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Abstract

In this study, we investigate spectral structure of conformable Sturm-Liouville problems
and with this end, we obtain representation of solutions under different initial conditions and
asymptotic formulas for eigenfunctions, eigenvalues, norming constants and normalized eigen-
functions. Consequently, we prove the existence of infinitely many eigenvalues. Also, we
compare the solutions with graphics with different orders, different eigenvalues, different po-
tentials and so, we observe the behaviors of eigenfunctions. We give an application to the
a-orthogonality of eigenfunctions and reality of eigenvalues for conformable Sturm-Liouville
problems defined by [15] in the last section.
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1 Introduction

Conformable derivative idea was firstly introduced by Khalil et al. [17]. This new derivative in-
volves a shift as e/~ in its limit definition differently from classical derivative definition. In the
beginning, this derivative was used to be called as "conformable fractional" because of having
fractional @ power in the shift but afterwards, Jarad et al. introduced a real fractional ver-
sion of conformable derivative in Riemann-Liouville and Caputo sense and so, it deserves anymore
the name of "fractional conformable derivative". The most important advantage of conformable
derivative has similar properties with the ordinary derivative like the derivative of the product and
quotient of two functions, and also it enables variation of order between 0 < @ < 1, when a =1,
it corresponds to the ordinary derivative. For this reason, many scientists showed great interest.
Some of those are [I1}[I2][18][20,21]]. Conformable derivative of f of order 0 < @ < 1 is defined by,

ft+e=)=f @)

€

TOf () = lim
-0

Another conformable derivative is proportional a—derivative, is also known as Katugampola
derivative, was introduced by Katugampola [22] as an alternative to conformable derivative. It
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is based on the control theory. It has the same properties with conformable derivative which we
mentioned above but it differs in its limit definition. This definition involves a proportional ratio as
¢ instead of shifting. It was studied by Anderson and Ulness [23-25]]. Proportional e—derivative

of f of order 0 < @ <1 is defined by,

St ) - f @)
T3 f(t)=lim .
e—0 g

Sturm-Liouville problems are an important research area in mathematics, physics, engineering,
electronics, vibrations, stability, hydrodynamics, elasticity, acoustics, electrodynamic etc. It is the
form of one dimensional Schrodinger equation, which has a great importance in quantum mechan-
ics. However, many applications of mathematical physics need investigation of eigenvalues and
eigenfunctions of Sturm—Liouville problems. There are too much studies about Sturm-Liouville
eigenvalue problems throughout its long history (see, e.g. [[1H10./14,/16] ). Major results for the
classical Sturm-LIouville problem are included the asymptotic behavior of eigenvalues, eigenfunc-
tions, norming constants, and this kind of approach is called as direct problem. In this study, we
give asymptotic behavior of eigenfunctions, eigenvalues, norming constants and normalized eigen-
functions for conformable Sturm-Liouville problems and our this approachment will give rise to a
lot of open problems.

Sturm-Liouville problems and its fundamental spectral properties involving confromable deriva-
tives, which is our background study, were studied by [15,23,24]. Fractional Sturm-Liouville prob-
lems in Riemann-Liouville and Caputo sense were studied by [26-30].

In this study, we investigate the spectral structure of conformable Sturm-Liouville problems and
with this end, we obtain representation of solutions under different initial conditions, asymptotic
formulas for eigenfunctions, eigenvalues, norming constants and normalized eigenfunctions. Con-
sequently, we prove the existence of infinitely many eigenvalues. Also, we compare the solutions
with graphics with different orders, different eigenvalues, different potentials and so, we observe
the behaviors of eigenfunctions. We give an application to the @—orthogonality of eigenfunctions
and reality of eigenvalues for conformable Sturm-Liouville problems defined by [15] in the last
section.

2. Preliminaries

We give some necessary notations, definitions and lemmas related to confromable calculus
theory. For more details about this field, see [17-20,23-25].

Definition 2.1. [17,/19]] Let f : (0,00) — R and 7 > 0. Then the conformable derivative of f of order
0 < @ £ 1 1s defined by,

flt+e-a)'=)-f @)

g

T4 (1) = lim (1)

Theorem 2.2. [17] If a function f : [0,00) — R is a—differentiable at a > 0, € (0, 1], then f is
continuous at a.

Theorem 2.3. [17,19] Let @ € (0, 1] and f, g be a—differentiable at a point ¢ > 0. Then,
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(i) 79 (C) =0, for all constant functions, f(¢) = C;
() 77 (") =nt"*foralln e R;

(iii) 7Y [af +bg] =aT2[f]+bTY|g] for all a,b € R;
(v) T3 [fel = fTq gl +8Ta [f];

) T2 H T ST,
§ g

(vi) T¢[fogl(®) = f'(g®)TSg (1), for f differentiable at g (7).

If, in addition, f is differentiable, then T (f) (1) = tl‘“% (r).

Theorem 2.4. [17] Let a,n € R and @ € (0, 1]. Then we have the following results.
@) 1T7(1) =0,

(ii) T2 (e™) = ax'"7e,

(iii) 77 (sinax) = ax'~%cosax,

(iv) TJ (cosax) = —ax'"sinax,

v) T¢(Lr)=1.

It is easy to see from part (vi) of Theorem 2.3.

Theorem 2.5. [17] Let @ € (0,1] and 7 > 0. Then,

() T (sin1) = cosire,

(i) T¢(cos1r?)=—sinls,

(iii) 77 (ea"") = ea".

Theorem 2.6. [17] Let @ € (0, 1) and ¢ > 0. Then, conformable integral is defined as following

(Igf)(x)=ff(t)da(t)=ff(t)(t—a)“_1d(t)-

Lemma 2.7. Let the conformable differential operator 7 be given as in (I)), where 0 <@ < 1,7>0
and assume the functions f and g are a—differentiable as needed. Then

(i) T9Int =1 fort>0;
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t t
(i) T¢ [ [ra.s dasl = fUD+ [TE[f U 5)]des, where dys = s ds;
a a
b b
(i) [fT[g]dat = fels— [T [f]dat.
a a

Definition 2.7. If x,y : I — R are a—differentiable on /, then the conformable Wronskian of x and
y is given by
x(1) y(®)

W (x,y) (1) = det( T®x(t) T%(1)

),fortel.

Theorem 2.8. Let a,b,c € R be constants and « € (0, 1]. Then conformable homogeneous differen-
tial equation with constant coefficient

aT Ty (t)+DbT y(t)+cy() =0, t €[0,00), 2)
has the associated auxiliary equation
al’ +bl+c= 0,
and the general solution of (2)) is given by one of the following for constants cj,c; € R :
(1) y(@) = 1M 4 cret2/® where A1, A, € R are distinct roots of (2);
i) y(») = c1eM1 4 op @M1 where Ais a repeated root of (2);

(i) y() = est'la (Cl cos ('Bt“) + o sin ('B t“)) , where A = ¢ +£if is a complex root of (2).

a a
Lemma 2.6. Assume that f is continuous and 0 < @ < 1. Then we have

T f () = f@,
LT f(0) = fO-f(a).

3. Main Results

The most important advantage of conformable derivative has similar properties with the ordi-
nary derivative like the derivative of the product and quotient of two functions, and also it enables
variation of order between 0 < @ < 1, when a = 1, it corresponds to ordinary derivative. Levitan and
Sargsjan [16] analyzed spectral theory of Sturm-Liouville problems in classical case. Differently
from [16], we investigate spectral properties of Sturm-Liouville problems by using conformable
derivative.

Conformable Sturm-Liouville Problems-Representation of Solutions and Asymptotic Formu-
las
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Now, we consider conformable Sturm-Liouville problem
—ToTgy()+q(x)y(x) =Ay(x),0<a < 1,x€[0,n] 3)

where Tg is conformable derivative operator, ¢g(x) is a real-valued and continuous function on
[0,7], y(x) is 2a—continuously differentiable on [0, ], Tg Tgy (x) is continuous on [0,7] and y €
C?2[0,n].
We use the following boundary conditions throughout our study,
Tgy(0)—hy(©0) = 0, 4)
Tgy(m)+Hy(m) = 0, 5)

where —h = coty, H = cotf. Let ¢(x,1) and ¢ (x, 1), satisfy the initial conditions (E[) and (5) re-
spectively, are the solutions of (3))

e, =1, Tfe0,4) = h, (6)

and

Y (0,0) =0, Tyy(0,4) = 1. (7)
Note that  and H are not equal to oo for the problem (3)—(0)), the cases & or H equal to co wil be
investigated for the problem (3)—(7) in the sequel.
Theorem 3.1. Let A = s2. Then, we have the representation of solutions for the problems (3)—(6)
and (3)—(7) as follows respectively

X

‘P(x,/l):Cossx—a+ésinsﬁ+1fsin[s(xa_Ta)]Q(T)SO(T,/l)dT, (8)
a s a s a
0
1. x* 1 x_ x¥—1¢
w(x,/l):—sms—+—fsm[s( )]q(T)cp(T,/l)dT. 9)
s a s a
0

Proof. Proof of theorem can be easily seen by the variation of parameters method for con-
formable differential equations given in [18], thus we have the representation of solution as follows,

YEAD = iy () + oy (x)+2 lv(vx) f q(T)y2 (D) y (D) dyt
0

W [

% g@y1 (D) y(r)dyt

0
It follows from initial condition (6),

X

X h a a_ L
cp(x,/l):coss—+—sin&——f[sins(x ‘ )]q(’r)go(‘r,/l)da,t
a a

N a S
0
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(9) can be proved similarly by using initial condition (7).

Theorem 3.2. Let s = o+ it. Then there exists so > 0 such that, for |s| > 5o, the asymptotic formulas
for eigenfunctions

(6, ) = 0(™/), g = OlsI™" /) (10)
are valid; and more precisely,
1% []x%* /a
o(x,d) = coss—+0[% : (11)
@ sl
1 1% [t|xY
W(xd) = —sinsx—+0(e . ) (12)
s a |s|

Proof. Let ¢ (x,1) = ¢ F (x). Then, we get from ,

X
@ a v 1 @ __ L+ K@
F(x)= {cos % + —sin &}e‘mF -= fsin[s(x il )] e Mg () F (1) d,.

A a

Put 4 = max |F (x)|. Then we arrive
0<x<m

< } #fwﬂ@n

0

and therefore "

1+|S|

U<
1—ﬁyﬂﬂMﬂ

on condition that the denominator is positive for

T
Is| > flq(T)ldaT-
0

is proved for ¢ (x, 2). It can be proved similarly for ¢ (x, 1).

Now, we obtain asymptotic formulas for eigenvalues. Consequently, this proves the existence
of infinitely many eigenvalues.

Theorem 3.3. We suppose that 4 # oo and H # co. Asymptotic formula for the eigenvalues corre-
sponding eigenfunction ¢ (x, A) is as follows

., C 1
sp=ant Y+ = +0 = |
n n



Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 December 2019

UNDER REVIEW SINCE 12th DECEMBER 2018

where

q()dot+H+h

M| —
o

Proof. The function ¢ (x, 1) satisfies the condition (6) for any A. Therefore, we find the eigen-
values by substituting ¢ (x, A1) in the initial condition (5). a—differentiating (8) with respect to x, we
obtain

X
a 104 a 104
T (x,1) = —ssin&+hcos&—fcos[s(x——T—)]q(r)go(f,/l)dar
a a a o«

Hence, we obtain from the initial condition (5),

Vg

a a a 104
—ssinﬂ+hcos£—fcos[s(ﬂ——T—)]q(r)(p(r,/l)daT (13)
a o«

(01 (01
0

X
a a 104 104
+H —SSin&+hCOS&—fCOS[S(x——T—)]q(T)(,D(T,/l)daT = 0.
a

a a a

Since eigenvalues A are real, we have Ims = 0 and thus, for positive eigenvalues A, (IT)) can be
written as follows,

@ 1
px, ) = cossx—+0(—).
a s

From here, substituting (11) in (I3) we have

Vg

st st ¢ ¢
—s8in— +hcos — — fcos [s(— — —)]q(r)tp(‘r,/l)dar
a a a
0
a h @ a ‘ 1
ST H ST H ST
+Hcos — — —sin— — —sin— | g(1)d,7+0O|—= ]| = 0.
a Ky a 2s a 52

0

We assume that g (x) has a bounded a—derivative. From here

(04 (04

v/
1 @ @ 1
—ssinﬂ+hcos———cossﬂ—fq(T)daT+Hcos£ +0(—) =0
a a 2 a a S
0

and hence, it can be easily seen from the method of classical eigenvalue calculation

Ve
1 H+h 1
sn:amrl_“+—fq(r)dar—( hl )+O( )
2nm s
0

(an)?

Therefore

B l—a € 1
Sp = anm a+;+0(w), (14)
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|

Asymptotic formula (11) can be written as follows by inserting value s,

where

N|=
| =

CcC =

T
fq(r)daT+H+h .
0

@n (x,2) = cos(nr! ~%x?) +ﬁ( ») sin(nr!~%x%) + 0( ! ),
(an)?
@ h 1
where 5 (x) = —c% + o —+ S fCI(T) dyT.

Theorem 3.4. Asymptotic formula for the norming constants is as follows,
¥ 1
=4\/—+0|—=|.
“" N2a ((an)Z)

Proof. Let’s consider the following integral

T

a/,% f go,% (X)dyx

0
T o 1 Ve a 1
= fcosznx—da,)H- f,B(x) sm(2n—)dax+ O( 2)
a n
0 0
T o 1
= fcos2 sx—dax+0 —
a (an)?
0
a | 1
= 2| +0
2aly (an)?
o 1
=2 0 .
2a ((an)z)
) n 1
Hence, we have the norming constants @, = 1/ — + 0| ——=|.
2a (an)?

Theorem 3.5. Asymptotic formula for the normalized eigenfunction is as follows,

on(X) _ N 2a (cos(mrl_“x“)af + A sin(mrl_“x“)) + O( ! ) )
ay, n n (an)?

Now, we analyze the case & = co, H # oo (the case h # oo, H = oo can be analyzed by substituting
to t = m— x). We assume that the condition (4) is in the form of

y(0) =0. (15)
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Theorem 3.6. We suppose that i = co, H # co. Asymptotic formula for the eigenvalues correspond-
ing eigenfunction ¥ (x, A) is as follows

an +1 H L0 1
S =—1n —|—anr .
"2 (1) \en)?
e

1
H, :H+§fq(r)doﬂ'.
0

where

Proof. The function ¢ (x, 1) satisfies condition from (4). Therefore, for this case we can
settle the eigenvalues by replacing the function i (x, A) in the initial condition (5). a—differentiating
(9) with respect to x, we obtain

(01

T (x,A) = cos % - fcos [s(%a - i)] g (r,D)d,t
0

Hence, we obtain from the the initial condition (5),

cosﬁ—fcos[s(ﬁ—ﬂ)]q(T)lﬁ(T,/l)daT (16)
a a «a
0
1. sn¢ 1 r ) ¢ ¢
+H —s1n———fsm[s(———)]q(T)w(T,/l)dar = 0,
s a s a o«

0
substituting (12) in (I6), we get

n
104 1 104 04 104 H a 1
cosﬂ——fcos[s(ﬂ——T—)]q(r)sinidarwt—sinﬂ+0(—2):0,
a o« a Ky a S

we assume that g (x) has a bounded a—derivative, so

Ve
Q Q Q
fq(r)cos[ (% —%)] sin %dar
0

T
s ™ . sT¢
= cos— | g(r)coss—sin—d,T
a 0% 0%
0

T
Y .o sTY
+sin — fq (1) sin’ —d,T
a a
0

/4
1. sn® 1
- 5sinﬂfq(r)daﬂo(—).
a S
0
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Hence
o 1|1 s [ 1
cos = — ) —sin T q(T)daT+0(—)
@ s |2 a Ky
0
H & 1
+—sin£+0(—2) =0,
S 10 s
and

T

@ ] @ 1 1
cos£+—sin£ H+—fq(r)dar +0|—=
a s a 2 52
0

st H; . sn? 1
= coS— +—sin—+O0 - =0.
a K a K

It can be easily seen from the method of classical eigenvalue calculation
armr 1 H; 1
Sn = ﬂ_—a/(n‘i'z—T)‘i‘O(s—z)

armr +1 N H L0 1
Sp=—|n+= —1,
" b 2 n+% I’l2

/8

1
H, :H+§fq(‘r)da‘r.

0

Therefore

where

Asymptotic formula (12) can be written as follows by inserting value s,
1 H 1
sn:a—Z(n+—)—cm ! +O( 2),
4 2 (n + %) (an)

Theorem 3.7. Asymptotic formula for the norming constants is as follows,

1 T

= [t +O1
" anl-e N 2a n+% an)’

Proof. To find asymptotic formula for the norming constants, let’s consider the following inte-
gral

(0

cy% = fw%(x)dax
0

- () 2l olar
-~ Narn2) 2a n+% (an)?)’
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. 1 ¥ 1 1
Hence, we have the norming constants a,, = T — T+ o1—|.
arl-@ N 2a\n+ 3 an

Theorem 3.8. Asymptotic formula for the normalized eigenfunction is as follows,
2 1 1\ x* 1
l’//"(x):\/—a sinfar!=(n+= | = |+0[—].
ay, n® qrl-@ 2] «a an

Finally, let’s analyze the case h = co and H = oo. This requires that the boundary conditions
(4)—(5) have the form

y(0) =y(m) =0.

Theorem 3.9. We suppose that i1 = co, H = co. Asymptotic formula for the eigenvalues correspond-
ing eigenfunction i (x, A) is as follows

1
s, =namr' "%+ ‘. 0(—),

nm (an)?
where
1 s
c= Efq(r)da‘r.
0
Proof. Eigenvalues are the roots of
Y (m) =0.
Thus,
Vs
s T¢
Y(r,A) = sin— 1—fcos s—q @Y (r,)d,T (17)
a a
0

Ve
a a
—cosﬂfsinsr—q(r)w(r,/l)dﬂ =0,
o a
0

substituting (12) in (I7), we get

Ve
Y, N/ il | ™ | s7¢
sin — —sin —— | cos s—sin—q(7)d,T
a a s a a
0
04 g a
ST 1 . 5,57 1
—cos— | —sin? —q(T)dyTt+ 0 | = 0,
a Ky a S

0

we assume that ¢ (x) has a bounded a—derivative, so

Ve
104 04 1 1
sin 2 —cos 2 — [ g(r)dar+0[ =] =0.
a a 2s 52
0
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From here,
a 1 H 1
— - 0 —1,
n= =) ol)
Therefore,
-« ( 1 )
Sy, =nan " +—+0 =
nmw n
where
1 Ve
c:ifq(r)dar.
0

Asymptotic formula (12) can be written as follows by inserting value

1
Sn = nan'"+ < 10| —|,
nmw (an)?

Theorem 3.10. Asymptotic formula for the norming constants is as follows,

1 ¢ N 1
a, = — .
" annl—e N 2a (an)?
Proof. Norming constants can be found as follows

oz,zl = fv,l/,zl(x)dax
0

n! 1
= +0|— .
2an (nz)

T

@ 1
Hence, we have the norming constants a, = Wll—a 2a + 0(( )2 )
a an

Theorem 3.11. Asymptotic formula for the normalized eigenfunction is as follows,

n) [ 22 sin (mrl_"’xa) + 0(1)

an rl-a n
4. Visual Results

In this section, the eigenfunctions ¢ (x, 1) and ¥ (x, ) of the problems (3)—(6) and (3)—(7) are
compared for different cases visually. Assume that 4 = 1 for all figures, and ¢ (x) = 0 for all figures
except for Fig4 and Fig8.

Application
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a=0.4

a=0.5

a=0.6
a=1

Figure 1: Comparions of eigenfunctions for
¢ (x,A) under different orders, s =

— A=l —— A9 — A=25

)
150

1.0

0.5

Figure 3: Comparions of eigenfunctions for
¢ (x,A) under different eigenvalues, @ = 0.6

a=0.4

a=1
-0.21
a=0.6
a=0.5

—04t

Figure 5: Comparions of eigenfunctions for
¥(x, ) under different orders,s =
— A=1 — A=9 — A=25

-0.21

—04L

Figure 7: Comparions of eigenfunctions for
Y(x, A) under different eigenvalues, @ = 0.6
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a=0.4

a=0.5

a=0.6

a=1

Figure 2: Comparions of eigenfunctions for

¢ (x, ) under different orders, s = %

d(x)
150
1.0 a=0
q=1
0.5
‘ ‘ ‘ ‘ ‘ L,
05 a=2
~10f
q=3

Figure 4: Comparions of eigenfunctions for
¢(x, 1) under different potentials,s = 4, =
0.5

w(x)
1.0
0.5
a=0.5
X— q=0.4
-0.5 a=0.6
a=1
-1.01

Figure 6: Comparions of eigenfunctions for

Y(x, ) under different orders,s = %

g=2

Figure 8: Comparions of eigenfunctions for
Y(x, A) under different potentials, s = 4
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1.0F
0.5H \

0.5 1.0 T8 2.0 25 3.0

wix]

o

Figure 9: Comparions of eigenfunctions of
e(x,A) and Y(x,1),a=0.5,5s=1

Let’s give an application to the @—orthogonality of eigenfunctions and reality of eigenvalues
for conformable Sturm-Liouville problem defined by [15] under Dirichlet boundary conditions.
—TgTgy(x)=Ay(x), 0<x<{,LeRT, (18)

y(0)=y(0)=0. (19)
Solution of the problem (I8]-{19) is as follows,

. (nmx®
yn(X) = sm( T ) (20)
2 3¢
SO y| = sin(’;—g), y2 = sin(”;a ),y3 = sin(m;a ), and eigenvalues of the problem (18 —19) is
found as
_ (nma)?
w=( )
na\? 2\ 3nar\ . . .
sol1=(—),2=(—],A43=|——] ,... and a—orthogonality of eigenfunctions y, and y,,
@ Iz Iz SONAIY 0T €8

corresponding to distinct eigenvalues A,, and 4, can be seen as follows,

¢
04 04
OnsYmda = fsin(m;:: )sin(ngz )da,T =0,m # n.
0

Remark.

All results obtained above are also valid for conformable Sturm-Liouville problems with pro-
portional a—derivative.



Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 December 2019

UNDER REVIEW SINCE 12th DECEMBER 2018

: g //\ //\n
4 6 s\ 10/ 12 N\ M
N

a=0.4
a=1
a=0.8

2
-0.51
-1.0-

Figure 10: Comparions of eigenfunctions y,
for (20) under different orders, x = 7,/ =10

5. Conclusion

In this study, we investigate spectral structure of conformable Sturm-Liouville problems and
with this end, we obtain representation of solutions under different initial conditions and asymp-
totic formulas for eigenfunctions, eigenvalues, norming constants and normalized eigenfunctions.
So, we prove the existence of infinitely many eigenvalues. Also, we compare the solutions with
graphics with different orders, different eigenvalues, different potentials and so, we observe the
behaviors of eigenfunctions.

We compare the eigenfunctions of the problem (3) — (6) under different orders, different eigen-
values and different potential functions in Figl, Fig2, Fig3, and Fig4. We compare the eigenfunc-
tions of the problems (3) — (7) under different orders, different eigenvalues and different potential
functions in Fig5, Fig6, Fig7 and Fig8. We compare the eigenfunctions of the problems (3) — (6)
and (3) — (7) with each other in Fig9.

The most important advantage of conformable derivative has similar properties with the ordi-
nary derivative like the derivative of the product and quotient of two functions, and also it enables
variation of order between 0 < @ < 1, and when @ = 1, it corresponds to ordinary derivative. Levitan
and Sargsjan [16] analyzed spectral theory of Sturm-Liouville problems in usual case. Differently
from [16], we investigate spectral properties of Sturm-Liouville problems by using conformable
derivative .
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