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Abstract

There is a lack of rigorous mathematical treatment in the theory of finite automata. This paper provides
a rigorous mathematical approach to automata theory which doesn’t currently exist in the literature of
theoretical computer science. Basic definitions are developed in mathematical terms and used as the
foundation for constructing mathematical proofs for theorems. It provides a model for instructors to
write better lecture notes and authors to write better textbooks for educational purpose. It also corrects
some critical errors and erroneous arguments that can be found in many textbooks which are widely
used in the education of theoretical computer science.
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1. Deterministic Finite Automaton (DFA)

Definition 1.

A deterministic finite automaton denoted by DFA is a 5-tuple,

M = (Q,%,6,q0,F), where

(i) Q is a finite set of states;

(ii) X is a finite alphabet;

(iii) 6 : Q X & — Q is the transition function;

(iv) qo € Q is the start state; and

(v) F C Q is the set of accept states.

Let w = wiwows, - - - , wy be a string over ¥ where each w; € L and n > 1.

M accepts w if and only if 3rg, r1,72,- -+ , 10 € Q s.t. the following conditions are satisfied:

(a) ro = qo;

(b) 6(r;,wijy1) =riyq fori=0,1,2,--- ,n—1;and

(c)r, € F

For n = 0,w = €. Only conditions (a) and (c) are applicable and they become ry = qo and ro € F. We therefore
define M to accept € if the start state is also an accept state.

On the other hand, since there is no e-movement in a DFA, the only way the DFA can accept an empty string is
to accept it at the start state.

Accordingly, M accepts € if and only if the start state is also an accept state.

i 0 . . ..
If we write r; g tivq instead of 6(ri, wiy1) = tipq1 fori =0,1,2,--- ,n —1, then conditions (a), (b) and (c)

can be written as follows:

wy,8 wy,8 Wy,6
qo =To » 12Ty > T, Ty € F

We say M recognizes language A if A = {w € £* | M accepts w} and it is written as L(M) = A

Definition 2.
A language is called regular if it is recognized by a DFA.
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Definition 3.

For any language L,

L= {e}, L' =L, L*=LL,-- , L™ = L"L form > 0.
o

L*=10uL'ul?y...= J Lk

k=0
={w|w=wwws- - wy;w; €Lfor1 <i<mn>1}U{e}

Definition 4.
Inductive Transition Function
Let M = (Q,%,9,q0,F) bea DFA.
5:QxX* — Qs.t.
(1) 6(q,€) =q VgeQ
(ii) 5(q,wa) = 5(6(q,w),a) VacX,weX*qecQ

Definition 5.
5 d .
Vp,g € QuweXs,p LN q é» g=10(p,w)

Proposition 1.
5(g,a) = 6(g,a)Vg € Qa € X

< Proof >

8(9,a) = 5(q, €a)

=6(0(q,€),a) (Definition1.4(ii))
= 6(q,) (Definition1.4(i))

Theorem 1. (DFA Acceptance)

Forany DFA, M = (Q,%, 4,40, F)
5(qo,w) € F <= M acceptsw Yw € T*
< Proof >

Claim: If w = wywy - - - w, where n > 0 and

wq,0 wy,0 Wi 1,0 Wy,0 2
go = ro 4 S =5 Tig1: Tno1 — Ty, then 6(rg, w) = ry

This Claim can be proved by induction on n.

Forn = 0, w = € and the computation becomes qog = 9.
8(go,w) = é(qo, €)

=4 (By Definition 1.4(i))

=7y

Therefore, the statement is true for n = 0.

Assume the statement is true for n = k, where k > 0.
That is, 6(ro, wiwy - - - wy) = ¢

8(ro, wiwy - - - wpwyy1) = 6(8(ro, wrws - - - W), Wi 1) (Definition 1.4(ii))
= 6(rg, wry1) (Induction Hypothesis)
= rri1 (Definition of ri11)

Therefore, the statement is true for n = k + 1.
If M accepts w = wqws - - - Wy, where w; € L for 1 <i<mnandn >1or (w=eandn =0)
dro, 11,12, 1n € Q st
wy,d  wyd Wit1,0 wy,0
qo=1g——> 11—ty ¥ —> Viyp+ Ty_1 —> Ty, Ty €F
By Claim, §(ro, wyws - - - wy) = Ty
Therefore, (o, w) = 1y (ro = qo;w = W Wy - - - Wy)
Sincer, € F,
5(!]0, w) eF
Therefore, M accepts w = (g9, w) € F
Conversely, if §(qo, w) € F
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5(1]0,7/(]1102 cee wn) e€F

Take vy = qo

rit1 = 6(ri, wit1) Vi=0,1,2---n—1
w1,0 wy,0 Wit1,0 Wy,

qo="%tyg ——=71 —=>ty---1i —= Vi1 " "Ty_1 ——>71n

By Claim, 5(7’0, WiWy - - - Wy) = Ty

Since 5(110, wywy - --wy) € F,ry € F.

Therefore, M accepts w.

Therefore, 5(qo, w) € F = M accepts w.

Therefore, 5(qo, w) € F <=> M accepts w.

This completes the proof.

Theorem 2.

For any DFAs, M and M’ where

M= (Q,%,6,q0,F)

M =(Q,%,5,q0,F)
VgeQuaeXwe Z*A

§'(q,a) = 8(q,a) = &' (q,w) = 5(q,w)
< Proof >

The proof is by induction on |w| > 0.

For |w| =0,w =e.

By Definition 1.4(i),

8(q,€) = qand 5'(q,€) =q

Therefore, 6(q,€) = 8'(q, €)

Assume the statement is true for |{w| =k > 0.
(g, wa) = 8(8(q, ), a)

=5 (8(g,w),a) (6'(g,a) = 8(q,2))
=0 (8'(q,w),a) (Induction Hypothesis)
=6'(q, wa) (Definition 1.4(ii))

The statement is also true for |w| =k +1

2. Nondeterministic Finite Automaton (NFA)

Definition 6.
A nondeterministic finite automaton (NFA) is a 5-tuple,
N = (Q,%,9,q0,F), where
(i) Q is a finite set of states;
(ii) X is a finite alphabet;
(iii) 6 : Q x Xe — P(Q) is the transition function, where
Ye =X U{e}, P(Q) = the power set of Q = {S | S C Q}.
(iv) qo € Q is the start state; and
(v) F C Q is the set of accept states.
Let w = wywows - - - wy, where w; € L for 1 <i < mandm > 1.
N accepts w if and only if Irg, 11,12, -+ , 1w € Q s.t. the following conditions are satisfied:
(a)ro € {90}
(b) riyq € 6(ri, wiyq) for i=012---,m—1
(c)rm €F
Form=0,w=¢€.
Only conditions (a) and (c) are applicable and they become ry = qo and o € F.
We therefore define N to accept € if the start state is also an accept state.

it1,0 . . -
If we write r; Ui riv1 instead of riy1 € 8(r;,wiyq) fori =0,1,2,--- ,m — 1, then conditions (a), (b) and (c)
can be written as follows:

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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w1,0 wy,0 Wig1,0 Wi, 0
Qo =170 —+ 11 —> Ty T —> Viy1 - Tm_1 — tm, rm € F.

Note that when m = 0, this computation becomes qy = ro and ro € F.

Definition 7. (Inductive Transition Function)

Let N = (Q,%,6,4q0, F) be an NFA.

5:P(Q) x Xt — P(Q) such that
(i)6(A,e)=A  VAeP(Q)

(i) 6(A,wa) = U d(q,a) Va € Le,w € Lf, A € P(Q).
qed(A,w)

Definition 8.
5 d .
Vp,ge QuweX, p LN q é ged({p} w).

Proposition 2.

IfFN =(Q,%,6,q0, F) isan NFA, then

Va€Xe,pcQd({p}a)=20p,a).

< Proof >

o({p}.a) = o({p}, ea)

= U g9 (Definition 1.10 (ii))
q€d({p}.e)

= U d(q9) (Definition 1.10 (i))
q€{p}

=d(p,a)

Proposition 3.
IfFN =(Q,%,6,s0,F) isan NFA,

Vw € XF where w = wywows - Wy ; W; € Lefor 1 <i<mandn>1lorw =¢€forn=0.

2 0 , 8
(Fro,r1,12, - ,tn € Qs.t.so =19 e N ) wnd ) <=1 € 0({so}, w)

< Proof >

This proposition can be proved by induction on n.

Let P(n) denote the statement:

(Fro,r1,12, -+, 1 € Qs.t.sp =19 “d 2] w2d Ty Ty_1 “nd n); and
Q(n) denote the statement: r, € §({so}, w).

Forn=0,w =e.

P(0) < (3rp € Qs.t. so =19)

1y € {So}

=19 €6({s0},€) (Definition 1.10(i))
=19 € 6({s0},w) (w=¢)
= Q(0)

Assume P(k) <= Q(k) for any k > 0.

P(k+1) < (Irg, 71,12, T 71 € Qs.L 59 =1 R 1 ©24 Ty e i on wﬂi(s Tki1)
P(k+1) = P(k) (From computation path of P(k +1))
= Q(k) (Induction Hypothesis)
= 1, € 6({s0}, w) where wywows - --wy = w  (Definition of Q(k))
Since
S({so}, wwp) = U (g, wrp) (Definition 1.10(ii)
q9€6({s0}w)

and 1 € 5({so}, w),
6(rk, wes1) C 0({s0}, wwpiq)
g .
Tk ey Tri1 (From computation path of P(k + 1))

Therefore, 141 € 6(rg, wis1) C 6({s0}, wiwrs1)

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Therefore, 141 € 6({so}, wwy41)

Therefore, P(k+1) = Q(k +1).

Conwersely,

Q(k+1) = 141 € 0({s0}, wwg1)

=€ U (g we)
q€6({so},w) A

Trs1 € 0(rg, wiy1) for some vy € 0({so}, w)

ne € 8({so},w) — Q(K)

= P(k) (Induction Hypothesis)
6 6 ¥
— (37"0,7‘1,}’2,. ST € QS.t. S0 = 1o &) 71 &) Ty Tr_1 wL> 7’k>

Wy11,0
kg1 € 01, We1) == 1x — Tk

Combining the two computation paths,

w0 wyd W0 Wey,0
So=rg ——=T11 —> Ty Tf_1 —> T — Tky1

Therefore, Q(k + 1) == P(k + 1) and the proof is complete.

Proposition 4.

Vx,y € Tt & A € P(Q), 8(A, xy) = 5(8(A, x),y)
< Proof >

The proof is by induction on n = |y|.

Let T(n) denote the statement corresponding ton =0,1,2, - - -
For|ly| =0,y =e.

5(A,xe) = 6(A,x)

=5(8(A, x),€) (Definition 1.10(i))
T(0) is true.

Assume T (k) is true for |y| = k > 0.

That is 5(A, xy) = §(5(A,x),y) for [y =k >0
Foranya € Xe,y € 2%, ly| =k

LHS of T(k+1) = (A, xya)

= U d@4ga) (By Definition 1.10(ii))
qeé(A,xy)

= U 5(q,a) (By Induction Hypothesis)
q€8(8(A%).y)

= 5(8(A, x),ya) (By Definition 1.10(ii))

= RHS of T(k +1)

Therefore, T(k) = T(k+1).

Proposition 5.
A n n A
VA, CQxexki=12---nne N,(S(U A,~,x> = U o(A;, x)
i=1 '
< Proof >
The proof is by induction on |x|.
For|x|=0,x=e.

5 (6 Ai,e> — A (Definition 1.10(i))
i=1 i=1

= U 8(Ase) (Definition 1.10())
=1

1=
Claim: ¥Vn € N, sets A; and Sy
n
U S=Ul| U Sx)

XGU:‘;IAI‘ i=1 \ x€A;
<Proof of Claim>

LHS = U S
x€A1UAU--- Ay

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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( U Sx>U< U 5x>U"'U< U 5x>
xX€A] XEAp XEA,
U ( U sx>

i=1 xEAi

= RHS
Assume the statement is true for |x| = k for k > 0.
Va € X, |xa| = k+1.

5 <L"J Avxa)= U b(pa) (Definition 1.10ii))
=1 ped (UL, A))

= U o(p,a) (Induction Hypothesis)
peEUL | 5(A;x)

= 6 < U 5(p,a)> (Claim)
i=1 peS(Airx)

— U 6(A;, xa) (Definition 1.10(ii))
i=1

The;efore, the statement is also true for |x| =k + 1.

Proposition 6.

5(A,x) = U 8({q},x) forall A C Q.
qeA
< Proof >
LHS = 5( U {q},x>
geA
= U é({q},x) (Proposition 1.15)
qeA
= RHS

Proposition 7.
VA, B, where A C B C Q,8(A,x) C §(B,x)

< Proof >

B=AU(B\A) (Set Theory)
5(B,x) =6(AU(B\ A),x)

=5(A,x)US(B\ A, x) (Proposition 1.15)

Therefore, (A, x) C 8(B, x)

Proposition 8.

For any two NFAs N1 and Np, where

Ni = (Q1,%,61,q1, Fr)

Ny = (Q2,%,02,92, F>) and Q1 C Qp

Vg € Q1,4 € Z¢,61(g,a) C 62(q,a) = 61({q}, w) C &({q}, w)Vw € Xf
< Proof >

The proof is by induction on |w|.

For |w| =0, w =e.

51({a},€) = {q} and &({q},€) = {q}  (By Definition 1.10())
Therefore, 51({q},€) C 62({q},€).

The statement is true for |w| = 0.

Assume the statement is true for |w| = k > 0.

That is, &1 ({q},w) C ({4}, w) for |w| =k > 0.

Fork +1,

S{ghwa)= U  di(pa)
pesr({q}w)

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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C U d(p,a) (By Induction Hypothesis and 5, (q,a) C &,(q,a))
ped({g}w)
= 02({q}, wa) (By Definition 1.10(ii))

Theorem 3. (NFA acceptance)

N =(Q,%,3,s0, F) isan NFA.

Yw € XF where w = wywyws - - - wy; and

(wj €Zeforl <i<mandn >1)or(w=eandn =0).

N accepts w if and only if §({so},w) N F # @

In other words, N accepts w if and only if (3r € F s.t. sg RN r)

< Proof >

If N accepts w

drog, 11,12, -1 € Q st 59 =19 g 1 w28 ro e Tp_q wnd rpandry, € F.
rm € 6({s0},w) (By Proposition 1.13)

Since r,, is also in F,

S({so},w) NF # @

Conversely, if 5({so},w) NF # @,

Iry € 8({so},w) and r, € F.

Jrg, 71,72, 1y € Qs sg =1 g 1 w28 rp - Tp—1 wnd ry; 1ty € F (Proposition 1.13)
Therefore, N accepts w.

3. Epsilon-Closure

The e-Closure of a set of states is a collection of states that can be reached from a member of the
given set of states via zero or a finite number of € transitions.
Formally, we define e-Closure as follows.

Definition 9.
Let N = (Q,%,8,s0, F) bean NFA.
Forany R C Q, the e-Closure of R is

E(R)y={q€Q]|p <4, q for some p € R} where

0
iis an integer > 0 and p €4 qmeans p = q.

Proposition 9.

n n
VA; CQi=12---nneN, E(U Ai> = U E(4))
i=1 i=1

< Proof >
Claim. E(Al U Az) = E(Al) U E(Az)
<Proof of Claim>

qEE(Alqu)@)EIpeAlUAzs.t.pﬁ)qwhereizo

S ((FpeA)Vv(@peA))n(p <A q where i > 0)

(9 € E(A1)) V(g € E(A2))

& g€ E(A1) UE(Ay)

Therefore, E(A1 U Ay) = E(A1) UE(Ap)

With this Claim and an induction argument, we can conclude Proposition 1.21.

4. The Equivalence of DFA and NFA

Lemma 1.

Let N = (Q,%, 6,40, F) bean NFA, M = (Q',%,5,q,, F) be a DFA.
Q/, :/P(Q)rqol ZIE({qO})rF/ ={R¢€ Q, | RNF # O}

0 :Q XX — Q such that

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Let w = wywyws - - - wy such that ifn =0,w = eand ifn > 1, thenw; # e V1 <i<n.
Let ig, 11,13, - - - iy be integers > 0,q0,91, 92, - qn € Q, p1,P2,P3, - Pn € Qand g € Q.

The followmg holds:
lO 5

Wy _1,0 ein—lj [ Ei”,(§
QO—>IJ1—>191 —>Q2—>P2—>Q3 “In-1 — Pn-1 — qn —= Pn —2 4.

= q € 8'(gp,w)

< Proof >

Proof is by induction on |w| = n.
Let P( ) denote the statement of

-1,4 00
‘10—>‘71W—>P1—>qz—>m—>¢73 “dn—1 —> Pn—1 —> qnw—>

and Q(n) denote the statement of q € 5 (4o, w) corresponding ton > 0.
F0r|w|—n—0w—e

P(0) < g0 S8 ¢
<4 € E({q0})

—q€q (90 = E({q0}))
g€l (qo, €)  (Definition 1.4(1))
<:>q65(q0,w) (w=¢)

Pn — 4.

k1 0

= Q(0)
Assume P(k) < Q(k) fork > 0.
P(k+1)
€lo$ w1, e wo, Wy, 0 k0
@qo—ﬂh—Wl —>42—>P2—>0]3 qk—>Pk—>qk+1 —> Prv1 — 4
ek §
& P(k) & iy —> Pk+1 pa— q

< Q(k) & qri1 RARTY Pks1 H—lfs q (Induction Hypothesis)
W1, ekt

< k1 € 5 (110, w) where |w| =k & i1 Ly Pl — q
S g €0 (g0, w) where [w] = k & q € E(8(qis1, Wks1))
g€ AU E(6(r, wyy1)) where |w| =k

red (qé,w)
& g €8 (3 () ), 1) where [wo] = k

(Consider R = &' (4, 0), w1 = a &8 (R, a) =) U E(é(r,a)))
reR
& q €8 (qgy, wwyyq) where |w| = k (Definition 1.4(ii))
< Q(k+1)

This completes the proof of Lemma 1.22.

Theorem 4.

Every NFA can be converted to an equivalent DFA.

< Proof >

Let N = (Q,%,5,q0, F) be an NFA.

Construct a DFA as follows.

M= (Q,,Z, 5,,%, F’) where

Q' = P(Q)a0' = E({go}), F = {Re Q' | RNF # @}
0 :Q XX — Q such that

§'(Ra) = U E(5(r,a)) VacL,Re Q

We claim that N and M are equivalent by showing that

VYw € Lf, N accepts w < M accepts w

The proof is divided into two cases, one with w = € and one with w # e.
(i)w=¢e

If N accepts w,

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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dj > 0s.t. qo N pandp € F.

Therefore, p € E({q0}) & p € F.

Therefore, p € qz) &peF.

Therefore, ‘7;) NE #Q.

Therefore, qz) eF.

Therefore, the start state of M is also an accept state of M.

By definition, M accepts e(= w).

Conversely, if M accepts w = €,

qa € F  (ADFA accepts € iff its start state is also an accept state.)
qoNF#@  (Bydefinition of F')

dp e qéandp € F.

Since 4o’ = E({g0}), g0 LA p for some j > 0.

Since p € F, N accepts €l, which is same as €.

(i) w # e

Jw; #€,V1 <i<n,n>1and

w = eiowleilwzei2w3ei3 N o for some integers iy, 1,13, - - i > 0

If N accepts w,
EIqOIql/qZ/"'QHEQIPDPer?)/ PnEQa”quQSt
el $ wq,0 €l,$ wy,0 €2 ,§ en-18 Wy,0
G0 =51 =5 P1 =2 42 =5 p2 = 3 U gy g 28 gy S g e
By Lemma 1.22, q € 5 (49, w) where w = W Wyw3 - - - Wy.

Therefore, 5 (qo, w)NF # Q.
Therefore, & (49, w) € F'.

Therefore, M accepts w (DFA acceptance)

Conversel]/, if M accepts w = wwyws - - - Wy,
(qo, w) € F/ (DFA acceptance)

5 (qo, w)NF#Q (Definition of F')

ged (4o, w) and q € F.
By Lemma 1. 22

el § wy Wy_1,0 ein—1 0
10 S0 S 0 S 8 g Y s Y g, TR &g e E.
Therefore, N accepts w = el et ZUZGZZZU3GZ3 - wpEen
This completes the proof of Theorem 1.23.

Corollary 1.
A language is regular iff some NFA recognizes it.

5. Regular Operators

Regular Languages are closed under the operation of Regular Operators.

Theorem 5.

L is reqular = X* \ L is reqular.

< Proof >

Let M = (Q, %, 6,90, F) be the DFA that recognizes L.
That is, L(M) = L.

Define M = (Q,%, 5, g0, Q \ F) where
§:Qx%—QstVgeQuaeXd(ga)=05(qa)
Yw e X*\ L,

wé&L :>(§(q0,w) ¢F

= b(q0,w) € Q\ F

= 6'(q0,w) € Q\ F (Theorem 1.8)
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— M accepts w

Conversely, if M accepts w, & (qo,w) € Q\ F

5(go,w) € Q\ F (Theorem 1.8)

Therefore, §(qo, w) ¢ F

Therefore, w ¢ L (because w € L = M accepts w == §(qo, w) € F)
weX*\L

Therefore, w € £* \ L <= M accepts w.

L(M)=x*\L

X*\ L is regular.

Theorem 6.

Ly and Ly are reqular => Ly N Ly is reqular.

< Proof >

dDFAs My and My s.t. L(My) = Ly and L(M;) =
Let Ml = (Ql/z‘/51/ 50, Fl)

My = (Q2,%, 68,50, )

Define M3 as follows.

M; = (,,Q3 z, (53,,58,1:3)

where sy = (s0,57), Q3 = Q1 X Q2, F3=F x F,
03: 03 XX — Q3s.t.

53((q1,92), @) = (61(q1,0),02(42,a)) V1 € Q1,92 € Q2,0 € A.
Claim. Vn € NU {0}, w € £*, where |w| = n, if

, w18 w26 W6
(i) s = 1o 2 ry 2% gy, 4 2y,

.. ,0 , 1,0

(11)56:1’2)101—;/102—%7’2 v 1w—§r:1
0 6 0

(lzz)s0 = rg wl—? r’ll 2% r;~~~r:;_1 ey r,,:
then v, = (ry,1y).
Proof of Claim is by induction on n.
Forn =0, (i), (ii) and (iii) become sy = 1, 56 = r(), and sg = rg.
sg = (s0, sé/) , (By definition of M3.)
Therefore, 1y = (ro,7,)
Assume the statement is true forn =k > 0.
(i), (i) & (iii) forn =k +1 =

w1,51 wy 5 wk,(51 wk+1751
So =19 —> 11 —)1’2 T—1 — T — Tky1

A VR Y / Wi,0p 1 Wiy1,02 1
S9 =10 A R Iy Ly SR e T Ty
no o omwydy 1 wyd o Wi,y 1 Wre1,03 0
Sp=Tg AT Ry =

; Wgi1,00 7 " Wgy1,03 1

N e 01
= (i), (ii) & (iii) forn = k & 1y, et Tka1 &rk — g & —
" ! i " "
=1y = (10 1) & g1 = 01 (1, Wes1) & 1eyq = 02(1 Wie1) & 1y = 03(7y, Wy1)
(Induction Hypothesis)
i ! " I
= T = 01 (1, Wrp1) & 1 = 62(r, Wrg1) & 1y = 63((7k, 1), Wiy 1)
! !/ " !/
= 1ky1 = 01 (1, Wip1) & 1y = 02(r wiy1) & 1y = (61(rk, Wir1), 021 Wiy 1))
(Definition of 63)
" !/
= e = (M1, Ty )
We now need to show L1 N Ly = L(M3).
Yw e LiNLy,w € Lyand w € Ly.
w101 w01 W01
weE Ly = dsyg = ro,rl,rz, “tpSt.sg =719 —> 1] —>¥p--- rh1 — rn&ry, €F
P
...... r:’l—l w"_§ r;l &r;l c FZ

=
®
-~
®
S
-
P I
g
&
S
&
<
S
g
v
&,
-
o~

wE Lz :> Elso = ”0/”1/"2/' o7
Let ”0 = SO = (so,so)
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Therefore, sg = rg ki r’l/ vy rg = -r;_l e r
By Claim, r,, = (ry, 1)

Since r, € Fy and r,n €k, r;; € Fi xF, = Fs.
Therefore, M3 accepts w.

w e L(M3)

LiNLy, C L(M3)

Conversely, if w € L(Mj3),

"noonoon " " i wy,03 1 wy,d3 1 ” wn,d3 1 ”
g, 11,1, 1y € Q38ih Sy =1y —5 1] —F Py evvee r S & e By
Take
o = So,
tiy1 = 01(rj, wiy1)Vi=0,1,2,---n—1;

! !/
79 =5y /
i1 = 0a(r;,wiy1)¥i=0,1,2,---n—1
Therefore,

W ’(51 wa 151 Wy ,51
So =719 —> 1 —— Ty i1 — "n
/ 1 wydy 1 wy,dy 7 ’ Wn,00 1
SOZrO 1—?1’12—51’2 ...... rnil n_grn

By Claim, = (rn,ry)

Since r;’ el =FxFk,r, € Fand r;l e F.
M accepts w and M accepts w.

w € L(M;) and w € L(M;)

weE Liandw € Ly

weliNly

L(M3) CLiNL,

Combining both directions, L(M3) = L1 N Ly
L1 N Ly is regular.

Theorem 7.

Ly and Ly are regular => L1 U L, is regular.

< Proof >

From set theory, ¥* \ (L1 U Ly) = (X*\ L) N (Z*\ Lp)

Ly is reqular => X* \ Ly is reqular. (Theorem 1.25)

Ly is regular = ¥.* \ Ly is regular. (Theorem 1.25)

Y*\ Ly and £* \ Ly are reqular => (X* \ L1) N (X* \ Lp) is regular. (Theorem 1.26)
Therefore, * \ (L1 U Lp) is regular.

Therefore, L1 U Ly is regular. (Theorem 1.25)

Theorem 8.

Every NFA can be converted to another NFA with the following properties.

(i) There is only one accept state which has transition arrows coming in and no
transition arrows going out.

(ii) The accept state is different from the start state.

(iii) The start state has no arrows coming in from other states but only transition
arrows going out.

< Proof >

Let Ny = (Q1,%, 61,91, F1) be the NFA to be converted.

Define NFA, N = (Q, %, 6,40, {qa}) where Q = Q1 U {qo,qa},q0 # qa and
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{m}t if (9.x)=(qo€)
@ if gq=qoandx # €
% Zf q="4a
Si1(g,x) if g€ Q\Fk
0(q,x) if ge FRandx #e
01(q,x)U{qa} if geFandx=¢
It is clear that N satisfies conditions (i), (ii) and (iii).

Furthermore, 61(q,x) C 8(q,x) Vx € Z¢,q € Qq and hence
51({q},w) C 8({q},w) Yw € ¥} by Proposition 1.18.

It remains to show that Yw € X%, Ny accepts w < N accepts w.
For forward direction” =",

5(q,x) =

Let Ny accepts w.
7El % r, v € Fp.
Since 61(q1,w) C 6(q1,w), g1 LN r,r € F.
. )
Since 6(q0,€) = {1}, 90 Rt q1.
Furthermore, since 6(q,€) = 61(q,€) U{qa} Vg € F1, 6(r,€) = 61(r,€) U{qa}.
Therefore, q, € 6(t,€).
That is, r e—’5> Ja

Therefore, qo SN q1 RPN Ga-
Therefore N accepts ewe which is the same as w.
Therefore, Ny accepts w = N accepts w.
Conwersely, if N accepts w = x1xp - - - X, where x; € e forn > 1 &1 <i < n.
(Note that w = € if x; = € Vi.)
Jdrg, 11,72, -1 € Qs.t.
go =10 M)rl xi’(sn’z---rn,l JCL’%m&m € {44}
Since the only way to transition to q, using d is from a state in Fy via the € arrow, we must haver,_1 € F; &
Xp = €.
Since the only way to transition out of qo(= ro) using 6 is via an € arrow, we must have x; = €.
Since 5(qo, €) = {q1}, we must have ry = qy.
We now can rewrite the above computation as
€0 X0,0 Xp_1,0 €,0
qo=7ty)——>4q1 —> T2 "Ty_2 —> Ty_1 —>qa&rn_1 S Fl.
Forall1 <j<mn—2,r; & {qo,qa} because r; has both incoming and outgoing arrows.
Therefore, rj € Q1.

. Xj11,01 .
Claim. ri — Ttip1 Vi<j<n-2

Since rj € Q1,0(rj,xj41) = 01(rj, xj11) or 61(rj, Xj11) U {qa} by definition of 6.

x]‘+1,(5
1’]' — 1’j+1

= rjy1 € 6(rj, Xj41)

= rjp1 € 01(rj, xji1) or rjga € 01(7j, Xj1) U{qa}

= 1j11 € 01(rj,xj41) orrj11 € 61(rj,xj41)  (becauserjiqy # qa)
= 1i11 € 01(rj, xj41)

Xj4+1,01
:>7’]‘ — Tit1

The computation now becomes

qo =710 e_,&) q1 % 4, IR PP} xrigl Tn—1 E—’(S> qa &r,_1 €F.
Therefore, g1 % Ty Th_o x'ifl rp1&r,_1 € F.

Therefore, N1 accepts xpx3 - -« - - - Xp—1.

Therefore, N1 accepts w = xqxpX3 -+« - - - Xy—1Xp because x1 = x,, = €.
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Therefore, N accepts w = Ny accepts w.
This completes the proof of Theorem 1.28.

Theorem 9.
For any reqular languages Ly and Ly, the language L1 L, is regular.
< Proof >
Since Ly and Ly are reqular, there exist NFAs N1, N that recognize L1 and L.
By Theorem 1.28, we can start with Ny and N defined as follows.
N1 = (Q1, %, 61,915, {914 }) where
015 # q1a,91s € 01(9,x) Vq € Q1,x € Xe and 61(q14,X) = D Vx € Ee.
Ny = (Q2,%, 02,925, {24} ) where
Gos 7 G2a,q2s & 62(9, %) Vq € Qa,x € Le and 63(Gaq, x) = D Vx € Ze.
We can further assume that Q1 N Qp = @ because we can always replace Qq with a set of objects which are
completely different from those in Q, without affecting the function of N.
Now construct N = (Q, %, 6, g1s, {g2q }) where Q = Q1 U Q.
61(9,x) if g€ Qi\{qu}

5q,x) = 01(q1a, %) lf q=10q1, & xF£e€

01(q1a,X) U{gas} if g=qra& x=e

o2(q,x) if g€ Q
We now need to show L(N) = L, L,.

Ifw € L1Ly, w = wywy where wy, wy € X% and wy € Ly, wy € Ly.
Since Nj recognizes L1 and Ny recognizes Ly, Nj accepts wy and Ny accepts w,.
3ry € {q1q} and ry € {qo,} such that

J1s M r1 and gos M ) (By Theorem 1.19 of NFA Acceptance)

q1s A J10 and qos el 924 (Proposition 1.18 and r1 = q14;72 = q2a).
By definition of 6, g5 € 6(q1a, €).
Therefore,

w1,0 €0 wo,0
q1s — 412 — q2s — q2a-
Therefore, N accepts wi€ewy, which is the same as wywy.
L1Ly C L(N)
Conwersely, if N accepts w = x1xp - - - X, where x1,Xx2, - Xy € L forn > 1,
drg, 71,72, - -y € Q such that

x1,0 X2,0 X0

qis =T == 11— 12 Tyl — I'n & I'n = G2q.
(Notethatw = e if x; = € Vi).
Since the only way to transition from a state of Ny to a state of N, is via q1, to qos using the € arrow, 3 an

Ti = q1q and ri1 1 = qos such that x; 1 = € and the computation becomes

X1,5 Xz,ts x,‘,5 6,5 xH»Zr5 xn/§ .
Qs =70 —> 711 —=> T2 Vi1 —=>q1g —>42s —> Viy2 " Ty—1 —2 Tn;Tn = {2q-

Claim 1. ro, 11,72, - - i1 € Q1.
<Proof of Claim 1>

q1s = 1o = 1o € Q1.

Assume for contradiction that ri_1 ¢ Q1.
Thenr;_1 € Qy.

X,‘,5
ric1 — q1a

S B g, (0(q,x) = 5(4,%) ifg € Q)

= g1 € Q2

= Contradiction

Therefore, r;_1 € Q1.

With similar and inductive arqument, we can conclude r;_», - - - 15,71 are all in Q.
Claim2.r; #q1, V0 <j<i—1
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Assume for contradiction rj = q14 for some 0 < j <i—1.

Xj41,0 Xj+1,0
Therefore, rj — Tj11 € q1a — Tjx1 < Tjt1 € 0(q1a, Xj41)-

By definition of 6,0(q1a, Xj11)

= 01(q1a, Xj11) 07 61(q10, Xj11) U {25 }

=QorQU{qas}

— @ or {g2:)

Therefore, 1 € D or rj1 € {qas}-

Either of these leads to a contradiction.

Therefore, 1 # g1, V 0 < j <i—1.

Combining Claim 1 and Claim 2,1; € Q1 \ {q1,} VO <j<i—1.
By definition ofJ,(S(rj, x)=4d (rj,x) Vo<j<i-1

. x1,0 Xp,0 x;,0 .
Therefore, computation g15 = 1 o et =5 414 can be replaced by computation

q1s =70 Jﬂ}71 %72“'7#1 M‘ha-
Therefore, N1 accepts wy = x1x3 - - * X;.
wy € L(Np) = L.

Claim 3. EQLVi+2<j<n-1L
<Proof of Claim 3>

Xiy2,0
qos — Tiy2

= Tit2 € 6(qs, Xi2)
= Ti2 € 02(q2s, Xiy2) (6(q,x) = 2(q,x) if g € Q2)

Xi12,02
=25 — Tit2
= rit2 € Qo.
With similar and inductive argument, we can show that ri 3, - -1,_1 are all in Q.

. i 15 s .

Therefore, computation gos BAE Tigo - Tp_1 Xk Tn; Tn = qoq can be replaced by computation

xi+2/§2 Xn,0
q2s — TVigo " Ty—1 S sty = q2a

Therefore, Np accepts wy = Xj12Xi43 -« Xn.
wy € L(Nz) = Lyp.

wiwy € LyL,.

W = X1X2 "+ XiXj11Xj42 " Xp

= WiXj1W2

= wiw; (xi1=¢€)
Therefore, w € L1Ly.

Therefore, L(N) C LiL,.

Combining both directions, L(N) = LjL,.

Theorem 10.
For any reqular language L, L* is reqular.
< Proof >
Let Ny be the NFA that recognizes L.
By Theorem 1.28, we can start with an N1 defined as follows.
N1 = (Q1, %, T1,q1,{qa}) where
7 # qa,91 € T1(9,%) V9 € Q1,x € Ze and Ty (qa, x) = D Yx € Ze.
Let N = (Q,%,T,q0,{qa,q0}) such that Q = Q1 U{qgo}.
Ty(q,x) if g€ Qi\{qa}

{n}UTi(qee) if g=qu&x=e¢

T(q,x) = Ti(qa,x) if q=qa&x#e€
{n} f g=qo&x=e
@

f q=qo&x#e
We need to show w € L* < N accepts w.
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Ifwel?

w € LM for some M > 0.

FM=0we L= {e}.

Therefore, w = €.

€ is accepted by N because N has a start state that is also an accept state.
ForM > 1,

letw = wywy - - - wpy witheachw; € Lfor1 <i < M.

Therefore, N1 accepts w; for each i.

For each i, qq iy Ja (By Theorem 1.19 of NFA Acceptance)
For each i, qq wik Ga (Proposition 1.18)

Since T(qq,€) = {g1} U T1(qa, €),

,T
g € {0} UTi(q0,€) = q1 € T(4a,€) = qa > 1.
Therefore,

€T €T wy, T wy, T
q0—>ql—>%—>q1—>qa—>q1 Qu—>¢h—>%

Therefore, N accepts ewi€wy - - - €Wy = W Wy - - - Wy = W.
Therefore, w € L* = N accepts w.
Conversely, if N accepts w = x1xpx3 - - - x, wWhere x; € Le for 1 <i<n & n > 1.
(Note that w = € if x; = € Vi.)
drg, 71,70, 1y € Q such that
x1,T X xn, T
Go=r0 21 2y ryy My & € {g0,4a).
Since T(go,x) = D if x ;é €,x] = €.
Furthermore, T(qo,€) = {q1}-
Therefore, 11 = 4.
tn € {490,9a} = v = qa because qo has no incoming arrows.
The computation now becomes
eT x2,T xn, T
qo——=4q1 ——> T2 Ty1 — {a
x,T xn, T
Therefore, g1 == to -+ - Ty—1 = {q.
Claim 1: ;
. , T i+1, n/T
For the computation, gy = g R r1 e To -« -7 +—1> Tig1 - Tp—1 Iny T &ty = qq,
ifdri=quforl <i<n-—1thenri,1 =q &x,H =e.
<ProofofClaim 1>

1+1/
ri — Tit1 = qa —> Tiy1 = Tix1 € T(qa, Xig1).

T(qa, Xit1)
= T1(qa, xix1) 0r T1(qa, xi11) U {q1} (by definition of T)
=QorQU{q} (by definition of Ny)
=Qor{m}

Therefore, 141 € Qorriyq € {q1}.
Therefore, 111 € {g1} and hence ri 1 = q1.

X 1,T
Therefore, rl 2 ria
1+1

= 4o — M1
= q1 € T1(qa, Xi1) if Xit1 # €
=q1 €QDifxi #€ (by definition of N1)

= Contradiction if x; 1 # €.

Therefore, x;11 = €.

Claim 2:

For any computation q; x1—T> $1 x2—T> Sp -+ Si "ﬂf Sit1° " Sp—1 x"—T> Sn x@; Ga,
if 3 1o qq4 in between q1 and qq, that is s; # q, for 1 < i < n, then

T
7 21 qa for some w € L},
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<Proof of Claim 2>

qo & {s1,52,- - - sn} because gy has no incoming arrows.
Therefore, 51,52, - - sp € Q1.

Therefore, 51,52, -Sn € Q1 \ {4a}-

By definition of T, T(q,x) = T1(q,x) ifg € Q1 \ {4a}.
Therefore, T(s;, x) = T1(s;, x) for 1 <i<n& x € Ze.
The given computation can be replaced by

i oy 51 =y 5278 e Si+1° " Sn—1 gt Sn iy Jas
71 ﬂ Ga where w = X1XpX3 + X4 1.

Back to computation qq x2—T> 9 x3—T> r3--Try_q x"—T> Ja-
Let m be the number of q,’s in between g1 & q,.

Ifm =0, by Claim 2, qq w—T>1 qq where w = XpX3 - Xy
Nj accepts w.

w=xw =ew =w.

Nj accepts w.

welLCL*

Form > 1,Elrj1 =rj, =T, = qa

By Claim 1, 7j 41 = Tjy41 = =+ * Tj,+1 = q1.

n M Ty = 4qa (Claim 2)

a =Tj <, Tih+1 = q1 (Claim 1)

91 ="Tj+1 wz—>Tl i, = qa (Claim 2)

a =Tj, <, Tih+1 = q1 (Claim 1)

q1 ="Tj, 1+1 wm—'T;l i = Ga (Claim 2)

Ja = Tjy 5 q1 wrﬂfl qa (Claim 1 & Claim 2)

Therefore, Ny accepts wy, Wy, - - - Wy, W41

W1, Wo, Wy, W1 € L.

WWy + - - Wiy Wiy g1 € LT

However, xpx3 -+ - Xy = W1EWE - + - €EWp€Wyy4] = WIW2 * * * Wy Wiy 41
W = X1X2X3 "Xy = €X2X3* Xy = X2X3 """ Xpp = WQW2 -+ * Wiy Wy 41-
Therefore, w € L™+ C L*.

Therefore, N accepts w = w € L*.

Combining both directions, w € L* < N accepts w.

This completes the proof of Theorem 1.30.

Definition 10.
For any string w = x1xp---X,, where x; € ¢ for each i, the reverse of w, written wk is the string
XpXpy_1 - X1

d
For any language A, AR ) {wR | w e A}.

Theorem 11.

For any language A, A is regular iff AR is reqular.

< Proof >

Since A is regular, there is an NFA, N 4 that recognizes it.

Let No = (Qa,%,04,94,Fa).

Construct Nyr = (QaU{qs}, X, 04r,qs,{qa}) where qs ¢ Q4 such that
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Fa if (4,x)=(qs€)
O4r(q,x) = @ if g=g:&xF#¢€
{reQalgedalpx)} if 9€Qa
From the third row of this definition, it immediately follows that

pEI (G, Xx) = q€da(p x)or
x,0 4R )
q _> p =4 p M q ...... (*)
Claim: 3 a computation path for w from p to q via transition function 8  iff 3 a computation path for wR from q

to p via transition function J 4r.

. ) R0
That is, p e ge4q ety p.
This Claim can be proved by induction on |w)|.
For |w| =1, w = wR = x where x € L.

x,0 P
From (x), q as p@pﬂq
Therefore, the statement is true for |w| = 1.
Assume the statement is true for |w| = k where k > 1.

'{,UA R,5
Thatis,pﬁiq@qw—/ﬁ p for |w| = k.

p g
< p w'—éé / x'—% q (Proposition 1.12)

& p —@ q and q 4 q
—/§ pand q —> q (Induction Hypothesis and (%))

x& wR,o R

@q—w’ 4" p

S q —f‘ p (Proposition 1.12)
O 4R
&g (wx)—> p (xwR = (wx)R)

The statement is true for |w| = k + 1 and the proof of Claim is complete.

To prove that AR is regular, we need to prove that

wh 6 ARiff N 4z accepts wR.

IfwR € AR, we A

Since Ny accepts W, qa —/§ q,9 € Fy (Theorem 1.19 — NFA acceptance)

By Claim, q —é qA
Since 8 4r (qs,€) = Fa, and q € Fy,

€0 ,R
qs = q-

6 Ro,

Therefore, g5 patly q iy gaA.
N 4 accepts ewR (Theorem 1.19 — NFA acceptance)
N & accepts wi.
Conversely, if N 4r accepts wR,

N AR accepts ewk.
—&4 q A (Theorem 1.19 — NFA acceptance)
qs —> q —@ qa (Proposition 1.12)
Since 6 4= (qs,€) = Fa, q € Fa.
qA o4 g,and q € Fy (Claim)
Therefore, N 4 accepts w (Theorem 1.19 — NFA acceptance)
weA (N4 recognizes A)
wk € AR,

wR € AR iff N r accepts wi.
We have proved that A is reqular = AR is regular.
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On the other hand, sine (AR)R = A,
AR is reqular = (AR)R is reqular = A is reqular.
Therefore, A is reqular iff AR is regular.

6. Regular Expression

Definition 11. (Regular Expression)
Let X be a finite alphabet.
Ry is a set with the following properties:
(a) R € Ry iff R is one of the following:

(i) a for some a € .

(ii) €

(iii) @

(iv) R{UR; for some Ry, Ry € Ry,

(v) R18R; for some Ry, Ry € Ry,

(vi) R} for some Ry € Ry,

where J, & and % are operations in Ry, with

O §R): X §R): — éRZ

: Ny xRNy — RNy

$: Ry — Ry
(b) 3 an injective (one-to-one) mapping L : Ry, — P(X*) s.t.

(i) L(a) ={a} Vae X

(ii) L(é) = {e}

(i) L(®) = @

(iv) L(R10R2) = L(R1) U L(Rz) VR{,R; € Ry

(v) L(R16R2) = L(Rl) ° L(Rz) VRy, Ry € Ry

(vi) L(R}) = (L(Ry))* VR; € Ry
Ry is called the set of all regular expressions over the alphabet X.
Any member of Ry, is called a regular expression over X.
For any regular expression R, L(R) is called the language described by R.
While O, & and % are operations in Ry, U, @ and = are set operations in P(X*).
When there is no danger of confusion, U, & and % are usually written same as U, ® and .
While & and Q are regular expressions, € is the empty string and @ is the empty language. When there is no
danger of confusion, they are all written as € and @.

Proposition 10.
Let X be a finite alphabet and Ry, be the set of all regular expressions over X.
The following statements are true.
(@) VR1,Ry € Ry, Ry URy = Ry UR;
(b) 3 regular expressions 3. and X* such that L(%) = X and L(X*) = L*. When there is no danger of confusion,
3 and X* are usually written same as ¥ and L.*,
< Proof >
(1) L(R1URy) = L(Ry) UL(Ry
L(Ry URy) = L(R2) UL(Ry1)
L(Rq) UL(R2) = L(R2) U L(Ry) from set theory.
Therefore, L(Ry URp) = L(Rp URy)
Therefore, Ry U Ry = Ry URy (L is one-one)
(b) Define ™= |J a

acy
3. is a reqular expression by Definition 1.33(a)(i) and 1.33(a)(iv).

By Definition 1.33(b)(iv)
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1 =1(ya) = (yrw)=(um)-=

ack / ack ackt

Define ¥ = ()",

¥* is a reqular expression by Definition 1.33(a)(vi).

By Definition 1.33(b)(vi),

L(E) = L((£)) = (L&) =% (LE) =%)

Example 1.
Find the language described by X*1%* where ¥ = {0,1}.
L(XZ*1¥*) = L(XZ*)L(1)L(Z*) = 2*{1}X* = {w | w has at least one 1}.

Example 2.

Find the language described by (LXX)* where ¥ = {0,1}.
L((EET)") = (L(ZLT))" = (LE)LE)LE))" = (ZT)°
={xyz | x,y,z € } = {w | |w| is a multiple of three}.

Lemma 2.
If a language is described by a reqular expression, then it is reqular. That is, if A = L(R) for some R € Ry,
then A = L(N) for some finite automaton N.
< Proof >
From the formal definition of reqular expressions, R is one of the following:
(i) a for some a € %
(i1) &
(iii) O
(iv) R1UR; for some Ry, Ry € Ry,
(v) R18R; for some R1, Ry € Ry
(vi) R’i‘ for some Ry € Ry
In case (i), L(a) = {a} and {a} can be recognized by the NFA defined as follows:
N = ({q1,92}, %, 6,91, {q2}) such that 5(q1,a) = {q2}, 6(q,b) = @ Vq # q1,b # a.
In case (ii), L(e) = {e} and {€} can be recognized by the following NFA:
N = ({1} 2e 6,91, {q1}), where 5(q1,b) = D Vb # e and 6(q1,€) = {q1}.
In case (iii), L(Q) = @, which is recognized by the following NFA:
N = ({q},%¢,6,9,D) where 6(q,b) = @ Vb € Ze.
In cases (iv), (v) and (vi), R is repeated operations of U, & and % on a, € and Q. Since we have shown above L(a),
L(e) and L(D) are reqular and we have proved before that regular languages are closed under U,  and % , L(R)
is reqular.

Definition 12.
A generalized nondeterministic finite automaton (denoted by GNFA) has all the properties as described in
Theorem 1.28 and is a 5-tuple, (Q, X, 9, Gstart, {Qaccept } ) where
(i) Q is a finite set of states;
(ii) X is a finite alphabet;
(iii) 6 : (Q\ {qaccept}) X (Q\ {gstart}) — Ry, is the transition function;
(iv) Gstart 15 the start state; and
() Gaccept 1s the accept state.
A GNFA accepts a string w € L*, if w = wywy - - - wy, where each w; is in £* and a sequence of states
90,91, 92, * + - qn exist such that
(1) qo = {start,
(2) qn = Yaccept; and
(3) For each i, w; € L(R;) where
R; = 6(q;_1,q;) and L(R;) is the language described by expression R;.
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If we write g; RN qj instead of 5(q;,q;) = R, the definition of acceptance can be written as

Rq,0 Ry,0 R;,0 . .
Gstart = 40 s 7 =24 G2+ = Gn = Gaccept with w; € L(Ri)forz =1,2,---,n.

Lemma 3.
Every NFA can be converted into an equivalent GNFA.
< Proof >
Because of Theorem 1.28, we can start with an NFA defined as follows.
N = (Q/ %9, Gstart, {qgccept}) where
Gstart #* Haccept; 5(5]uccept/ ll) =@ Va € X and (start ¢ 5(‘]/ ﬂ) Va € Ze,q € Q.
Define GNFA, Ng as follows:
Ng = (Q/ 2,06, Gstarts {qgccept}) where
dg : (Q \ {qaccept}) X (Q \ {qstart}) — Ry, such that:
V(4i,97) € (Q\ {qaccept}) X (Q\ {qstart})
66(qi,9j) = R j where
Rij= U w;and
WES; ;
Sij={weX"|g; LN q;}-

Note that if i = j, 6c(qi,qi) = Rij, Sii = {w € £* | g; RN qi}; and
Rjj= U w*
‘wESl‘j
V(qi,9;), Si j is unique and therefore R; ; is unique.
Since w is the concatenation of symbols from L, and every symbol in . is a regular expression, w is a regular
expression.

Therefore, R;; = U w is a regular expression.
ZUES,"]'

Therefore, 55(qi,q;) = R is well defined.
Claim 1. For any string w in £*, L(w) = {w}.
< Proof of Claim 1 >
L(w) = L(ajaz - - - a,) where a; € ¥
= L(a1)L(az) - - - L(an)
= {m}H{az} - {an}
= {aay - an}
= {w}
Claim 2. Vw € X*, N accepts w < Ng accepts w.
< Proof of Claim 2 >
For forward direction ” = "
Let N accepts w where w = wywy - - - wy, 1 > 1, and each w; isin £* for 1 <i < n.
By theorem of acceptance, 390, 91,92, - - - qn € Q such that

w1,0 wy,0 Wy 0
Qstart = 4o —> 41 —> 42" qn—1 — qn = Gaccept-
. w;,d
Since q;_1 — q;,w; € Si_1.
By definition of ég,
o¢(qi-1,9:) =Rii= U w

WES; 1,
L(0c(gi-1,9:))
= L(Ri_1,)

{4
WES; 1,
= U L(w)

WES; 1,

= U {w} (By Claim 1)

WES; 1,
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= Si-1,i-
Since w; € Sifl,z'/ w; € L(Rifl,i)'

Ri_1,i,0

Since g;_1 LG qi Vi=12,---n,

Ropdc — Ripde Ri_1i0G Ry-1,n,4G
Qstart =G0 — q1 — 42°-"4i—-1 —— i~ "Gn-1 — {qn = Gaccept-

Ng accepts w.
Conwersely, if Ng accepts w for w = wywy - - - Wy, 1 > 1, and each w; is in £*,

390,91, 92, - - qn € Q such that
RO,lI‘sG R1,2/5G R,‘,l/,‘,ﬁc Rnfl,nréG
Gstart =G0 — 1 — G2 "qi—1 — qi* " Gn-1 e Gaccept

withw; € L(R;_1,) Vi € {1,2,3,---n},
Rii= U w
WES;1,i
and A
X %)
Si1i=A{w €T | i1 = 4}
L(R;i 1)

10651'71,1'
= U L(w)

WES; 1,
= U {w} (By Claim 1)
WES; 1,
= Si-1,
Vie {1,2,3,---n},
w; € L(R;_1,)
= W; € Si—l,i
= i1 wid qi (Definition of S; ;)

wy,§ wy,8 w8
Therefore, start = 0 — q1 = 42~ qn—1 = qn = Gaccept-
Therefore, N accepts w = wywy - - - Wy.
N and N¢ are equivalent and the Lemma is proved.

Lemma 4.

Every GNFA of n states (n > 2) can be reduced to an equivalent GNFA of 2 states.
< Proof >

This lemma can be proved by induction on n.

It is trivial that the statement is true for n = 2.

Assume that the statement is true for n =k > 2.

Let G = (Q, %, 6, qstart, {Gaccept } ) be a GNFA with k + 1 states.
E|‘7rip €Q \,{%tart//qacce;it} because k +1 > 3.

Construct G = (Q , X, 9, qstart, {Gaccept } ) such that

Q =Q\ {4y}

V(‘Iir‘ij) € (Q\ {qaccept}) x (Q\ {Gstart }),

0'(q1,45) = 0 4rip) (8 Grip, Grip)) "6 (i, 47) U 8(45,7)-
Therefore, Q is a GNFA with k states.

Let G accept w = wywy - - - wy where each w; € L.

390,91, 92, - - gn € Q such that
R0 Ryl R;8 Ry)d
qsmrt = ‘70 ‘71 ‘72 e %’—1 qi e qnfl ? qu - qaccept,' and

w; € L(R;) = L(6(qi-1,4i))- /

If none of qo, 41,92, * - * Gn 1S Grip, then they are all in Q .

Also,

w;i € L(6(qi-1,4i))

= w; € L(6(9i-1,rip) (0 (@rip, 4rip))*8(qrip :)) U L(3(9i-1,41))
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= w; € L(‘SI(QHI%ip)(5(‘7rip"7rip))*‘5(‘7ripf qi) U é(gi-1,4i))
= w; € L(0 (9i-1,9:))
= w; € L(R ,) where Rl = (5,(171‘ 1/‘71)

R 0 R o R ps R0
Gstart = 40 25 q1 =5 q2 - - - qi—1 - qi - qdn-1 —> dn = Gaccept

with w; € L(RZ).
Therefore, G accepts w = wiwy - - - Wy.
If 3 some q's in the sequence qo, 41,92, - - - gn Which are qy;,

let q; be the first such q,;, and q; be the first state in the sequence after q; such that q; # qyip.
R;
qi-1 —> qi = qrip 4 Grip **  Yrip —> Grip —% Uit

Riy1 =96(qi,qi11) = ‘S(Qrzpr%p) = w1 € L(6 (Qrzp/ Qrip))

Rj—1 = 6(qj-2,9i-1) = 6(arip, Grip) = wj—1 € L(6(qrip, Grip))
Wiy -+ wi—1 € U7 H(6(qrip, qrip))
Wiy Wil € L*(6(4rip, qrip))
Let W; = WiWiyy - Wj_1W;
w; € L(6(9i-1,9:)) and q; = qrip = w; € L(6(qi-1,9rip))

€ L(6(qj-1,4j)) and gj—1 = qrip = w; € L(3(qrip, 9;))
w; € L<5(‘7i71/ Qrip))L* (5(%1‘;7/ Qrip»L(&(qrip/ %))
w; € L(‘5<‘7i71/’7r1’p))L* (5(‘7rip/ qrip))L(‘s(qrip/Qj)) U L(é(%‘flﬂh‘))
Therefore, w; € L(8(qi-1, qrip) (8 (Grip, Grip))*0(qrip, 47) U 8(qi-1,9;))
w € L (g:1,9)))
w; € L(R}) where R;- = 5/(qi_1,qj)
If there are no more q,;,’'s in the sequence,

R Ry R R 8 R, &

Gstart = 40 - Uh! = g2 -qi-1 — 4 — QH—} “fdn—1 — 4n = Gaccept
is the path of acceptance in G for (wyws - - ~wi_1)(wj)(w]-+1 S W),
which is the same as (wyw; - - - w;_1) (Wiwi1q -+ - Wj_1W;) (Wjy1 - - - Wn) because
w; = WjWijy1 -+ wj_le.
Therefore, G accepts w = wywy - - - Wy.
If there are some more q,;,'s in the sequence, repeat the above process until all q,;,'s are removed and the resulting
computation path is the path of acceptance of w in G.
Conversely, if G accepts w = wywy - - - Wy where w; € ¥,
390,91, 92, - qn € Q/ such that

R.& R, R o R,
start = 40 - q1 = 172 qz 1 — qi* " 9n—-1 — Gn = Gaccept

with w; € L(R l) where RI =6 (qi-1,9:)-
Therefore, w; € L(é(Qifquripxé(‘%ip/ Qrip))*‘s(qrip/ 7:) U(qi-1,9i))
Therefore, w; € L(0(qi—1,4rip)((qrips Grip))*0(qrip, 9:)) or wi € L(6(qi-1,4:))-
Ifw; € L(6(qi-1,9i)),
R1,0 Ry,0 R;,0 R0
Gstart = qo —> g1 —> 42" qi—1 — qi**Gn—1 — 9n = Gaccept where w; € L(Ri)
is the acceptance path for w = wywy - - - wy, in G.
Ifw; € L(6(gi-1, qrip)(é(%ip/ Qrip))*é(%ipr%))/
let w; = wywpwiz where
wit € L(6(qi-1,Grip)) = L(Ri—1,ip),
Wip € L*(é(qrip/qrip)) = L*(Rrip,rip)/ and
wiz € L(0(qrip, 9i)) = L(Ryip,i)-
Jm > 0 such that wip € L™ (6(4rip, qrip))-
wip = wip(N)wpp(2) - - - wip(m) where each wix(j) € L(6(qrip, Grip)) = L(Ryiprip)-

Rifl,rip Rrip,ri / Rnpz J
qi-1 — qrip _g Grip ** * Yrip — qi

g
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is a computation path in G for wyywpwis = w;.

This is true forall 1 <i < n.

Therefore, there is a computation path in G from qq to q, for wiwy - - - wy = w.

Therefore, G accepts w = wiwy - - - Wy.

So G and G are equivalent.

Since G' has k states, by induction hypothesis, G can be reduced to an equivalent GNFA of 2 states.
Hence, G can be reduced to an equivalent GNFA of 2 states.

This completes the proof.

Lemma 5.

Ifan NFA, N = (Q,%,9,qo, F) is equivalent to a 2-state GNFA, Ng = (Q, X%, G, qstart, {Gaccept } ), then
L(N) = L(R> where R = ‘SG(qstart/ qgccept)-

< Proof >

w € L(N)

& N accepts w

& Ngacceptsw (N and Ng are equivalent.)

S wE L(R) (R= 5G<qstm‘t/ qgccept))

By Lemmas 1.39, 1.40, 1.41, we have the following conclusion:

Lemma 6.
If a language is reqular, it is described by a regular expression.

By Lemma 1.37 and Lemma 1.42, we have the following theorem.

Theorem 12.
A language is reqular iff some reqular expression describes it.

7. Pumping Lemma

Theorem 13. - Pumping Lemma

Let A be a language.

Let (S) denote the following statement:

3 a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into
three pieces, s = xyz, satisfying the following conditions:

(1) For eachi > 0, xyiz €A,

(2) |y| > 0, and

(3) [xy| < p.

The Pumping Lemma states that A is reqular = (S).

< Proof >

Since A is regular, there exists a finite automaton M = (Q, %, 6, qo, F) that recognizes A.
That is, A = L(M).

Let p be the number of states in M.

Lets =515y - sy, whereeachs; € Xand 0 < p < n.

drg, 71, - -1y € Q, such that

51,0 52,0 5,0
qo=1y —> 11 —> Ty Ty_1 —> ¥y, 1ty €F.

. S 0 8p,0 . .
Since p < n,qo =19 2 2y “Tp1 5 1y is a sub path with p + 1 states.
Since M has only p states, by the pigeonhole principle, 3k, 1 such that 0 <k <l < pandr, =r.
Let x = 5182 Sk, Y = Sk+15k+2 " "SI and z = S14+15142 " " Sn-

x,8 ,0 z,0
Therefore, ro —— 1% RN 1 = 1y,

1
. 0 .
Since ry =1, 1y v r Vi > 0.
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Therefore, 1y x—’(s> I M 7] Z—’(s> rn withry, € F.
Therefore, M accepts xy'z.

Therefore, xy'z € A.

Sincek <1, ly| > 0.

lxy| = |x| + [yl =k+1-k=1<p.

This completes the proof of the Pumping Lemma.

Theorem 14. - Pumping Lemma (contra positive form)

—(S) = A is not regqular where

—(8) is equivalent to:

Vp > 1,3s € Awith |s| > p such that whenever s = xyz, at least one of the conditions (1), (2), or (3) cannot
be satisfied.

The contra positive form of the Pumping Lemma is used to prove a language is not reqular. The general strategy
is to find an s € A with |s| > p for any given p > 1 so that whenever s is broken into s = xyz, at least one of
the conditions of (1), (2), or (3) must be false. This can be usually accomplished by showing one of the following:
(i) Condition 1 alone is false.

(ii) Condition 3 = —(Condition 1)

(iii) (Condition 2 and Condition 3) = —(Condition 1).

Example 3.

Show that A = {0"1" | n > 0} is not regular.

The strategy is to create an s that will force y to contain all 0’s or all 1's so that when y is pumped indefinitely,
xy'z will contain too many 0's or 1's to make it impossible for xy'z to remain in A.

Since Condition 3 requires |xy| < p, a prefix of 0P in s will achieve that purpose.

Formally, we make the argument as follows.

Vp >1,lets =0P1P.

se€ Aand |s| > p.

If s = xyz, then xyz = OP1P.

Condition 3

= |yl <p

= xy consists of only 0’s

= y consists of only 0s.

lxyyz| = [xyz| + |yl.

Since Condition 2 requires |y| > 0, xyyz adds a positive number of 0’s to xyz.

Since xyz has equal numbers of 0's and 1's, xyyz must have more Q’s than 1’s and hence is not in A.
Therefore, (Condition 2 + Condition 3) = —(Condition 1) and hence A is not regular.

Example 4.

Show that A = {ww | w € {0,1}*} is not regular.

The strateqy is to create an s with some leading 0's on the left, say 0™ but we also want to make sure that 0™ is
long enough to force xy to contain all 0’s in it so that when y is pumped up indefinitely, it will create too many
0’s to make it impossible for s = ww.

Since Condition 3 requires |xy| < p, we want to make m > p.

A natural candidate for s is therefore 0P10F1.

To prove that this construction works, however, requires some algebraic manipulation.

Formally, we make the argument as follows.

Vp > 1, take s = OP10P1.

If s = xyz, then xyz = 0P10F1.

Condition 3

= |yl <p

= xy consists of only 0’s
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=y consists of only 0’s.

Let xy'z = 07 1071 where p—p=>G-Dlylorp =p+@i-1lyl.
Fori>3,p >p+(3-1) (ly| > 1 by Condition 2)

Therefore, p/ >p+2fori> 3.

Assume for contradiction that Vi > 0, xyiz € A.

That is, xyiz = OPI 10P1 = ww.

Foralli> 3,

]

_ o7 1071

=z

_ pl+p+2

>@ (p > p+2fori>3)

=p+2

Therefore, |w| > |1071].

This implies w consists of at least two 1’s.

On the other hand, p' + p + 2 = 2|w|.

P~ lal =l = (p+2) >0

p > |w|

This implies w must consist of all 0’s.

This leads to a contradiction.

Therefore, (Condition 2 + Condition 3) = —(Condition 1) and hence A is not regular.

Example 5.

Show that A = {1"* | n > 0} is not regular.

The idea behind this problem is every time we pump up y, we increase the length of s by an amount of |y| which
is bounded by p and p is fixed. On the other hand, s has to be the square of a natural number and the difference
between two consecutive squares, say n> and (n + 1)2 will grow to infinity as n goes to infinity. In this case, we
don’t have to worry about how to create more 0's in s so as to outnumber the 1's or vice versa. This particular
nature of s will automatically lead to a contradiction to Condition 1 as |s| grows to infinity.

Proving this to work requires some algebraic manipulation.

The formal argument is made as follows.

Vp > 1, take s = 17

p=1
=p(p—1) >0
=p>p

= 17| > 17| = p

Therefore, |s| > p.

Assume for contradiction that Condition 1 is true.

That is, Vi > 0, xyiz € A.

Both xy'z and xy' 'z are in A.

Let xyiz = 1" and xy'tlz = 1" where m and n are positive integers.
|xy'z| = n? and |xy'Tlz| = m?.

By Condition 2,

yl =1

= [y > 1|

= |xytlz| > |xy'z]

= m? > n?

= m>n

>m>n+1

By Condition 3, |xy| < p = |y| < p.

Therefore, |xy't1z| — |xy'z| = |y| < p.
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Therefore, m> — n? < p.
(n+1)2—n? <m?>—n?<np.

2n+1 < p.
n < pT_l ------ (1) where (1) is true for all i.
On the other hand,

Condition 2 = |y| > 1 = |y'| > i.

n? = x|+ |y + |z) > [y > i

n> \/ffor all i.

Fori > @,\/f> %andn> prl

This contradicts (1) which is true for all i.

Therefore, (Condition 2 + Condition 3) = —(Condition 1) and hence A is not regular.

8. Myhill-Nerode Theorem

Definition 13.

Vx,y € ¥*,L C £¥,

we say that x and y are indistinguishable by L iffVz € ¥*,xz € L < yz € L.

We say that x and y are distinguishable by L iff there exists z € L* such that exactly one of xz and yz is in L.
If x and y are indistinguishable by L, we write x=py.

Proposition 11.

= is an equivalence relation.

< Proof >
VxelLxze L& xze LVze X
X=px

=], is reflexive.

Vx,y €L,

X=ry

= (VzeXlf,xzeleyzel)
= (VzeXfyzelLsxzel)
= y=rx

=1 is symmetric.

Vx,y,w € X¥,

(x=y) A (y=10)

= VzeXxzeleoyze)AVzeX,yze Lo wze L)
= (VzeXf,xzelLswzel)
= X=Lw

= is transitive.

Proposition 12.
= is right congruence. That is x=1y = xa=pya Va € %.

< Proof >

VzeX*aek,

xaz € L& yaz € L (x=ry)
xa=rya (Definition of =)

Proposition 13.

Vx,y € X, (x=ry) = (xeLeyel)
< Proof >

Take z = €.

xce€lL&eyeel

Therefore, x € L &y € L.
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Theorem 15. - Myhill-Nerode Theorem
Let L CX*, X C X%
X is said to be pairwise distinguishable by L iff every two distinct strings in X are
distinguishable by L.
The index of L is defined as
Index L = max{|X| | Xis pairwise distinguishable by L}.
The following statements are true:
(a) If L is recognized by a DFA with k states, L has an index at most k.
(D) If the index of L is a finite number k, it is recognized by a DFA with k states.
(c) L is regular iff it has finite index. Moreover, its index is the size of the smallest DFA
recognizing it.
< Proof >
(a) Let M = (Q, L%, 6,40, F) be a DFA with k states that recognizes L.
Assume for contradiction that L has an index greater than k.
3X (pairwise distinguishable by L) that has more than k members.
Let s1,52,53 - - - 511 be k + 1 distinct and pairwise distinguishable members in X.
5(q0,51),6(90,52),6(90,53), - - - 6(qo, k1) are k + 1 states in Q.
Since |Q| = k, by the pigeonhole principle, there are i,j where 1 <i < j <k+1s.t.
5(qo,s1) = 5(‘10151‘)'
Vz € X%,
siz € L
< 6(qo,8iz) € F (M recognizes L)
< 8(8(qo,s:),z) €F (Proposition 1.14)
& 5(5(q0,s]~),z) eF

& 3(qo,sjz) € F (Proposition 1.14)
< sizeL (M recognizes L)
Therefore, s;=Ls; (Definition of =1)

This contradicts the assumption that X is pairwise distinguishable by L.
(b) Let X = {s1,82 -+ ,sx} be pairwise distinguishable by L.
Claim 1. Index L > 2 = L # @ and hence L = @ = Index L = 1.
<Proof of Claim 1>
Index L > 2
= 3X (pairwise distinguishable by L) that has at least 2 members.
= dsi,sj € X where s; # sj and s;, s; are distinguishable by L.
= Jdz € X*s.t. s;z € Land Sjz & L or vice versa.
=L #Q.
Since L =@ = Index L < 2or Index L =1, Index L is defined to be 1 whenever L = @.
Claim 2. YVw € X¥, there is one and only one sy, € X s.t. w=rsy. Hence by taking w = ¢,
there is one and only one s¢ € X s.t. €=[5se.
<Proof of Claim 2>
Eitherw € Xorw ¢ X.
Ifwe X,3s; € Xs.t. w=s;.
Call this sy so that w = s; = Sy,.
Since = is reflexive, it follows that W=y s.
Ifw ¢ X, w must be indistinguishable with a member of X otherwise it will contradict
the assumption that Index L = k.
Therefore, w=[ sy for some sy € X.
Either case, W= sy for some s € X.
If there is another s;, € Xs.t. w= Ls;,,, then s, = Ls;, because = is transitive.
This contradicts the assumption that X is pairwise distinguishable by L.
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Therefore, sy, is unique.

Claim3. If L # Qthen LN X # @

< Proof of Claim 3>

LEQO=Jwel

By Claim 2, there is one and only one sy, € X s.t. W= 5.

By Proposition 1.52, w € L < sy € L.

Therefore, sy, € LN X.

Therefore, LN X # Q.

This completes proof of Claim 3.

If Index L = k =1, L = @ which is recognized by the one-state DFA, M = ({q},%,6,9,D)
where 6(q,b) = @ Vb € X.

IfIndex L=k > 2,

IX = {s1,52,83 - - - sy } where X is pairwise distinguishable by L.

Let Q = {q1,q2,95 - - q}

Let f : X — Qsuch that f(s;) = q; Viwith1 <i <k

f is bijective (one-one and onto).

Vg; € Q,3auniques; € X s.t. f(s;) = q; since f is bijective.

Va € ¥, 3 aunique s; € X s.t. sia=rs; by Claim 2.

Since f is a bijective mapping, there is a unique q; such that f(s;) = q;.

Let M = (Q, %, 6, g0, F) where

0:Qx X — Qst d(q;,a) = qj where

a€X,q;,q; €Qst f(s;) =q; f(sj) = qj wheres; € X,s; € X and s;a=ps;.
If there is another q. € Q such that 6(q;,a) = qy, 3sx € X such that f(sy) = qy and
by definition of 9, s;a= 5.

Since = is transitive, s;=[ S.

This contradicts that both s; and sy are in X and hence must be distinguishable by L.
Therefore, 6(q;,a) = q; is uniquely defined.

qo = ge where ge = f(se) and se is defined in Claim 2.
F={f(s)|seLnX}

F £ @ because of Claim 1 and Claim 3.

Claim 4. Yw € X*, §(ge, w) = q; < w=s; where f(s;) = q;.

< Proof of Claim 4>

Claim 4 can be proved by induction on |w)|.

For w = €, there exists one and only one s¢ € X s.t. =15 by Claim 2.

8(ge,w) = q;
& 0(qe, €) = g (w=e)
& ge =g (Definition of 1.4(i))

< f(se) = qi (Definition of qe)
& f(se) = f(s;)  (Definition of q;)

& 5 =5 (f is bijective)
S €= (e=r5¢ by Claim 2)
& W=1s; (w=c¢€)

The statement is true for w = €.
Let 8(qe,wa) = f(s;) = q;.
5(8(ge, w),a) = f(si) = qi
3gj 5.t 6(qe,w) = g

3sjs.t. f(sj) = q;and

W=Ls; (By induction hypothesis)
wa=ps;a (=], is right congruence by Proposition 1.51)
6(qj,a) = q;
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= 8ja =L S (Definition of 6)
= Wa=rs; (= is transitive)
Conwersely, if wa=ps; for some s; € X,
5(ge, wa)

= 6(5(qe,w), a)

= 0(qj,a) where q; = 5(ge, )
By induction hypothesis, w=|s; because 8(ge,w) = qj-

wa=ps;a (Right congruence by Proposition 1.51)
Let 6(gj,0) =

SjA=L 5k (By definition of 6)
WA=[ Sk (= is transitive)
Wa=s; (Assumption)

Sk =5 (Claim 2)

flsk) = f(si)

Jk = 4i

5(ge, wa)

=4(qj,a)

= 4k

=4

This completes the proof of Claim 4.
It remains to prove L = L(M).
VYw € L, 3 one and only one s; € X s.t. w=ys; (By Claim 2)

wel&s el (Proposition 1.52)

Therefore, s; € L (wel)

Sinces; € LN X and q; = f(s;), q; € F (Definition of F)
5(ge,w) = g (Claim 4)

5(q0,w) = q; (q0 = ge)

M accepts w (q; € F)

Conwersely, if M accepts w,

8(ge,w) = q;and q; € F (90 = qe)

w=rs; where q; = f(s;) (Claim 4)

wel&s el (Proposition 1.52)

Since q; € Fand q; = f(s;),
s; € LN X by definition of F.
Therefore, s; € L.
Therefore, w € L.
L = L(M) and M has k states.
(¢) L is reqular
= JdMs.t. L =L(M)
= Index L < k where k = the number of statesin M (by (a))
= L has a finite index
L has a finite index
= Index L =k
= L = L(M) for some k-state DFA M (by (b))
= L is regular
Assume for contradiction that there is a k' -state DFA accepting L where K <k
By (a), Index L < k.
This would contradict k' < k = Index L.
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9. An Application of the Myhill-Nerode Theorem

The Myhill-Nerode Theorem can be used to determine whether a language L is regular
or non-regular by determining the number of members in X, the set that is pairwise
distinguishable by L.

Example 6.

Determine if L = {a"b" | n > 0} is regular.
Consider X = {a,a®,a---}

Y distinct x,y € X, x = ui,y = o where1 <i < j<oo
3z = b’ such that

xz=a'bl € Land yz = alb’ ¢ L.

x and y are distinguishable by L. (x#1y)
X is pairwise distinguishable by L.

Index L > |X]|

Index L is infinite.

L is not reqular.
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