\bigcup_{i=1}^n A_i, x\right) = \bigcup_{i=1}^n \hat{\delta}(A_i, x)$

< Proof >

The proof is by induction on $|x|$.

For $|x| = 0, x = \epsilon$.

$\hat{\delta}\left(\bigcup_{i=1}^n A_i, \epsilon\right) = \bigcup_{i=1}^n A_i$ (Definition 1.10(i))

$= \bigcup_{i=1}^n \hat{\delta}(A_i, \epsilon)$ (Definition 1.10(i))

Claim: $\forall n \in N$, sets A_i and S_x

$\bigcup_{x \in \bigcup_{i=1}^n A_i} S_x = \bigcup_{i=1}^n \left(\bigcup_{x \in A_i} S_x \right)$

< Proof of Claim >

$LHS = \bigcup_{x \in A_1 \cup A_2 \cup \dots \cup A_n} S_x$

$$\begin{aligned}
 &= \left(\bigcup_{x \in A_1} S_x \right) \cup \left(\bigcup_{x \in A_2} S_x \right) \cup \cdots \cup \left(\bigcup_{x \in A_n} S_x \right) \\
 &= \bigcup_{i=1}^n \left(\bigcup_{x \in A_i} S_x \right) \\
 &= RHS
 \end{aligned}$$

Assume the statement is true for $|x| = k$ for $k \geq 0$.

$\forall a \in \Sigma_\epsilon, |xa| = k + 1$.

$$\begin{aligned}
 \hat{\delta} \left(\bigcup_{i=1}^n A_i, xa \right) &= \bigcup_{p \in \hat{\delta} \left(\left(\bigcup_{i=1}^n A_i \right), x \right)} \delta(p, a) && \text{(Definition 1.10(ii))} \\
 &= \bigcup_{p \in \bigcup_{i=1}^n \hat{\delta} \left(A_i, x \right)} \delta(p, a) && \text{(Induction Hypothesis)} \\
 &= \bigcup_{i=1}^n \left(\bigcup_{p \in \hat{\delta} \left(A_i, x \right)} \delta(p, a) \right) && \text{(Claim)} \\
 &= \bigcup_{i=1}^n \hat{\delta} \left(A_i, xa \right) && \text{(Definition 1.10(ii))}
 \end{aligned}$$

Therefore, the statement is also true for $|x| = k + 1$.

Proposition 6.

$$\hat{\delta}(A, x) = \bigcup_{q \in A} \hat{\delta}(\{q\}, x) \text{ for all } A \subset Q.$$

< Proof >

$$\begin{aligned}
 LHS &= \hat{\delta} \left(\bigcup_{q \in A} \{q\}, x \right) \\
 &= \bigcup_{q \in A} \hat{\delta}(\{q\}, x) && \text{(Proposition 1.15)} \\
 &= RHS
 \end{aligned}$$

Proposition 7.

$$\forall A, B, \text{ where } A \subset B \subset Q, \hat{\delta}(A, x) \subset \hat{\delta}(B, x)$$

< Proof >

$$\begin{aligned}
 B &= A \cup (B \setminus A) && \text{(Set Theory)} \\
 \hat{\delta}(B, x) &= \hat{\delta}(A \cup (B \setminus A), x) \\
 &= \hat{\delta}(A, x) \cup \hat{\delta}(B \setminus A, x) && \text{(Proposition 1.15)} \\
 \text{Therefore, } \hat{\delta}(A, x) &\subset \hat{\delta}(B, x)
 \end{aligned}$$

Proposition 8.

For any two NFAs N_1 and N_2 , where

$$N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$

$$N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2) \text{ and } Q_1 \subset Q_2$$

$$\forall q \in Q_1, a \in \Sigma_\epsilon, \delta_1(q, a) \subset \delta_2(q, a) \Rightarrow \hat{\delta}_1(\{q\}, w) \subset \hat{\delta}_2(\{q\}, w) \forall w \in \Sigma_\epsilon^*$$

< Proof >

The proof is by induction on $|w|$.

For $|w| = 0, w = \epsilon$.

$$\hat{\delta}_1(\{q\}, \epsilon) = \{q\} \text{ and } \hat{\delta}_2(\{q\}, \epsilon) = \{q\} \quad \text{(By Definition 1.10(i))}$$

Therefore, $\hat{\delta}_1(\{q\}, \epsilon) \subset \hat{\delta}_2(\{q\}, \epsilon)$.

The statement is true for $|w| = 0$.

Assume the statement is true for $|w| = k \geq 0$.

That is, $\hat{\delta}_1(\{q\}, w) \subset \hat{\delta}_2(\{q\}, w)$ for $|w| = k \geq 0$.

For $k + 1$,

$$\hat{\delta}_1(\{q\}, wa) = \bigcup_{p \in \hat{\delta}_1(\{q\}, w)} \delta_1(p, a)$$

$$\subset \bigcup_{p \in \hat{\delta}_2(\{q\}, w)} \delta_2(p, a) \quad (\text{By Induction Hypothesis and } \delta_1(q, a) \subset \delta_2(q, a))$$

$$= \hat{\delta}_2(\{q\}, wa) \quad (\text{By Definition 1.10(ii)})$$

Theorem 3. (NFA acceptance)

$N = (Q, \Sigma, \delta, s_0, F)$ is an NFA.

$\forall w \in \Sigma^*$ where $w = w_1 w_2 w_3 \cdots w_n$; and

$(w_i \in \Sigma_\epsilon \text{ for } 1 \leq i \leq n \text{ and } n \geq 1) \text{ or } (w = \epsilon \text{ and } n = 0)$.

N accepts w if and only if $\hat{\delta}(\{s_0\}, w) \cap F \neq \emptyset$

In other words, N accepts w if and only if $(\exists r \in F \text{ s.t. } s_0 \xrightarrow{w, \hat{\delta}} r)$

< Proof >

If N accepts w

$\exists r_0, r_1, r_2, \dots, r_n \in Q \text{ s.t. } s_0 = r_0 \xrightarrow{w_1, \delta} r_1 \xrightarrow{w_2, \delta} r_2 \cdots r_{n-1} \xrightarrow{w_n, \delta} r_n \text{ and } r_n \in F$.

$r_n \in \hat{\delta}(\{s_0\}, w)$ (By Proposition 1.13)

Since r_n is also in F ,

$\hat{\delta}(\{s_0\}, w) \cap F \neq \emptyset$

Conversely, if $\hat{\delta}(\{s_0\}, w) \cap F \neq \emptyset$,

$\exists r_n \in \hat{\delta}(\{s_0\}, w) \text{ and } r_n \in F$.

$\exists r_0, r_1, r_2, \dots, r_n \in Q \text{ s.t. } s_0 = r_0 \xrightarrow{w_1, \delta} r_1 \xrightarrow{w_2, \delta} r_2 \cdots r_{n-1} \xrightarrow{w_n, \delta} r_n ; r_n \in F$ (Proposition 1.13)

Therefore, N accepts w .

3. Epsilon-Closure

The ϵ -Closure of a set of states is a collection of states that can be reached from a member of the given set of states via zero or a finite number of ϵ transitions.

Formally, we define ϵ -Closure as follows.

Definition 9.

Let $N = (Q, \Sigma, \delta, s_0, F)$ be an NFA.

For any $R \subset Q$, the ϵ -Closure of R is

$E(R) = \{q \in Q \mid p \xrightarrow{\epsilon^i, \hat{\delta}} q \text{ for some } p \in R\}$ where

i is an integer ≥ 0 and $p \xrightarrow{\epsilon^0, \hat{\delta}} q$ means $p = q$.

Proposition 9.

$\forall A_i \subset Q, i = 1, 2, \dots, n, n \in N, E\left(\bigcup_{i=1}^n A_i\right) = \bigcup_{i=1}^n E(A_i)$

< Proof >

Claim. $E(A_1 \cup A_2) = E(A_1) \cup E(A_2)$

< Proof of Claim >

$q \in E(A_1 \cup A_2) \Leftrightarrow \exists p \in A_1 \cup A_2 \text{ s.t. } p \xrightarrow{\epsilon^i, \hat{\delta}} q \text{ where } i \geq 0$

$\Leftrightarrow ((\exists p \in A_1) \vee (\exists p \in A_2)) \wedge (p \xrightarrow{\epsilon^i, \hat{\delta}} q \text{ where } i \geq 0)$

$\Leftrightarrow (q \in E(A_1)) \vee (q \in E(A_2))$

$\Leftrightarrow q \in E(A_1) \cup E(A_2)$

Therefore, $E(A_1 \cup A_2) = E(A_1) \cup E(A_2)$

With this Claim and an induction argument, we can conclude Proposition 1.21.

4. The Equivalence of DFA and NFA

Lemma 1.

Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA, $M = (Q', \Sigma, \delta', q'_0, F')$ be a DFA.

$Q' = P(Q)$, $q'_0 = E(\{q_0\})$, $F' = \{R \in Q' \mid R \cap F \neq \emptyset\}$

$\delta' : Q' \times \Sigma \rightarrow Q'$ such that

$$\delta'(R, a) = \bigcup_{r \in R} E(\delta(r, a)) \quad \forall a \in \Sigma, R \in Q'$$

Let $w = w_1 w_2 w_3 \cdots w_n$ such that if $n = 0, w = \epsilon$ and if $n \geq 1$, then $w_i \neq \epsilon \quad \forall 1 \leq i \leq n$.

Let $i_0, i_1, i_2, \dots, i_n$ be integers $\geq 0, q_0, q_1, q_2, \dots, q_n \in Q, p_1, p_2, p_3, \dots, p_n \in Q$ and $q \in Q$.

The following holds:

$$q_0 \xrightarrow{\epsilon^{i_0}, \hat{\delta}} q_1 \xrightarrow{w_1, \delta} p_1 \xrightarrow{\epsilon^{i_1}, \hat{\delta}} q_2 \xrightarrow{w_2, \delta} p_2 \xrightarrow{\epsilon^{i_2}, \hat{\delta}} q_3 \cdots q_{n-1} \xrightarrow{w_{n-1}, \delta} p_{n-1} \xrightarrow{\epsilon^{i_{n-1}}, \hat{\delta}} q_n \xrightarrow{w_n, \delta} p_n \xrightarrow{\epsilon^{i_n}, \hat{\delta}} q.$$

$$\iff q \in \hat{\delta}'(q_0, w)$$

< Proof >

Proof is by induction on $|w| = n$.

Let $P(n)$ denote the statement of

$$q_0 \xrightarrow{\epsilon^{i_0}, \hat{\delta}} q_1 \xrightarrow{w_1, \delta} p_1 \xrightarrow{\epsilon^{i_1}, \hat{\delta}} q_2 \xrightarrow{w_2, \delta} p_2 \xrightarrow{\epsilon^{i_2}, \hat{\delta}} q_3 \cdots q_{n-1} \xrightarrow{w_{n-1}, \delta} p_{n-1} \xrightarrow{\epsilon^{i_{n-1}}, \hat{\delta}} q_n \xrightarrow{w_n, \delta} p_n \xrightarrow{\epsilon^{i_n}, \hat{\delta}} q.$$

and $Q(n)$ denote the statement of $q \in \hat{\delta}'(q_0, w)$ corresponding to $n \geq 0$.

For $|w| = n = 0, w = \epsilon$.

$$\begin{aligned} P(0) &\iff q_0 \xrightarrow{\epsilon^{i_0}, \hat{\delta}} q \\ &\iff q \in E(\{q_0\}) \\ &\iff q \in q_0' \quad (q_0' = E(\{q_0\})) \\ &\iff q \in \hat{\delta}'(q_0', \epsilon) \quad (\text{Definition 1.4(i)}) \\ &\iff q \in \hat{\delta}'(q_0, w) \quad (w = \epsilon) \\ &\iff Q(0) \end{aligned}$$

Assume $P(k) \iff Q(k)$ for $k \geq 0$.

$$\begin{aligned} P(k+1) &\iff q_0 \xrightarrow{\epsilon^{i_0}, \hat{\delta}} q_1 \xrightarrow{w_1, \delta} p_1 \xrightarrow{\epsilon^{i_1}, \hat{\delta}} q_2 \xrightarrow{w_2, \delta} p_2 \xrightarrow{\epsilon^{i_2}, \hat{\delta}} q_3 \cdots q_k \xrightarrow{w_k, \delta} p_k \xrightarrow{\epsilon^{i_k}, \hat{\delta}} q_{k+1} \xrightarrow{w_{k+1}, \delta} p_{k+1} \xrightarrow{\epsilon^{i_{k+1}}, \hat{\delta}} q. \\ &\iff P(k) \& q_{k+1} \xrightarrow{w_{k+1}, \delta} p_{k+1} \xrightarrow{\epsilon^{i_{k+1}}, \hat{\delta}} q \\ &\iff Q(k) \& q_{k+1} \xrightarrow{w_{k+1}, \delta} p_{k+1} \xrightarrow{\epsilon^{i_{k+1}}, \hat{\delta}} q \quad (\text{Induction Hypothesis}) \\ &\iff q_{k+1} \in \hat{\delta}'(q_0', w) \text{ where } |w| = k \& q_{k+1} \xrightarrow{w_{k+1}, \delta} p_{k+1} \xrightarrow{\epsilon^{i_{k+1}}, \hat{\delta}} q \\ &\iff q_{k+1} \in \hat{\delta}'(q_0, w) \text{ where } |w| = k \& q \in E(\delta(q_{k+1}, w_{k+1})) \\ &\iff q \in \bigcup_{r \in \hat{\delta}'(q_0', w)} E(\delta(r, w_{k+1})) \text{ where } |w| = k \\ &\iff q \in \hat{\delta}'(\hat{\delta}'(q_0', w), w_{k+1}) \text{ where } |w| = k \\ &\quad (\text{Consider } R = \hat{\delta}'(q_0', w), w_{k+1} = a \& \delta'(R, a) \stackrel{\text{def}}{=} \bigcup_{r \in R} E(\delta(r, a))) \\ &\iff q \in \hat{\delta}'(q_0', w w_{k+1}) \text{ where } |w| = k \quad (\text{Definition 1.4(ii)}) \\ &\iff Q(k+1) \end{aligned}$$

This completes the proof of Lemma 1.22.

Theorem 4.

Every NFA can be converted to an equivalent DFA.

< Proof >

Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA.

Construct a DFA as follows.

$$M = (Q', \Sigma, \delta', q_0', F')$$

$$Q' = P(Q), q_0' = E(\{q_0\}), F' = \{R \in Q' \mid R \cap F \neq \emptyset\}$$

$\delta' : Q' \times \Sigma \longrightarrow Q'$ such that

$$\delta'(R, a) = \bigcup_{r \in R} E(\delta(r, a)) \quad \forall a \in \Sigma, R \in Q'$$

We claim that N and M are equivalent by showing that

$\forall w \in \Sigma^*, N \text{ accepts } w \iff M \text{ accepts } w$

The proof is divided into two cases, one with $w = \epsilon$ and one with $w \neq \epsilon$.

(i) $w = \epsilon$

If N accepts w ,

$\exists j \geq 0$ s.t. $q_0 \xrightarrow{\epsilon^j, \hat{\delta}} p$ and $p \in F$.

Therefore, $p \in E(\{q_0\}) \& p \in F$.

Therefore, $p \in q_0' \& p \in F$.

Therefore, $q_0' \cap F \neq \emptyset$.

Therefore, $q_0' \in F'$.

Therefore, the start state of M is also an accept state of M .

By definition, M accepts $\epsilon (= w)$.

Conversely, if M accepts $w = \epsilon$,

$q_0' \in F'$ (A DFA accepts ϵ iff its start state is also an accept state.)

$q_0' \cap F \neq \emptyset$ (By definition of F')

$\exists p \in q_0' \text{ and } p \in F$.

Since $q_0' = E(\{q_0\})$, $q_0 \xrightarrow{\epsilon^j, \hat{\delta}} p$ for some $j \geq 0$.

Since $p \in F$, N accepts ϵ^j , which is same as ϵ .

(ii) $w \neq \epsilon$

$\exists w_i \neq \epsilon, \forall 1 \leq i \leq n, n \geq 1$ and

$w = \epsilon^{i_0} w_1 \epsilon^{i_1} w_2 \epsilon^{i_2} w_3 \epsilon^{i_3} \dots w_n \epsilon^{i_n}$ for some integers $i_0, i_1, i_2, \dots, i_n \geq 0$

If N accepts w ,

$\exists q_0, q_1, q_2, \dots, q_n \in Q, p_1, p_2, p_3, \dots, p_n \in Q$ and $q \in Q$ s.t.

$q_0 \xrightarrow{\epsilon^{i_0}, \hat{\delta}} q_1 \xrightarrow{w_1, \delta} p_1 \xrightarrow{\epsilon^{i_1}, \hat{\delta}} q_2 \xrightarrow{w_2, \delta} p_2 \xrightarrow{\epsilon^{i_2}, \hat{\delta}} q_3 \dots q_{n-1} \xrightarrow{w_{n-1}, \delta} p_{n-1} \xrightarrow{\epsilon^{i_{n-1}}, \hat{\delta}} q_n \xrightarrow{w_n, \delta} p_n \xrightarrow{\epsilon^{i_n}, \hat{\delta}} q$ & $q \in F$.

By Lemma 1.22, $q \in \hat{\delta}'(q_0', w)$ where $w = w_1 w_2 w_3 \dots w_n$.

Therefore, $\hat{\delta}'(q_0', w) \cap F \neq \emptyset$.

Therefore, $\hat{\delta}'(q_0', w) \in F'$.

Therefore, M accepts w (DFA acceptance)

Conversely, if M accepts $w = w_1 w_2 w_3 \dots w_n$,

$\hat{\delta}'(q_0', w) \in F'$ (DFA acceptance)

$\hat{\delta}'(q_0', w) \cap F \neq \emptyset$ (Definition of F')

$\exists q \in \hat{\delta}'(q_0', w)$ and $q \in F$.

By Lemma 1.22,

$q_0 \xrightarrow{\epsilon^{i_0}, \hat{\delta}} q_1 \xrightarrow{w_1, \delta} p_1 \xrightarrow{\epsilon^{i_1}, \hat{\delta}} q_2 \xrightarrow{w_2, \delta} p_2 \xrightarrow{\epsilon^{i_2}, \hat{\delta}} q_3 \dots q_{n-1} \xrightarrow{w_{n-1}, \delta} p_{n-1} \xrightarrow{\epsilon^{i_{n-1}}, \hat{\delta}} q_n \xrightarrow{w_n, \delta} p_n \xrightarrow{\epsilon^{i_n}, \hat{\delta}} q$ & $q \in F$.

Therefore, N accepts $w = \epsilon^{i_0} w_1 \epsilon^{i_1} w_2 \epsilon^{i_2} w_3 \epsilon^{i_3} \dots w_n \epsilon^{i_n}$

This completes the proof of Theorem 1.23.

Corollary 1.

A language is regular iff some NFA recognizes it.

5. Regular Operators

Regular Languages are closed under the operation of Regular Operators.

Theorem 5.

L is regular $\Rightarrow \Sigma^* \setminus L$ is regular.

< Proof >

Let $M = (Q, \Sigma, \delta, q_0, F)$ be the DFA that recognizes L .

That is, $L(M) = L$.

Define $M' = (Q, \Sigma, \delta', q_0, Q \setminus F)$ where

$\delta' : Q \times \Sigma \rightarrow Q$ s.t. $\forall q \in Q, a \in \Sigma, \delta'(q, a) = \delta(q, a)$

$\forall w \in \Sigma^* \setminus L$,

$w \notin L \Rightarrow \hat{\delta}(q_0, w) \notin F$

$\Rightarrow \hat{\delta}(q_0, w) \in Q \setminus F$

$\Rightarrow \hat{\delta}'(q_0, w) \in Q \setminus F$ (Theorem 1.8)

$\implies M' \text{ accepts } w$

Conversely, if M' accepts w , $\hat{\delta}'(q_0, w) \in Q \setminus F$

$\hat{\delta}(q_0, w) \in Q \setminus F$ (Theorem 1.8)

Therefore, $\hat{\delta}(q_0, w) \notin F$

Therefore, $w \notin L$ (because $w \in L \implies M \text{ accepts } w \implies \hat{\delta}(q_0, w) \in F$)

$w \in \Sigma^* \setminus L$

Therefore, $w \in \Sigma^* \setminus L \iff M' \text{ accepts } w$.

$L(M') = \Sigma^* \setminus L$

$\Sigma^* \setminus L$ is regular.

Theorem 6.

L_1 and L_2 are regular $\implies L_1 \cap L_2$ is regular.

< Proof >

\exists DFAs M_1 and M_2 s.t. $L(M_1) = L_1$ and $L(M_2) = L_2$

Let $M_1 = (Q_1, \Sigma, \delta_1, s_0, F_1)$

$M_2 = (Q_2, \Sigma, \delta_2, s_0', F_2)$

Define M_3 as follows.

$M_3 = (Q_3, \Sigma, \delta_3, s_0'', F_3)$

where $s_0'' = (s_0, s_0')$, $Q_3 = Q_1 \times Q_2$, $F_3 = F_1 \times F_2$

$\delta_3 : Q_3 \times \Sigma \longrightarrow Q_3$ s.t.

$\delta_3((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a)) \quad \forall q_1 \in Q_1, q_2 \in Q_2, a \in A$.

Claim. $\forall n \in N \cup \{0\}$, $w \in \Sigma^*$, where $|w| = n$, if

(i) $s_0 = r_0 \xrightarrow{w_1, \delta_1} r_1 \xrightarrow{w_2, \delta_1} r_2 \cdots r_{n-1} \xrightarrow{w_n, \delta_1} r_n$

(ii) $s_0' = r_0' \xrightarrow{w_1, \delta_2} r_1' \xrightarrow{w_2, \delta_2} r_2' \cdots r_{n-1}' \xrightarrow{w_n, \delta_2} r_n'$

(iii) $s_0'' = r_0'' \xrightarrow{w_1, \delta_3} r_1'' \xrightarrow{w_2, \delta_3} r_2'' \cdots r_{n-1}'' \xrightarrow{w_n, \delta_3} r_n''$

then $r_n'' = (r_n, r_n')$.

Proof of Claim is by induction on n .

For $n = 0$, (i), (ii) and (iii) become $s_0 = r_0$, $s_0' = r_0'$, and $s_0'' = r_0''$.

$s_0'' = (s_0, s_0')$ (By definition of M_3 .)

Therefore, $r_0'' = (r_0, r_0')$

Assume the statement is true for $n = k \geq 0$.

(i), (ii) & (iii) for $n = k + 1 \Rightarrow$

$s_0 = r_0 \xrightarrow{w_1, \delta_1} r_1 \xrightarrow{w_2, \delta_1} r_2 \cdots r_{k-1} \xrightarrow{w_k, \delta_1} r_k \xrightarrow{w_{k+1}, \delta_1} r_{k+1}$

$s_0' = r_0' \xrightarrow{w_1, \delta_2} r_1' \xrightarrow{w_2, \delta_2} r_2' \cdots r_{k-1}' \xrightarrow{w_k, \delta_2} r_k' \xrightarrow{w_{k+1}, \delta_2} r_{k+1}'$

$s_0'' = r_0'' \xrightarrow{w_1, \delta_3} r_1'' \xrightarrow{w_2, \delta_3} r_2'' \cdots r_{k-1}'' \xrightarrow{w_k, \delta_3} r_k'' \xrightarrow{w_{k+1}, \delta_3} r_{k+1}''$

\Rightarrow (i), (ii) & (iii) for $n = k$ & $r_k \xrightarrow{w_{k+1}, \delta_1} r_{k+1}$ & $r_k' \xrightarrow{w_{k+1}, \delta_2} r_{k+1}'$ & $r_k'' \xrightarrow{w_{k+1}, \delta_3} r_{k+1}''$

$\Rightarrow r_k'' = (r_k, r_k')$ & $r_{k+1} = \delta_1(r_k, w_{k+1})$ & $r_{k+1}' = \delta_2(r_k', w_{k+1})$ & $r_{k+1}'' = \delta_3(r_k'', w_{k+1})$

(Induction Hypothesis)

$\Rightarrow r_{k+1} = \delta_1(r_k, w_{k+1})$ & $r_{k+1}' = \delta_2(r_k', w_{k+1})$ & $r_{k+1}'' = \delta_3((r_k, r_k'), w_{k+1})$

$\Rightarrow r_{k+1} = \delta_1(r_k, w_{k+1})$ & $r_{k+1}' = \delta_2(r_k', w_{k+1})$ & $r_{k+1}'' = (\delta_1(r_k, w_{k+1}), \delta_2(r_k', w_{k+1}))$

(Definition of δ_3)

$\Rightarrow r_{k+1}'' = (r_{k+1}, r_{k+1}')$

We now need to show $L_1 \cap L_2 = L(M_3)$.

$\forall w \in L_1 \cap L_2$, $w \in L_1$ and $w \in L_2$.

$w \in L_1 \Rightarrow \exists s_0 = r_0, r_1, r_2, \dots, r_n$ s.t. $s_0 = r_0 \xrightarrow{w_1, \delta_1} r_1 \xrightarrow{w_2, \delta_1} r_2 \cdots r_{n-1} \xrightarrow{w_n, \delta_1} r_n$ & $r_n \in F_1$

$w \in L_2 \Rightarrow \exists s_0' = r_0', r_1', r_2', \dots, r_n'$ s.t. $s_0' = r_0' \xrightarrow{w_1, \delta_2} r_1' \xrightarrow{w_2, \delta_2} r_2' \cdots r_{n-1}' \xrightarrow{w_n, \delta_2} r_n'$ & $r_n' \in F_2$

Let $r_0'' = s_0'' = (s_0, s_0')$

$r_1'' = \delta_3(r_0'', w_1), \dots, r_{i+1}'' = \delta_3(r_i'', w_{i+1}), \dots, r_n'' = \delta_3(r_{n-1}'', w_n)$.

Therefore, $s_0'' = r_0'' \xrightarrow{w_1, \delta_3} r_1'' \xrightarrow{w_2, \delta_3} r_2'' \cdots r_{n-1}'' \xrightarrow{w_n, \delta_3} r_n''$

By Claim, $r_n'' = (r_n, r_n')$

Since $r_n \in F_1$ and $r_n' \in F_2$, $r_n'' \in F_1 \times F_2 = F_3$.

Therefore, M_3 accepts w .

$w \in L(M_3)$

$L_1 \cap L_2 \subset L(M_3)$

Conversely, if $w \in L(M_3)$,

$\exists r_0'', r_1'', r_2'', \dots, r_n'' \in Q_3$ s.t. $s_0'' = r_0'' \xrightarrow{w_1, \delta_3} r_1'' \xrightarrow{w_2, \delta_3} r_2'' \cdots \cdots r_{n-1}'' \xrightarrow{w_n, \delta_3} r_n''$ & $r_n'' \in F_3$

Take

$r_0 = s_0$;

$r_{i+1} = \delta_1(r_i, w_{i+1}) \forall i = 0, 1, 2, \dots, n-1$;

$r_0' = s_0'$;

$r_{i+1}' = \delta_2(r_i', w_{i+1}) \forall i = 0, 1, 2, \dots, n-1$.

Therefore,

$s_0 = r_0 \xrightarrow{w_1, \delta_1} r_1 \xrightarrow{w_2, \delta_1} r_2 \cdots \cdots r_{n-1} \xrightarrow{w_n, \delta_1} r_n$

$s_0' = r_0' \xrightarrow{w_1, \delta_2} r_1' \xrightarrow{w_2, \delta_2} r_2' \cdots \cdots r_{n-1}' \xrightarrow{w_n, \delta_2} r_n'$

By Claim, $r_n'' = (r_n, r_n')$

Since $r_n'' \in F_3 = F_1 \times F_2$, $r_n \in F_1$ and $r_n' \in F_2$.

M_1 accepts w and M_2 accepts w .

$w \in L(M_1)$ and $w \in L(M_2)$

$w \in L_1$ and $w \in L_2$

$w \in L_1 \cap L_2$

$L(M_3) \subset L_1 \cap L_2$

Combining both directions, $L(M_3) = L_1 \cap L_2$

$L_1 \cap L_2$ is regular.

Theorem 7.

L_1 and L_2 are regular $\implies L_1 \cup L_2$ is regular.

< Proof >

From set theory, $\Sigma^* \setminus (L_1 \cup L_2) = (\Sigma^* \setminus L_1) \cap (\Sigma^* \setminus L_2)$

L_1 is regular $\implies \Sigma^* \setminus L_1$ is regular. (Theorem 1.25)

L_2 is regular $\implies \Sigma^* \setminus L_2$ is regular. (Theorem 1.25)

$\Sigma^* \setminus L_1$ and $\Sigma^* \setminus L_2$ are regular $\implies (\Sigma^* \setminus L_1) \cap (\Sigma^* \setminus L_2)$ is regular. (Theorem 1.26)

Therefore, $\Sigma^* \setminus (L_1 \cup L_2)$ is regular.

Therefore, $L_1 \cup L_2$ is regular. (Theorem 1.25)

Theorem 8.

Every NFA can be converted to another NFA with the following properties.

(i) There is only one accept state which has transition arrows coming in and no transition arrows going out.

(ii) The accept state is different from the start state.

(iii) The start state has no arrows coming in from other states but only transition arrows going out.

< Proof >

Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ be the NFA to be converted.

Define NFA, $N = (Q, \Sigma, \delta, q_0, \{q_a\})$ where $Q = Q_1 \cup \{q_0, q_a\}$, $q_0 \neq q_a$ and

$$\delta(q, x) = \begin{cases} \{q_1\} & \text{if } (q, x,) = (q_0, \epsilon) \\ \emptyset & \text{if } q = q_0 \text{ and } x \neq \epsilon \\ \emptyset & \text{if } q = q_a \\ \delta_1(q, x) & \text{if } q \in Q_1 \setminus F_1 \\ \delta_1(q, x) & \text{if } q \in F_1 \text{ and } x \neq \epsilon \\ \delta_1(q, x) \cup \{q_a\} & \text{if } q \in F_1 \text{ and } x = \epsilon \end{cases}$$

It is clear that N satisfies conditions (i), (ii) and (iii).

Furthermore, $\delta_1(q, x) \subset \delta(q, x) \forall x \in \Sigma_\epsilon, q \in Q_1$ and hence

$\hat{\delta}_1(\{q\}, w) \subset \hat{\delta}(\{q\}, w) \forall w \in \Sigma_\epsilon^*$ by Proposition 1.18.

It remains to show that $\forall w \in \Sigma_\epsilon^*, N_1 \text{ accepts } w \Leftrightarrow N \text{ accepts } w$.

For forward direction " \Rightarrow ",

Let N_1 accepts w .

$$q_1 \xrightarrow{w, \hat{\delta}_1} r, r \in F_1.$$

Since $\hat{\delta}_1(q_1, w) \subset \hat{\delta}(q_1, w), q_1 \xrightarrow{w, \hat{\delta}} r, r \in F_1$.

$$\text{Since } \delta(q_0, \epsilon) = \{q_1\}, q_0 \xrightarrow{\epsilon, \delta} q_1.$$

Furthermore, since $\delta(q, \epsilon) = \delta_1(q, \epsilon) \cup \{q_a\} \forall q \in F_1, \delta(r, \epsilon) = \delta_1(r, \epsilon) \cup \{q_a\}$.

Therefore, $q_a \in \delta(r, \epsilon)$.

$$\text{That is, } r \xrightarrow{\epsilon, \delta} q_a$$

$$\text{Therefore, } q_0 \xrightarrow{\epsilon, \delta} q_1 \xrightarrow{w, \hat{\delta}} r \xrightarrow{\epsilon, \delta} q_a.$$

Therefore N accepts $ew\epsilon$ which is the same as w .

Therefore, N_1 accepts $w \Rightarrow N$ accepts w .

Conversely, if N accepts $w = x_1 x_2 \cdots x_n$ where $x_i \in \Sigma_\epsilon$ for $n \geq 1$ & $1 \leq i \leq n$.

(Note that $w = \epsilon$ if $x_i = \epsilon \forall i$.)

$\exists r_0, r_1, r_2, \dots, r_n \in Q$ s.t.

$$q_0 = r_0 \xrightarrow{x_1, \delta} r_1 \xrightarrow{x_2, \delta} r_2 \cdots r_{n-1} \xrightarrow{x_n, \delta} r_n \text{ & } r_n \in \{q_a\}$$

Since the only way to transition to q_a using δ is from a state in F_1 via the ϵ arrow, we must have $r_{n-1} \in F_1$ & $x_n = \epsilon$.

Since the only way to transition out of $q_0 (= r_0)$ using δ is via an ϵ arrow, we must have $x_1 = \epsilon$.

Since $\delta(q_0, \epsilon) = \{q_1\}$, we must have $r_1 = q_1$.

We now can rewrite the above computation as

$$q_0 = r_0 \xrightarrow{\epsilon, \delta} q_1 \xrightarrow{x_2, \delta} r_2 \cdots r_{n-2} \xrightarrow{x_{n-1}, \delta} r_{n-1} \xrightarrow{\epsilon, \delta} q_a \text{ & } r_{n-1} \in F_1.$$

For all $1 \leq j \leq n-2, r_j \notin \{q_0, q_a\}$ because r_j has both incoming and outgoing arrows.

Therefore, $r_j \in Q_1$.

$$\text{Claim. } r_j \xrightarrow{x_{j+1}, \delta_1} r_{j+1} \quad \forall 1 \leq j \leq n-2.$$

Since $r_j \in Q_1, \delta(r_j, x_{j+1}) = \delta_1(r_j, x_{j+1})$ or $\delta_1(r_j, x_{j+1}) \cup \{q_a\}$ by definition of δ .

$$r_j \xrightarrow{x_{j+1}, \delta} r_{j+1}$$

$$\Rightarrow r_{j+1} \in \delta(r_j, x_{j+1})$$

$$\Rightarrow r_{j+1} \in \delta_1(r_j, x_{j+1}) \text{ or } r_{j+1} \in \delta_1(r_j, x_{j+1}) \cup \{q_a\}$$

$$\Rightarrow r_{j+1} \in \delta_1(r_j, x_{j+1}) \text{ or } r_{j+1} \in \delta_1(r_j, x_{j+1}) \quad (\text{because } r_{j+1} \neq q_a)$$

$$\Rightarrow r_{j+1} \in \delta_1(r_j, x_{j+1})$$

$$\Rightarrow r_j \xrightarrow{x_{j+1}, \delta_1} r_{j+1}$$

The computation now becomes

$$q_0 = r_0 \xrightarrow{\epsilon, \delta} q_1 \xrightarrow{x_2, \delta_1} r_2 \cdots r_{n-2} \xrightarrow{x_{n-1}, \delta_1} r_{n-1} \xrightarrow{\epsilon, \delta} q_a \text{ & } r_{n-1} \in F_1.$$

$$\text{Therefore, } q_1 \xrightarrow{x_2, \delta_1} r_2 \cdots r_{n-2} \xrightarrow{x_{n-1}, \delta_1} r_{n-1} \text{ & } r_{n-1} \in F_1.$$

Therefore, N_1 accepts $x_2 x_3 \cdots x_{n-1}$.

Therefore, N_1 accepts $w = x_1 x_2 x_3 \cdots x_{n-1} x_n$ because $x_1 = x_n = \epsilon$.

Therefore, N accepts $w \Rightarrow N_1$ accepts w .
 This completes the proof of Theorem 1.28.

Theorem 9.

For any regular languages L_1 and L_2 , the language $L_1 L_2$ is regular.

< Proof >

Since L_1 and L_2 are regular, there exist NFAs N_1, N_2 that recognize L_1 and L_2 .

By Theorem 1.28, we can start with N_1 and N_2 defined as follows.

$N_1 = (Q_1, \Sigma, \delta_1, q_{1s}, \{q_{1a}\})$ where

$q_{1s} \neq q_{1a}, q_{1s} \notin \delta_1(q, x) \forall q \in Q_1, x \in \Sigma_\epsilon$ and $\delta_1(q_{1a}, x) = \emptyset \forall x \in \Sigma_\epsilon$.

$N_2 = (Q_2, \Sigma, \delta_2, q_{2s}, \{q_{2a}\})$ where

$q_{2s} \neq q_{2a}, q_{2s} \notin \delta_2(q, x) \forall q \in Q_2, x \in \Sigma_\epsilon$ and $\delta_2(q_{2a}, x) = \emptyset \forall x \in \Sigma_\epsilon$.

We can further assume that $Q_1 \cap Q_2 = \emptyset$ because we can always replace Q_1 with a set of objects which are completely different from those in Q_2 without affecting the function of N_1 .

Now construct $N = (Q, \Sigma, \delta, q_{1s}, \{q_{2a}\})$ where $Q = Q_1 \cup Q_2$.

$$\delta(q, x) = \begin{cases} \delta_1(q, x) & \text{if } q \in Q_1 \setminus \{q_{1a}\} \\ \delta_1(q_{1a}, x) & \text{if } q = q_{1a} \text{ \& } x \neq \epsilon \\ \delta_1(q_{1a}, x) \cup \{q_{2s}\} & \text{if } q = q_{1a} \text{ \& } x = \epsilon \\ \delta_2(q, x) & \text{if } q \in Q_2 \end{cases}$$

We now need to show $L(N) = L_1 L_2$.

If $w \in L_1 L_2$, $w = w_1 w_2$ where $w_1, w_2 \in \Sigma_\epsilon^*$ and $w_1 \in L_1, w_2 \in L_2$.

Since N_1 recognizes L_1 and N_2 recognizes L_2 , N_1 accepts w_1 and N_2 accepts w_2 .

$\exists r_1 \in \{q_{1a}\}$ and $r_2 \in \{q_{2a}\}$ such that

$q_{1s} \xrightarrow{w_1, \hat{\delta}_1} r_1$ and $q_{2s} \xrightarrow{w_2, \hat{\delta}_2} r_2$ (By Theorem 1.19 of NFA Acceptance)

$q_{1s} \xrightarrow{w_1, \hat{\delta}} q_{1a}$ and $q_{2s} \xrightarrow{w_2, \hat{\delta}} q_{2a}$ (Proposition 1.18 and $r_1 = q_{1a}, r_2 = q_{2a}$).

By definition of δ , $q_{2s} \in \delta(q_{1a}, \epsilon)$.

Therefore,

$q_{1s} \xrightarrow{w_1, \hat{\delta}} q_{1a} \xrightarrow{\epsilon, \delta} q_{2s} \xrightarrow{w_2, \hat{\delta}} q_{2a}$.

Therefore, N accepts $w_1 \epsilon w_2$, which is the same as $w_1 w_2$.

$L_1 L_2 \subset L(N)$

Conversely, if N accepts $w = x_1 x_2 \cdots x_n$, where $x_1, x_2, \dots, x_n \in \Sigma_\epsilon$ for $n \geq 1$,

$\exists r_0, r_1, r_2, \dots, r_n \in Q$ such that

$q_{1s} = r_0 \xrightarrow{x_1, \delta} r_1 \xrightarrow{x_2, \delta} r_2 \cdots r_{n-1} \xrightarrow{x_n, \delta} r_n$ & $r_n = q_{2a}$.

(Note that $w = \epsilon$ if $x_i = \epsilon \ \forall i$).

Since the only way to transition from a state of N_1 to a state of N_2 is via q_{1a} to q_{2s} using the ϵ arrow, \exists an $r_i = q_{1a}$ and $r_{i+1} = q_{2s}$ such that $x_{i+1} = \epsilon$ and the computation becomes

$q_{1s} = r_0 \xrightarrow{x_1, \delta} r_1 \xrightarrow{x_2, \delta} r_2 \cdots r_{i-1} \xrightarrow{x_i, \delta} q_{1a} \xrightarrow{\epsilon, \delta} q_{2s} \xrightarrow{x_{i+2}, \delta} r_{i+2} \cdots r_{n-1} \xrightarrow{x_n, \delta} r_n; r_n = q_{2a}$.

Claim 1. $r_0, r_1, r_2, \dots, r_{i-1} \in Q_1$.

<Proof of Claim 1>

$q_{1s} = r_0 \Rightarrow r_0 \in Q_1$.

Assume for contradiction that $r_{i-1} \notin Q_1$.

Then $r_{i-1} \in Q_2$.

$r_{i-1} \xrightarrow{x_i, \delta} q_{1a}$
 $\Rightarrow r_{i-1} \xrightarrow{x_i, \delta_2} q_{1a}$ ($\delta(q, x) = \delta_2(q, x)$ if $q \in Q_2$)
 $\Rightarrow q_{1a} \in Q_2$
 \Rightarrow Contradiction

Therefore, $r_{i-1} \in Q_1$.

With similar and inductive argument, we can conclude r_{i-2}, \dots, r_2, r_1 are all in Q_1 .

Claim 2. $r_j \neq q_{1a} \ \forall 0 \leq j \leq i-1$.

Assume for contradiction $r_j = q_{1a}$ for some $0 \leq j \leq i - 1$.

Therefore, $r_j \xrightarrow{x_{j+1}, \delta} r_{j+1} \Leftrightarrow q_{1a} \xrightarrow{x_{j+1}, \delta} r_{j+1} \Leftrightarrow r_{j+1} \in \delta(q_{1a}, x_{j+1})$.

By definition of δ , $\delta(q_{1a}, x_{j+1})$

$= \delta_1(q_{1a}, x_{j+1})$ or $\delta_1(q_{1a}, x_{j+1}) \cup \{q_{2s}\}$

$= \emptyset$ or $\emptyset \cup \{q_{2s}\}$

$= \emptyset$ or $\{q_{2s}\}$

Therefore, $r_{j+1} \in \emptyset$ or $r_{j+1} \in \{q_{2s}\}$.

Either of these leads to a contradiction.

Therefore, $r_j \neq q_{1a} \forall 0 \leq j \leq i - 1$.

Combining Claim 1 and Claim 2, $r_j \in Q_1 \setminus \{q_{1a}\} \forall 0 \leq j \leq i - 1$.

By definition of δ , $\delta(r_j, x) = \delta_1(r_j, x) \forall 0 \leq j \leq i - 1$.

Therefore, computation $q_{1s} = r_0 \xrightarrow{x_1, \delta} r_1 \xrightarrow{x_2, \delta} r_2 \cdots r_{i-1} \xrightarrow{x_i, \delta} q_{1a}$ can be replaced by computation

$q_{1s} = r_0 \xrightarrow{x_1, \delta_1} r_1 \xrightarrow{x_2, \delta_1} r_2 \cdots r_{i-1} \xrightarrow{x_i, \delta_1} q_{1a}$.

Therefore, N_1 accepts $w_1 = x_1 x_2 \cdots x_i$.

$w_1 \in L(N_1) = L_1$.

Claim 3. $r_j \in Q_2 \forall i+2 \leq j \leq n-1$.

<Proof of Claim 3>

$q_{2s} \xrightarrow{x_{i+2}, \delta} r_{i+2}$

$\Rightarrow r_{i+2} \in \delta(q_{2s}, x_{i+2})$

$\Rightarrow r_{i+2} \in \delta_2(q_{2s}, x_{i+2}) \quad (\delta(q, x) = \delta_2(q, x) \text{ if } q \in Q_2)$

$\Rightarrow q_{2s} \xrightarrow{x_{i+2}, \delta_2} r_{i+2}$

$\Rightarrow r_{i+2} \in Q_2$.

With similar and inductive argument, we can show that r_{i+3}, \dots, r_{n-1} are all in Q_2 .

Therefore, computation $q_{2s} \xrightarrow{x_{i+2}, \delta} r_{i+2} \cdots r_{n-1} \xrightarrow{x_n, \delta} r_n; r_n = q_{2a}$ can be replaced by computation

$q_{2s} \xrightarrow{x_{i+2}, \delta_2} r_{i+2} \cdots r_{n-1} \xrightarrow{x_n, \delta_2} r_n; r_n = q_{2a}$

Therefore, N_2 accepts $w_2 = x_{i+2} x_{i+3} \cdots x_n$.

$w_2 \in L(N_2) = L_2$.

$w_1 w_2 \in L_1 L_2$.

$w = x_1 x_2 \cdots x_i x_{i+1} x_{i+2} \cdots x_n$

$= w_1 x_{i+1} w_2$

$= w_1 w_2 \quad (x_{i+1} = \epsilon)$

Therefore, $w \in L_1 L_2$.

Therefore, $L(N) \subset L_1 L_2$.

Combining both directions, $L(N) = L_1 L_2$.

Theorem 10.

For any regular language L , L^* is regular.

<Proof>

Let N_1 be the NFA that recognizes L .

By Theorem 1.28, we can start with an N_1 defined as follows.

$N_1 = (Q_1, \Sigma, T_1, q_1, \{q_a\})$ where

$q_1 \neq q_a, q_1 \notin T_1(q, x) \forall q \in Q_1, x \in \Sigma_\epsilon$ and $T_1(q_a, x) = \emptyset \forall x \in \Sigma_\epsilon$.

Let $N = (Q, \Sigma, T, q_0, \{q_a, q_0\})$ such that $Q = Q_1 \cup \{q_0\}$.

$$T(q, x) = \begin{cases} T_1(q, x) & \text{if } q \in Q_1 \setminus \{q_a\} \\ \{q_1\} \cup T_1(q_a, \epsilon) & \text{if } q = q_a \& x = \epsilon \\ T_1(q_a, x) & \text{if } q = q_a \& x \neq \epsilon \\ \{q_1\} & \text{if } q = q_0 \& x = \epsilon \\ \emptyset & \text{if } q = q_0 \& x \neq \epsilon \end{cases}$$

We need to show $w \in L^* \Leftrightarrow N$ accepts w .

If $w \in L^*$,

$w \in L^M$ for some $M \geq 0$.

If $M = 0$, $w \in L^0 = \{\epsilon\}$.

Therefore, $w = \epsilon$.

ϵ is accepted by N because N has a start state that is also an accept state.

For $M \geq 1$,

let $w = w_1 w_2 \cdots w_M$ with each $w_i \in L$ for $1 \leq i \leq M$.

Therefore, N_1 accepts w_i for each i .

For each i , $q_1 \xrightarrow{w_i, \hat{T}_1} q_a$ (By Theorem 1.19 of NFA Acceptance)

For each i , $q_1 \xrightarrow{w_i, \hat{T}} q_a$ (Proposition 1.18)

Since $T(q_a, \epsilon) = \{q_1\} \cup T_1(q_a, \epsilon)$,

$q_1 \in \{q_1\} \cup T_1(q_a, \epsilon) \Rightarrow q_1 \in T(q_a, \epsilon) \Rightarrow q_a \xrightarrow{\epsilon, T} q_1$.

Therefore,

$q_0 \xrightarrow{\epsilon, T} q_1 \xrightarrow{w_1, \hat{T}} q_a \xrightarrow{\epsilon, T} q_1 \xrightarrow{w_2, \hat{T}} q_a \xrightarrow{\epsilon, T} q_1 \cdots q_a \xrightarrow{\epsilon, T} q_1 \xrightarrow{w_M, \hat{T}} q_a$

Therefore, N accepts $\epsilon w_1 \epsilon w_2 \cdots \epsilon w_M = w_1 w_2 \cdots w_M = w$.

Therefore, $w \in L^* \Rightarrow N$ accepts w .

Conversely, if N accepts $w = x_1 x_2 x_3 \cdots x_n$ where $x_i \in \Sigma_\epsilon$ for $1 \leq i \leq n$ & $n \geq 1$.

(Note that $w = \epsilon$ if $x_i = \epsilon \ \forall i$.)

$\exists r_0, r_1, r_2, \dots, r_n \in Q$ such that

$q_0 = r_0 \xrightarrow{x_1, T} r_1 \xrightarrow{x_2, T} r_2 \cdots r_{n-1} \xrightarrow{x_n, T} r_n$ & $r_n \in \{q_0, q_a\}$.

Since $T(q_0, x) = \emptyset$ if $x \neq \epsilon$, $x_1 = \epsilon$.

Furthermore, $T(q_0, \epsilon) = \{q_1\}$.

Therefore, $r_1 = q_1$.

$r_n \in \{q_0, q_a\} \Rightarrow r_n = q_a$ because q_0 has no incoming arrows.

The computation now becomes

$q_0 \xrightarrow{\epsilon, T} q_1 \xrightarrow{x_2, T} r_2 \cdots r_{n-1} \xrightarrow{x_n, T} q_a$.

Therefore, $q_1 \xrightarrow{x_2, T} r_2 \cdots r_{n-1} \xrightarrow{x_n, T} q_a$.

Claim 1:

For the computation, $q_0 = r_0 \xrightarrow{x_1, T} r_1 \xrightarrow{x_2, T} r_2 \cdots r_i \xrightarrow{x_{i+1}, T} r_{i+1} \cdots r_{n-1} \xrightarrow{x_n, T} r_n$ & $r_n = q_a$,

if $\exists r_i = q_a$ for $1 < i < n-1$, then $r_{i+1} = q_1$ & $x_{i+1} = \epsilon$.

<Proof of Claim 1>

$r_i \xrightarrow{x_{i+1}, T} r_{i+1} \Rightarrow q_a \xrightarrow{x_{i+1}, T} r_{i+1} \Rightarrow r_{i+1} \in T(q_a, x_{i+1})$.

$T(q_a, x_{i+1})$

$= T_1(q_a, x_{i+1}) \text{ or } T_1(q_a, x_{i+1}) \cup \{q_1\}$ (by definition of T)

$= \emptyset \text{ or } \emptyset \cup \{q_1\}$ (by definition of N_1)

$= \emptyset \text{ or } \{q_1\}$

Therefore, $r_{i+1} \in \emptyset$ or $r_{i+1} \in \{q_1\}$.

Therefore, $r_{i+1} \in \{q_1\}$ and hence $r_{i+1} = q_1$.

Therefore, $r_i \xrightarrow{x_{i+1}, T} r_{i+1}$

$\Rightarrow q_a \xrightarrow{x_{i+1}, T} q_1$

$\Rightarrow q_1 \in T_1(q_a, x_{i+1})$ if $x_{i+1} \neq \epsilon$

$\Rightarrow q_1 \in \emptyset$ if $x_{i+1} \neq \epsilon$ (by definition of N_1)

\Rightarrow Contradiction if $x_{i+1} \neq \epsilon$.

Therefore, $x_{i+1} = \epsilon$.

Claim 2:

For any computation $q_1 \xrightarrow{x_1, T} s_1 \xrightarrow{x_2, T} s_2 \cdots s_i \xrightarrow{x_{i+1}, T} s_{i+1} \cdots s_{n-1} \xrightarrow{x_n, T} s_n \xrightarrow{x_{n+1}, T} q_a$,

if \exists no q_a in between q_1 and q_a , that is $s_i \neq q_a$ for $1 \leq i \leq n$, then

$q_1 \xrightarrow{w, \hat{T}_1} q_a$ for some $w \in \Sigma_\epsilon^*$.

<Proof of Claim 2>

$q_0 \notin \{s_1, s_2, \dots, s_n\}$ because q_0 has no incoming arrows.

Therefore, $s_1, s_2, \dots, s_n \in Q_1$.

Therefore, $s_1, s_2, \dots, s_n \in Q_1 \setminus \{q_a\}$.

By definition of T , $T(q, x) = T_1(q, x)$ if $q \in Q_1 \setminus \{q_a\}$.

Therefore, $T(s_i, x) = T_1(s_i, x)$ for $1 \leq i \leq n$ & $x \in \Sigma_\epsilon$.

The given computation can be replaced by

$q_1 \xrightarrow{x_1, T_1} s_1 \xrightarrow{x_2, T_1} s_2 \dots s_i \xrightarrow{x_{i+1}, T_1} s_{i+1} \dots s_{n-1} \xrightarrow{x_n, T_1} s_n \xrightarrow{x_{n+1}, T_1} q_a$,

$q_1 \xrightarrow{w, \hat{T}_1} q_a$ where $w = x_1 x_2 x_3 \dots x_{n+1}$.

Back to computation $q_1 \xrightarrow{x_2, T} r_2 \xrightarrow{x_3, T} r_3 \dots r_{n-1} \xrightarrow{x_n, T} q_a$.

Let m be the number of q_a 's in between q_1 & q_a .

If $m = 0$, by Claim 2, $q_1 \xrightarrow{w', \hat{T}_1} q_a$ where $w' = x_2 x_3 \dots x_n$.

N_1 accepts w' .

$w = x_1 w' = \epsilon w' = w'$.

N_1 accepts w .

$w \in L \subset L^*$.

For $m \geq 1$, $\exists r_{j_1} = r_{j_2} = \dots = r_{j_m} = q_a$.

By Claim 1, $r_{j_1+1} = r_{j_2+1} = \dots = r_{j_m+1} = q_1$.

$q_1 \xrightarrow{w_1, \hat{T}_1} r_{j_1} = q_a \quad (\text{Claim 2})$

$q_a = r_{j_1} \xrightarrow{\epsilon, T} r_{j_1+1} = q_1 \quad (\text{Claim 1})$

$q_1 = r_{j_1+1} \xrightarrow{w_2, \hat{T}_1} r_{j_2} = q_a \quad (\text{Claim 2})$

$q_a = r_{j_2} \xrightarrow{\epsilon, T} r_{j_2+1} = q_1 \quad (\text{Claim 1})$

\vdots

\vdots

$q_1 = r_{j_{m-1}+1} \xrightarrow{w_m, \hat{T}_1} r_{j_m} = q_a \quad (\text{Claim 2})$

$q_a = r_{j_m} \xrightarrow{\epsilon, T} q_1 \xrightarrow{w_{m+1}, \hat{T}_1} q_a \quad (\text{Claim 1 \& Claim 2})$

Therefore, N_1 accepts $w_1, w_2, \dots, w_m, w_{m+1}$.

$w_1, w_2, \dots, w_m, w_{m+1} \in L$.

$w_1 w_2 \dots w_m w_{m+1} \in L^{m+1}$

However, $x_2 x_3 \dots x_n = w_1 \epsilon w_2 \epsilon \dots \epsilon w_m \epsilon w_{m+1} = w_1 w_2 \dots w_m w_{m+1}$.

$w = x_1 x_2 x_3 \dots x_n = \epsilon x_2 x_3 \dots x_n = x_2 x_3 \dots x_n = w_1 w_2 \dots w_m w_{m+1}$.

Therefore, $w \in L^{m+1} \subset L^*$.

Therefore, N accepts $w \Rightarrow w \in L^*$.

Combining both directions, $w \in L^* \Leftrightarrow N$ accepts w .

This completes the proof of Theorem 1.30.

Definition 10.

For any string $w = x_1 x_2 \dots x_n$, where $x_i \in \Sigma_\epsilon$ for each i , the reverse of w , written w^R is the string $x_n x_{n-1} \dots x_1$.

For any language A , $A^R \stackrel{\text{def}}{=} \{w^R \mid w \in A\}$.

Theorem 11.

For any language A , A is regular iff A^R is regular.

<Proof>

Since A is regular, there is an NFA, N_A that recognizes it.

Let $N_A = (Q_A, \Sigma, \delta_A, q_A, F_A)$.

Construct $N_{A^R} = (Q_A \cup \{q_s\}, \Sigma, \delta_{A^R}, q_s, \{q_A\})$ where $q_s \notin Q_A$ such that

$$\delta_{A^R}(q, x) = \begin{cases} F_A & \text{if } (q, x) = (q_s, \epsilon) \\ \emptyset & \text{if } q = q_s \& x \neq \epsilon \\ \{p \in Q_A \mid q \in \delta_A(p, x)\} & \text{if } q \in Q_A \end{cases}$$

From the third row of this definition, it immediately follows that

$$p \in \delta_{A^R}(q, x) \Leftrightarrow q \in \delta_A(p, x) \text{ or} \\ q \xrightarrow{x, \delta_{A^R}} p \Leftrightarrow p \xrightarrow{x, \delta_A} q \dots \dots \dots (*)$$

Claim: \exists a computation path for w from p to q via transition function δ_A iff \exists a computation path for w^R from q to p via transition function δ_{A^R} .

That is, $p \xrightarrow{w, \delta_A^R} q \Leftrightarrow q \xrightarrow{w^R, \delta_{A^R}} p$.

This Claim can be proved by induction on $|w|$.

For $|w| = 1$, $w = w^R = x$ where $x \in \Sigma_\epsilon$.

From $(*)$, $q \xrightarrow{x, \delta_{A^R}} p \Leftrightarrow p \xrightarrow{x, \delta_A} q$

Therefore, the statement is true for $|w| = 1$.

Assume the statement is true for $|w| = k$ where $k \geq 1$.

That is, $p \xrightarrow{w, \delta_A^R} q \Leftrightarrow q \xrightarrow{w^R, \delta_{A^R}} p$ for $|w| = k$.

$p \xrightarrow{wx, \delta_A^R} q$

$\Leftrightarrow p \xrightarrow{w, \delta_A^R} q' \xrightarrow{x, \delta_A} q$ (Proposition 1.12)

$\Leftrightarrow p \xrightarrow{w, \delta_A^R} q'$ and $q' \xrightarrow{x, \delta_A} q$

$\Leftrightarrow q' \xrightarrow{w^R, \delta_{A^R}} p$ and $q \xrightarrow{x, \delta_A^R} q'$ (Induction Hypothesis and $(*)$)

$\Leftrightarrow q \xrightarrow{x, \delta_A^R} q' \xrightarrow{w^R, \delta_{A^R}} p$

$\Leftrightarrow q \xrightarrow{xw^R, \delta_{A^R}} p$ (Proposition 1.12)

$\Leftrightarrow q \xrightarrow{(wx)^R, \delta_{A^R}} p$ ($xw^R = (wx)^R$)

The statement is true for $|w| = k + 1$ and the proof of Claim is complete.

To prove that A^R is regular, we need to prove that

$w^R \in A^R$ iff N_{A^R} accepts w^R .

If $w^R \in A^R$, $w \in A$.

Since N_A accepts w , $q_A \xrightarrow{w, \delta_A^R} q$, $q \in F_A$ (Theorem 1.19 – NFA acceptance)

By Claim, $q \xrightarrow{w^R, \delta_{A^R}} q_A$

Since $\delta_{A^R}(q_s, \epsilon) = F_A$, and $q \in F_A$,

$q_s \xrightarrow{\epsilon, \delta_{A^R}} q$.

Therefore, $q_s \xrightarrow{\epsilon, \delta_{A^R}} q \xrightarrow{w^R, \delta_{A^R}} q_A$.

N_{A^R} accepts ϵw^R (Theorem 1.19 – NFA acceptance)

N_{A^R} accepts w^R .

Conversely, if N_{A^R} accepts w^R ,

N_{A^R} accepts ϵw^R .

$q_s \xrightarrow{\epsilon w^R, \delta_{A^R}} q_A$ (Theorem 1.19 – NFA acceptance)

$q_s \xrightarrow{\epsilon, \delta_{A^R}} q \xrightarrow{w^R, \delta_{A^R}} q_A$ (Proposition 1.12)

Since $\delta_{A^R}(q_s, \epsilon) = F_A$, $q \in F_A$.

$q_A \xrightarrow{w, \delta_A^R} q$, and $q \in F_A$ (Claim)

Therefore, N_A accepts w (Theorem 1.19 – NFA acceptance)

$w \in A$ (N_A recognizes A)

$w^R \in A^R$.

$w^R \in A^R$ iff N_{A^R} accepts w^R .

We have proved that A is regular $\Rightarrow A^R$ is regular.

On the other hand, since $(A^R)^R = A$,
 A^R is regular $\Rightarrow (A^R)^R$ is regular $\Rightarrow A$ is regular.
Therefore, A is regular iff A^R is regular.

6. Regular Expression

Definition 11. (Regular Expression)

Let Σ be a finite alphabet.

\mathfrak{R}_Σ is a set with the following properties:

(a) $R \in \mathfrak{R}_\Sigma$ iff R is one of the following:

- (i) a for some $a \in \Sigma$
- (ii) ϵ
- (iii) \emptyset
- (iv) $R_1 \cup R_2$ for some $R_1, R_2 \in \mathfrak{R}_\Sigma$
- (v) $R_1 \bullet R_2$ for some $R_1, R_2 \in \mathfrak{R}_\Sigma$
- (vi) R_1^* for some $R_1 \in \mathfrak{R}_\Sigma$

where \cup, \bullet and $*$ are operations in \mathfrak{R}_Σ with

$$\cup : \mathfrak{R}_\Sigma \times \mathfrak{R}_\Sigma \longrightarrow \mathfrak{R}_\Sigma$$

$$\bullet : \mathfrak{R}_\Sigma \times \mathfrak{R}_\Sigma \longrightarrow \mathfrak{R}_\Sigma$$

$$* : \mathfrak{R}_\Sigma \longrightarrow \mathfrak{R}_\Sigma$$

(b) \exists an injective (one-to-one) mapping $L : \mathfrak{R}_\Sigma \longrightarrow P(\Sigma^*)$ s.t.

- (i) $L(a) = \{a\} \forall a \in \Sigma$
- (ii) $L(\epsilon) = \{\epsilon\}$
- (iii) $L(\emptyset) = \emptyset$
- (iv) $L(R_1 \cup R_2) = L(R_1) \cup L(R_2) \forall R_1, R_2 \in \mathfrak{R}_\Sigma$
- (v) $L(R_1 \bullet R_2) = L(R_1) \bullet L(R_2) \forall R_1, R_2 \in \mathfrak{R}_\Sigma$
- (vi) $L(R_1^*) = (L(R_1))^* \forall R_1 \in \mathfrak{R}_\Sigma$

\mathfrak{R}_Σ is called the set of all regular expressions over the alphabet Σ .

Any member of \mathfrak{R}_Σ is called a regular expression over Σ .

For any regular expression R , $L(R)$ is called the language described by R .

While \cup, \bullet and $*$ are operations in \mathfrak{R}_Σ , \cup, \bullet and $*$ are set operations in $P(\Sigma^*)$.

When there is no danger of confusion, \cup, \bullet and $*$ are usually written same as \cup, \bullet and $*$.

While ϵ and \emptyset are regular expressions, ϵ is the empty string and \emptyset is the empty language. When there is no danger of confusion, they are all written as ϵ and \emptyset .

Proposition 10.

Let Σ be a finite alphabet and \mathfrak{R}_Σ be the set of all regular expressions over Σ .

The following statements are true.

(a) $\forall R_1, R_2 \in \mathfrak{R}_\Sigma, R_1 \cup R_2 = R_2 \cup R_1$

(b) \exists regular expressions $\hat{\Sigma}$ and $\hat{\Sigma}^*$ such that $L(\hat{\Sigma}) = \Sigma$ and $L(\hat{\Sigma}^*) = \Sigma^*$. When there is no danger of confusion, $\hat{\Sigma}$ and $\hat{\Sigma}^*$ are usually written same as Σ and Σ^* .

< Proof >

(a) $L(R_1 \cup R_2) = L(R_1) \cup L(R_2)$

$$L(R_2 \cup R_1) = L(R_2) \cup L(R_1)$$

$$L(R_1) \cup L(R_2) = L(R_2) \cup L(R_1) \text{ from set theory.}$$

$$\text{Therefore, } L(R_1 \cup R_2) = L(R_2 \cup R_1)$$

$$\text{Therefore, } R_1 \cup R_2 = R_2 \cup R_1 \quad (L \text{ is one-one})$$

(b) Define $\hat{\Sigma} = \bigcup_{a \in \Sigma} a$

$\hat{\Sigma}$ is a regular expression by Definition 1.33(a)(i) and 1.33(a)(iv).

By Definition 1.33(b)(iv)

$$L(\hat{\Sigma}) = L\left(\bigcup_{a \in \Sigma} a\right) = \left(\bigcup_{a \in \Sigma} L(a)\right) = \left(\bigcup_{a \in \Sigma} \{a\}\right) = \Sigma$$

Define $\hat{\Sigma}^* = (\hat{\Sigma})^*$.

$\hat{\Sigma}^*$ is a regular expression by Definition 1.33(a)(vi).

By Definition 1.33(b)(vi),

$$L(\hat{\Sigma}^*) = L((\hat{\Sigma})^*) = (L(\hat{\Sigma}))^* = \Sigma^* \quad (L(\hat{\Sigma}) = \Sigma)$$

Example 1.

Find the language described by $\Sigma^* 1 \Sigma^*$ where $\Sigma = \{0, 1\}$.

$$L(\Sigma^* 1 \Sigma^*) = L(\Sigma^*) L(1) L(\Sigma^*) = \Sigma^* \{1\} \Sigma^* = \{w \mid w \text{ has at least one } 1\}.$$

Example 2.

Find the language described by $(\Sigma \Sigma \Sigma)^*$ where $\Sigma = \{0, 1\}$.

$$L((\Sigma \Sigma \Sigma)^*) = (L(\Sigma \Sigma \Sigma))^* = (L(\Sigma) L(\Sigma) L(\Sigma))^* = (\Sigma \Sigma \Sigma)^* \\ = \{xyz \mid x, y, z \in \Sigma\}^* = \{w \mid |w| \text{ is a multiple of three}\}.$$

Lemma 2.

If a language is described by a regular expression, then it is regular. That is, if $A = L(R)$ for some $R \in \mathfrak{R}_\Sigma$, then $A = L(N)$ for some finite automaton N .

< Proof >

From the formal definition of regular expressions, R is one of the following:

- (i) a for some $a \in \Sigma$
- (ii) ϵ
- (iii) \emptyset
- (iv) $R_1 \cup R_2$ for some $R_1, R_2 \in \mathfrak{R}_\Sigma$
- (v) $R_1 \bullet R_2$ for some $R_1, R_2 \in \mathfrak{R}_\Sigma$
- (vi) R_1^* for some $R_1 \in \mathfrak{R}_\Sigma$

In case (i), $L(a) = \{a\}$ and $\{a\}$ can be recognized by the NFA defined as follows:

$N = (\{q_1, q_2\}, \Sigma_\epsilon, \delta, q_1, \{q_2\})$ such that $\delta(q_1, a) = \{q_2\}$, $\delta(q, b) = \emptyset \forall q \neq q_1, b \neq a$.

In case (ii), $L(\epsilon) = \{\epsilon\}$ and $\{\epsilon\}$ can be recognized by the following NFA:

$N = (\{q_1\}, \Sigma_\epsilon, \delta, q_1, \{q_1\})$, where $\delta(q_1, b) = \emptyset \forall b \neq \epsilon$ and $\delta(q_1, \epsilon) = \{q_1\}$.

In case (iii), $L(\emptyset) = \emptyset$, which is recognized by the following NFA:

$N = (\{q\}, \Sigma_\epsilon, \delta, q, \emptyset)$ where $\delta(q, b) = \emptyset \forall b \in \Sigma_\epsilon$.

In cases (iv), (v) and (vi), R is repeated operations of \cup , \bullet and $*$ on a , ϵ and \emptyset . Since we have shown above $L(a)$, $L(\epsilon)$ and $L(\emptyset)$ are regular and we have proved before that regular languages are closed under \cup , \bullet and $*$, $L(R)$ is regular.

Definition 12.

A generalized nondeterministic finite automaton (denoted by GNFA) has all the properties as described in Theorem 1.28 and is a 5-tuple, $(Q, \Sigma, \delta, q_{start}, \{q_{accept}\})$ where

- (i) Q is a finite set of states;
- (ii) Σ is a finite alphabet;
- (iii) $\delta : (Q \setminus \{q_{accept}\}) \times (\Sigma \setminus \{\epsilon\}) \rightarrow \mathfrak{R}_\Sigma$ is the transition function;
- (iv) q_{start} is the start state; and
- (v) q_{accept} is the accept state.

A GNFA accepts a string $w \in \Sigma^*$, if $w = w_1 w_2 \cdots w_n$, where each w_i is in Σ^* and a sequence of states $q_0, q_1, q_2, \dots, q_n$ exist such that

- (1) $q_0 = q_{start}$;
- (2) $q_n = q_{accept}$; and
- (3) For each i , $w_i \in L(R_i)$ where

$R_i = \delta(q_{i-1}, q_i)$ and $L(R_i)$ is the language described by expression R_i .

If we write $q_i \xrightarrow{R, \delta} q_j$ instead of $\delta(q_i, q_j) = R$, the definition of acceptance can be written as $q_{start} = q_0 \xrightarrow{R_1, \delta} q_1 \xrightarrow{R_2, \delta} q_2 \cdots \xrightarrow{R_n, \delta} q_n = q_{accept}$ with $w_i \in L(R_i)$ for $i = 1, 2, \dots, n$.

Lemma 3.

Every NFA can be converted into an equivalent GNFA.

< Proof >

Because of Theorem 1.28, we can start with an NFA defined as follows.

$N = (Q, \Sigma, \delta, q_{start}, \{q_{accept}\})$ where

$q_{start} \neq q_{accept}$; $\delta(q_{accept}, a) = \emptyset \forall a \in \Sigma_e$; and $q_{start} \notin \delta(q, a) \forall a \in \Sigma_e, q \in Q$.

Define GNFA, N_G as follows:

$N_G = (Q, \Sigma, \delta_G, q_{start}, \{q_{accept}\})$ where

$\delta_G : (Q \setminus \{q_{accept}\}) \times (Q \setminus \{q_{start}\}) \rightarrow \mathcal{R}_\Sigma$ such that:

$\forall (q_i, q_j) \in (Q \setminus \{q_{accept}\}) \times (Q \setminus \{q_{start}\})$

$\delta_G(q_i, q_j) = R_{i,j}$ where

$R_{i,j} = \bigcup_{w \in S_{i,j}} w$; and

$S_{i,j} = \{w \in \Sigma^* \mid q_i \xrightarrow{w, \delta} q_j\}$.

Note that if $i = j$, $\delta_G(q_i, q_i) = R_{i,i}$, $S_{i,i} = \{w \in \Sigma^* \mid q_i \xrightarrow{w, \delta} q_i\}$; and

$R_{i,i} = \bigcup_{w \in S_{i,i}} w^*$

$\forall (q_i, q_j)$, $S_{i,j}$ is unique and therefore $R_{i,j}$ is unique.

Since w is the concatenation of symbols from Σ , and every symbol in Σ is a regular expression, w is a regular expression.

Therefore, $R_{i,j} = \bigcup_{w \in S_{i,j}} w$ is a regular expression.

Therefore, $\delta_G(q_i, q_j) = R_{i,j}$ is well defined.

Claim 1. For any string w in Σ^* , $L(w) = \{w\}$.

< Proof of Claim 1 >

$L(w) = L(a_1 a_2 \cdots a_n)$ where $a_i \in \Sigma$

$= L(a_1) L(a_2) \cdots L(a_n)$

$= \{a_1\} \{a_2\} \cdots \{a_n\}$

$= \{a_1 a_2 \cdots a_n\}$

$= \{w\}$

Claim 2. $\forall w \in \Sigma^*$, N accepts $w \Leftrightarrow N_G$ accepts w .

< Proof of Claim 2 >

For forward direction " \Rightarrow "

Let N accepts w where $w = w_1 w_2 \cdots w_n$, $n \geq 1$, and each w_i is in Σ^* for $1 \leq i \leq n$.

By theorem of acceptance, $\exists q_0, q_1, q_2, \dots, q_n \in Q$ such that

$q_{start} = q_0 \xrightarrow{w_1, \delta} q_1 \xrightarrow{w_2, \delta} q_2 \cdots q_{n-1} \xrightarrow{w_n, \delta} q_n = q_{accept}$.

Since $q_{i-1} \xrightarrow{w_i, \delta} q_i, w_i \in S_{i-1,i}$.

By definition of δ_G ,

$\delta_G(q_{i-1}, q_i) = R_{i-1,i} = \bigcup_{w \in S_{i-1,i}} w$

$L(\delta_G(q_{i-1}, q_i))$

$= L(R_{i-1,i})$

$= L\left(\bigcup_{w \in S_{i-1,i}} w\right)$

$= \bigcup_{w \in S_{i-1,i}} L(w)$

$= \bigcup_{w \in S_{i-1,i}} \{w\}$ (By Claim 1)

$$= S_{i-1,i}.$$

Since $w_i \in S_{i-1,i}$, $w_i \in L(R_{i-1,i})$.

Since $q_{i-1} \xrightarrow{R_{i-1,i}, \delta_G} q_i \ \forall i = 1, 2, \dots, n$,

$$q_{start} = q_0 \xrightarrow{R_{0,1}, \delta_G} q_1 \xrightarrow{R_{1,2}, \delta_G} q_2 \dots q_{i-1} \xrightarrow{R_{i-1,i}, \delta_G} q_i \dots q_{n-1} \xrightarrow{R_{n-1,n}, \delta_G} q_n = q_{accept}.$$

N_G accepts w .

Conversely, if N_G accepts w for $w = w_1 w_2 \dots w_n$, $n \geq 1$, and each w_i is in Σ^* ,

$\exists q_0, q_1, q_2, \dots, q_n \in Q$ such that

$$q_{start} = q_0 \xrightarrow{R_{0,1}, \delta_G} q_1 \xrightarrow{R_{1,2}, \delta_G} q_2 \dots q_{i-1} \xrightarrow{R_{i-1,i}, \delta_G} q_i \dots q_{n-1} \xrightarrow{R_{n-1,n}, \delta_G} q_n = q_{accept}$$

with $w_i \in L(R_{i-1,i}) \ \forall i \in \{1, 2, 3, \dots, n\}$,

$$R_{i-1,i} = \bigcup_{w \in S_{i-1,i}} w$$

and

$$S_{i-1,i} = \{w \in \Sigma^* \mid q_{i-1} \xrightarrow{w, \hat{\delta}} q_i\}$$

$$L(R_{i-1,i})$$

$$= L\left(\bigcup_{w \in S_{i-1,i}} w\right)$$

$$= \bigcup_{w \in S_{i-1,i}} L(w)$$

$$= \bigcup_{w \in S_{i-1,i}} \{w\} \quad (By \ Claim \ 1)$$

$$= S_{i-1,i}.$$

$\forall i \in \{1, 2, 3, \dots, n\}$,

$$w_i \in L(R_{i-1,i})$$

$$\Rightarrow w_i \in S_{i-1,i}$$

$$\Rightarrow q_{i-1} \xrightarrow{w_i, \hat{\delta}} q_i \quad (Definition \ of \ S_{i,j})$$

$$Therefore, q_{start} = q_0 \xrightarrow{w_1, \hat{\delta}} q_1 \xrightarrow{w_2, \hat{\delta}} q_2 \dots q_{n-1} \xrightarrow{w_n, \hat{\delta}} q_n = q_{accept}.$$

Therefore, N accepts $w = w_1 w_2 \dots w_n$.

N and N_G are equivalent and the Lemma is proved.

Lemma 4.

Every GNFA of n states ($n \geq 2$) can be reduced to an equivalent GNFA of 2 states.

< Proof >

This lemma can be proved by induction on n .

It is trivial that the statement is true for $n = 2$.

Assume that the statement is true for $n = k \geq 2$.

Let $G = (Q, \Sigma, \delta, q_{start}, \{q_{accept}\})$ be a GNFA with $k + 1$ states.

$\exists q_{rip} \in Q \setminus \{q_{start}, q_{accept}\}$ because $k + 1 \geq 3$.

Construct $G' = (Q', \Sigma, \delta', q_{start}, \{q_{accept}\})$ such that

$$Q' = Q \setminus \{q_{rip}\}$$

$\forall (q_i, q_j) \in (Q \setminus \{q_{accept}\}) \times (Q \setminus \{q_{start}\})$,

$$\delta'(q_i, q_j) = \delta(q_i, q_{rip}) (\delta(q_{rip}, q_{rip}))^* \delta(q_{rip}, q_j) \cup \delta(q_i, q_j).$$

Therefore, Q' is a GNFA with k states.

Let G accept $w = w_1 w_2 \dots w_n$ where each $w_i \in \Sigma^*$.

$\exists q_0, q_1, q_2, \dots, q_n \in Q$ such that

$$q_{start} = q_0 \xrightarrow{R_{1,\delta}} q_1 \xrightarrow{R_{2,\delta}} q_2 \dots q_{i-1} \xrightarrow{R_{i,\delta}} q_i \dots q_{n-1} \xrightarrow{R_{n,\delta}} q_n = q_{accept}; \text{ and}$$

$$w_i \in L(R_i) = L(\delta(q_{i-1}, q_i)).$$

If none of $q_0, q_1, q_2, \dots, q_n$ is q_{rip} , then they are all in Q' .

Also,

$$w_i \in L(\delta(q_{i-1}, q_i))$$

$$\Rightarrow w_i \in L(\delta(q_{i-1}, q_{rip}) (\delta(q_{rip}, q_{rip}))^* \delta(q_{rip}, q_i)) \cup L(\delta(q_{i-1}, q_i))$$

$\Rightarrow w_i \in L(\delta(q_{i-1}, q_{rip})(\delta(q_{rip}, q_{rip}))^* \delta(q_{rip}, q_i) \cup \delta(q_{i-1}, q_i))$

$\Rightarrow w_i \in L(\delta'(q_{i-1}, q_i))$

$\Rightarrow w_i \in L(R'_i)$ where $R'_i = \delta'(q_{i-1}, q_i)$

$q_{start} = q_0 \xrightarrow{R'_1, \delta'} q_1 \xrightarrow{R'_2, \delta'} q_2 \cdots q_{i-1} \xrightarrow{R'_i, \delta'} q_i \cdots q_{n-1} \xrightarrow{R'_{n'}, \delta'} q_n = q_{accept}$
with $w_i \in L(R'_i)$.

Therefore, G' accepts $w = w_1 w_2 \cdots w_n$.

If \exists some q 's in the sequence $q_0, q_1, q_2, \dots, q_n$ which are q_{rip} ,

let q_i be the first such q_{rip} and q_j be the first state in the sequence after q_i such that $q_j \neq q_{rip}$.

$q_{i-1} \xrightarrow{R_i} q_i = q_{rip} \xrightarrow{R_{i+1}} q_{rip} \cdots q_{rip} \xrightarrow{R_{j-1}} q_{rip} \xrightarrow{R_j} q_j$.

$R_{i+1} = \delta(q_i, q_{i+1}) = \delta(q_{rip}, q_{rip}) \Rightarrow w_{i+1} \in L(\delta(q_{rip}, q_{rip}))$

\vdots

$R_{j-1} = \delta(q_{j-2}, q_{j-1}) = \delta(q_{rip}, q_{rip}) \Rightarrow w_{j-1} \in L(\delta(q_{rip}, q_{rip}))$

$w_{i+1} \cdots w_{j-1} \in L^{j-i-1}(\delta(q_{rip}, q_{rip}))$

$w_{i+1} \cdots w_{j-1} \in L^*(\delta(q_{rip}, q_{rip}))$

Let $w'_j = w_i w_{i+1} \cdots w_{j-1} w_j$

$w_i \in L(\delta(q_{i-1}, q_i))$ and $q_i = q_{rip} \Rightarrow w_i \in L(\delta(q_{i-1}, q_{rip}))$

$w_j \in L(\delta(q_{j-1}, q_j))$ and $q_{j-1} = q_{rip} \Rightarrow w_j \in L(\delta(q_{rip}, q_j))$

$w'_j \in L(\delta(q_{i-1}, q_{rip})) L^*(\delta(q_{rip}, q_{rip})) L(\delta(q_{rip}, q_j))$

$w'_j \in L(\delta(q_{i-1}, q_{rip})) L^*(\delta(q_{rip}, q_{rip})) L(\delta(q_{rip}, q_j)) \cup L(\delta(q_{i-1}, q_j))$

Therefore, $w'_j \in L(\delta(q_{i-1}, q_{rip})(\delta(q_{rip}, q_{rip}))^* \delta(q_{rip}, q_j) \cup \delta(q_{i-1}, q_j))$

$w'_j \in L(\delta'(q_{i-1}, q_j))$

$w'_j \in L(R'_j)$ where $R'_j = \delta'(q_{i-1}, q_j)$

If there are no more q_{rip} 's in the sequence,

$q_{start} = q_0 \xrightarrow{R'_1, \delta'} q_1 \xrightarrow{R'_2, \delta'} q_2 \cdots q_{i-1} \xrightarrow{R'_i, \delta'} q_j \xrightarrow{R'_{j+1}, \delta'} q_{j+1} \cdots q_{n-1} \xrightarrow{R'_{n'}, \delta'} q_n = q_{accept}$

is the path of acceptance in G' for $(w_1 w_2 \cdots w_{i-1})(w'_j)(w_{j+1} \cdots w_n)$,

which is the same as $(w_1 w_2 \cdots w_{i-1})(w_i w_{i+1} \cdots w_{j-1} w_j)(w_{j+1} \cdots w_n)$ because

$w'_j = w_i w_{i+1} \cdots w_{j-1} w_j$.

Therefore, G' accepts $w = w_1 w_2 \cdots w_n$.

If there are some more q_{rip} 's in the sequence, repeat the above process until all q_{rip} 's are removed and the resulting computation path is the path of acceptance of w in G' .

Conversely, if G' accepts $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma^*$,

$\exists q_0, q_1, q_2, \dots, q_n \in Q'$ such that

$q_{start} = q_0 \xrightarrow{R'_1, \delta'} q_1 \xrightarrow{R'_2, \delta'} q_2 \cdots q_{i-1} \xrightarrow{R'_i, \delta'} q_i \cdots q_{n-1} \xrightarrow{R'_{n'}, \delta'} q_n = q_{accept}$

with $w_i \in L(R'_i)$ where $R'_i = \delta'(q_{i-1}, q_i)$.

Therefore, $w_i \in L(\delta(q_{i-1}, q_{rip})(\delta(q_{rip}, q_{rip}))^* \delta(q_{rip}, q_i) \cup \delta(q_{i-1}, q_i))$

Therefore, $w_i \in L(\delta(q_{i-1}, q_{rip})(\delta(q_{rip}, q_{rip}))^* \delta(q_{rip}, q_i))$ or $w_i \in L(\delta(q_{i-1}, q_i))$.

If $w_i \in L(\delta(q_{i-1}, q_i))$,

$q_{start} = q_0 \xrightarrow{R_1, \delta} q_1 \xrightarrow{R_2, \delta} q_2 \cdots q_{i-1} \xrightarrow{R_i, \delta} q_i \cdots q_{n-1} \xrightarrow{R_n, \delta} q_n = q_{accept}$ where $w_i \in L(R_i)$

is the acceptance path for $w = w_1 w_2 \cdots w_n$ in G .

If $w_i \in L(\delta(q_{i-1}, q_{rip})(\delta(q_{rip}, q_{rip}))^* \delta(q_{rip}, q_i))$,

let $w_i = w_{i1} w_{i2} w_{i3}$ where

$w_{i1} \in L(\delta(q_{i-1}, q_{rip})) = L(R_{i-1,rip})$,

$w_{i2} \in L^*(\delta(q_{rip}, q_{rip})) = L^*(R_{rip,rip})$, and

$w_{i3} \in L(\delta(q_{rip}, q_i)) = L(R_{rip,i})$.

$\exists m \geq 0$ such that $w_{i2} \in L^m(\delta(q_{rip}, q_{rip}))$.

$w_{i2} = w_{i2}(1) w_{i2}(2) \cdots w_{i2}(m)$ where each $w_{i2}(j) \in L(\delta(q_{rip}, q_{rip})) = L(R_{rip,rip})$.

$q_{i-1} \xrightarrow{R_{i-1,rip}, \delta} q_{rip} \xrightarrow{R_{rip,rip}, \delta} q_{rip} \cdots q_{rip} \xrightarrow{R_{rip,i}, \delta} q_i$

is a computation path in G for $w_{i1}w_{i2}w_{i3} = w_i$.

This is true for all $1 \leq i \leq n$.

Therefore, there is a computation path in G from q_0 to q_n for $w_1w_2 \cdots w_n = w$.

Therefore, G accepts $w = w_1w_2 \cdots w_n$.

So G and G' are equivalent.

Since G' has k states, by induction hypothesis, G' can be reduced to an equivalent GNFA of 2 states.

Hence, G can be reduced to an equivalent GNFA of 2 states.

This completes the proof.

Lemma 5.

If an NFA, $N = (Q, \Sigma, \delta, q_0, F)$ is equivalent to a 2-state GNFA, $N_G = (Q, \Sigma, \delta_G, q_{start}, \{q_{accept}\})$, then $L(N) = L(R)$ where $R = \delta_G(q_{start}, q_{accept})$.

< Proof >

$w \in L(N)$

$\Leftrightarrow N$ accepts w

$\Leftrightarrow N_G$ accepts w (N and N_G are equivalent.)

$\Leftrightarrow w \in L(R)$ ($R = \delta_G(q_{start}, q_{accept})$)

By Lemmas 1.39, 1.40, 1.41, we have the following conclusion:

Lemma 6.

If a language is regular, it is described by a regular expression.

By Lemma 1.37 and Lemma 1.42, we have the following theorem.

Theorem 12.

A language is regular iff some regular expression describes it.

7. Pumping Lemma

Theorem 13. - Pumping Lemma

Let A be a language.

Let (S) denote the following statement:

\exists a number p (the pumping length) where, if s is any string in A of length at least p , then s may be divided into three pieces, $s = xyz$, satisfying the following conditions:

(1) For each $i \geq 0$, $xy^i z \in A$,

(2) $|y| > 0$, and

(3) $|xy| \leq p$.

The Pumping Lemma states that A is regular $\Rightarrow (S)$.

< Proof >

Since A is regular, there exists a finite automaton $M = (Q, \Sigma, \delta, q_0, F)$ that recognizes A .

That is, $A = L(M)$.

Let p be the number of states in M .

Let $s = s_1s_2 \cdots s_n$ where each $s_i \in \Sigma$ and $0 \leq p \leq n$.

$\exists r_0, r_1, \dots, r_n \in Q$, such that

$q_0 = r_0 \xrightarrow{s_1, \delta} r_1 \xrightarrow{s_2, \delta} r_2 \cdots r_{n-1} \xrightarrow{s_n, \delta} r_n, r_n \in F$.

Since $p \leq n$, $q_0 = r_0 \xrightarrow{s_1, \delta} r_1 \xrightarrow{s_2, \delta} r_2 \cdots r_{p-1} \xrightarrow{s_p, \delta} r_p$ is a sub path with $p+1$ states.

Since M has only p states, by the pigeonhole principle, $\exists k, l$ such that $0 \leq k < l \leq p$ and $r_k = r_l$.

Let $x = s_1s_2 \cdots s_k$, $y = s_{k+1}s_{k+2} \cdots s_l$ and $z = s_{l+1}s_{l+2} \cdots s_n$.

Therefore, $r_0 \xrightarrow{x, \delta} r_k \xrightarrow{y, \delta} r_l \xrightarrow{z, \delta} r_n$.

Since $r_k = r_l$, $r_k \xrightarrow{y^i, \delta} r_l \forall i \geq 0$.

Therefore, $r_0 \xrightarrow{x, \hat{\delta}} r_k \xrightarrow{y^i, \hat{\delta}} r_l \xrightarrow{z, \hat{\delta}} r_n$ with $r_n \in F$.

Therefore, M accepts $xy^i z$.

Therefore, $xy^i z \in A$.

Since $k < l$, $|y| > 0$.

$|xy| = |x| + |y| = k + l - k = l \leq p$.

This completes the proof of the Pumping Lemma.

Theorem 14. - Pumping Lemma (contra positive form)

$\neg(S) \Rightarrow A$ is not regular where

$\neg(S)$ is equivalent to:

$\forall p \geq 1, \exists s \in A$ with $|s| \geq p$ such that whenever $s = xyz$, at least one of the conditions (1), (2), or (3) cannot be satisfied.

The contra positive form of the Pumping Lemma is used to prove a language is not regular. The general strategy is to find an $s \in A$ with $|s| \geq p$ for any given $p \geq 1$ so that whenever s is broken into $s = xyz$, at least one of the conditions of (1), (2), or (3) must be false. This can be usually accomplished by showing one of the following:

(i) Condition 1 alone is false.

(ii) Condition 3 $\Rightarrow \neg(\text{Condition 1})$

(iii) (Condition 2 and Condition 3) $\Rightarrow \neg(\text{Condition 1})$.

Example 3.

Show that $A = \{0^n 1^n \mid n \geq 0\}$ is not regular.

The strategy is to create an s that will force y to contain all 0's or all 1's so that when y is pumped indefinitely, $xy^i z$ will contain too many 0's or 1's to make it impossible for $xy^i z$ to remain in A .

Since Condition 3 requires $|xy| \leq p$, a prefix of 0^p in s will achieve that purpose.

Formally, we make the argument as follows.

$\forall p \geq 1$, let $s = 0^p 1^p$.

$s \in A$ and $|s| \geq p$.

If $s = xyz$, then $xyz = 0^p 1^p$.

Condition 3

$\Rightarrow |xy| \leq p$

$\Rightarrow xy$ consists of only 0's

$\Rightarrow y$ consists of only 0's.

$|xyyz| = |xyz| + |y|$.

Since Condition 2 requires $|y| > 0$, $xyyz$ adds a positive number of 0's to xyz .

Since xyz has equal numbers of 0's and 1's, $xyyz$ must have more 0's than 1's and hence is not in A .

Therefore, (Condition 2 + Condition 3) $\Rightarrow \neg(\text{Condition 1})$ and hence A is not regular.

Example 4.

Show that $A = \{ww \mid w \in \{0, 1\}^*\}$ is not regular.

The strategy is to create an s with some leading 0's on the left, say 0^m but we also want to make sure that 0^m is long enough to force xy to contain all 0's in it so that when y is pumped up indefinitely, it will create too many 0's to make it impossible for $s = ww$.

Since Condition 3 requires $|xy| \leq p$, we want to make $m \geq p$.

A natural candidate for s is therefore $0^p 1 0^p 1$.

To prove that this construction works, however, requires some algebraic manipulation.

Formally, we make the argument as follows.

$\forall p \geq 1$, take $s = 0^p 1 0^p 1$.

If $s = xyz$, then $xyz = 0^p 1 0^p 1$.

Condition 3

$\Rightarrow |xy| \leq p$

$\Rightarrow xy$ consists of only 0's

$\Rightarrow y$ consists of only 0's.

Let $xy^i z = 0^{p'} 1 0^p 1$ where $p' - p = (i-1)|y|$ or $p' = p + (i-1)|y|$.

For $i > 3$, $p' > p + (3-1)$ ($|y| \geq 1$ by Condition 2)

Therefore, $p' > p + 2$ for $i > 3$.

Assume for contradiction that $\forall i \geq 0$, $xy^i z \in A$.

That is, $xy^i z = 0^{p'} 1 0^p 1 = ww$.

For all $i > 3$,

$$\begin{aligned} |w| &= \frac{|0^p 1 0^p 1|}{2} \\ &= \frac{p' + p + 2}{2} \\ &> \frac{p + 2 + p + 2}{2} \quad (p' > p + 2 \text{ for } i > 3) \\ &= p + 2 \end{aligned}$$

Therefore, $|w| > |10^p 1|$.

This implies w consists of at least two 1's.

On the other hand, $p' + p + 2 = 2|w|$.

$$p' - |w| = |w| - (p + 2) > 0$$

$$p' > |w|$$

This implies w must consist of all 0's.

This leads to a contradiction.

Therefore, (Condition 2 + Condition 3) $\Rightarrow \neg(\text{Condition 1})$ and hence A is not regular.

Example 5.

Show that $A = \{1^{n^2} \mid n \geq 0\}$ is not regular.

The idea behind this problem is every time we pump up y , we increase the length of s by an amount of $|y|$ which is bounded by p and p is fixed. On the other hand, s has to be the square of a natural number and the difference between two consecutive squares, say n^2 and $(n+1)^2$ will grow to infinity as n goes to infinity. In this case, we don't have to worry about how to create more 0's in s so as to outnumber the 1's or vice versa. This particular nature of s will automatically lead to a contradiction to Condition 1 as $|s|$ grows to infinity.

Proving this to work requires some algebraic manipulation.

The formal argument is made as follows.

$\forall p \geq 1$, take $s = 1^{p^2}$

$$p \geq 1$$

$$\Rightarrow p(p-1) \geq 0$$

$$\Rightarrow p^2 \geq p$$

$$\Rightarrow |1^{p^2}| \geq |1^p| = p$$

Therefore, $|s| \geq p$.

Assume for contradiction that Condition 1 is true.

That is, $\forall i \geq 0$, $xy^i z \in A$.

Both $xy^i z$ and $xy^{i+1} z$ are in A .

Let $xy^i z = 1^{n^2}$ and $xy^{i+1} z = 1^{m^2}$ where m and n are positive integers.

$$|xy^i z| = n^2 \text{ and } |xy^{i+1} z| = m^2.$$

By Condition 2,

$$|y| \geq 1$$

$$\Rightarrow |y^{i+1}| > |y^i|$$

$$\Rightarrow |xy^{i+1} z| > |xy^i z|$$

$$\Rightarrow m^2 > n^2$$

$$\Rightarrow m > n$$

$$\Rightarrow m \geq n + 1$$

By Condition 3, $|xy| \leq p \Rightarrow |y| \leq p$.

Therefore, $|xy^{i+1} z| - |xy^i z| = |y| \leq p$.

Therefore, $m^2 - n^2 \leq p$.

$(n+1)^2 - n^2 \leq m^2 - n^2 \leq p$.

$2n+1 \leq p$.

$n \leq \frac{p-1}{2} \dots \dots (1)$ where (1) is true for all i .

On the other hand,

Condition 2 $\Rightarrow |y| \geq 1 \Rightarrow |y^i| \geq i$.

$n^2 = |x| + |y^i| + |z| \geq |y^i| \geq i$.

$n \geq \sqrt{i}$ for all i .

For $i > \frac{(p-1)^2}{4}$, $\sqrt{i} > \frac{p-1}{2}$ and $n > \frac{p-1}{2}$

This contradicts (1) which is true for all i .

Therefore, (Condition 2 + Condition 3) $\Rightarrow \neg(\text{Condition 1})$ and hence A is not regular.

8. Myhill-Nerode Theorem

Definition 13.

$\forall x, y \in \Sigma^*, L \subset \Sigma^*$,

we say that x and y are indistinguishable by L iff $\forall z \in \Sigma^*, xz \in L \Leftrightarrow yz \in L$.

We say that x and y are distinguishable by L iff there exists $z \in \Sigma^*$ such that exactly one of xz and yz is in L .

If x and y are indistinguishable by L , we write $x \equiv_L y$.

Proposition 11.

\equiv_L is an equivalence relation.

< Proof >

$\forall x \in L, xz \in L \Leftrightarrow xz \in L \ \forall z \in \Sigma^*$

$x \equiv_L x$

\equiv_L is reflexive.

$\forall x, y \in L,$

$x \equiv_L y$

$\Rightarrow (\forall z \in \Sigma^*, xz \in L \Leftrightarrow yz \in L)$

$\Rightarrow (\forall z \in \Sigma^*, yz \in L \Leftrightarrow xz \in L)$

$\Rightarrow y \equiv_L x$

\equiv_L is symmetric.

$\forall x, y, w \in \Sigma^*,$

$(x \equiv_L y) \wedge (y \equiv_L w)$

$\Rightarrow (\forall z \in \Sigma^*, xz \in L \Leftrightarrow yz \in L) \wedge (\forall z \in \Sigma^*, yz \in L \Leftrightarrow wz \in L)$

$\Rightarrow (\forall z \in \Sigma^*, xz \in L \Leftrightarrow wz \in L)$

$\Rightarrow x \equiv_L w$

\equiv_L is transitive.

Proposition 12.

\equiv_L is right congruence. That is $x \equiv_L y \Rightarrow xa \equiv_L ya \ \forall a \in \Sigma$.

< Proof >

$\forall z \in \Sigma^*, a \in \Sigma,$

$xaz \in L \Leftrightarrow yaz \in L \quad (x \equiv_L y)$

$xa \equiv_L ya \quad (\text{Definition of } \equiv_L)$

Proposition 13.

$\forall x, y \in \Sigma^*, (x \equiv_L y) \Rightarrow (x \in L \Leftrightarrow y \in L)$

< Proof >

Take $z = \epsilon$.

$x\epsilon \in L \Leftrightarrow y\epsilon \in L$

Therefore, $x \in L \Leftrightarrow y \in L$.

Theorem 15. - Myhill-Nerode Theorem

Let $L \subset \Sigma^*$, $X \subset \Sigma^*$.

X is said to be pairwise distinguishable by L iff every two distinct strings in X are distinguishable by L .

The index of L is defined as

$\text{Index } L = \max \{ |X| \mid X \text{ is pairwise distinguishable by } L \}$.

The following statements are true:

- (a) If L is recognized by a DFA with k states, L has an index at most k .
- (b) If the index of L is a finite number k , it is recognized by a DFA with k states.
- (c) L is regular iff it has finite index. Moreover, its index is the size of the smallest DFA recognizing it.

< Proof >

(a) Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA with k states that recognizes L .

Assume for contradiction that L has an index greater than k .

$\exists X$ (pairwise distinguishable by L) that has more than k members.

Let $s_1, s_2, s_3 \dots s_{k+1}$ be $k+1$ distinct and pairwise distinguishable members in X .

$\hat{\delta}(q_0, s_1), \hat{\delta}(q_0, s_2), \hat{\delta}(q_0, s_3), \dots \hat{\delta}(q_0, s_{k+1})$ are $k+1$ states in Q .

Since $|Q| = k$, by the pigeonhole principle, there are i, j where $1 \leq i < j \leq k+1$ s.t.

$\hat{\delta}(q_0, s_i) = \hat{\delta}(q_0, s_j)$.

$\forall z \in \Sigma^*$,

$s_i z \in L$

$\Leftrightarrow \hat{\delta}(q_0, s_i z) \in F \quad (M \text{ recognizes } L)$

$\Leftrightarrow \hat{\delta}(\hat{\delta}(q_0, s_i), z) \in F \quad (\text{Proposition 1.14})$

$\Leftrightarrow \hat{\delta}(\hat{\delta}(q_0, s_j), z) \in F$

$\Leftrightarrow \hat{\delta}(q_0, s_j z) \in F \quad (\text{Proposition 1.14})$

$\Leftrightarrow s_j z \in L \quad (M \text{ recognizes } L)$

Therefore, $s_i \equiv_L s_j \quad (\text{Definition of } \equiv_L)$

This contradicts the assumption that X is pairwise distinguishable by L .

(b) Let $X = \{s_1, s_2 \dots, s_k\}$ be pairwise distinguishable by L .

Claim 1. $\text{Index } L \geq 2 \Rightarrow L \neq \emptyset$ and hence $L = \emptyset \Rightarrow \text{Index } L = 1$.

< Proof of Claim 1 >

$\text{Index } L \geq 2$

$\Rightarrow \exists X$ (pairwise distinguishable by L) that has at least 2 members.

$\Rightarrow \exists s_i, s_j \in X$ where $s_i \neq s_j$ and s_i, s_j are distinguishable by L .

$\Rightarrow \exists z \in \Sigma^*$ s.t. $s_i z \in L$ and $s_j z \notin L$ or vice versa.

$\Rightarrow L \neq \emptyset$.

Since $L = \emptyset \Rightarrow \text{Index } L < 2$ or $\text{Index } L = 1$, $\text{Index } L$ is defined to be 1 whenever $L = \emptyset$.

Claim 2. $\forall w \in \Sigma^*$, there is one and only one $s_w \in X$ s.t. $w \equiv_L s_w$. Hence by taking $w = \epsilon$, there is one and only one $s_\epsilon \in X$ s.t. $\epsilon \equiv_L s_\epsilon$.

< Proof of Claim 2 >

Either $w \in X$ or $w \notin X$.

If $w \in X$, $\exists s_i \in X$ s.t. $w = s_i$.

Call this s_w so that $w = s_i = s_w$.

Since \equiv_L is reflexive, it follows that $w \equiv_L s_w$.

If $w \notin X$, w must be indistinguishable with a member of X otherwise it will contradict the assumption that $\text{Index } L = k$.

Therefore, $w \equiv_L s_w$ for some $s_w \in X$.

Either case, $w \equiv_L s_w$ for some $s_w \in X$.

If there is another $s'_w \in X$ s.t. $w \equiv_L s'_w$, then $s_w \equiv_L s'_w$ because \equiv_L is transitive.

This contradicts the assumption that X is pairwise distinguishable by L .

Therefore, s_w is unique.

Claim 3. If $L \neq \emptyset$ then $L \cap X \neq \emptyset$

<Proof of Claim 3>

$L \neq \emptyset \Rightarrow \exists w \in L$

By Claim 2, there is one and only one $s_w \in X$ s.t. $w \equiv_L s_w$.

By Proposition 1.52, $w \in L \Leftrightarrow s_w \in L$.

Therefore, $s_w \in L \cap X$.

Therefore, $L \cap X \neq \emptyset$.

This completes proof of Claim 3.

If Index $L = k = 1$, $L = \emptyset$ which is recognized by the one-state DFA, $M = (\{q\}, \Sigma, \delta, q, \emptyset)$

where $\delta(q, b) = \emptyset \ \forall b \in \Sigma$.

If Index $L = k \geq 2$,

$\exists X = \{s_1, s_2, s_3 \dots s_k\}$ where X is pairwise distinguishable by L .

Let $Q = \{q_1, q_2, q_3 \dots q_k\}$

Let $f : X \rightarrow Q$ such that $f(s_i) = q_i \ \forall i$ with $1 \leq i \leq k$

f is bijective (one-one and onto).

$\forall q_i \in Q, \exists a$ unique $s_i \in X$ s.t. $f(s_i) = q_i$ since f is bijective.

$\forall a \in \Sigma, \exists a$ unique $s_j \in X$ s.t. $s_i a \equiv_L s_j$ by Claim 2.

Since f is a bijective mapping, there is a unique q_j such that $f(s_j) = q_j$.

Let $M = (Q, \Sigma, \delta, q_0, F)$ where

$\delta : Q \times \Sigma \rightarrow Q$ s.t. $\delta(q_i, a) = q_j$ where

$a \in \Sigma, q_i, q_j \in Q$ s.t. $f(s_i) = q_i, f(s_j) = q_j$ where $s_i \in X, s_j \in X$ and $s_i a \equiv_L s_j$.

If there is another $q_k \in Q$ such that $\delta(q_i, a) = q_k, \exists s_k \in X$ such that $f(s_k) = q_k$ and by definition of $\delta, s_i a \equiv_L s_k$.

Since \equiv_L is transitive, $s_j \equiv_L s_k$.

This contradicts that both s_j and s_k are in X and hence must be distinguishable by L .

Therefore, $\delta(q_i, a) = q_j$ is uniquely defined.

$q_0 = q_\epsilon$ where $q_\epsilon = f(s_\epsilon)$ and s_ϵ is defined in Claim 2.

$F = \{f(s) \mid s \in L \cap X\}$

$F \neq \emptyset$ because of Claim 1 and Claim 3.

Claim 4. $\forall w \in \Sigma^, \hat{\delta}(q_\epsilon, w) = q_i \Leftrightarrow w \equiv_L s_i$ where $f(s_i) = q_i$.*

<Proof of Claim 4>

Claim 4 can be proved by induction on $|w|$.

For $w = \epsilon$, there exists one and only one $s_\epsilon \in X$ s.t. $\epsilon \equiv_L s_\epsilon$ by Claim 2.

$\hat{\delta}(q_\epsilon, w) = q_i$

$\Leftrightarrow \hat{\delta}(q_\epsilon, \epsilon) = q_i \quad (w = \epsilon)$

$\Leftrightarrow q_\epsilon = q_i \quad (\text{Definition of 1.4(i)})$

$\Leftrightarrow f(s_\epsilon) = q_i \quad (\text{Definition of } q_\epsilon)$

$\Leftrightarrow f(s_\epsilon) = f(s_i) \quad (\text{Definition of } q_i)$

$\Leftrightarrow s_\epsilon = s_i \quad (f \text{ is bijective})$

$\Leftrightarrow \epsilon \equiv_L s_i \quad (\epsilon \equiv_L s_\epsilon \text{ by Claim 2})$

$\Leftrightarrow w \equiv_L s_i \quad (w = \epsilon)$

The statement is true for $w = \epsilon$.

Let $\hat{\delta}(q_\epsilon, wa) = f(s_i) = q_i$.

$\delta(\hat{\delta}(q_\epsilon, w), a) = f(s_i) = q_i$.

$\exists q_j$ s.t. $\hat{\delta}(q_\epsilon, w) = q_j$

$\exists s_j$ s.t. $f(s_j) = q_j$ and

$w \equiv_L s_j \quad (\text{By induction hypothesis})$

$wa \equiv_L s_j a \quad (\equiv_L \text{ is right congruence by Proposition 1.51})$

$\delta(q_j, a) = q_i$

$\Rightarrow s_j a \Rightarrow_L s_i$ (Definition of δ)
 $\Rightarrow w a \equiv_L s_i$ (\equiv_L is transitive)
 Conversely, if $w a \equiv_L s_i$ for some $s_i \in X$,
 $\hat{\delta}(q_\epsilon, w a)$
 $= \delta(\hat{\delta}(q_\epsilon, w), a)$
 $= \delta(q_j, a)$ where $q_j = \hat{\delta}(q_\epsilon, w)$
 By induction hypothesis, $w \equiv_L s_j$ because $\hat{\delta}(q_\epsilon, w) = q_j$.
 $w a \equiv_L s_j a$ (Right congruence by Proposition 1.51)
 Let $\delta(q_j, a) = q_k$
 $s_j a \equiv_L s_k$ (By definition of δ)
 $w a \equiv_L s_k$ (\equiv_L is transitive)
 $w a \equiv_L s_i$ (Assumption)
 $s_k = s_i$ (Claim 2)
 $f(s_k) = f(s_i)$
 $q_k = q_i$
 $\hat{\delta}(q_\epsilon, w a)$
 $= \delta(q_j, a)$
 $= q_k$
 $= q_i$

This completes the proof of Claim 4.

It remains to prove $L = L(M)$.

$\forall w \in L, \exists$ one and only one $s_i \in X$ s.t. $w \equiv_L s_i$ (By Claim 2)

$w \in L \Leftrightarrow s_i \in L$ (Proposition 1.52)

Therefore, $s_i \in L$ ($w \in L$)

Since $s_i \in L \cap X$ and $q_i = f(s_i)$, $q_i \in F$ (Definition of F)

$\hat{\delta}(q_\epsilon, w) = q_i$ (Claim 4)

$\hat{\delta}(q_0, w) = q_i$ ($q_0 = q_\epsilon$)

M accepts w ($q_i \in F$)

Conversely, if M accepts w ,

$\hat{\delta}(q_\epsilon, w) = q_i$ and $q_i \in F$ ($q_0 = q_\epsilon$)

$w \equiv_L s_i$ where $q_i = f(s_i)$ (Claim 4)

$w \in L \Leftrightarrow s_i \in L$ (Proposition 1.52)

Since $q_i \in F$ and $q_i = f(s_i)$,

$s_i \in L \cap X$ by definition of F .

Therefore, $s_i \in L$.

Therefore, $w \in L$.

$L = L(M)$ and M has k states.

(c) L is regular

$\Rightarrow \exists M$ s.t. $L = L(M)$

\Rightarrow Index $L \leq k$ where $k =$ the number of states in M (by (a))

$\Rightarrow L$ has a finite index

L has a finite index

\Rightarrow Index $L = k$

$\Rightarrow L = L(M)$ for some k -state DFA M (by (b))

$\Rightarrow L$ is regular

Assume for contradiction that there is a k' -state DFA accepting L where $k' < k$.

By (a), Index $L \leq k'$.

This would contradict $k' < k = \text{Index } L$.

9. An Application of the Myhill-Nerode Theorem

The Myhill-Nerode Theorem can be used to determine whether a language L is regular or non-regular by determining the number of members in X , the set that is pairwise distinguishable by L .

Example 6.

Determine if $L = \{a^n b^n \mid n \geq 0\}$ is regular.

Consider $X = \{a, a^2, a^3, \dots\}$

\forall distinct $x, y \in X, x = a^i, y = a^j$ where $1 \leq i < j < \infty$

$\exists z = b^i$ such that

$xz = a^i b^i \in L$ and $yz = a^j b^i \notin L$.

x and y are distinguishable by L . $(x \neq_L y)$

X is pairwise distinguishable by L .

Index $L \geq |X|$

Index L is infinite.

L is not regular.

References

1. Sipser, Michael. *Introduction to the Theory of Computation, Third Edition*.
2. Dexter C. Kozen. *Automata & Computability*.
3. John E. Hopcroft, Rajeev Motwani, Jeffrey D Ullman. *Introduction to Automata Theory, Languages, & Computation, Third Edition*.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.