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Abstract

There is a lack of rigorous mathematical treatment in the theory of finite automata. This paper provides
a rigorous mathematical approach to automata theory which doesn’t currently exist in the literature of
theoretical computer science. Basic definitions are developed in mathematical terms and used as the
foundation for constructing mathematical proofs for theorems. It provides a model for instructors to
write better lecture notes and authors to write better textbooks for educational purpose. It also corrects
some critical errors and erroneous arguments that can be found in many textbooks which are widely
used in the education of theoretical computer science.
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1. Deterministic Finite Automaton (DFA)
Definition 1.
A deterministic finite automaton denoted by DFA is a 5-tuple,
M = (Q, Σ, δ, q0, F), where
(i) Q is a finite set of states;
(ii) Σ is a finite alphabet;
(iii) δ : Q × Σ −→ Q is the transition function;
(iv) q0 ∈ Q is the start state; and
(v) F ⊂ Q is the set of accept states.
Let w = w1w2w3, · · · , wn be a string over Σ where each wi ∈ Σ and n ≥ 1.
M accepts w if and only if ∃r0, r1, r2, · · · , rn ∈ Q s.t. the following conditions are satisfied:
(a) r0 = q0;
(b) δ(ri, wi+1) = ri+1 for i = 0, 1, 2, · · · , n − 1; and
(c) rn ∈ F
For n = 0, w = ϵ. Only conditions (a) and (c) are applicable and they become r0 = q0 and r0 ∈ F. We therefore
define M to accept ϵ if the start state is also an accept state.
On the other hand, since there is no ϵ-movement in a DFA, the only way the DFA can accept an empty string is
to accept it at the start state.
Accordingly, M accepts ϵ if and only if the start state is also an accept state.

If we write ri
wi+1,δ−→ ri+1 instead of δ(ri, wi+1) = ri+1 for i = 0, 1, 2, · · · , n − 1, then conditions (a), (b) and (c)

can be written as follows:

q0 = r0
w1,δ−→ r1

w2,δ−→ r2 · · · rn−1
wn ,δ−→ rn, rn ∈ F

We say M recognizes language A if A = {w ∈ Σ∗ | M accepts w} and it is written as L(M) = A

Definition 2.
A language is called regular if it is recognized by a DFA.
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Definition 3.
For any language L,
L0 = {ϵ}, L1 = L, L2 = LL, · · · , Lm+1 = LmL for m > 0.

L∗ = L0 ∪ L1 ∪ L2 ∪ · · · =
∞⋃

k=0
Lk

= {w | w = w1w2w3 · · ·wn; wi ∈ L for 1 ≤ i ≤ n; n ≥ 1} ∪ {ϵ}

Definition 4.
Inductive Transition Function
Let M = (Q, Σ, δ, q0, F) be a DFA.
δ̂ : Q × Σ∗ −→ Q s.t.

(i) δ̂(q, ϵ) = q ∀q ∈ Q
(ii) δ̂(q, wa) = δ(δ̂(q, w), a) ∀a ∈ Σ, w ∈ Σ∗, q ∈ Q

Definition 5.
∀p, q ∈ Q, w ∈ Σ∗, p w,δ̂−→ q

de f⇐⇒ q = δ̂(p, w)

Proposition 1.
δ̂(q, a) = δ(q, a) ∀q ∈ Q, a ∈ Σ
< Proo f >

δ̂(q, a) = δ̂(q, ϵa)
= δ(δ̂(q, ϵ), a) (De f inition1.4(ii))
= δ(q, a) (De f inition1.4(i))

Theorem 1. (DFA Acceptance)
For any DFA, M = (Q, Σ, δ, q0, F)
δ̂(q0, w) ∈ F ⇐⇒ M accepts w ∀w ∈ Σ∗

< Proo f >

Claim: If w = w1w2 · · ·wn where n ≥ 0 and

q0 = r0
w1,δ−→ r1

w2,δ−→ r2 · · · ri
wi+1,δ−→ ri+1 · · · rn−1

wn ,δ−→ rn, then δ̂(r0, w) = rn

This Claim can be proved by induction on n.
For n = 0, w = ϵ and the computation becomes q0 = r0.
δ̂(q0, w) = δ̂(q0, ϵ)

= q0 (By Definition 1.4(i))
= r0

Therefore, the statement is true for n = 0.
Assume the statement is true for n = k, where k ≥ 0.
That is, δ̂(r0, w1w2 · · ·wk) = rk

δ̂(r0, w1w2 · · ·wkwk+1) = δ(δ̂(r0, w1w2 · · ·wk), wk+1) (Definition 1.4(ii))
= δ(rk, wk+1) (Induction Hypothesis)
= rk+1 (Definition of ri+1)
Therefore, the statement is true for n = k + 1.
If M accepts w = w1w2 · · ·wn, where wi ∈ Σ for 1 ≤ i ≤ n and n ≥ 1 or (w = ϵ and n = 0)
∃r0, r1, r2, · · · rn ∈ Q st

q0 = r0
w1,δ−→ r1

w2,δ−→ r2 · · · ri
wi+1,δ−→ ri+1 · · · rn−1

wn ,δ−→ rn, rn ∈ F
By Claim, δ̂(r0, w1w2 · · ·wn) = rn

Therefore, δ̂(q0, w) = rn (r0 = q0; w = w1w2 · · ·wn)
Since rn ∈ F,
δ̂(q0, w) ∈ F
Therefore, M accepts w =⇒ δ̂(q0, w) ∈ F
Conversely, if δ̂(q0, w) ∈ F
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δ̂(q0, w1w2 · · ·wn) ∈ F
Take r0 = q0

ri+1 = δ(ri, wi+1) ∀i = 0, 1, 2, · · · n − 1

q0 = r0
w1,δ−→ r1

w2,δ−→ r2 · · · ri
wi+1,δ−→ ri+1 · · · rn−1

wn ,δ−→ rn

By Claim, δ̂(r0, w1w2 · · ·wn) = rn

Since δ̂(q0, w1w2 · · ·wn) ∈ F, rn ∈ F.
Therefore, M accepts w.
Therefore, δ̂(q0, w) ∈ F =⇒ M accepts w.
Therefore, δ̂(q0, w) ∈ F ⇐⇒ M accepts w.
This completes the proof.

Theorem 2.
For any DFAs, M and M

′
where

M = (Q, Σ, δ, q0, F)
M

′
= (Q, Σ, δ

′
, q0, F

′
)

∀q ∈ Q, a ∈ Σ, w ∈ Σ∗

δ
′
(q, a) = δ(q, a) =⇒ δ̂

′(q, w) = δ̂(q, w)

< Proo f >

The proof is by induction on |w| ≥ 0.
For |w| = 0, w = ϵ.
By Definition 1.4(i),
δ̂(q, ϵ) = q and δ̂

′(q, ϵ) = q
Therefore, δ̂(q, ϵ) = δ̂

′(q, ϵ)

Assume the statement is true for |w| = k ≥ 0.
δ̂(q, wa) = δ(δ̂(q, w), a)
= δ

′
(δ̂(q, w), a) (δ

′
(q, a) = δ(q, a))

= δ
′
(δ̂′(q, w), a) (Induction Hypothesis)

= δ̂
′(q, wa) (Definition 1.4(ii))

The statement is also true for |w| = k + 1

2. Nondeterministic Finite Automaton (NFA)
Definition 6.
A nondeterministic finite automaton (NFA) is a 5-tuple,
N = (Q, Σ, δ, q0, F), where
(i) Q is a finite set of states;
(ii) Σ is a finite alphabet;
(iii) δ : Q × Σϵ −→ P(Q) is the transition function, where

Σϵ = Σ ∪ {ϵ}, P(Q) = the power set of Q = {S | S ⊂ Q}.
(iv) q0 ∈ Q is the start state; and
(v) F ⊂ Q is the set of accept states.
Let w = w1w2w3 · · ·wm where wi ∈ Σϵ for 1 ≤ i ≤ m and m ≥ 1.
N accepts w if and only if ∃r0, r1, r2, · · · , rm ∈ Q s.t. the following conditions are satisfied:
(a) r0 ∈ {q0}
(b) ri+1 ∈ δ(ri, wi+1) for i = 0, 1, 2, · · · , m − 1
(c) rm ∈ F
For m = 0, w = ϵ.
Only conditions (a) and (c) are applicable and they become r0 = q0 and r0 ∈ F.
We therefore define N to accept ϵ if the start state is also an accept state.

If we write ri
wi+1,δ−→ ri+1 instead of ri+1 ∈ δ(ri, wi+1) for i = 0, 1, 2, · · · , m − 1, then conditions (a), (b) and (c)

can be written as follows:
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q0 = r0
w1,δ−→ r1

w2,δ−→ r2 · · · ri
wi+1,δ−→ ri+1 · · · rm−1

wm ,δ−→ rm, rm ∈ F.
Note that when m = 0, this computation becomes q0 = r0 and r0 ∈ F.

Definition 7. (Inductive Transition Function)
Let N = (Q, Σ, δ, q0, F) be an NFA.
δ̂ : P(Q)× Σ∗

ϵ −→ P(Q) such that
(i) δ̂(A, ϵ) = A ∀A ∈ P(Q)

(ii) δ̂(A, wa) =
⋃

q∈δ̂(A,w)

δ(q, a) ∀a ∈ Σϵ, w ∈ Σ∗
ϵ , A ∈ P(Q).

Definition 8.
∀p, q ∈ Q, w ∈ Σ∗

ϵ , p w,δ̂−→ q
de f⇐⇒ q ∈ δ̂({p}, w).

Proposition 2.
If N = (Q, Σ, δ, q0, F) is an NFA, then
∀a ∈ Σϵ, p ∈ Q, δ̂({p}, a) = δ(p, a).
< Proo f >

δ̂({p}, a) = δ̂({p}, ϵa)
=

⋃
q∈δ̂({p},ϵ)

δ(q, a) (Definition 1.10 (ii))

=
⋃

q∈{p}
δ(q, a) (Definition 1.10 (i))

= δ(p, a)

Proposition 3.
If N = (Q, Σ, δ, s0, F) is an NFA,
∀w ∈ Σ∗

ϵ where w = w1w2w3 · · ·wn ; wi ∈ Σϵ for 1 ≤ i ≤ n and n ≥ 1 or w = ϵ for n = 0.

(∃r0, r1, r2, · · · , rn ∈ Q s.t. s0 = r0
w1,δ−→ r1

w2,δ−→ r2 · · · rn−1
wn ,δ−→ rn) ⇐⇒ rn ∈ δ̂({s0}, w)

< Proo f >

This proposition can be proved by induction on n.
Let P(n) denote the statement:

(∃r0, r1, r2, · · · , rn ∈ Q s.t. s0 = r0
w1,δ−→ r1

w2,δ−→ r2 · · · rn−1
wn ,δ−→ rn); and

Q(n) denote the statement: rn ∈ δ̂({s0}, w).
For n = 0, w = ϵ.
P(0) ⇐⇒ (∃r0 ∈ Q s.t. s0 = r0)

⇐⇒ r0 ∈ {s0}
⇐⇒ r0 ∈ δ̂({s0}, ϵ) (Definition 1.10(i))
⇐⇒ r0 ∈ δ̂({s0}, w) (w = ϵ)
⇐⇒ Q(0)
Assume P(k) ⇐⇒ Q(k) for any k ≥ 0.

P(k + 1) ⇐⇒ (∃r0, r1, r2, · · · rk, rk+1 ∈ Q s.t. s0 = r0
w1,δ−→ r1

w2,δ−→ r2 · · · rk−1
wk ,δ−→ rk

wk+1,δ
−→ rk+1)

P(k + 1) =⇒ P(k) (From computation path of P(k + 1))
=⇒ Q(k) (Induction Hypothesis)
=⇒ rk ∈ δ̂({s0}, w) where w1w2w3 · · ·wk = w (Definition of Q(k))
Since
δ̂({s0}, wwk+1) =

⋃
q∈δ̂({s0},w)

δ(q, wk+1) (Definition 1.10(ii)

and rk ∈ δ̂({s0}, w),
δ(rk, wk+1) ⊂ δ̂({s0}, wwk+1)

rk
wk+1,δ
−→ rk+1 (From computation path of P(k + 1))

Therefore, rk+1 ∈ δ(rk, wk+1) ⊂ δ̂({s0}, wwk+1)
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Therefore, rk+1 ∈ δ̂({s0}, wwk+1)

Therefore, P(k + 1) =⇒ Q(k + 1).
Conversely,
Q(k + 1) =⇒ rk+1 ∈ δ̂({s0}, wwk+1)

=⇒ rk+1 ∈ ⋃
q∈δ̂({s0},w)

δ(q, wk+1)

rk+1 ∈ δ(rk, wk+1) for some rk ∈ δ̂({s0}, w)

rk ∈ δ̂({s0}, w) =⇒ Q(k)
=⇒ P(k) (Induction Hypothesis)

=⇒ (∃r0, r1, r2, · · · rk ∈ Q s.t. s0 = r0
w1,δ−→ r1

w2,δ−→ r2 · · · rk−1
wk ,δ−→ rk)

rk+1 ∈ δ(rk, wk+1) =⇒ rk
wk+1,δ
−→ rk+1

Combining the two computation paths,

s0 = r0
w1,δ−→ r1

w2,δ−→ r2 · · · rk−1
wk ,δ−→ rk

wk+1,δ
−→ rk+1

Therefore, Q(k + 1) =⇒ P(k + 1) and the proof is complete.

Proposition 4.
∀x, y ∈ Σ∗

ϵ & A ∈ P(Q), δ̂(A, xy) = δ̂(δ̂(A, x), y)
< Proo f >

The proof is by induction on n = |y|.
Let T(n) denote the statement corresponding to n = 0, 1, 2, · · ·
For |y| = 0, y = ϵ.
δ̂(A, xϵ) = δ̂(A, x)
= δ̂(δ̂(A, x), ϵ) (Definition 1.10(i))
T(0) is true.
Assume T(k) is true for |y| = k ≥ 0.
That is δ̂(A, xy) = δ̂(δ̂(A, x), y) for |y| = k ≥ 0
For any a ∈ Σϵ, y ∈ Σ∗

ϵ , |y| = k
LHS of T(k + 1) = δ̂(A, xya)
=

⋃
q∈δ̂(A,xy)

δ(q, a) (By Definition 1.10(ii))

=
⋃

q∈δ̂(δ̂(A,x),y)
δ(q, a) (By Induction Hypothesis)

= δ̂(δ̂(A, x), ya) (By Definition 1.10(ii))
= RHS of T(k + 1)
Therefore, T(k) =⇒ T(k + 1).

Proposition 5.

∀Ai ⊂ Q, x ∈ Σ∗
ϵ , i = 1, 2, · · · n, n ∈ N, δ̂

(
n⋃

i=1
Ai, x

)
=

n⋃
i=1

δ̂(Ai, x)

< Proo f >

The proof is by induction on |x|.
For |x| = 0, x = ϵ.

δ̂

(
n⋃

i=1
Ai, ϵ

)
=

n⋃
i=1

Ai (Definition 1.10(i))

=
n⋃

i=1
δ̂(Ai, ϵ) (Definition 1.10(i))

Claim: ∀n ∈ N, sets Ai and Sx⋃
x∈∪n

i=1 Ai

Sx =
n⋃

i=1

( ⋃
x∈Ai

Sx

)
<Proof of Claim>

LHS =
⋃

x∈A1∪A2∪···An

Sx
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=

( ⋃
x∈A1

Sx

)
∪
( ⋃

x∈A2

Sx

)
∪ · · · ∪

( ⋃
x∈An

Sx

)

=
n⋃

i=1

( ⋃
x∈Ai

Sx

)
= RHS
Assume the statement is true for |x| = k for k ≥ 0.
∀a ∈ Σϵ, |xa| = k + 1.

δ̂

(
n⋃

i=1
Ai, xa

)
=

⋃
p∈δ̂((∪n

i=1 Ai),x)
δ(p, a) (Definition 1.10(ii))

=
⋃

p∈∪n
i=1 δ̂(Ai ,x)

δ(p, a) (Induction Hypothesis)

=
n⋃

i=1

( ⋃
p∈δ̂(Ai ,x)

δ(p, a)

)
(Claim)

=
n⋃

i=1
δ̂(Ai, xa) (Definition 1.10(ii))

Therefore, the statement is also true for |x| = k + 1.

Proposition 6.
δ̂(A, x) =

⋃
q∈A

δ̂({q}, x) for all A ⊂ Q.

< Proo f >

LHS = δ̂

( ⋃
q∈A

{q}, x

)
=

⋃
q∈A

δ̂({q}, x) (Proposition 1.15)

= RHS

Proposition 7.
∀A, B, where A ⊂ B ⊂ Q, δ̂(A, x) ⊂ δ̂(B, x)
< Proo f >

B = A ∪ (B \ A) (Set Theory)
δ̂(B, x) = δ̂(A ∪ (B \ A), x)
= δ̂(A, x) ∪ δ̂(B \ A, x) (Proposition 1.15)
Therefore, δ̂(A, x) ⊂ δ̂(B, x)

Proposition 8.
For any two NFAs N1 and N2, where
N1 = (Q1, Σ, δ1, q1, F1)

N2 = (Q2, Σ, δ2, q2, F2) and Q1 ⊂ Q2

∀q ∈ Q1, a ∈ Σϵ, δ1(q, a) ⊂ δ2(q, a) ⇒ δ̂1({q}, w) ⊂ δ̂2({q}, w)∀w ∈ Σ∗
ϵ

< Proo f >

The proof is by induction on |w|.
For |w| = 0, w = ϵ.
δ̂1({q}, ϵ) = {q} and δ̂2({q}, ϵ) = {q} (By Definition 1.10(i))
Therefore, δ̂1({q}, ϵ) ⊂ δ̂2({q}, ϵ).
The statement is true for |w| = 0.
Assume the statement is true for |w| = k ≥ 0.
That is, δ̂1({q}, w) ⊂ δ̂2({q}, w) for |w| = k ≥ 0.
For k + 1,
δ̂1({q}, wa) =

⋃
p∈δ̂1({q},w)

δ1(p, a)
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⊂ ⋃
p∈δ̂2({q},w)

δ2(p, a) (By Induction Hypothesis and δ1(q, a) ⊂ δ2(q, a))

= δ̂2({q}, wa) (By Definition 1.10(ii))

Theorem 3. (NFA acceptance)
N = (Q, Σ, δ, s0, F) is an NFA.
∀w ∈ Σ∗

ϵ where w = w1w2w3 · · ·wn; and
(wi ∈ Σϵ for 1 ≤ i ≤ n and n ≥ 1) or (w = ϵ and n = 0).
N accepts w if and only if δ̂({s0}, w) ∩ F ̸= ∅

In other words, N accepts w if and only if (∃r ∈ F s.t. s0
w,δ̂−→ r)

< Proo f >

If N accepts w

∃r0, r1, r2, · · · rn ∈ Q s.t. s0 = r0
w1,δ−→ r1

w2,δ−→ r2 · · · rn−1
wn ,δ−→ rn and rn ∈ F.

rn ∈ δ̂({s0}, w) (By Proposition 1.13)
Since rn is also in F,
δ̂({s0}, w) ∩ F ̸= ∅
Conversely, if δ̂({s0}, w) ∩ F ̸= ∅,
∃rn ∈ δ̂({s0}, w) and rn ∈ F.

∃r0, r1, r2, · · · rn ∈ Q s.t. s0 = r0
w1,δ−→ r1

w2,δ−→ r2 · · · rn−1
wn ,δ−→ rn ; rn ∈ F (Proposition 1.13)

Therefore, N accepts w.

3. Epsilon-Closure
The ϵ-Closure of a set of states is a collection of states that can be reached from a member of the

given set of states via zero or a finite number of ϵ transitions.
Formally, we define ϵ-Closure as follows.

Definition 9.
Let N = (Q, Σ, δ, s0, F) be an NFA.
For any R ⊂ Q, the ϵ-Closure of R is

E(R) = {q ∈ Q | p ϵi ,δ̂−→ q for some p ∈ R} where

i is an integer ≥ 0 and p ϵ0,δ̂−→ q means p = q.

Proposition 9.

∀Ai ⊂ Q, i = 1, 2, · · · n, n ∈ N, E
(

n⋃
i=1

Ai

)
=

n⋃
i=1

E(Ai)

< Proo f >

Claim. E(A1 ∪ A2) = E(A1) ∪ E(A2)

<Proof of Claim>

q ∈ E(A1 ∪ A2) ⇔ ∃p ∈ A1 ∪ A2 s.t. p ϵi ,δ̂−→ q where i ≥ 0

⇔ ((∃p ∈ A1) ∨ (∃p ∈ A2)) ∧ (p ϵi ,δ̂−→ q where i ≥ 0)
⇔ (q ∈ E(A1)) ∨ (q ∈ E(A2))

⇔ q ∈ E(A1) ∪ E(A2)

Therefore, E(A1 ∪ A2) = E(A1) ∪ E(A2)

With this Claim and an induction argument, we can conclude Proposition 1.21.

4. The Equivalence of DFA and NFA
Lemma 1.
Let N = (Q, Σ, δ, q0, F) be an NFA, M = (Q

′
, Σ, δ

′
, q

′
0, F

′
) be a DFA.

Q
′
= P(Q), q0

′
= E({q0}), F

′
= {R ∈ Q

′ | R ∩ F ̸= ∅}
δ
′

: Q
′ × Σ −→ Q

′
such that
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δ
′
(R, a) =

⋃
r∈R

E(δ(r, a)) ∀a ∈ Σ, R ∈ Q
′

Let w = w1w2w3 · · ·wn such that if n = 0, w = ϵ and if n ≥ 1, then wi ̸= ϵ ∀1 ≤ i ≤ n.
Let i0, i1, i2, · · · in be integers ≥ 0, q0, q1, q2, · · · qn ∈ Q, p1, p2, p3, · · · pn ∈ Q and q ∈ Q.
The following holds:

q0
ϵi0 ,δ̂−→ q1

w1,δ−→ p1
ϵi1 ,δ̂−→ q2

w2,δ−→ p2
ϵi2 ,δ̂−→ q3 · · · qn−1

wn−1,δ−→ pn−1
ϵin−1 ,δ̂−→ qn

wn ,δ−→ pn
ϵin ,δ̂−→ q.

⇐⇒ q ∈ δ̂
′(q

′
0, w)

< Proo f >

Proof is by induction on |w| = n.
Let P(n) denote the statement of

q0
ϵi0 ,δ̂−→ q1

w1,δ−→ p1
ϵi1 ,δ̂−→ q2

w2,δ−→ p2
ϵi2 ,δ̂−→ q3 · · · qn−1

wn−1,δ−→ pn−1
ϵin−1 ,δ̂−→ qn

wn ,δ−→ pn
ϵin ,δ̂−→ q.

and Q(n) denote the statement of q ∈ δ̂
′(q

′
0, w) corresponding to n ≥ 0.

For |w| = n = 0, w = ϵ.

P(0) ⇐⇒ q0
ϵi0 ,δ̂−→ q

⇐⇒ q ∈ E({q0})
⇐⇒ q ∈ q

′
0 (q

′
0 = E({q0}))

⇐⇒ q ∈ δ̂
′(q

′
0, ϵ) (Definition 1.4(i))

⇐⇒ q ∈ δ̂
′(q

′
0, w) (w = ϵ)

⇐⇒ Q(0)
Assume P(k) ⇔ Q(k) for k ≥ 0.
P(k + 1)

⇔ q0
ϵi0 ,δ̂−→ q1

w1,δ−→ p1
ϵi1 ,δ̂−→ q2

w2,δ−→ p2
ϵi2 ,δ̂−→ q3 · · · qk

wk ,δ−→ pk
ϵik ,δ̂−→ qk+1

wk+1,δ
−→ pk+1

ϵik+1 ,δ̂−→ q.

⇔ P(k) & qk+1
wk+1,δ
−→ pk+1

ϵik+1 ,δ̂−→ q

⇔ Q(k) & qk+1
wk+1,δ
−→ pk+1

ϵik+1 ,δ̂−→ q (Induction Hypothesis)

⇔ qk+1 ∈ δ̂
′(q

′
0, w) where |w| = k & qk+1

wk+1,δ
−→ pk+1

ϵik+1 ,δ̂−→ q
⇔ qk+1 ∈ δ̂

′(q
′
0, w) where |w| = k & q ∈ E(δ(qk+1, wk+1))

⇔ q ∈ ⋃
r∈δ̂

′ (q′0,w)

E(δ(r, wk+1)) where |w| = k

⇔ q ∈ δ
′
(δ̂′(q

′
0, w), wk+1) where |w| = k

(Consider R = δ̂
′(q

′
0, w), wk+1 = a & δ

′
(R, a)

de f
=

⋃
r∈R

E(δ(r, a)))

⇔ q ∈ δ̂
′(q

′
0, wwk+1) where |w| = k (Definition 1.4(ii))

⇔ Q(k + 1)
This completes the proof of Lemma 1.22.

Theorem 4.
Every NFA can be converted to an equivalent DFA.
< Proo f >

Let N = (Q, Σ, δ, q0, F) be an NFA.
Construct a DFA as follows.
M = (Q

′
, Σ, δ

′
, q

′
0, F

′
) where

Q
′
= P(Q), q0

′
= E({q0}), F

′
= {R ∈ Q

′ | R ∩ F ̸= ∅}
δ
′

: Q
′ × Σ −→ Q

′
such that

δ
′
(R, a) =

⋃
r∈R

E(δ(r, a)) ∀a ∈ Σ, R ∈ Q
′

We claim that N and M are equivalent by showing that
∀w ∈ Σ∗

ϵ , N accepts w ⇔ M accepts w
The proof is divided into two cases, one with w = ϵ and one with w ̸= ϵ.
(i) w = ϵ

If N accepts w,
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∃j ≥ 0 s.t. q0
ϵj ,δ̂−→ p and p ∈ F.

Therefore, p ∈ E({q0}) & p ∈ F.
Therefore, p ∈ q

′
0 & p ∈ F.

Therefore, q
′
0 ∩ F ̸= ∅.

Therefore, q
′
0 ∈ F

′
.

Therefore, the start state of M is also an accept state of M.
By definition, M accepts ϵ(= w).
Conversely, if M accepts w = ϵ,
q
′
0 ∈ F

′
(A DFA accepts ϵ iff its start state is also an accept state.)

q
′
0 ∩ F ̸= ∅ (By definition of F

′
)

∃p ∈ q
′
0 and p ∈ F.

Since q0
′
= E({q0}), q0

ϵj ,δ̂−→ p for some j ≥ 0.
Since p ∈ F, N accepts ϵj, which is same as ϵ.
(ii) w ̸= ϵ

∃wi ̸= ϵ, ∀1 ≤ i ≤ n, n ≥ 1 and
w = ϵi0 w1ϵi1 w2ϵi2 w3ϵi3 · · ·wnϵin for some integers i0, i1, i2, · · · in ≥ 0
If N accepts w,
∃q0, q1, q2, · · · qn ∈ Q, p1, p2, p3, · · · pn ∈ Q and q ∈ Q. s.t.

q0
ϵi0 ,δ̂−→ q1

w1,δ−→ p1
ϵi1 ,δ̂−→ q2

w2,δ−→ p2
ϵi2 ,δ̂−→ q3 · · · qn−1

wn−1,δ−→ pn−1
ϵin−1 ,δ̂−→ qn

wn ,δ−→ pn
ϵin ,δ̂−→ q & q ∈ F.

By Lemma 1.22, q ∈ δ̂
′(q

′
0, w) where w = w1w2w3 · · ·wn.

Therefore, δ̂
′(q

′
0, w) ∩ F ̸= ∅.

Therefore, δ̂
′(q

′
0, w) ∈ F′.

Therefore, M accepts w (DFA acceptance)
Conversely, if M accepts w = w1w2w3 · · ·wn,
δ̂
′(q

′
0, w) ∈ F′ (DFA acceptance)

δ̂
′(q

′
0, w) ∩ F ̸= ∅ (Definition of F′)

∃q ∈ δ̂
′(q

′
0, w) and q ∈ F.

By Lemma 1.22,

q0
ϵi0 ,δ̂−→ q1

w1,δ−→ p1
ϵi1 ,δ̂−→ q2

w2,δ−→ p2
ϵi2 ,δ̂−→ q3 · · · qn−1

wn−1,δ−→ pn−1
ϵin−1 ,δ̂−→ qn

wn ,δ−→ pn
ϵin ,δ̂−→ q & q ∈ F.

Therefore, N accepts w = ϵi0 w1ϵi1 w2ϵi2 w3ϵi3 · · ·wnϵin

This completes the proof of Theorem 1.23.

Corollary 1.
A language is regular iff some NFA recognizes it.

5. Regular Operators
Regular Languages are closed under the operation of Regular Operators.

Theorem 5.
L is regular ⇒ Σ∗ \ L is regular.
< Proo f >

Let M = (Q, Σ, δ, q0, F) be the DFA that recognizes L.
That is, L(M) = L.
Define M

′
= (Q, Σ, δ

′
, q0, Q \ F) where

δ
′

: Q × Σ −→ Q s.t. ∀q ∈ Q, a ∈ Σ, δ
′
(q, a) = δ(q, a)

∀w ∈ Σ∗ \ L,
w /∈ L =⇒ δ̂(q0, w) /∈ F
=⇒ δ̂(q0, w) ∈ Q \ F
=⇒ δ̂

′(q0, w) ∈ Q \ F (Theorem 1.8)
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=⇒ M
′

accepts w
Conversely, if M

′
accepts w, δ̂

′(q0, w) ∈ Q \ F
δ̂(q0, w) ∈ Q \ F (Theorem 1.8)
Therefore, δ̂(q0, w) /∈ F
Therefore, w /∈ L (because w ∈ L =⇒ M accepts w =⇒ δ̂(q0, w) ∈ F)
w ∈ Σ∗ \ L
Therefore, w ∈ Σ∗ \ L ⇐⇒ M

′
accepts w.

L(M
′
) = Σ∗ \ L

Σ∗ \ L is regular.

Theorem 6.
L1 and L2 are regular =⇒ L1 ∩ L2 is regular.
< Proo f >

∃DFAs M1 and M2 s.t. L(M1) = L1 and L(M2) = L2

Let M1 = (Q1, Σ, δ1, s0, F1)

M2 = (Q2, Σ, δ2, s
′
0, F2)

Define M3 as follows.
M3 = (Q3, Σ, δ3, s

′′
0 , F3)

where s
′′
0 = (s0, s

′
0), Q3 = Q1 × Q2, F3 = F1 × F2

δ3 : Q3 × Σ −→ Q3 s.t.
δ3((q1, q2), a) = (δ1(q1, a), δ2(q2, a)) ∀q1 ∈ Q1, q2 ∈ Q2, a ∈ A.
Claim. ∀n ∈ N ∪ {0}, w ∈ Σ∗, where |w| = n, if

(i) s0 = r0
w1,δ1−→ r1

w2,δ1−→ r2 · · · rn−1
wn ,δ1−→ rn

(ii) s
′
0 = r

′
0

w1,δ2−→ r
′
1

w2,δ2−→ r
′
2 · · · r

′
n−1

wn ,δ2−→ r
′
n

(iii) s
′′
0 = r

′′
0

w1,δ3−→ r
′′
1

w2,δ3−→ r
′′
2 · · · r

′′
n−1

wn ,δ3−→ r
′′
n

then r
′′
n = (rn, r

′
n).

Proof of Claim is by induction on n.
For n = 0, (i), (ii) and (iii) become s0 = r0, s

′
0 = r

′
0, and s

′′
0 = r

′′
0 .

s
′′
0 = (s0, s

′
0) (By definition of M3.)

Therefore, r
′′
0 = (r0, r

′
0)

Assume the statement is true for n = k ≥ 0.
(i), (ii) & (iii) for n = k + 1 ⇒
s0 = r0

w1,δ1−→ r1
w2,δ1−→ r2 · · · rk−1

wk ,δ1−→ rk
wk+1,δ1−→ rk+1

s
′
0 = r

′
0

w1,δ2−→ r
′
1

w2,δ2−→ r
′
2 · · · r

′
k−1

wk ,δ2−→ r
′
k

wk+1,δ2−→ r
′
k+1

s
′′
0 = r

′′
0

w1,δ3−→ r
′′
1

w2,δ3−→ r
′′
2 · · · r

′′
k−1

wk ,δ3−→ r
′′
k

wk+1,δ3−→ r
′′
k+1

⇒ (i), (ii) & (iii) for n = k & rk
wk+1,δ1−→ rk+1 & r

′
k

wk+1,δ2−→ r
′
k+1 & r

′′
k

wk+1,δ3−→ r
′′
k+1

⇒ r
′′
k = (rk, r

′
k) & rk+1 = δ1(rk, wk+1) & r

′
k+1 = δ2(r

′
k, wk+1) & r

′′
k+1 = δ3(r

′′
k , wk+1)

(Induction Hypothesis)
⇒ rk+1 = δ1(rk, wk+1) & r

′
k+1 = δ2(r

′
k, wk+1) & r

′′
k+1 = δ3((rk, r

′
k), wk+1)

⇒ rk+1 = δ1(rk, wk+1) & r
′
k+1 = δ2(r

′
k, wk+1) & r

′′
k+1 = (δ1(rk, wk+1), δ2(r

′
k, wk+1))

(Definition of δ3)

⇒ r
′′
k+1 = (rk+1, r

′
k+1)

We now need to show L1 ∩ L2 = L(M3).
∀w ∈ L1 ∩ L2, w ∈ L1 and w ∈ L2.

w ∈ L1 ⇒ ∃s0 = r0, r1, r2, · · · rn s.t. s0 = r0
w1,δ1−→ r1

w2,δ1−→ r2 · · · · · · rn−1
wn ,δ1−→ rn & rn ∈ F1

w ∈ L2 ⇒ ∃s
′
0 = r

′
0, r

′
1, r

′
2, · · · r

′
n s.t. s

′
0 = r

′
0

w1,δ2−→ r
′
1

w2,δ2−→ r
′
2 · · · · · · r

′
n−1

wn ,δ2−→ r
′
n & r

′
n ∈ F2

Let r
′′
0 = s

′′
0 = (s0, s

′
0)

r
′′
1 = δ3(r

′′
0 , w1), · · · r

′′
i+1 = δ3(r

′′
i , wi+1), · · · r

′′
n = δ3(r

′′
n−1, wn).
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Therefore, s
′′
0 = r

′′
0

w1,δ3−→ r
′′
1

w2,δ3−→ r
′′
2 · · · r

′′
n−1

wn ,δ3−→ r
′′
n

By Claim, r
′′
n = (rn, r

′
n)

Since rn ∈ F1 and r
′
n ∈ F2, r

′′
n ∈ F1 × F2 = F3.

Therefore, M3 accepts w.
w ∈ L(M3)

L1 ∩ L2 ⊂ L(M3)

Conversely, if w ∈ L(M3),

∃r
′′
0 , r

′′
1 , r

′′
2 , · · · r

′′
n ∈ Q3 s.t. s

′′
0 = r

′′
0

w1,δ3−→ r
′′
1

w2,δ3−→ r
′′
2 · · · · · · r

′′
n−1

wn ,δ3−→ r
′′
n & r

′′
n ∈ F3

Take
r0 = s0;
ri+1 = δ1(ri, wi+1)∀i = 0, 1, 2, · · · n − 1;
r
′
0 = s

′
0;

r
′
i+1 = δ2(r

′
i , wi+1)∀i = 0, 1, 2, · · · n − 1.

Therefore,

s0 = r0
w1,δ1−→ r1

w2,δ1−→ r2 · · · · · · rn−1
wn ,δ1−→ rn

s
′
0 = r

′
0

w1,δ2−→ r
′
1

w2,δ2−→ r
′
2 · · · · · · r

′
n−1

wn ,δ2−→ r
′
n

By Claim, r
′′
n = (rn, r

′
n)

Since r
′′
n ∈ F3 = F1 × F2, rn ∈ F1 and r

′
n ∈ F2.

M1 accepts w and M2 accepts w.
w ∈ L(M1) and w ∈ L(M2)

w ∈ L1 and w ∈ L2

w ∈ L1 ∩ L2

L(M3) ⊂ L1 ∩ L2

Combining both directions, L(M3) = L1 ∩ L2

L1 ∩ L2 is regular.

Theorem 7.
L1 and L2 are regular =⇒ L1 ∪ L2 is regular.
< Proo f >

From set theory, Σ∗ \ (L1 ∪ L2) = (Σ∗ \ L1) ∩ (Σ∗ \ L2)

L1 is regular =⇒ Σ∗ \ L1 is regular. (Theorem 1.25)
L2 is regular =⇒ Σ∗ \ L2 is regular. (Theorem 1.25)
Σ∗ \ L1 and Σ∗ \ L2 are regular =⇒ (Σ∗ \ L1) ∩ (Σ∗ \ L2) is regular. (Theorem 1.26)
Therefore, Σ∗ \ (L1 ∪ L2) is regular.
Therefore, L1 ∪ L2 is regular. (Theorem 1.25)

Theorem 8.
Every NFA can be converted to another NFA with the following properties.
(i) There is only one accept state which has transition arrows coming in and no

transition arrows going out.
(ii) The accept state is different from the start state.
(iii) The start state has no arrows coming in from other states but only transition

arrows going out.
< Proo f >

Let N1 = (Q1, Σ, δ1, q1, F1) be the NFA to be converted.
Define NFA, N = (Q, Σ, δ, q0, {qa}) where Q = Q1 ∪ {q0, qa}, q0 ̸= qa and
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δ(q, x) =



{q1} if (q, x, ) = (q0, ϵ)

∅ if q = q0 and x ̸= ϵ

∅ if q = qa

δ1(q, x) if q ∈ Q1 \ F1

δ1(q, x) if q ∈ F1 and x ̸= ϵ

δ1(q, x) ∪ {qa} if q ∈ F1 and x = ϵ
It is clear that N satisfies conditions (i), (ii) and (iii).
Furthermore, δ1(q, x) ⊂ δ(q, x) ∀x ∈ Σϵ, q ∈ Q1 and hence
δ̂1({q}, w) ⊂ δ̂({q}, w) ∀w ∈ Σ∗

ϵ by Proposition 1.18.
It remains to show that ∀w ∈ Σ∗

ϵ , N1 accepts w ⇔ N accepts w.
For forward direction ” ⇒ ”,
Let N1 accepts w.

q1
w,δ̂1−→ r, r ∈ F1.

Since δ̂1(q1, w) ⊂ δ̂(q1, w), q1
w,δ̂−→ r, r ∈ F1.

Since δ(q0, ϵ) = {q1}, q0
ϵ,δ−→ q1.

Furthermore, since δ(q, ϵ) = δ1(q, ϵ) ∪ {qa} ∀q ∈ F1, δ(r, ϵ) = δ1(r, ϵ) ∪ {qa}.
Therefore, qa ∈ δ(r, ϵ).

That is, r ϵ,δ−→ qa

Therefore, q0
ϵ,δ−→ q1

w,δ̂−→ r ϵ,δ−→ qa.
Therefore N accepts ϵwϵ which is the same as w.
Therefore, N1 accepts w ⇒ N accepts w.
Conversely, if N accepts w = x1x2 · · · xn where xi ∈ Σϵ for n ≥ 1 & 1 ≤ i ≤ n.
(Note that w = ϵ if xi = ϵ ∀i.)
∃r0, r1, r2, · · · rn ∈ Q s.t.

q0 = r0
x1,δ−→ r1

x2,δ−→ r2 · · · rn−1
xn ,δ−→ rn & rn ∈ {qa}

Since the only way to transition to qa using δ is from a state in F1 via the ϵ arrow, we must have rn−1 ∈ F1 &
xn = ϵ.
Since the only way to transition out of q0(= r0) using δ is via an ϵ arrow, we must have x1 = ϵ.
Since δ(q0, ϵ) = {q1}, we must have r1 = q1.
We now can rewrite the above computation as

q0 = r0
ϵ,δ−→ q1

x2,δ−→ r2 · · · rn−2
xn−1,δ−→ rn−1

ϵ,δ−→ qa & rn−1 ∈ F1.
For all 1 ≤ j ≤ n − 2, rj /∈ {q0, qa} because rj has both incoming and outgoing arrows.
Therefore, rj ∈ Q1.

Claim. rj
xj+1,δ1−→ rj+1 ∀1 ≤ j ≤ n − 2.

Since rj ∈ Q1, δ(rj, xj+1) = δ1(rj, xj+1) or δ1(rj, xj+1) ∪ {qa} by definition of δ.

rj
xj+1,δ
−→ rj+1

⇒ rj+1 ∈ δ(rj, xj+1)

⇒ rj+1 ∈ δ1(rj, xj+1) or rj+1 ∈ δ1(rj, xj+1) ∪ {qa}
⇒ rj+1 ∈ δ1(rj, xj+1) or rj+1 ∈ δ1(rj, xj+1) (because rj+1 ̸= qa)
⇒ rj+1 ∈ δ1(rj, xj+1)

⇒ rj
xj+1,δ1−→ rj+1

The computation now becomes

q0 = r0
ϵ,δ−→ q1

x2,δ1−→ r2 · · · rn−2
xn−1,δ1−→ rn−1

ϵ,δ−→ qa & rn−1 ∈ F1.

Therefore, q1
x2,δ1−→ r2 · · · rn−2

xn−1,δ1−→ rn−1 & rn−1 ∈ F1.
Therefore, N1 accepts x2x3 · · · · · · xn−1.
Therefore, N1 accepts w = x1x2x3 · · · · · · xn−1xn because x1 = xn = ϵ.
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Therefore, N accepts w ⇒ N1 accepts w.
This completes the proof of Theorem 1.28.

Theorem 9.
For any regular languages L1 and L2, the language L1L2 is regular.
< Proo f >

Since L1 and L2 are regular, there exist NFAs N1, N2 that recognize L1 and L2.
By Theorem 1.28, we can start with N1 and N2 defined as follows.
N1 = (Q1, Σ, δ1, q1s, {q1a}) where
q1s ̸= q1a, q1s /∈ δ1(q, x) ∀q ∈ Q1, x ∈ Σϵ and δ1(q1a, x) = ∅ ∀x ∈ Σϵ.
N2 = (Q2, Σ, δ2, q2s, {q2a}) where
q2s ̸= q2a, q2s /∈ δ2(q, x) ∀q ∈ Q2, x ∈ Σϵ and δ2(q2a, x) = ∅ ∀x ∈ Σϵ.
We can further assume that Q1 ∩ Q2 = ∅ because we can always replace Q1 with a set of objects which are
completely different from those in Q2 without affecting the function of N1.
Now construct N = (Q, Σ, δ, q1s, {q2a}) where Q = Q1 ∪ Q2.

δ(q, x) =


δ1(q, x) if q ∈ Q1 \ {q1a}

δ1(q1a, x) if q = q1a & x ̸= ϵ

δ1(q1a, x) ∪ {q2s} if q = q1a & x = ϵ

δ2(q, x) if q ∈ Q2
We now need to show L(N) = L1L2.
If w ∈ L1L2, w = w1w2 where w1, w2 ∈ Σ∗

ϵ and w1 ∈ L1, w2 ∈ L2.
Since N1 recognizes L1 and N2 recognizes L2, N1 accepts w1 and N2 accepts w2.
∃r1 ∈ {q1a} and r2 ∈ {q2a} such that

q1s
w1,δ̂1−→ r1 and q2s

w2,δ̂2−→ r2 (By Theorem 1.19 of NFA Acceptance)

q1s
w1,δ̂−→ q1a and q2s

w2,δ̂−→ q2a (Proposition 1.18 and r1 = q1a; r2 = q2a).
By definition of δ, q2s ∈ δ(q1a, ϵ).
Therefore,

q1s
w1,δ̂−→ q1a

ϵ,δ−→ q2s
w2,δ̂−→ q2a.

Therefore, N accepts w1ϵw2, which is the same as w1w2.
L1L2 ⊂ L(N)

Conversely, if N accepts w = x1x2 · · · xn, where x1, x2, · · · xn ∈ Σϵ for n ≥ 1,
∃r0, r1, r2, · · · rn ∈ Q such that

q1s = r0
x1,δ−→ r1

x2,δ−→ r2 · · · rn−1
xn ,δ−→ rn & rn = q2a.

(Note that w = ϵ if xi = ϵ ∀i).
Since the only way to transition from a state of N1 to a state of N2 is via q1a to q2s using the ϵ arrow, ∃ an
ri = q1a and ri+1 = q2s such that xi+1 = ϵ and the computation becomes

q1s = r0
x1,δ−→ r1

x2,δ−→ r2 · · · ri−1
xi ,δ−→ q1a

ϵ,δ−→ q2s
xi+2,δ−→ ri+2 · · · rn−1

xn ,δ−→ rn; rn = q2a.
Claim 1. r0, r1, r2, · · · ri−1 ∈ Q1.
<Proof of Claim 1>
q1s = r0 ⇒ r0 ∈ Q1.
Assume for contradiction that ri−1 /∈ Q1.
Then ri−1 ∈ Q2.

ri−1
xi ,δ−→ q1a

⇒ ri−1
xi ,δ2−→ q1a (δ(q, x) = δ2(q, x) if q ∈ Q2)

⇒ q1a ∈ Q2

⇒ Contradiction
Therefore, ri−1 ∈ Q1.
With similar and inductive argument, we can conclude ri−2, · · · r2, r1 are all in Q1.
Claim 2. rj ̸= q1a ∀ 0 ≤ j ≤ i − 1.
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Assume for contradiction rj = q1a for some 0 ≤ j ≤ i − 1.

Therefore, rj
xj+1,δ
−→ rj+1 ⇔ q1a

xj+1,δ
−→ rj+1 ⇔ rj+1 ∈ δ(q1a, xj+1).

By definition of δ, δ(q1a, xj+1)

= δ1(q1a, xj+1) or δ1(q1a, xj+1) ∪ {q2s}
= ∅ or ∅ ∪ {q2s}
= ∅ or {q2s}
Therefore, rj+1 ∈ ∅ or rj+1 ∈ {q2s}.
Either of these leads to a contradiction.
Therefore, rj ̸= q1a ∀ 0 ≤ j ≤ i − 1.
Combining Claim 1 and Claim 2, rj ∈ Q1 \ {q1a} ∀ 0 ≤ j ≤ i − 1.
By definition of δ, δ(rj, x) = δ1(rj, x) ∀ 0 ≤ j ≤ i − 1.

Therefore, computation q1s = r0
x1,δ−→ r1

x2,δ−→ r2 · · · ri−1
xi ,δ−→ q1a can be replaced by computation

q1s = r0
x1,δ1−→ r1

x2,δ1−→ r2 · · · ri−1
xi ,δ1−→ q1a.

Therefore, N1 accepts w1 = x1x2 · · · xi.
w1 ∈ L(N1) = L1.
Claim 3. rj ∈ Q2 ∀ i + 2 ≤ j ≤ n − 1.
<Proof of Claim 3>

q2s
xi+2,δ−→ ri+2

⇒ ri+2 ∈ δ(q2s, xi+2)

⇒ ri+2 ∈ δ2(q2s, xi+2) (δ(q, x) = δ2(q, x) if q ∈ Q2)

⇒ q2s
xi+2,δ2−→ ri+2

⇒ ri+2 ∈ Q2.
With similar and inductive argument, we can show that ri+3, · · · rn−1 are all in Q2.

Therefore, computation q2s
xi+2,δ−→ ri+2 · · · rn−1

xn ,δ−→ rn; rn = q2a can be replaced by computation

q2s
xi+2,δ2−→ ri+2 · · · rn−1

xn ,δ2−→ rn; rn = q2a

Therefore, N2 accepts w2 = xi+2xi+3 · · · xn.
w2 ∈ L(N2) = L2.
w1w2 ∈ L1L2.
w = x1x2 · · · xixi+1xi+2 · · · xn

= w1xi+1w2

= w1w2 (xi+1 = ϵ)

Therefore, w ∈ L1L2.
Therefore, L(N) ⊂ L1L2.
Combining both directions, L(N) = L1L2.

Theorem 10.
For any regular language L, L∗ is regular.
< Proo f >

Let N1 be the NFA that recognizes L.
By Theorem 1.28, we can start with an N1 defined as follows.
N1 = (Q1, Σ, T1, q1, {qa}) where
q1 ̸= qa, q1 /∈ T1(q, x) ∀q ∈ Q1, x ∈ Σϵ and T1(qa, x) = ∅ ∀x ∈ Σϵ.
Let N = (Q, Σ, T, q0, {qa, q0}) such that Q = Q1 ∪ {q0}.

T(q, x) =



T1(q, x) if q ∈ Q1 \ {qa}
{q1} ∪ T1(qa, ϵ) if q = qa & x = ϵ

T1(qa, x) if q = qa & x ̸= ϵ

{q1} if q = q0 & x = ϵ

∅ if q = q0 & x ̸= ϵ
We need to show w ∈ L∗ ⇔ N accepts w.
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If w ∈ L∗,
w ∈ LM for some M ≥ 0.
If M = 0, w ∈ L0 = {ϵ}.
Therefore, w = ϵ.
ϵ is accepted by N because N has a start state that is also an accept state.
For M ≥ 1,
let w = w1w2 · · ·wM with each wi ∈ L for 1 ≤ i ≤ M.
Therefore, N1 accepts wi for each i.

For each i, q1
wi ,T̂1−→ qa (By Theorem 1.19 of NFA Acceptance)

For each i, q1
wi ,T̂−→ qa (Proposition 1.18)

Since T(qa, ϵ) = {q1} ∪ T1(qa, ϵ),

q1 ∈ {q1} ∪ T1(qa, ϵ) ⇒ q1 ∈ T(qa, ϵ) ⇒ qa
ϵ,T−→ q1.

Therefore,

q0
ϵ,T−→ q1

w1,T̂−→ qa
ϵ,T−→ q1

w2,T̂−→ qa
ϵ,T−→ q1 · · · qa

ϵ,T−→ q1
wM ,T̂−→ qa

Therefore, N accepts ϵw1ϵw2 · · · ϵwM = w1w2 · · ·wM = w.
Therefore, w ∈ L∗ ⇒ N accepts w.
Conversely, if N accepts w = x1x2x3 · · · xn where xi ∈ Σϵ for 1 ≤ i ≤ n & n ≥ 1.
(Note that w = ϵ if xi = ϵ ∀i.)
∃r0, r1, r2, · · · rn ∈ Q such that

q0 = r0
x1,T−→ r1

x2,T−→ r2 · · · rn−1
xn ,T−→ rn & rn ∈ {q0, qa}.

Since T(q0, x) = ∅ if x ̸= ϵ, x1 = ϵ.
Furthermore, T(q0, ϵ) = {q1}.
Therefore, r1 = q1.
rn ∈ {q0, qa} ⇒ rn = qa because q0 has no incoming arrows.
The computation now becomes

q0
ϵ,T−→ q1

x2,T−→ r2 · · · rn−1
xn ,T−→ qa.

Therefore, q1
x2,T−→ r2 · · · rn−1

xn ,T−→ qa.
Claim 1:
For the computation, q0 = r0

x1,T−→ r1
x2,T−→ r2 · · · ri

xi+1,T−→ ri+1 · · · rn−1
xn ,T−→ rn & rn = qa,

if ∃ri = qa for 1 < i < n − 1, then ri+1 = q1 & xi+1 = ϵ.
<Proof of Claim 1>

ri
xi+1,T−→ ri+1 ⇒ qa

xi+1,T−→ ri+1 ⇒ ri+1 ∈ T(qa, xi+1).
T(qa, xi+1)

= T1(qa, xi+1) or T1(qa, xi+1) ∪ {q1} (by definition of T)
= ∅ or ∅ ∪ {q1} (by definition of N1)
= ∅ or {q1}
Therefore, ri+1 ∈ ∅ or ri+1 ∈ {q1}.
Therefore, ri+1 ∈ {q1} and hence ri+1 = q1.

Therefore, ri
xi+1,T−→ ri+1

⇒ qa
xi+1,T−→ q1

⇒ q1 ∈ T1(qa, xi+1) if xi+1 ̸= ϵ

⇒ q1 ∈ ∅ if xi+1 ̸= ϵ (by definition of N1)
⇒ Contradiction if xi+1 ̸= ϵ.
Therefore, xi+1 = ϵ.
Claim 2:
For any computation q1

x1,T−→ s1
x2,T−→ s2 · · · si

xi+1,T−→ si+1 · · · sn−1
xn ,T−→ sn

xn+1,T−→ qa,
if ∃ no qa in between q1 and qa, that is si ̸= qa for 1 ≤ i ≤ n, then

q1
w,T̂1−→ qa for some w ∈ Σ∗

ϵ .
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<Proof of Claim 2>
q0 /∈ {s1, s2, · · · sn} because q0 has no incoming arrows.
Therefore, s1, s2, · · · sn ∈ Q1.
Therefore, s1, s2, · · · sn ∈ Q1 \ {qa}.
By definition of T, T(q, x) = T1(q, x) if q ∈ Q1 \ {qa}.
Therefore, T(si, x) = T1(si, x) for 1 ≤ i ≤ n & x ∈ Σϵ.
The given computation can be replaced by

q1
x1,T1−→ s1

x2,T1−→ s2 · · · si
xi+1,T1−→ si+1 · · · sn−1

xn ,T1−→ sn
xn+1,T1−→ qa,

q1
w,T̂1−→ qa where w = x1x2x3 · · · xn+1.

Back to computation q1
x2,T−→ r2

x3,T−→ r3 · · · rn−1
xn ,T−→ qa.

Let m be the number of qa’s in between q1 & qa.

If m = 0, by Claim 2, q1
w
′
,T̂1−→ qa where w

′
= x2x3 · · · xn.

N1 accepts w
′
.

w = x1w
′
= ϵw

′
= w

′
.

N1 accepts w.
w ∈ L ⊂ L∗.
For m ≥ 1, ∃rj1 = rj2 = · · · rjm = qa.
By Claim 1, rj1+1 = rj2+1 = · · · rjm+1 = q1.

q1
w1,T̂1−→ rj1 = qa (Claim 2)

qa = rj1
ϵ,T−→ rj1+1 = q1 (Claim 1)

q1 = rj1+1
w2,T̂1−→ rj2 = qa (Claim 2)

qa = rj2
ϵ,T−→ rj2+1 = q1 (Claim 1)

...

...
q1 = rjm−1+1

wm ,T̂1−→ rjm = qa (Claim 2)

qa = rjm
ϵ,T−→ q1

wm+1,T̂1−→ qa (Claim 1 & Claim 2)
Therefore, N1 accepts w1, w2, · · ·wm, wm+1.
w1, w2, · · ·wm, wm+1 ∈ L.
w1w2 · · ·wmwm+1 ∈ Lm+1

However, x2x3 · · · xn = w1ϵw2ϵ · · · ϵwmϵwm+1 = w1w2 · · ·wmwm+1.
w = x1x2x3 · · · xn = ϵx2x3 · · · xn = x2x3 · · · xn = w1w2 · · ·wmwm+1.
Therefore, w ∈ Lm+1 ⊂ L∗.
Therefore, N accepts w ⇒ w ∈ L∗.
Combining both directions, w ∈ L∗ ⇔ N accepts w.
This completes the proof of Theorem 1.30.

Definition 10.
For any string w = x1x2 · · · xn, where xi ∈ Σϵ for each i, the reverse of w, written wR is the string
xnxn−1 · · · x1.

For any language A, AR de f
= {wR | w ∈ A}.

Theorem 11.
For any language A, A is regular iff AR is regular.
< Proo f >

Since A is regular, there is an NFA, NA that recognizes it.
Let NA = (QA, Σ, δA, qA, FA).
Construct NAR = (QA ∪ {qs}, Σ, δAR , qs, {qA}) where qs /∈ QA such that
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δAR(q, x) =


FA if (q, x) = (qs, ϵ)

∅ if q = qs & x ̸= ϵ

{p ∈ QA | q ∈ δA(p, x)} if q ∈ QA
From the third row of this definition, it immediately follows that
p ∈ δAR(q, x) ⇔ q ∈ δA(p, x) or

q
x,δAR−→ p ⇔ p

x,δA−→ q · · · · · · (∗).
Claim: ∃ a computation path for w from p to q via transition function δA iff ∃ a computation path for wR from q
to p via transition function δAR .

That is, p
w, ˆδA−→ q ⇔ q

wR , ˆδAR−→ p.
This Claim can be proved by induction on |w|.
For |w| = 1, w = wR = x where x ∈ Σϵ.

From (∗), q
x,δAR−→ p ⇔ p

x,δA−→ q
Therefore, the statement is true for |w| = 1.
Assume the statement is true for |w| = k where k ≥ 1.

That is , p
w, ˆδA−→ q ⇔ q

wR , ˆδAR−→ p for |w| = k.

p
wx, ˆδA−→ q

⇔ p
w, ˆδA−→ q

′ x,δA−→ q (Proposition 1.12)

⇔ p
w, ˆδA−→ q

′
and q

′ x,δA−→ q

⇔ q
′ wR , ˆδAR−→ p and q

x,δAR−→ q
′

(Induction Hypothesis and (*))

⇔ q
x,δAR−→ q

′ wR , ˆδAR−→ p

⇔ q
xwR , ˆδAR−→ p (Proposition 1.12)

⇔ q
(wx)R , ˆδAR−→ p (xwR = (wx)R)

The statement is true for |w| = k + 1 and the proof of Claim is complete.
To prove that AR is regular, we need to prove that
wR ∈ AR iff NAR accepts wR.
If wR ∈ AR, w ∈ A.

Since NA accepts w, qA
w, ˆδA−→ q, q ∈ FA (Theorem 1.19 – NFA acceptance)

By Claim, q
wR , ˆδAR−→ qA

Since δAR(qs, ϵ) = FA, and q ∈ FA,

qs
ϵ,δAR−→ q.

Therefore, qs
ϵ,δAR−→ q

wR , ˆδAR−→ qA.
NAR accepts ϵwR (Theorem 1.19 – NFA acceptance)
NAR accepts wR.
Conversely, if NAR accepts wR,
NAR accepts ϵwR.

qs
ϵwR , ˆδAR−→ qA (Theorem 1.19 – NFA acceptance)

qs
ϵ,δAR−→ q

wR , ˆδAR−→ qA (Proposition 1.12)
Since δAR(qs, ϵ) = FA, q ∈ FA.

qA
w, ˆδA−→ q, and q ∈ FA (Claim)

Therefore, NA accepts w (Theorem 1.19 – NFA acceptance)
w ∈ A (NA recognizes A)
wR ∈ AR.
wR ∈ AR iff NAR accepts wR.
We have proved that A is regular ⇒ AR is regular.
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On the other hand, sine (AR)R = A,
AR is regular ⇒ (AR)R is regular ⇒ A is regular.
Therefore, A is regular iff AR is regular.

6. Regular Expression
Definition 11. (Regular Expression)
Let Σ be a finite alphabet.
ℜΣ is a set with the following properties:
(a) R ∈ ℜΣ iff R is one of the following:

(i) a for some a ∈ Σ
(ii) ϵ̂

(iii) ∅̂
(iv) R1∪̂R2 for some R1, R2 ∈ ℜΣ

(v) R1•̂R2 for some R1, R2 ∈ ℜΣ

(vi) R∗̂
1 for some R1 ∈ ℜΣ

where ∪̂, •̂ and ∗̂ are operations in ℜΣ with
∪̂ : ℜΣ ×ℜΣ −→ ℜΣ

•̂ : ℜΣ ×ℜΣ −→ ℜΣ

∗̂ : ℜΣ −→ ℜΣ

(b) ∃ an injective (one-to-one) mapping L : ℜΣ −→ P(Σ∗) s.t.
(i) L(a) = {a} ∀a ∈ Σ
(ii) L(ϵ̂) = {ϵ}
(iii) L(∅̂) = ∅
(iv) L(R1∪̂R2) = L(R1) ∪ L(R2) ∀R1, R2 ∈ ℜΣ

(v) L(R1•̂R2) = L(R1) • L(R2) ∀R1, R2 ∈ ℜΣ

(vi) L(R∗̂
1) = (L(R1))

∗ ∀R1 ∈ ℜΣ

ℜΣ is called the set of all regular expressions over the alphabet Σ.
Any member of ℜΣ is called a regular expression over Σ.
For any regular expression R, L(R) is called the language described by R.
While ∪̂, •̂ and ∗̂ are operations in ℜΣ, ∪, • and ∗ are set operations in P(Σ∗).
When there is no danger of confusion, ∪̂, •̂ and ∗̂ are usually written same as ∪, • and ∗.
While ϵ̂ and ∅̂ are regular expressions, ϵ is the empty string and ∅ is the empty language. When there is no
danger of confusion, they are all written as ϵ and ∅.

Proposition 10.
Let Σ be a finite alphabet and ℜΣ be the set of all regular expressions over Σ.
The following statements are true.
(a) ∀R1, R2 ∈ ℜΣ, R1 ∪ R2 = R2 ∪ R1

(b) ∃ regular expressions Σ̂ and Σ̂∗ such that L(Σ̂) = Σ and L(Σ̂∗) = Σ∗. When there is no danger of confusion,
Σ̂ and Σ̂∗ are usually written same as Σ and Σ∗.
< Proo f >

(a) L(R1 ∪ R2) = L(R1) ∪ L(R2

L(R2 ∪ R1) = L(R2) ∪ L(R1)

L(R1) ∪ L(R2) = L(R2) ∪ L(R1) from set theory.
Therefore, L(R1 ∪ R2) = L(R2 ∪ R1)

Therefore, R1 ∪ R2 = R2 ∪ R1 (L is one-one)
(b) Define Σ̂ =

⋃
a∈Σ

a

Σ̂ is a regular expression by Definition 1.33(a)(i) and 1.33(a)(iv).
By Definition 1.33(b)(iv)
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L(Σ̂) = L
( ⋃

a∈Σ
a
)
=

( ⋃
a∈Σ

L(a)
)
=

( ⋃
a∈Σ

{a}
)
= Σ

Define Σ̂∗ = (Σ̂)∗̂.
Σ̂∗ is a regular expression by Definition 1.33(a)(vi).
By Definition 1.33(b)(vi),
L(Σ̂∗) = L((Σ̂)∗̂) = (L(Σ̂))∗ = Σ∗ (L(Σ̂) = Σ)

Example 1.
Find the language described by Σ∗1Σ∗ where Σ = {0, 1}.
L(Σ∗1Σ∗) = L(Σ∗)L(1)L(Σ∗) = Σ∗{1}Σ∗ = {w | w has at least one 1}.

Example 2.
Find the language described by (ΣΣΣ)∗ where Σ = {0, 1}.
L((ΣΣΣ)∗) = (L(ΣΣΣ))∗ = (L(Σ)L(Σ)L(Σ))∗ = (ΣΣΣ)∗

= {xyz | x, y, z ∈ Σ}∗ = {w | |w| is a multiple o f three}.

Lemma 2.
If a language is described by a regular expression, then it is regular. That is, if A = L(R) for some R ∈ ℜΣ,
then A = L(N) for some finite automaton N.
< Proo f >

From the formal definition of regular expressions, R is one of the following:
(i) a for some a ∈ Σ
(ii) ϵ̂

(iii) ∅̂
(iv) R1∪̂R2 for some R1, R2 ∈ ℜΣ

(v) R1•̂R2 for some R1, R2 ∈ ℜΣ

(vi) R∗̂
1 for some R1 ∈ ℜΣ

In case (i), L(a) = {a} and {a} can be recognized by the NFA defined as follows:
N = ({q1, q2}, Σϵ, δ, q1, {q2}) such that δ(q1, a) = {q2}, δ(q, b) = ∅ ∀q ̸= q1, b ̸= a.
In case (ii), L(ϵ) = {ϵ} and {ϵ} can be recognized by the following NFA:
N = ({q1}, Σϵ, δ, q1, {q1}), where δ(q1, b) = ∅ ∀b ̸= ϵ and δ(q1, ϵ) = {q1}.
In case (iii), L(∅) = ∅, which is recognized by the following NFA:
N = ({q}, Σϵ, δ, q, ∅) where δ(q, b) = ∅ ∀b ∈ Σϵ.
In cases (iv), (v) and (vi), R is repeated operations of ∪̂, •̂ and ∗̂ on a, ϵ and ∅. Since we have shown above L(a),
L(ϵ) and L(∅) are regular and we have proved before that regular languages are closed under ∪, • and ∗ , L(R)
is regular.

Definition 12.
A generalized nondeterministic finite automaton (denoted by GNFA) has all the properties as described in
Theorem 1.28 and is a 5-tuple, (Q, Σ, δ, qstart, {qaccept}) where

(i) Q is a finite set of states;
(ii) Σ is a finite alphabet;
(iii) δ : (Q \ {qaccept})× (Q \ {qstart}) −→ ℜΣ is the transition function;
(iv) qstart is the start state; and
(v) qaccept is the accept state.

A GNFA accepts a string w ∈ Σ∗, if w = w1w2 · · ·wn, where each wi is in Σ∗ and a sequence of states
q0, q1, q2, · · · qn exist such that
(1) q0 = qstart;
(2) qn = qaccept; and
(3) For each i, wi ∈ L(Ri) where

Ri = δ(qi−1, qi) and L(Ri) is the language described by expression Ri.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 September 2025 doi:10.20944/preprints202509.0560.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.0560.v1
http://creativecommons.org/licenses/by/4.0/


20 of 30

If we write qi
R,δ−→ qj instead of δ(qi, qj) = R, the definition of acceptance can be written as

qstart = q0
R1,δ−→ q1

R2,δ−→ q2 · · ·
Rn ,δ−→ qn = qaccept with wi ∈ L(Ri) for i = 1, 2, · · · , n.

Lemma 3.
Every NFA can be converted into an equivalent GNFA.
< Proo f >

Because of Theorem 1.28, we can start with an NFA defined as follows.
N = (Q, Σ, δ, qstart, {qaccept}) where
qstart ̸= qaccept; δ(qaccept, a) = ∅ ∀a ∈ Σϵ; and qstart /∈ δ(q, a) ∀a ∈ Σϵ, q ∈ Q.
Define GNFA, NG as follows:
NG = (Q, Σ, δG, qstart, {qaccept}) where
δG : (Q \ {qaccept})× (Q \ {qstart}) −→ ℜΣ such that:
∀(qi, qj) ∈ (Q \ {qaccept})× (Q \ {qstart})
δG(qi, qj) = Ri,j where
Ri,j =

⋃
w∈Si,j

w ; and

Si,j = {w ∈ Σ∗ | qi
w,δ̂−→ qj}.

Note that if i = j, δG(qi, qi) = Ri,i, Si,i = {w ∈ Σ∗ | qi
w,δ̂−→ qi}; and

Ri,i =
⋃

w∈Si,i

w∗

∀(qi, qj), Si,j is unique and therefore Ri,j is unique.
Since w is the concatenation of symbols from Σ, and every symbol in Σ is a regular expression, w is a regular
expression.
Therefore, Ri,j =

⋃
w∈Si,j

w is a regular expression.

Therefore, δG(qi, qj) = Ri,j is well defined.
Claim 1. For any string w in Σ∗, L(w) = {w}.
< Proof of Claim 1 >

L(w) = L(a1a2 · · · an) where ai ∈ Σ
= L(a1)L(a2) · · · L(an)

= {a1}{a2} · · · {an}
= {a1a2 · · · an}
= {w}

Claim 2. ∀w ∈ Σ∗, N accepts w ⇔ NG accepts w.
< Proof of Claim 2 >

For forward direction ” ⇒ ”
Let N accepts w where w = w1w2 · · ·wn, n ≥ 1, and each wi is in Σ∗ for 1 ≤ i ≤ n.
By theorem of acceptance, ∃q0, q1, q2, · · · qn ∈ Q such that

qstart = q0
w1,δ̂−→ q1

w2,δ̂−→ q2 · · · qn−1
wn ,δ̂−→ qn = qaccept.

Since qi−1
wi ,δ̂−→ qi, wi ∈ Si−1,i.

By definition of δG,
δG(qi−1, qi) = Ri−1,i =

⋃
w∈Si−1,i

w

L(δG(qi−1, qi))

= L(Ri−1,i)

= L

( ⋃
w∈Si−1,i

w

)
=

⋃
w∈Si−1,i

L(w)

=
⋃

w∈Si−1,i

{w} (By Claim 1)
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= Si−1,i.
Since wi ∈ Si−1,i, wi ∈ L(Ri−1,i).

Since qi−1
Ri−1,i ,δG−→ qi ∀i = 1, 2, · · · n,

qstart = q0
R0,1,δG−→ q1

R1,2,δG−→ q2 · · · qi−1
Ri−1,i ,δG−→ qi · · · qn−1

Rn−1,n ,δG−→ qn = qaccept.
NG accepts w.
Conversely, if NG accepts w for w = w1w2 · · ·wn, n ≥ 1, and each wi is in Σ∗,
∃q0, q1, q2, · · · qn ∈ Q such that

qstart = q0
R0,1,δG−→ q1

R1,2,δG−→ q2 · · · qi−1
Ri−1,i ,δG−→ qi · · · qn−1

Rn−1,n ,δG−→ qn = qaccept

with wi ∈ L(Ri−1,i) ∀i ∈ {1, 2, 3, · · · n},
Ri−1,i =

⋃
w∈Si−1,i

w

and
Si−1,i = {w ∈ Σ∗ | qi−1

w,δ̂−→ qi}
L(Ri−1,i)

= L

( ⋃
w∈Si−1,i

w

)
=

⋃
w∈Si−1,i

L(w)

=
⋃

w∈Si−1,i

{w} (By Claim 1)

= Si−1,i.
∀i ∈ {1, 2, 3, · · · n},
wi ∈ L(Ri−1,i)

⇒ wi ∈ Si−1,i

⇒ qi−1
wi ,δ̂−→ qi (Definition of Si,j)

Therefore, qstart = q0
w1,δ̂−→ q1

w2,δ̂−→ q2 · · · qn−1
wn ,δ̂−→ qn = qaccept.

Therefore, N accepts w = w1w2 · · ·wn.
N and NG are equivalent and the Lemma is proved.

Lemma 4.
Every GNFA of n states (n ≥ 2) can be reduced to an equivalent GNFA of 2 states.
< Proo f >

This lemma can be proved by induction on n.
It is trivial that the statement is true for n = 2.
Assume that the statement is true for n = k ≥ 2.
Let G = (Q, Σ, δ, qstart, {qaccept}) be a GNFA with k + 1 states.
∃qrip ∈ Q \ {qstart, qaccept} because k + 1 ≥ 3.
Construct G

′
= (Q

′
, Σ, δ

′
, qstart, {qaccept}) such that

Q
′
= Q \ {qrip}

∀(qi, qj) ∈ (Q \ {qaccept})× (Q \ {qstart}),
δ
′
(qi, qj) = δ(qi, qrip)

(
δ(qrip, qrip)

)∗
δ(qrip, qj) ∪ δ(qi, qj).

Therefore, Q
′

is a GNFA with k states.
Let G accept w = w1w2 · · ·wn where each wi ∈ Σ∗.
∃q0, q1, q2, · · · qn ∈ Q such that

qstart = q0
R1,δ−→ q1

R2,δ−→ q2 · · · qi−1
Ri ,δ−→ qi · · · qn−1

Rn ,δ−→ qn = qaccept; and
wi ∈ L(Ri) = L(δ(qi−1, qi)).
If none of q0, q1, q2, · · · qn is qrip, then they are all in Q

′
.

Also,
wi ∈ L(δ(qi−1, qi))

⇒ wi ∈ L
(
δ(qi−1, qrip)(δ(qrip, qrip))

∗δ(qrip, qi)
)
∪ L(δ(qi−1, qi))
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⇒ wi ∈ L
(
δ(qi−1, qrip)(δ(qrip, qrip))

∗δ(qrip, qi) ∪ δ(qi−1, qi)
)

⇒ wi ∈ L(δ
′
(qi−1, qi))

⇒ wi ∈ L(R
′
i) where R

′
i = δ

′
(qi−1, qi)

qstart = q0
R
′
1,δ

′

−→ q1
R
′
2,δ

′

−→ q2 · · · qi−1
R
′
i ,δ

′

−→ qi · · · qn−1
Rn

′ ,δ
′

−→ qn = qaccept

with wi ∈ L(R
′
i).

Therefore, G
′

accepts w = w1w2 · · ·wn.
If ∃ some q’s in the sequence q0, q1, q2, · · · qn which are qrip,
let qi be the first such qrip and qj be the first state in the sequence after qi such that qj ̸= qrip.

qi−1
Ri−→ qi = qrip

Ri+1−→ qrip · · · qrip
Rj−1−→ qrip

Rj−→ qj.
Ri+1 = δ(qi, qi+1) = δ(qrip, qrip) ⇒ wi+1 ∈ L(δ(qrip, qrip))

...
Rj−1 = δ(qj−2, qj−1) = δ(qrip, qrip) ⇒ wj−1 ∈ L(δ(qrip, qrip))

wi+1 · · ·wj−1 ∈ Lj−i−1(δ(qrip, qrip))

wi+1 · · ·wj−1 ∈ L∗(δ(qrip, qrip))

Let w
′
j = wiwi+1 · · ·wj−1wj

wi ∈ L(δ(qi−1, qi)) and qi = qrip ⇒ wi ∈ L(δ(qi−1, qrip))

wj ∈ L(δ(qj−1, qj)) and qj−1 = qrip ⇒ wj ∈ L(δ(qrip, qj))

wj
′ ∈ L(δ(qi−1, qrip))L∗(δ(qrip, qrip))L(δ(qrip, qj))

w
′
j ∈ L(δ(qi−1, qrip))L∗(δ(qrip, qrip))L(δ(qrip, qj)) ∪ L(δ(qi−1, qj))

Therefore, w
′
j ∈ L

(
δ(qi−1, qrip)(δ(qrip, qrip))

∗δ(qrip, qj) ∪ δ(qi−1, qj)
)

w
′
j ∈ L(δ

′
(qi−1, qj))

w
′
j ∈ L(R

′
j) where R

′
j = δ

′
(qi−1, qj)

If there are no more qrip’s in the sequence,

qstart = q0
R
′
1,δ

′

−→ q1
R
′
2,δ

′

−→ q2 · · · qi−1
R
′
j ,δ

′

−→ qj
R
′
j+1,δ

′

−→ qj+1 · · · qn−1
R
′
n ,δ

′

−→ qn = qaccept

is the path of acceptance in G
′

for (w1w2 · · ·wi−1)(w
′
j)(wj+1 · · ·wn),

which is the same as (w1w2 · · ·wi−1)(wiwi+1 · · ·wj−1wj)(wj+1 · · ·wn) because
w

′
j = wiwi+1 · · ·wj−1wj.

Therefore, G
′

accepts w = w1w2 · · ·wn.
If there are some more qrip’s in the sequence, repeat the above process until all qrip’s are removed and the resulting
computation path is the path of acceptance of w in G

′
.

Conversely, if G
′

accepts w = w1w2 · · ·wn where wi ∈ Σ∗,
∃q0, q1, q2, · · · qn ∈ Q

′
such that

qstart = q0
R
′
1,δ

′

−→ q1
R
′
2,δ

′

−→ q2 · · · qi−1
R
′
i ,δ

′

−→ qi · · · qn−1
R
′
n ,δ

′

−→ qn = qaccept

with wi ∈ L(R
′
i) where R

′
i = δ

′
(qi−1, qi).

Therefore, wi ∈ L(δ(qi−1, qrip)(δ(qrip, qrip))
∗δ(qrip, qi) ∪ δ(qi−1, qi))

Therefore, wi ∈ L(δ(qi−1, qrip)(δ(qrip, qrip))
∗δ(qrip, qi)) or wi ∈ L(δ(qi−1, qi)).

If wi ∈ L(δ(qi−1, qi)),

qstart = q0
R1,δ−→ q1

R2,δ−→ q2 · · · qi−1
Ri ,δ−→ qi · · · qn−1

Rn ,δ−→ qn = qaccept where wi ∈ L(Ri)

is the acceptance path for w = w1w2 · · ·wn in G.
If wi ∈ L(δ(qi−1, qrip)(δ(qrip, qrip))

∗δ(qrip, qi)),
let wi = wi1wi2wi3 where
wi1 ∈ L(δ(qi−1, qrip)) = L(Ri−1,rip),
wi2 ∈ L∗(δ(qrip, qrip)) = L∗(Rrip,rip), and
wi3 ∈ L(δ(qrip, qi)) = L(Rrip,i).
∃m ≥ 0 such that wi2 ∈ Lm(δ(qrip, qrip)).
wi2 = wi2(1)wi2(2) · · ·wi2(m) where each wi2(j) ∈ L(δ(qrip, qrip)) = L(Rrip,rip).

qi−1
Ri−1,rip ,δ
−→ qrip

Rrip,rip ,δ
−→ qrip · · · qrip

Rrip,i ,δ−→ qi
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is a computation path in G for wi1wi2wi3 = wi.
This is true for all 1 ≤ i ≤ n.
Therefore, there is a computation path in G from q0 to qn for w1w2 · · ·wn = w.
Therefore, G accepts w = w1w2 · · ·wn.
So G and G

′
are equivalent.

Since G
′

has k states, by induction hypothesis, G
′

can be reduced to an equivalent GNFA of 2 states.
Hence, G can be reduced to an equivalent GNFA of 2 states.
This completes the proof.

Lemma 5.
If an NFA, N = (Q, Σ, δ, q0, F) is equivalent to a 2-state GNFA, NG = (Q, Σ, δG, qstart, {qaccept}), then
L(N) = L(R) where R = δG(qstart, qaccept).
< Proo f >

w ∈ L(N)

⇔ N accepts w
⇔ NG accepts w (N and NG are equivalent.)
⇔ w ∈ L(R) (R = δG(qstart, qaccept))

By Lemmas 1.39, 1.40, 1.41, we have the following conclusion:

Lemma 6.
If a language is regular, it is described by a regular expression.

By Lemma 1.37 and Lemma 1.42, we have the following theorem.

Theorem 12.
A language is regular iff some regular expression describes it.

7. Pumping Lemma
Theorem 13. - Pumping Lemma
Let A be a language.
Let (S) denote the following statement:
∃ a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into
three pieces, s = xyz, satisfying the following conditions:
(1) For each i ≥ 0, xyiz ∈ A,
(2) |y| > 0, and
(3) |xy| ≤ p.
The Pumping Lemma states that A is regular ⇒ (S).
< Proo f >

Since A is regular, there exists a finite automaton M = (Q, Σ, δ, q0, F) that recognizes A.
That is, A = L(M).
Let p be the number of states in M.
Let s = s1s2 · · · sn where each si ∈ Σ and 0 ≤ p ≤ n.
∃r0, r1, · · · rn ∈ Q, such that

q0 = r0
s1,δ−→ r1

s2,δ−→ r2 · · · rn−1
sn ,δ−→ rn, rn ∈ F.

Since p ≤ n, q0 = r0
s1,δ−→ r1

s2,δ−→ r2 · · · rp−1
sp ,δ
−→ rp is a sub path with p + 1 states.

Since M has only p states, by the pigeonhole principle, ∃k, l such that 0 ≤ k < l ≤ p and rk = rl .
Let x = s1s2 · · · sk, y = sk+1sk+2 · · · sl and z = sl+1sl+2 · · · sn.

Therefore, r0
x,δ̂−→ rk

y,δ̂−→ rl
z,δ̂−→ rn.

Since rk = rl , rk
yi ,δ̂−→ rl ∀i ≥ 0.
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Therefore, r0
x,δ̂−→ rk

yi ,δ̂−→ rl
z,δ̂−→ rn with rn ∈ F.

Therefore, M accepts xyiz.
Therefore, xyiz ∈ A.
Since k < l, |y| > 0.
|xy| = |x|+ |y| = k + l − k = l ≤ p.
This completes the proof of the Pumping Lemma.

Theorem 14. - Pumping Lemma (contra positive form)
¬(S) ⇒ A is not regular where
¬(S) is equivalent to:
∀p ≥ 1, ∃s ∈ A with |s| ≥ p such that whenever s = xyz, at least one of the conditions (1), (2), or (3) cannot
be satisfied.
The contra positive form of the Pumping Lemma is used to prove a language is not regular. The general strategy
is to find an s ∈ A with |s| ≥ p for any given p ≥ 1 so that whenever s is broken into s = xyz, at least one of
the conditions of (1), (2), or (3) must be false. This can be usually accomplished by showing one of the following:
(i) Condition 1 alone is false.
(ii) Condition 3 ⇒ ¬(Condition 1)
(iii) (Condition 2 and Condition 3) ⇒ ¬(Condition 1).

Example 3.
Show that A = {0n1n | n ≥ 0} is not regular.
The strategy is to create an s that will force y to contain all 0’s or all 1’s so that when y is pumped indefinitely,
xyiz will contain too many 0’s or 1’s to make it impossible for xyiz to remain in A.
Since Condition 3 requires |xy| ≤ p, a prefix of 0p in s will achieve that purpose.
Formally, we make the argument as follows.
∀p ≥ 1, let s = 0p1p.
s ∈ A and |s| ≥ p.
If s = xyz, then xyz = 0p1p.
Condition 3
⇒ |xy| ≤ p
⇒ xy consists of only 0’s
⇒ y consists of only 0’s.
|xyyz| = |xyz|+ |y|.
Since Condition 2 requires |y| > 0, xyyz adds a positive number of 0’s to xyz.
Since xyz has equal numbers of 0’s and 1’s, xyyz must have more 0’s than 1’s and hence is not in A.
Therefore, (Condition 2 + Condition 3) ⇒ ¬(Condition 1) and hence A is not regular.

Example 4.
Show that A = {ww | w ∈ {0, 1}∗} is not regular.
The strategy is to create an s with some leading 0’s on the left, say 0m but we also want to make sure that 0m is
long enough to force xy to contain all 0’s in it so that when y is pumped up indefinitely, it will create too many
0’s to make it impossible for s = ww.
Since Condition 3 requires |xy| ≤ p, we want to make m ≥ p.
A natural candidate for s is therefore 0p10p1.
To prove that this construction works, however, requires some algebraic manipulation.
Formally, we make the argument as follows.
∀p ≥ 1, take s = 0p10p1.
If s = xyz, then xyz = 0p10p1.
Condition 3
⇒ |xy| ≤ p
⇒ xy consists of only 0’s
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⇒ y consists of only 0’s.

Let xyiz = 0p
′
10p1 where p

′ − p = (i − 1)|y| or p
′
= p + (i − 1)|y|.

For i > 3, p
′
> p + (3 − 1) (|y| ≥ 1 by Condition 2)

Therefore, p
′
> p + 2 for i > 3.

Assume for contradiction that ∀i ≥ 0, xyiz ∈ A.

That is, xyiz = 0p
′
10p1 = ww.

For all i > 3,
|w|

= |0p
′
10p1|
2

= p
′
+p+2

2
> p+2+p+2

2 (p
′
> p + 2 for i > 3)

= p + 2
Therefore, |w| > |10p1|.
This implies w consists of at least two 1’s.
On the other hand, p

′
+ p + 2 = 2|w|.

p
′ − |w| = |w| − (p + 2) > 0

p
′
> |w|

This implies w must consist of all 0’s.
This leads to a contradiction.
Therefore, (Condition 2 + Condition 3) ⇒ ¬(Condition 1) and hence A is not regular.

Example 5.
Show that A = {1n2 | n ≥ 0} is not regular.
The idea behind this problem is every time we pump up y, we increase the length of s by an amount of |y| which
is bounded by p and p is fixed. On the other hand, s has to be the square of a natural number and the difference
between two consecutive squares, say n2 and (n + 1)2 will grow to infinity as n goes to infinity. In this case, we
don’t have to worry about how to create more 0’s in s so as to outnumber the 1’s or vice versa. This particular
nature of s will automatically lead to a contradiction to Condition 1 as |s| grows to infinity.
Proving this to work requires some algebraic manipulation.
The formal argument is made as follows.
∀p ≥ 1, take s = 1p2

p ≥ 1
⇒ p(p − 1) ≥ 0
⇒ p2 ≥ p
⇒ |1p2 | ≥ |1p| = p
Therefore, |s| ≥ p.
Assume for contradiction that Condition 1 is true.
That is, ∀i ≥ 0, xyiz ∈ A.
Both xyiz and xyi+1z are in A.
Let xyiz = 1n2

and xyi+1z = 1m2
where m and n are positive integers.

|xyiz| = n2 and |xyi+1z| = m2.
By Condition 2,
|y| ≥ 1
⇒ |yi+1| > |yi|
⇒ |xyi+1z| > |xyiz|
⇒ m2 > n2

⇒ m > n
⇒ m ≥ n + 1
By Condition 3, |xy| ≤ p ⇒ |y| ≤ p.
Therefore, |xyi+1z| − |xyiz| = |y| ≤ p.
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Therefore, m2 − n2 ≤ p.
(n + 1)2 − n2 ≤ m2 − n2 ≤ p.
2n + 1 ≤ p.
n ≤ p−1

2 · · · · · · (1) where (1) is true for all i.
On the other hand,
Condition 2 ⇒ |y| ≥ 1 ⇒ |yi| ≥ i.
n2 = |x|+ |yi|+ |z| ≥ |yi| ≥ i.
n ≥

√
i for all i.

For i > (p−1)2

4 ,
√

i > p−1
2 and n > p−1

2
This contradicts (1) which is true for all i.
Therefore, (Condition 2 + Condition 3) ⇒ ¬(Condition 1) and hence A is not regular.

8. Myhill-Nerode Theorem
Definition 13.
∀x, y ∈ Σ∗, L ⊂ Σ∗,
we say that x and y are indistinguishable by L iff ∀z ∈ Σ∗, xz ∈ L ⇔ yz ∈ L.
We say that x and y are distinguishable by L iff there exists z ∈ Σ∗ such that exactly one of xz and yz is in L.
If x and y are indistinguishable by L, we write x≡Ly.

Proposition 11.
≡L is an equivalence relation.
< Proo f >

∀x ∈ L, xz ∈ L ⇔ xz ∈ L ∀z ∈ Σ∗

x≡Lx
≡L is reflexive.
∀x, y ∈ L,
x≡Ly
⇒ (∀z ∈ Σ∗, xz ∈ L ⇔ yz ∈ L)
⇒ (∀z ∈ Σ∗, yz ∈ L ⇔ xz ∈ L)
⇒ y≡Lx
≡L is symmetric.
∀x, y, w ∈ Σ∗,
(x≡Ly) ∧ (y≡Lw)

⇒ (∀z ∈ Σ∗, xz ∈ L ⇔ yz ∈ L) ∧ (∀z ∈ Σ∗, yz ∈ L ⇔ wz ∈ L)
⇒ (∀z ∈ Σ∗, xz ∈ L ⇔ wz ∈ L)
⇒ x≡Lw
≡L is transitive.

Proposition 12.
≡L is right congruence. That is x≡Ly ⇒ xa≡Lya ∀a ∈ Σ.
< Proo f >

∀z ∈ Σ∗, a ∈ Σ,
xaz ∈ L ⇔ yaz ∈ L (x≡Ly)
xa≡Lya (Definition of ≡L)

Proposition 13.
∀x, y ∈ Σ∗, (x≡Ly) ⇒ (x ∈ L ⇔ y ∈ L)
< Proo f >

Take z = ϵ.
xϵ ∈ L ⇔ yϵ ∈ L
Therefore, x ∈ L ⇔ y ∈ L.
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Theorem 15. - Myhill-Nerode Theorem
Let L ⊂ Σ∗, X ⊂ Σ∗.
X is said to be pairwise distinguishable by L iff every two distinct strings in X are
distinguishable by L.
The index of L is defined as
Index L = max{|X| | X is pairwise distinguishable by L}.
The following statements are true:
(a) If L is recognized by a DFA with k states, L has an index at most k.
(b) If the index of L is a finite number k, it is recognized by a DFA with k states.
(c) L is regular iff it has finite index. Moreover, its index is the size of the smallest DFA

recognizing it.
< Proo f >

(a) Let M = (Q, Σ, δ, q0, F) be a DFA with k states that recognizes L.
Assume for contradiction that L has an index greater than k.
∃X (pairwise distinguishable by L) that has more than k members.
Let s1, s2, s3 · · · sk+1 be k + 1 distinct and pairwise distinguishable members in X.
δ̂(q0, s1), δ̂(q0, s2), δ̂(q0, s3), · · · δ̂(q0, sk+1) are k + 1 states in Q.
Since |Q| = k, by the pigeonhole principle, there are i, j where 1 ≤ i < j ≤ k + 1 s.t.
δ̂(q0, si) = δ̂(q0, sj).
∀z ∈ Σ∗,
siz ∈ L
⇔ δ̂(q0, siz) ∈ F (M recognizes L)
⇔ δ̂(δ̂(q0, si), z) ∈ F (Proposition 1.14)
⇔ δ̂(δ̂(q0, sj), z) ∈ F
⇔ δ̂(q0, sjz) ∈ F (Proposition 1.14)
⇔ sjz ∈ L (M recognizes L)
Therefore, si≡Lsj (Definition of ≡L)
This contradicts the assumption that X is pairwise distinguishable by L.

(b) Let X = {s1, s2 · · · , sk} be pairwise distinguishable by L.
Claim 1. Index L ≥ 2 ⇒ L ̸= ∅ and hence L = ∅ ⇒ Index L = 1.
<Proof of Claim 1>
Index L ≥ 2
⇒ ∃X (pairwise distinguishable by L) that has at least 2 members.
⇒ ∃si, sj ∈ X where si ̸= sj and si, sj are distinguishable by L.
⇒ ∃z ∈ Σ∗ s.t. siz ∈ L and sjz /∈ L or vice versa.
⇒ L ̸= ∅.
Since L = ∅ ⇒ Index L < 2 or Index L = 1, Index L is defined to be 1 whenever L = ∅.
Claim 2. ∀w ∈ Σ∗, there is one and only one sw ∈ X s.t. w≡Lsw. Hence by taking w = ϵ,
there is one and only one sϵ ∈ X s.t. ϵ≡Lsϵ.
<Proof of Claim 2>
Either w ∈ X or w /∈ X.
If w ∈ X, ∃si ∈ X s.t. w = si.
Call this sw so that w = si = sw.
Since ≡L is reflexive, it follows that w≡Lsw.
If w /∈ X, w must be indistinguishable with a member of X otherwise it will contradict
the assumption that Index L = k.
Therefore, w≡Lsw for some sw ∈ X.
Either case, w≡Lsw for some sw ∈ X.
If there is another s

′
w ∈ X s.t. w≡Ls

′
w, then sw≡Ls

′
w because ≡L is transitive.

This contradicts the assumption that X is pairwise distinguishable by L.
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Therefore, sw is unique.
Claim 3. If L ̸= ∅ then L ∩ X ̸= ∅
<Proof of Claim 3>
L ̸= ∅ ⇒ ∃w ∈ L
By Claim 2, there is one and only one sw ∈ X s.t. w≡Lsw.
By Proposition 1.52, w ∈ L ⇔ sw ∈ L.
Therefore, sw ∈ L ∩ X.
Therefore, L ∩ X ̸= ∅.
This completes proof of Claim 3.
If Index L = k = 1, L = ∅ which is recognized by the one-state DFA, M = ({q}, Σ, δ, q, ∅)

where δ(q, b) = ∅ ∀b ∈ Σ.
If Index L = k ≥ 2,
∃X = {s1, s2, s3 · · · sk} where X is pairwise distinguishable by L.
Let Q = {q1, q2, q3 · · · qk}
Let f : X −→ Q such that f (si) = qi ∀i with 1 ≤ i ≤ k
f is bijective (one-one and onto).
∀qi ∈ Q, ∃ a unique si ∈ X s.t. f (si) = qi since f is bijective.
∀a ∈ Σ, ∃ a unique sj ∈ X s.t. sia≡Lsj by Claim 2.
Since f is a bijective mapping, there is a unique qj such that f (sj) = qj.
Let M = (Q, Σ, δ, q0, F) where
δ : Q × Σ −→ Q s.t. δ(qi, a) = qj where
a ∈ Σ, qi, qj ∈ Q s.t. f (si) = qi, f (sj) = qj where si ∈ X, sj ∈ X and sia≡Lsj.
If there is another qk ∈ Q such that δ(qi, a) = qk, ∃sk ∈ X such that f (sk) = qk and
by definition of δ, sia≡Lsk.
Since ≡L is transitive, sj≡Lsk.
This contradicts that both sj and sk are in X and hence must be distinguishable by L.
Therefore, δ(qi, a) = qj is uniquely defined.
q0 = qϵ where qϵ = f (sϵ) and sϵ is defined in Claim 2.
F = { f (s) | s ∈ L ∩ X}
F ̸= ∅ because of Claim 1 and Claim 3.
Claim 4. ∀w ∈ Σ∗, δ̂(qϵ, w) = qi ⇔ w≡Lsi where f (si) = qi.
<Proof of Claim 4>
Claim 4 can be proved by induction on |w|.
For w = ϵ, there exists one and only one sϵ ∈ X s.t. ϵ≡Lsϵ by Claim 2.
δ̂(qϵ, w) = qi

⇔ δ̂(qϵ, ϵ) = qi (w = ϵ)
⇔ qϵ = qi (Definition of 1.4(i))
⇔ f (sϵ) = qi (Definition of qϵ)
⇔ f (sϵ) = f (si) (Definition of qi)
⇔ sϵ = si (f is bijective)
⇔ ϵ≡Lsi (ϵ≡Lsϵ by Claim 2)
⇔ w≡Lsi (w = ϵ)
The statement is true for w = ϵ.
Let δ̂(qϵ, wa) = f (si) = qi.
δ(δ̂(qϵ, w), a) = f (si) = qi.
∃qj s.t. δ̂(qϵ, w) = qj

∃sj s.t. f (sj) = qj and
w≡Lsj (By induction hypothesis)
wa≡Lsja (≡L is right congruence by Proposition 1.51)
δ(qj, a) = qi
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⇒ sja ⇒L si (Definition of δ)
⇒ wa≡Lsi (≡L is transitive)
Conversely, if wa≡Lsi for some si ∈ X,
δ̂(qϵ, wa)
= δ(δ̂(qϵ, w), a)
= δ(qj, a) where qj = δ̂(qϵ, w)

By induction hypothesis, w≡Lsj because δ̂(qϵ, w) = qj.
wa≡Lsja (Right congruence by Proposition 1.51)
Let δ(qj, a) = qk

sja≡Lsk (By definition of δ)
wa≡Lsk (≡L is transitive)
wa≡Lsi (Assumption)
sk = si (Claim 2)
f (sk) = f (si)

qk = qi

δ̂(qϵ, wa)
= δ(qj, a)
= qk

= qi

This completes the proof of Claim 4.
It remains to prove L = L(M).
∀w ∈ L, ∃ one and only one si ∈ X s.t. w≡Lsi (By Claim 2)
w ∈ L ⇔ si ∈ L (Proposition 1.52)
Therefore, si ∈ L (w ∈ L)
Since si ∈ L ∩ X and qi = f (si), qi ∈ F (Definition of F)
δ̂(qϵ, w) = qi (Claim 4)
δ̂(q0, w) = qi (q0 = qϵ)
M accepts w (qi ∈ F)
Conversely, if M accepts w,
δ̂(qϵ, w) = qi and qi ∈ F (q0 = qϵ)
w≡Lsi where qi = f (si) (Claim 4)
w ∈ L ⇔ si ∈ L (Proposition 1.52)
Since qi ∈ F and qi = f (si),
si ∈ L ∩ X by definition of F.
Therefore, si ∈ L.
Therefore, w ∈ L.
L = L(M) and M has k states.

(c) L is regular
⇒ ∃M s.t. L = L(M)

⇒ Index L ≤ k where k = the number of states in M (by (a))
⇒ L has a finite index
L has a finite index
⇒ Index L = k
⇒ L = L(M) for some k-state DFA M (by (b))
⇒ L is regular
Assume for contradiction that there is a k

′
-state DFA accepting L where k

′
< k.

By (a), Index L ≤ k
′
.

This would contradict k
′
< k = Index L.
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9. An Application of the Myhill-Nerode Theorem
The Myhill-Nerode Theorem can be used to determine whether a language L is regular

or non-regular by determining the number of members in X, the set that is pairwise
distinguishable by L.

Example 6.
Determine if L = {anbn | n ≥ 0} is regular.
Consider X = {a, a2, a3 · · · }
∀ distinct x, y ∈ X, x = ai, y = aj where 1 ≤ i < j < ∞
∃z = bi such that
xz = aibi ∈ L and yz = ajbi /∈ L.
x and y are distinguishable by L. (x ̸≡Ly)
X is pairwise distinguishable by L.
Index L ≥ |X|
Index L is infinite.
L is not regular.
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