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Abstract: This study proposes a vision‐based framework to support autonomous vehicles (AVs) in 

maintaining  stable  lane‐keeping  by  assessing  the  condition  of  lane  markings.  Unlike  existing 

infrastructure standards focused on human visibility, this study addresses the need for criteria suited 

to  sensor‐based AV  environments. Using  real driving data  from  urban  expressways  in  Seoul,  a 

YOLOv5‐based  lane  detection  algorithm  was  developed  and  enhanced  through  multi‐label 

annotation and data augmentation. The model achieved a mean average precision (mAP) of 97.4% 

and demonstrated strong generalization on external datasets such as KITTI and TuSimple. For lane 

condition assessment, a pixel occupancy–based method was applied, combined with Canny edge 

detection and morphological operations. A threshold of 80%‐pixel occupancy was used to classify 

lanes as intact or worn. The proposed framework reliably detected lane degradation under various 

road and  lighting  conditions. These  results  suggest  that quantitative,  image‐based  indicators  can 

complement traditional standards and guide AV‐oriented infrastructure policy. Limitations include 

lack of adverse weather data and dataset‐specific threshold sensitivity. 

Keywords: maintenance standards; lane identification and assessment; lane degradation evaluation; 

pixel occupancy; framework 

 

1. Introduction 

Roads, as one of  the  core  components of  transportation  infrastructure, play a  critical  role  in 

enabling  spatial  mobility  necessary  for  human  socio‐economic  activities  and  thus  contribute 

significantly  to societal development and economic growth  [1]. Due  to  the  frequent movement of 

vehicles and pedestrians on  roads, various  facilities—such as  traffic control devices and highway 

safety installations—are  implemented to ensure efficient traffic flow and to minimize social  losses 

caused  by  traffic  crashes.  To  ensure  these  facilities  function  properly  and  fulfill  their  intended 

purpose, most countries have established national and/or local government standards that prescribe 

installation  methods  and  maintenance  procedures.  Road  authorities  are  responsible  for  the 

construction and management of roadways in accordance with these standards. 

Current standards for the installation of roadway facilities have primarily been established to 

ensure that human drivers of conventional vehicles can perceive roadway conditions and respond 

safely while driving. In other words, these standards were formulated under the assumption  that 

human drivers are directly operating the vehicle. However, the rapid advancement of autonomous 

driving  technologies  presents  new  challenges  to  the  traditional  systems  of  installation  and 

maintenance of roadway infrastructure. Given that autonomous vehicles (AVs) rely on a wide range 

of sensors and artificial intelligence technologies to perceive the road environment and make driving 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 May 2025 doi:10.20944/preprints202505.2199.v1

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from
any ideas, methods, instructions, or products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2199.v1
http://creativecommons.org/licenses/by/4.0/


  2  of  14 

 

decisions without  human  intervention,  future  roadway  facility  standards may  need  to  adopt  a 

fundamentally different approach  that  aligns with  the autonomous driving  environment  [2]. For 

example,  one  of  the  key  functions  of  autonomous driving,  the Lane Keeping Assistance  System 

(LKAS), enables vehicles to maintain lane position without driver intervention by recognizing lane 

markings through on‐board devices such as cameras and LiDAR sensors [3–5]. For such functionality 

to  operate  properly,  the  shape  and  condition  of  the  lane  markings  must  be  well‐maintained. 

Otherwise, the autonomous vehicle (AV) may fail to recognize the lane accurately, increasing the risk 

of unintentional  lane departure and  subsequent  collisions with  surrounding vehicles or  roadside 

facilities. 

However,  current  standards  for  the  installation  of  longitudinal  pavement  markings  are 

primarily based on retroreflectivity performance, which is intended to ensure nighttime visibility for 

human drivers under manual driving conditions [6]. Thus, whether these standards are appropriate 

for autonomous driving environments remains uncertain. According to prior research, a significant 

portion of disengagement cases in Advanced Driver Assistance Systems (ADAS) has been attributed 

to environmental factors, such as degraded lane markings [7]. Given that autonomous vehicles (AVs) 

rely on onboard sensors to recognize the shape of lane markings to identify the traveled way, it can 

be argued that, in autonomous environments, the shape of the markings is more critical than their 

visibility.  Therefore,  lane  marking  installation  and  maintenance  standards  for  AVs  should 

incorporate criteria regarding lane shape in addition to retroreflectivity performance. However, no 

formal research has yet addressed this issue. 

Numerous  studies  have  been  conducted  to  improve  the  lane  detection  capabilities  of 

autonomous vehicles (AVs), which are essential for the proper functioning of autonomous driving 

systems  [8,9]. However, most  of  these  efforts  have  focused  on  enhancing  the  lane  recognition 

performance of  the vehicle  itself. Given  that  lane departure  accidents  still occur,  it  is difficult  to 

conclude that AV technology has yet reached a level of complete reliability. Therefore, the realization 

of a fully autonomous driving environment—capable of standalone operation—will require not only 

advances in vehicle‐based technologies but also concurrent support from road infrastructure systems. 

This study aims to advance autonomous driving by providing infrastructural support that helps 

vehicles maintain lane positioning more reliably. It focuses on developing a digital image analysis–

based method  to  quantitatively  assess whether  the  condition  of  road  lane markings  affects AV 

operations.  The  proposed  framework  integrates  two  core  algorithms:  one  for  identifying  lane 

markings  among  various  pavement  markings,  and  another  for  determining  whether  they  are 

degraded (faded or not). Unlike prior work, degradation is assessed using a quantitative threshold 

based on pixel occupancy, offering a more objective criterion. The findings are expected to inform 

future installation standards that account for both retroreflectivity and geometric integrity. 

This  article  is  a  revised  and  expanded  version  of  a  paper  titled  “Development  of  a  Lane 

Identification and Assessment Framework for Maintenance Using AI Techniques”, presented at the 

16th ITS European Congress, Seville, Spain, 19–21 May 2025 [10]. 

2. Literature Review 

Research on lane markings can largely be categorized into two major objectives: improving lane 

detection accuracy  and  evaluating  lane degradation. Studies  targeting detection  accuracy mainly 

focus on precise identification and tracking of lane markers. A real‐time lane modeling and tracking 

method using distance  transform  techniques has shown  reliable performance  in  relatively  simple 

urban environments [11]. 

Among CNN‐based approaches, a representative example is the end‐to‐end learning method for 

autonomous driving, in which steering angles are predicted directly from road images to maintain 

lane position [12]. Another study introduced a Spatial CNN that not only recognizes lane markers 

but also contributes to scene understanding [13]. A combined method using CNN and RANSAC was 

proposed to  improve the robustness of  lane detection [14], while a deep  learning model based on 

OverFeat showed effective recognition of  lanes and vehicles  in highway environments [15]. These 
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studies primarily focused on improving detection accuracy and achieving real‐time performance. The 

YOLO  (You Only Look Once)  algorithm, developed  by Redmon  et  al., provides  real‐time  object 

detection  and  has  been widely used  in  autonomous driving  applications  [16]. Roy  and  Bhaduri 

proposed  a YOLOv5 model with  a  transformer‐based  head  to  classify  damaged  and  intact  lane 

markings  using  improved  augmentation  techniques  [17].  Swain  and  Tripathy  further  extended 

YOLO techniques to detect lanes in complex multi‐lane environments under diverse conditions [18]. 

Studies focusing on assessing lane degradation have increasingly adopted segmentation‐based 

models, which  are  critical  in  this  domain.  For  example,  an  encoder–decoder  architecture  using 

DeepLabv3+  has  been  proposed  to  analyze  lane markings  at  the  pixel  level  and  evaluate  their 

deterioration  [19].  A  semantic  segmentation method  based  on  generative  adversarial  networks 

(GANs) has also been developed for lane detection tasks [20]. Furthermore, an instance segmentation 

approach demonstrated high accuracy in identifying lanes under complex conditions [21]. In addition, 

ENet, a lightweight segmentation network, was introduced to enable real‐time detection [22]. 

However, most previous studies on lane maintenance have notable limitations. First, they did 

not provide a consistent, quantitative criterion for evaluating the condition of lane markings [19–21]. 

Second, it remains challenging to objectively assess degradation under complex road environments 

or various weather conditions [13,18,22]. Lastly, labeling‐based damage assessments often reflect the 

subjective judgment of researchers, leading to inconsistency [15,17,21]. 

3. Data Preparation 

3.1. Data Collection Equipment 

To  collect  training  data  necessary  for  the  development  of  lane  identification  and  condition 

assessment algorithms, four main devices were utilized: cameras mounted both inside and outside 

the vehicle, an internal GPS system, and a mobile application. 

Cameras were  installed  in  two  vehicles  equipped with  Level  2  to  2.5  autonomous  driving 

features. An in‐vehicle camera (Figure 1a) was used to collect data related to the operation status of 

the LKAS, as displayed on the vehicle’s instrument panel. Additionally, two external cameras were 

mounted on the vehicle roof (Figure 1c) to capture front and rear views during LKAS disengagement 

events. A mobile device equipped with an application (Figure 1b) was also installed inside the vehicle 

to record the GPS coordinates and reasons for LKAS disengagement. 

 

Figure 1. Devices installed for data collection: (a) an in‐vehicle camera used to capture the activation status of 

the LKAS; (b) a mobile application installed to record the GPS coordinates and reasons for LKAS disengagement; 

(c) external cameras mounted to capture front and rear views of the vehicle. 

3.2. Field Data Collection 
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Data were collected over a one‐year period from October 2021 to October 2022 on seven major 

urban  expressways  in  Seoul,  South  Korea,  characterized  by  uninterrupted  traffic  flow.  These 

included key  corridors  such as  the Olympic Expressway  (Olympic‐daero), Riverside Expressway 

(Gangbyeonbuk‐ro), Western  Arterial  Road  (Seobu‐gansun‐ro),  Eastern Arterial  Road  (Dongbu‐

gansun‐ro), Inner Ring Road (Naebu‐sunhwan‐ro), Northern Arterial Road (Bukbu‐gansun‐ro), and 

Gangnam Circular Road (Gangnam Sunhwan‐ro). During this period, a total of 896 driving sessions 

were conducted, resulting in an accumulated survey distance of 20,172 kilometers. Data collection 

was carried out under diverse traffic and environmental conditions, including morning and evening 

peak hours, nighttime periods, and adverse weather scenarios, to capture a comprehensive range of 

operational contexts. 

3.3. Data Pre‐Processing 

Through  field  investigations,  three distinct  types of data were  collected:  (1)  in‐vehicle video 

footage capturing the status of LKAS disengagement, recorded via the camera installed inside the 

vehicle  (refer  to Figure 1a);  (2)  the  reasons  for autonomous driving disengagement, documented 

through a mobile application; and (3) forward‐facing video footage recorded by an external camera 

mounted on the vehicle during the survey period (Figure 1c). To construct the training dataset, these 

heterogeneous data sources were synchronized based on date and time and subsequently merged 

into a unified dataset. Data integration was performed using the Python “pandas” library. 

The primary objective of  this  study  is  to develop an algorithm  that  identifies  lane markings 

among various objects in image data and determines whether the LKAS remains engaged based on 

the recognized lanes. To achieve this, images corresponding to LKAS disengagement moments were 

extracted from the  integrated dataset and used as training samples. Extraction  involved manually 

synchronizing timestamps between the LKAS disengagement database and recorded video footage, 

followed  by  frame  selection  at  relevant  time  points.  During  the  field  survey,  1,595  LKAS 

disengagement events were recorded, of which 244 were related to lane detection issues. From these, 

segments where LKAS was disengaged for over one second were selected, and frames were extracted 

at 10 frames per second, yielding 330 images. The image extraction process is illustrated in Figure 2. 

 

Figure 2. Matched internal DB with external videos. 

4. Framework Development and Validation 

Figure  3  illustrates  the  overall  workflow  of  the  study,  including  data  preparation,  lane 

identification algorithm development, and lane condition assessment algorithm development. In this 

study,  a  YOLO‐based  object  detection model was  employed  to  detect  lane markings  and  other 

roadway elements, and a methodology was proposed to evaluate the condition of identified lanes. 

The  research  process  consists  of  three main  stages:  data  preparation  (Section  I;  see Chapter  3), 

development  of  the  lane  identification  algorithm  (Sections  II–IV;  addressed  in  Section  4.1),  and 

development of the lane condition assessment algorithm (Section V; described in Section 4.2). 
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Figure 3. YOLO‐Based Lane Identification and Assessment Process. 

4.1. Lane Identification Algorithm Development 

In  the  early  phase  of  this  study,  a  single‐label  annotation  approach was  applied  for  lane 

classification; however, the resulting model exhibited relatively low accuracy metrics. To address this 

limitation, a multi‐label annotation method was introduced, which led to improved performance in 

both  lane  detection  and  classification,  enabling  more  precise  lane  identification.  According  to 

previous research,  the application of multi‐label annotation can enhance  the object differentiation 

capability of  trained models compared  to single‐label methods  [23]. This study  incorporated  that 

approach to more effectively distinguish lanes from other objects in the roadway environment. 

Based  on  the  experimental  results,  a  refined  labeling  scheme  was  established  to  clearly 

distinguish  lane markings  from  other  roadway  elements,  as  illustrated  in Figure  4. The  labeling 

criteria were designed  to minimize  confusion between  lanes  and other  components on  the  road. 

Specifically, regions with white backgrounds containing text were labeled as “road markings,” those 

containing dashed lines were labeled as “safety zones,” regions with arrows were labeled as “arrows,” 

and areas that did not include any text, dashed lines, or arrows were labeled as “lanes.” This multi‐

labeling  strategy was  implemented  to  improve  the  reliability  of  lane  detection  and  reduce  false 

positives. 

. 

Figure 4. Image’s Labeling Principle (Left) and Examples (Right) 

In  the  initial experiments,  training  the model using  the originally  labeled  images  resulted  in 

relatively low accuracy metrics. To address this limitation, a multi‐labeling technique was applied 

alongside data augmentation to improve the model’s robustness against various types of noise and 

environmental variations, prevent overfitting, and ensure consistent performance on new datasets. 
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Similar  effects have been observed  in previous  studies, where data  augmentation was  shown  to 

effectively enhance the generalization capability of deep learning models [24]. 

Various data augmentation techniques—such as brightness adjustment, rotation, scaling, and 

random cropping—were applied to reflect diverse road conditions, increasing the training dataset to 

3,304 images. Figure 5 shows sample outputs generated by the augmentation algorithm. 

 

Figure 5. Data Augmentation Algorithm (Left) and Results (Right). 

After  the  training  image dataset was  constructed,  the  lane  identification algorithm based on 

YOLOv5 was designed with  the structure  shown  in Figure 6. The algorithm  follows a sequential 

process from input to output. 

 

Figure 6. Structure of the Lane Identification Algorithm (YOLOv5). 

In the input stage, the trained images are fed into the model. In the backbone stage, the model 

generates an optimal weight file (best weight file) through training, while simultaneously evaluating 

performance metrics such as the confusion matrix, recall, precision, and object and class loss. In the 

neck stage, the verified best weight file is used to assess the lane detection accuracy on new images. 

The head stage utilizes the outputs from the neck to detect the type and location of lanes. Finally, in 

the  output  stage,  the model  produces  the  lane  identification  results,  including  lane  classes  and 

positional information. 

The performance of object detection using the YOLOv5 algorithm was evaluated using standard 

metrics, including precision, recall, mean average precision (mAP), and intersection over union (IoU). 

Precision,  as  defined  in  Equation  (1),  measures  the  proportion  of  correctly  predicted  positive 

instances among all instances predicted as positive. Recall (Equation (2)) refers to the proportion of 

actual positive instances that were correctly identified by the model. The mean average precision, or 

mAP, defined  in Equation  (3),  is  the average of precision values across all  levels of  recall and  is 

commonly interpreted as the area under the precision–recall curve. Finally, the model applies non‐

maximum suppression  (NMS) based on  intersection over union  (IoU)  to  select  the most accurate 

bounding box predictions. IoU, shown in Equation (4), quantifies the degree of overlap between the 

predicted bounding box and the ground truth. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠ሺ𝑇𝑃ሻ

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠ሺ𝑇𝑃ሻ  ൅  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠ሺ𝐹𝑃ሻ
 (1)

𝑅𝑒𝑐𝑎𝑙𝑙 ൌ  
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠ሺ𝑇𝑃ሻ

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠ሺ𝑇𝑃ሻ ൅ 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠ሺ𝐹𝑁ሻ
 (2)
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𝐴𝑃 ൌ  න 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛ሺ𝑅𝑒𝑐𝑎𝑙𝑙ሻ𝑑ሺ𝑅𝑒𝑐𝑎𝑙𝑙ሻ
ଵ

଴
,𝑚𝐴𝑃 ൌ  

1
𝑁
෍ 𝐴𝑃௜

ே

௜ୀଵ
 (3)

𝐼𝑂𝑈 ൌ
𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑎𝑟𝑒𝑎 ∩  𝐴𝑐𝑡𝑢𝑎𝑙 𝑎𝑟𝑒𝑎
𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑎𝑟𝑒𝑎 ∪  𝐴𝑐𝑡𝑢𝑎𝑙 𝑎𝑟𝑒𝑎

ൈ 100  (4)

Training was conducted in a high‐performance computing environment equipped with a 13th‐

generation Intel® Core™ i9‐13900HK processor and an NVIDIA GeForce RTX 4080 GPU. The dataset 

was split into 80% for training and 20% for validation. The XL model was trained for 100 epochs, with 

a confidence threshold set at 0.4 and an IoU threshold set at 0.45. As shown in Figure 7, the confusion 

matrix analysis indicated object recognition accuracy ranging from 93% to 100%. Additionally, both 

object and class  loss rates were  low, and  the model achieved a mean average precision  (mAP) of 

97.4%, demonstrating excellent performance. 

 

Figure 7. Structure of the Lane Identification Algorithm (YOLOv5) 

To evaluate the reliability of  the training results, the performance of YOLOv5 was compared 

with that of CNN (ResNet34) and other YOLO versions. Figure 8 presents the confusion matrices for 

YOLOv5 and CNN (ResNet34) after additional training. YOLOv5 achieved the highest performance, 

with  a  recall  of  94.0%,  a  precision  of  98.3%,  and  a  mean  average  precision  (mAP)  of  97.4%, 

demonstrating a significant improvement in model accuracy. Furthermore, YOLOv5 outperformed 

CNN (ResNet34), which achieved a precision of 97.0% and an mAP of 96.0%, with object recognition 

accuracy  ranging  from  43%  to  99%. Additionally, YOLOv5  surpassed YOLOv10  in performance, 

suggesting that simpler algorithms may be more effective when working with smaller datasets. 

 

Figure 8. (Left) Comparison Analysis Results / (Right) CNN Confusion Matrix. 
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4.2. Lane Assessment Algorithm Development 

The YOLO algorithm  is one of  the most widely used  computer vision  techniques due  to  its 

lightweight architecture and fast, accurate object detection capabilities. However, as its primary focus 

lies  in  object  detection  and  classification,  it  has  limited  capacity  to  quantitatively  assess  object 

condition,  importance,  or  risk  level.  This  limitation  reduces  its  applicability  in  decision‐making 

processes  that  require  such  evaluations.  To  address  this  issue,  the  present  study  proposes  an 

extended  lane  evaluation  algorithm  based  on  the  YOLO  framework,  which  incorporates  a 

quantitative assessment process and explicit evaluation criteria. 

The  proposed  lane  evaluation  algorithm  is  built  upon  the  previously  developed  lane 

identification algorithm, with an additional process integrated into the head section of the model to 

assess the degree of lane degradation. The structure of this algorithm is illustrated in Figure 9. The 

development of the lane evaluation algorithm includes three key steps: the implementation of image 

processing techniques, the establishment of quantitative indicators for distinguishing between intact 

and degraded lane markings, and the classification of each lane as either normal or worn. 

 

Figure 9. Structure of the Lane Assessment Algorithm. 

To develop the image processing techniques, it was necessary to extract individual lane images 

from  the  training data.  In  the original  training  images, both  intact and worn  lane markings were 

labeled together with the background, requiring separation from surrounding visual elements. To 

address this, approximately 1,600 lane images containing background elements were extracted from 

the training dataset. The extraction process and resulting samples are presented in Figure 10. 

 

Figure 10. Results of normal and faded lane extraction. 

In  the  lane  condition verification process, different  image processing  techniques are applied 

depending on the condition of the lane markings. For intact lanes, edge‐filling is performed to ensure 

continuity without gaps, followed by the calculation of pixel occupancy. In contrast, for degraded 

lanes, edge extraction, secondary Canny edge detection, and morphological operations are used to 

remove noise and restore the lane area before computing the pixel occupancy ratio. This process is 

illustrated in Figure 11. 
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Figure 11. Lane Condition Evaluation Algorithm: Concept and Process. 

Figure 12  shows  the analysis  results  for  intact and worn  lane markings.  In  intact  lanes,  few 

internal pixels were detected in the first Canny edge detection, indicating good condition. In worn 

lanes, many internal pixels appeared initially but were removed through a second Canny detection 

and morphological operations, resulting in a low final pixel occupancy. 

 

Figure 12. Analysis Results of Normal and Faded Lanes. 

Figure 13 illustrates the pixel occupancy distribution for intact and worn lane markings, based 

on the lane evaluation algorithm shown in Figure 13. The analysis showed that intact lanes had pixel 

occupancy between 80.2% and 100.0%, while worn lanes ranged from 53.1% to 79.8%. Based on this, 

lanes with  occupancy  above  80% were  classified  as  intact,  and  those  below  80%  as worn.  This 

threshold enables a quantitative assessment of lane degradation and supports consistent evaluation 

across various road environments. 
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Figure 13. Analysis Results of Normal and Faded Lanes. 

4.3. Performance Validation and Framework Development 

To evaluate the generalization performance of the lane identification algorithm, accuracy was 

tested on new images. Six arterial road images were selected from each of the KITTI and TuSimple 

datasets. As shown in Figure 14, the average intersection‐over‐union (AIoU) ranged from 0.64 to 0.92, 

reflecting the accuracy of the predicted object locations. 

 

 

Figure 14. Average IOU analysis results per image. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 May 2025 doi:10.20944/preprints202505.2199.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2199.v1
http://creativecommons.org/licenses/by/4.0/


  11  of  14 

 

Figure 15 presents the results of lane condition assessment. While most intact and worn lanes 

were  accurately  classified,  several  issues were  identified.  First, non‐lane  areas were  occasionally 

misclassified as worn  lanes. Second,  lanes  located  farther  from  the  image center were  sometimes 

misclassified due  to reduced resolution. Third,  in  twilight conditions, decreased brightness  led  to 

false identification of intact lanes as worn. 

 

Figure 15. Analysis Results of Normal and Faded Lanes. 

Figure 16 illustrates the structure of the lane identification and assessment framework developed 

in this study. The framework consists of two main stages: lane identification and lane assessment. In 

the  identification  stage,  a  YOLO‐based  object  detection model  is  used  to  detect  road  elements, 

including lanes, from the input image and classify lane objects. In the assessment stage, each detected 

lane is individually analyzed. Pixel occupancy is calculated, and Canny edge detection along with 

morphological operations  is applied  to determine whether  the  lane  is  in a normal condition. This 

approach enables reliable lane detection and evaluation under diverse road conditions and generates 

an output image containing both the detected lanes and their condition status. 
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Figure 16. Lane Identification and Assessment Framework. 

5. Conclusions 

This study proposed a vision‐based framework for lane identification and condition assessment 

to support the stable lane‐keeping functionality of autonomous vehicles (AVs). Unlike conventional 

road  standards  focused  on  human perception  and nighttime  visibility,  the proposed  framework 

addresses  the  need  for  evaluation  criteria  suited  to  sensor‐based  AV  driving  environments  by 

focusing on the geometric integrity of lane markings. 

A  YOLOv5‐based  lane  detection  algorithm  was  developed  using  real‐world  driving  data 

collected  from major urban  expressways  in Seoul. Multi‐label annotation and data augmentation 

techniques were employed to enhance the model’s accuracy and generalization. The trained model 

achieved a mean average precision (mAP) of 97.4%, and its performance was validated on external 

datasets such as KITTI and TuSimple, confirming its robustness. Based on the detection results, a lane 

condition assessment algorithm was constructed using pixel occupancy analysis combined with edge 

and morphological operations. A threshold of 80%‐pixel occupancy was  introduced to distinguish 

between intact and worn lanes, and this criterion was shown to perform reliably under various road 

and lighting conditions. 

The findings suggest that AI‐based evaluation techniques can complement existing visibility‐

based  standards  and  support  the  development  of AV‐compatible  lane maintenance  policies  by 

providing  quantitative,  interpretable  criteria.  The  framework  is  also  applicable  in  real‐world 

conditions, offering both technical feasibility and policy relevance. 

However,  several  limitations  should  be  noted.  The  training  data  were  limited  to  urban 

expressways  and  typical  day/night  scenarios,  lacking  adverse weather  or  rural  road  conditions. 

Additionally, the 80%‐pixel occupancy threshold was derived from the characteristics of the training 

dataset and may vary depending on lane material, color, and brightness contrast. Its generalizability 

should be validated with diverse datasets and environments. 

Despite these constraints, the proposed framework provides a practical foundation for future 

infrastructure  standards  in  autonomous  driving. Continued  research  should  focus  on  extending 

environmental  diversity  in  the  data  and  refining  evaluation  thresholds  to  ensure  broader 

applicability and consistency. 
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