Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 December 2022 d0i:10.20944/preprints202212.0492.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
Discerning discretization for UUV DC Motor control

Jovan Menezes !, Timothy Sands 2*

1 Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 USA
2 Department of Mechanical Engineering (CVN), Columbia University, New York, NY 10027 USA
* Correspondence: dr.timsands@caa.columbia.edu

Abstract: Discretization is the process of converting a continuous function or model or equation into
discrete steps. In this work, adaptive and learning methods are implemented to control DC motors
that are used for actuating control surfaces of unmanned underwater vehicles. Adaptive control is
a method in which the controller is designed to adapt the system with parameters which vary or are
uncertain. Parameter estimation is the process of computing the parameters of a system using a
model & measured data. Adaptive methods have been used in conjunction with different parameter
estimation techniques. Deterministic artificial intelligence, a learning-based approach that uses the
process dynamics defined by physics, is also applied to control the output of the DC motor to track
a specified trajectory. This work goes further to evaluate the performance of the adaptive & learning
techniques based on different discretization methods. The results are evaluated based on the abso-
lute error mean between the output & the reference trajectory and the standard deviation of the
error. The first order-hold method of discretization and surprisingly large sample time of seven
tenths of a second yields over sixty percent improvement over the results presented in the prequel
literature.

Keywords: Discretization; DC motors; deterministic artificial intelligence; adaptive control; learning
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1. Introduction

Direct Current (DC) motors are a class of rotating electrical motors that convert DC
electrical energy into mechanical energy, and such motors have ubiquitous applications
including unmanned underwater vehicles. The operation of DC motors is amidst a revo-
lutionary change with the adoption of sophisticated microcontrollers and control strate-
gies. Control of DC motors is a well-studied topic in the literature, including using neural
networks [1,2] including neural network-based auto-tuning of classical proportional, in-
tegral, derivative controllers [3], as well as recursive least squares [4]. Estimators and es-
timation techniques are deployed side-by-side with control strategies to determine the
parameters and even the state of the system using a model.

Figure 1. Control surfaces and propellor on unmanned underwater vehicles [5] utilizing typically
available DC motors [6,7] like those depicted in figure 2.
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Figure 2. (a) Maxon high-torque DC brushless motors for unmanned underwater vehicles [6]. (b)
Underwater thruster propeller motor [7]. (c¢) ECI-40 Maxon underwater drive motor and gear head.

1.1. Research lineage from the M.L.T. rule to regression

The method of least squares is one of the most foundational mathematical techniques
used in modeling and estimation theory. The objective of the least squares method con-
sists of adjusting the parameters of a model of the system to best fit a set of data. The least
squares method forms the basis of estimation for several adaptive modeling methods pre-
sented in literature [8-13] along two lines of thought represented by Slotine [8-9] as mod-
ified by Fossen [10] and Astrom [11-13] respectively. Each method involves formulation
of canonical regression forms, while the Slotine/Fossen approach seeks to utilize the full
regression form, and the Astrom approach bifurcates the regression model into compo-
nents exhibiting disparate characteristics that might or might not need to be adapted. The
Slotine/Fossen approach was augmented [14] with physics-based methods of Lorenz [15]
to formulate the burgeoning method referred to as deterministic artificial intelligence [16]
which was proposed for applications to DC motors [17] and validated by Shah [18]. Shah's
validation highlighted the criticality on motor performance of the discretization method
and discretization time interval and recommended study of such. This manuscript is one
such study as recommended by Shah.

A main theme of the research lineage is replacement of classical adaption methods
(e.g., the co-called “ML.LT. rule”) [19] with estimation methods based on least squares. Nu-
merous variations of the least squares approach have been developed that have been used
in designing different types of estimators. It is therefore worth getting an essence of these
forms that are prevalent to the work presented in this manuscript.

1.2. Least squares variations

Recursive form (an adaptive algorithm that recursively estimates the parameters of
a system using a model that is linear in those parameters) [13] and batch form (where all
measurements are collected together and processed simultaneously) [9] are variations of
the least squares approach that have also been applied as an adaptive method [14].

Another version of the method of least squares is the weighted least squares, also
known as weighted linear regression, in which weights are assigned to the observations
and these weights are proportional to the reciprocal of the error variance for that obser-
vation. Ideally, the weights in the weighted least squares analysis are nonrandom quanti-
ties that are proportional to the reciprocal of the variances of the measured data, but it
might not always be clear as to how to choose the weights.

In cases where there is an ambiguity on choosing the weights for the weighted least
squares approach, the extended least squares method may be adopted. The extended least
squares approach provides a potential solution to the weighting problem experienced in
the weighted least squares method by avoiding it. The extended least squares method is
a maximum likelihood kind of statistical estimation method when the data is normally
distributed. With the extended least squares, weights need not be chosen.

A common modeling assumption used in this work is the autoregressive moving av-
erage model. The autoregressive moving average method is a model in which the methods
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of autoregression analysis and moving average are both applied to time-series data. The
autoregressive model specifies that the output variable depends linearly on its own pre-
vious values and on a stochastic term (an imperfectly predictable term); thus, the model
is in the form of a stochastic difference equation. The moving-average model, also known
as moving-average process, is a common approach for modeling univariate (an equation,
function or polynomial involving only one variable) time series. The moving-average
model specifies that the output variable is cross-correlated with a non-identical to itself
random-variable. While implementing the autoregressive moving average approach to a
model, it is assumed that the time series is stationary and when it fluctuates, it does so
uniformly around a particular time.

1.3 Physics-based utilization of governing differential equations

For a system with unknown parameters, several methods of adaptation can be im-
plemented to control the system and achieve a desired response. Often, a desired response
is tracking of an input signal by an output signal [20]. Most natural processes do not cause
a change in input to be matched by its resulting output, and certain adaptive methods can
allow for control and tracking using physics-based methods. The main difference between
nonlinear adaptive control [13] and the physics-based method [15] is the utilization of the
complete mathematical expression of modeling by physics. The general spirit of both is
embodied in the feedforward portion of the recently proposed deterministic artificial in-
telligence [17], referred to as assertion of self-awareness. Parameter adaption by classical
methods (e.g., M.LT. rule) is one option, while Smeresky and Rizzo recently proposed
optimal learning [22] as another option utilizing batch least squares, where current re-
search investigates the efficacies of variations of least squares. Last year, Zhai studied
learning implementation by signal-encoded deep learning [23] and offered a direct com-
parison to deterministic algorithms in [24].

Learning methods like deterministic artificial intelligence involve using the process
dynamics (dictated by mathematical models of physics) as self-awareness statements in
the form of feedforward controls [17], and learning is driven by evaluation of command-
input tracking performance metrics. It is noteworthy to indicate that self-awareness state-
ments in deterministic artificial intelligence only function when supplied an analytic de-
sired trajectory, where error calculation enables both adaption and optimal learning ac-
cording to recently published results [18]. Latest literature shows that the adaptive ap-
proach achieves around 29% lower error than deterministic artificial intelligence in input
tracking [18].

1.4. Discretization

The models developed for estimating, adaptation, and learning physical systems
begin as continuous functions, since the modeling is strictly taken from the first principles
of physics. However, when dealing with controllers and computers to implement the con-
trol strategies, it is essential to discretize the continuous system. Different discretization
strategies are available to convert continuous systems into discrete systems, particularly
in the fields of signal processing, control, and estimation. This manuscript presents a
study of the effects of different discretization methods when converting the continuous
model of the DC motor and the eventual efficacy applied to DC motor control. Arbitrary
selection of different discretization methods and intervals led to the results depicted in
figure 3.

The work includes a study of the effects of changing the sample time, a scalar value
that represents the sampling period of the resulting discrete-time system. Discussions are
offered on efficacy of DC motors’ output tracking a desired trajectory (in this work a series
of alternating step functions) with iterations of the discretization method and sample time.
Finally, novel conclusions and recommendations are offered regarding what discretiza-
tion method and sample time are best suited (including limiting cases) for the determin-
istic artificial intelligence method based on the mean and standard deviation of the error
of the output from the desired trajectory.
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Figure 3. Recently proposed DC motor improvements in the literature, where the difference is the
discretization method and sample time. [17] The black solid line describes the command signal. The
blue dotted line in (a) represents the output signal generated by discrete deterministic artificial in-
telligence; The red dotted line in (b) describes the output signal generated by model-following
method coupled with recursive least squares estimation.

Main conclusion of the prequel study. The efficacy of the deterministic artificial intelligence
approach is limited by sample time values and discretization method. Identification of the limiting
discretization values and recommendations for discretization method was recommended.

Main conclusion of this study. The deterministic artificial intelligence approach is suitable only
for a range of sample time values for each discretization method. To achieve high efficacy, these
values and methods must be adhered to.

2. Materials and Methods

To illustrate the main conclusions of this study, the Materials and Methods begin
with overarching principles like methodological process flow (e.g., figure 4) and topology
of eventual computer simulations (e.g., figure 5). Next, section 2.1 describes motor dy-
namics’ modeling and control strategies. Next, discretization is discussed regarding the
accompanying simulation. The simulation experiments are summarized in pithy tables of
common figures of merit (e.g., means and standard deviations) with accompanying fig-
ures to provide qualitative depiction of the quantitative results compared. The compari-
son leads to recommendations for discretization method and time interval to achieve effi-
cacy controlling DC motors.

Use matrix vector product as
Reparametrize deterministic self-awareness
motion states into statements . : .
. . . \ Validate by applying combined
. Annotate motion Assemble matrix of "knowns! . e
Define System —» I e L ) . signal to nonlinear, coupled
’ states as "desired remaining variables and remaining = st
ivariables into vector Use feedback error signal in System
of unknowns inverse solution of matrix-vector
product as optimal learning

Figure 4: Topology of deterministic artificial intelligence whose depiction applied to unmanned un-
derwater vehicle system whose actuators are powered by DC motors is in Figure 5.
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Figure 5: Topology of deterministic artificial intelligence applied to unmanned underwater vehicle
system whose actuators are powered by DC motors.

2.1. Modeling DC motor dynamics and designing control strategies

The transfer function (a function in the frequency domain that relates the output of
the system to its input), also known as the process equation or the process truth model, in
the continuous time domain for natural dynamics of a DC motor is given by equation (1).
Using analytical approaches presented in [15], the discrete transfer function for the DC
motor is expressed using equation (2):

B(s) _ 1

RN TE R ‘”

B(z) _ byz+b;, _ 0.1065z + 0.0902
A(z2) z2+a;z+a, z2-19z+0.88

)

By altering the discretization method and the sample time, the values of by, by, ay,
and a, inequation (2) change, resulting in a different discrete transfer function each time.
The transfer function in equation (2) has a zero at z = —0.8469 and poles at z = 1.1, 0.80.
The transfer function has an unstable pole, and the approach with the adaptive control
strategy will effectively relocate these poles to stable locations at z = 0.2 £ 0.2j. The de-
terministic artificial intelligence modeling approach does not attempt to achieve pole re-
location, but rather achieves an autonomously determined trajectory using proportional
plus derivative (PD) feedback adaption of unknown parameters to follow the target path.
The truth model also incorporates correlated Gaussian noise with distribution
N(0,1/625) added as two delayed noise terms. Simulations are performed for both ap-
proaches using MATLAB®, and the code for each implementation is provided in Appen-
dix A. Identical square wave inputs signals are fed to the adaptive as well as the learning
control designs, while the latter method includes an autonomous path planning algorithm
to create sinusoidal trajectories that commence at the starting discontinuity of the square
wave and end at the peak of each square wave discontinuity. Using equation (2), the out-
put equation for the DC motor system is obtained & given by equation (3):

y(t+2)=boult+ 1)+ bult) —ay(t+1) —a,y(t) 3)

Through modeling with deterministic artificial intelligence, changes in input do not
result in a drastically forced change in output to match the input signal value. Instead,
with change in state of the input, a trajectory (sinusoidal in this work) is calculated for the
output to follow in progression towards the target state so there is no undefined position
(analytically) for any timestep. The dynamics of the process are asserted as the control
mechanism in a feedforward fashion establishing self-awareness, and the control signal
can be modulated through feedback parameters that are learned using a proportional-
derivative feedback mechanism or 2-norm optimal methods. The process flow of deter-
ministic artificial intelligence is illustrated in figure 4 while the topology including self-
awareness statements are depicted in figure 5. Equation (4) demonstrates how the feed-
back parameters are calculated through batch least squares [22], with ¢, representing a
matrix comprised of the desired trajectory states, § representing the learned parameters
to adjust the control input u, and du representing error in the control input.
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2.2. Discretization methods

The different discretization methods used in this study are: zero-order hold, first-
order hold, impulse-invariant mapping, Tustin approximation, zero-pole matching equiv-
alents, and least squares. The zero-order hold method provides an exact match between
the continuous- & discrete-time systems in the time domain for staircase inputs. The zero-
order hold discretization gives the discretized transfer function Hy(z) of a continuous-
time linear model H(s). The zero-order hold method generates the continuous-time input
signal u(t) by holding each sample value u(k) constant over one sample period, i.e.,
u(t) = u(k) VkT; <t < (k + 1)T;. The signal u(t) is the input to the continuous system
H(s). The output y(k) results from sampling y(t) every Ty seconds. The zero-order
hold method is best suited when the exact discretization in the time domain for staircase
inputs is required.

The first order hold method provides an exact match between the continuous- and
discrete-time systems in the time domain for piecewise linear inputs. The method differs
from the first order hold method by the underlying hold mechanism. To turn the input
samples u(k) into a continuous input u(t), first order hold uses linear interpolation be-
tween samples given by equation (5):

u(t) =uk) + ¢ —k*T)(utk + 1) —uk))/Ts VKT, < t < (k + DTy ()

In general, the first order hold method is more accurate than the zero-order hold
method, particularly for systems driven by smooth inputs. The first order hold method
differs from standard causal first order hold and is more appropriately called the triangle
approximation [25]. The first order hold method is also known as ramp-invariant approx-
imation. The first order-hold discretization is best suited when exact discretization in the
time domain is essential for piecewise linear inputs.

The impulse-invariant mapping produces a discrete-time model with the same im-
pulse response as the continuous time system. The impulse-invariant mapping discretizes
the system such that the impulse responses of the continuous & discretized systems match
exactly. Therefore, it is evident that the impulse-invariant mapping approach is best used
when exact discretization in the time domain is required for impulse train inputs.

The Tustin approximation, also known as the bilinear approximation, yields the best
frequency-domain match between the continuous-time and discretized systems. The
Tustin method relates the s-domain and z-domain transfer functions using the approxi-
mation given by equation (6):

z =e5T =~ (14 (0.5T,)s)/(1 — (0.5T;)s) (6)

s'=Qz-1)/(T,z+ 1) 7)

In continuous to discrete conversions using the Tustin approach, the discretization
H,;(z) of a continuous transfer function H(s) is done such that H;(z) = H(s") where s’
is given by equation (7). When converting a state-space model using the Tustin method,
the states are not preserved. The state transformation depends upon the state-space ma-
trices and whether the system has time delays. The Tustin approximation is not defined
for systems with poles at z = —1 and is ill-conditioned for systems with poles near z =
—1. The Tustin approximation is used when good matching is required in the frequency
domain between the continuous- and discrete-time models. The Tustin approach is also
the best suited discretization method when the model of the system has important dy-
namics at certain frequency that need to be captured.

The zero-pole matching equivalents method of conversion applies only to single-in-
put, single-output systems. The continuous and discretized systems have matching DC
gains. The poles and zeros of the continuous and discretized system are related by the
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transformation: z; = ei’s, where z; is the it pole or zero of the discrete-time system, s;
is the it pole or zero of the continuous-time system, and Ty is the sample time of discreti-
zation. The zero-pole matching equivalents approach is preferred when the system at
hand has a single-input, single-output model and good matching is desired in the fre-
quency domain between the continuous- and discrete-time models.

Least squares method of discretization minimizes the error between the frequency
responses of the continuous-time and discrete-time systems up to the Nyquist frequency
using a vector-fitting optimization approach. The Nyquist frequency (or folding fre-
quency) is a characteristic of a sampler which converts a continuous function into a dis-
crete sequence. The value of the Nyquist frequency is one-half of the sampling rate. When
the highest frequency (bandwidth) of a signal is less than the Nyquist frequency of the
sampler, the resulting discrete-time sequence is said to be free of distortion. The least
squares method is useful to capture fast system dynamics and large sample times are de-
sired, for example, when computational resources are limited. The least square method is
only suitable for changing continuous to discrete systems and for single-input, single-out-
put systems. As with the Tustin approximation and zero-pole matching, the least squares
method provides a good match between the frequency responses of the original continu-
ous system & the converted discrete system. However, when using the least squares
method with the same sample time as Tustin approximation or zero-pole matching, a
smaller difference is obtained between the continuous and discrete frequency responses.
Also, using the least squares method with a lower sample time will get the same results
as with the Tustin approximation or zero-pole matching. Doing so is useful if computa-
tional resources are limited, since a slower sample time means that the processor must do
less work.

3. Results

Simulations were performed for different time samples using each discretization
method. Results are shown qualitatively in figure 6 with corresponding description in ta-
ble 1. Each line plotted in figure 6 represents one of the four control strategies designed
for the DC motor system. Quantitative results corresponding to the depicted qualitative
results are provided in table 2.

Table 1. Discretization method and sample time used in each plot displayed in figure 6.

Plot Description Plot Description Plot Description

() ZOH& T;=06s (b) ZOH& Ty =05s () ZOH& T, =0.1s

(d) FOH& T,=07s (¢) FOH& Ty,=05s (ff FOH& T, =0.1s

(g IIM& T;=05s (h)y IIM&T,=03s (1) IM& T, =0.1s

G) TA& T, =0.8s (k) TA& T, =0.5s 0] TA& T, =0.1s

(m) ZPM& T;,=05s5s (n) ZPM& T;=03s (0) ZPM& T;=0.1s

(p) LS& T, =0.6s (q) LS& T, =05 (r) LS& T, =0.1s
1 ZOH: Zero-order hold; FOH: First-order hold; IIM: Impulse-invariant mapping; TA: Tustin ap-
proximation; ZPM: Zero-pole matching equivalents; LS: Least squares.

For each of the discretization methods, sample time lower than 0.1 s results in signif-
icant error and deviation from the desired output for the deterministic artificial intelli-
gence method. The plots (a), (d), (g), (j), (m), and (p) in figure 6 represent the largest per-
missible sample time value for the deterministic artificial intelligence approach for each
discretization method. A sample time larger than the permissible value will lead to incor-
rect results. Based on the plots obtained by running the simulations using equation (1)
and discretizing it using various methods & sample times, the mean of the absolute error
between the output & the reference trajectory and the standard deviation of the error are
tabulated in table 2. The lowest mean error for each method is highlighted as well.

’— @ ‘RLS = @ 'ARMA ====:ELS =srerere: DAI Reference Input‘
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Figure 6. Output plot for each of the four control strategies with different discretization methods
and sample time. Please refer to table 1 for a description of each plot.

4. Discussions

The prime contribution of this work is to demonstrate the effects of changing the
discretization method and sample time on the control of DC motors used in unmanned
underwater vehicles. This work directly uses the continuous transfer function and discre-
tizes it to implement various adaptive control strategies as well as learning based deter-
ministic Al Latest literature states that using deterministic artificial intelligence yields an
error of 0.224 [18]. However, from table 2 it is seen that using the appropriate sample time
and discretization method for equation (1) will provide significantly lower errors and thus
demonstrate the superiority of using deterministic artificial intelligence. Each discretiza-
tion method can provide substantial lower error than stated in [18]. The lowest error of
0.0840 is obtained using the first order-hold method and sample time of 0.7s, a 62.5% re-
duction than stated in [18].
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Table 2. Mean & standard deviation of the error for various discretization methods & sample time.

Sample Impulse Tustin Zero-pole
Time ZOH FOH invariant .. matching Least squares
. approximation .
(seconds) mapping equivalents
0.8 - - - 0.1041/0.1646 - -
0.7 - 0.0840/0.1430 - 0.0894/0.1322 - --
0.6  0.1969/0.2683 0.0886/0.1297 -- 0.0996/0.1403 - 0.0912/0.1451

0.5  0.1137/0.1612 0.1083/0.1513 0.0967/0.1437 0.1209/0.1658 0.1219/0.1722 0.0998/0.1416

0.4  0.1408/0.1897 0.1453/0.1953 0.1179/0.1628 0.1604/0.2141 0.1434/0.1932 0.1329/0.1802

0.3  0.2018/0.2647 0.2148/0.2771 0.1782/0.2331 0.2341/0.3012 0.2037/0.2669 0.1983/0.2571

0.2 0.3405/0.4225 0.3691/0.4512 0.3169/0.3903 0.3981/0.4849 0.3415/0.4238 0.3452/0.4232

0.1 0.8467/0.9812 0.8708/1.0032 0.8045/0.9288 0.9040/1.0405 0.8474/0.9822 0.8413/0.9698
1 The smallest combination of error mean and standard deviation is highlighted for each
method.

Recommended future research. In this work, the sample time is changed in steps of 0.1 s. Re-
ducing this further, a functional relationship could be generated between the sample time and the
error statistics for the deterministic artificial intelligence approach. The advantages of doing this
would be twofold. Firstly, it might provide even better results for the deterministic artificial intel-
ligence approach. Secondly, comparing the error statistics of the approach with similar statistics
from the other methods used in this work would provide quantitative results about the sample time
at which the performance of the adaptive approach supersedes the performance of the learning-based
approach.
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Appendix A

This appendix provides the entire MATLAB® code that was implemented to get the
results presented.

%% Investigating the effects of discretization for control of DC motors using deterministic artificial intelligence
clear; close all; clc;
rng(100); %% Setting up the problem:

% Create square wave for reference input
maxtime=200;
Uc = zeros(1,201);
for i=1:length(Uc)
if (mod(floor(i/20),2) = 0)
Uc(i)=1;
else
Uc(i) =0;
end
end
traj_Uc = zeros(1,length(Uc));
check=1;
run_next =0;
for i=1:length(Uc)-1
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if (check)
traj_Uc(i) = Uc(i);
diff = Uc(i+1)-Uc(i);
lasti=1i;
lastval = Uc(i);
end
if (diff ~=0)
check =0;
if (run_next)
traj_Uc(i) = lastval + diff/2*(1+(sin(0.2*pi*(i-lasti)-pi/2)));
end
run_next=1;
if (traj_Uc(i) == Uc(i) && (i ~=lasti))
check =1;
run_next = 0;
end
end
end
Uc = Uc(1:200);

% Modeling the system

ts=0.7;

Hc=tf(1,[110]); % continuous transfer function
Hd = c2d(Hg,ts,'foh'); % discrete transfer function

% Hd=tf([0 0.1065 0.0902],poly([1.1 0.8]),0.5); % analytic discrete transfer function

% Hd=tf([0 0.0902 0.06461],[1 -1.213 0.3679],0.5); % offline discrete transfer function
B = [Hd.Numerator{1,1}(1,1),Hd.Numerator{1,1}(1,2),Hd.Numerator{1,1}(1,3)];

A = [Hd.Denominator({1,1}(1,1), Hd.Denominator{1,1}(1,2),Hd.Denominator{1,1}(1,3)];
nzeros=5;

factor = 25;

Noise=1/factor*randn(1,maxtime+nzeros);

%% Algorithm for Recursive Least Squares (RLS):

% Setup system parameters

al=0; a2=0; b0=0.1; b1=0.2;

Am=poly([0.2+0.2j 0.2-0.2j]); Bm=[0 0.1065 0.0902];

am1=Am(2); am2=Am(3); a0=0;

Rmatrix=[];

lambda=1.0;

time=zeros(1,nzeros); Y_RLS=zeros(1,nzeros); Ym_RLS=zeros(1,nzeros);
U_RLS=ones(1,nzeros); Uc_RLS=[ones(1,nzeros),Uc];

P=[100000;0 10000001 0;000 1]; THETA_hat_RLS(:,1)=[-al -a2 b0 b1]’;
beta=[]; alpha =0.5; gamma =1.2;

% % % % %% % % Y% % % % % %% % % RECURSIVE LEAST SQUARES %% % % % % % % % % % % % % % % %
for i=1:maxtime
t=i+nzeros; time(t)=i; phi=[];
Y_RLS(t)=[-A(2) -A(3) B(2) B(3)]*[Y_RLS(t-1) Y_RLS(t-2) U_RLS(t-1) U_RLS(t-2)]'+...
Noise(t-1) + Noise(t-2);
Ym_RLS(t)=[-Am(2) -Am(3) Bm(2) Bm(3)]*[Ym_RLS(t-1) Ym_RLS(t-2) Uc_RLS(t-1) Uc_RLS(t-2)];
BETA=(Am(1)+Am(2)+Am(3))/(b0+b1); beta=[beta BETA];

% RLS implementation

phi=[Y_RLS(t-1) Y_RLS(t-2) U_RLS(t-1) U_RLS(t-2)]’;
K=P*phi*1/(lambda+phi*P*phi);

P=P-P*phi*inv(1+phi*P*phi)*phi*P/lambda; % RLS-EF
error(i)=Y_RLS(t)-phi*THETA_hat_RLS(:i);
THETA_hat_RLS(;,i+1)=THETA_hat_RLS(:,i)+K*error(i);
al=-THETA_hat_RLS(1,i+1);a2=-THETA_hat_RLS(2,i+1);
bO0=THETA_hat_RLS(3,i+1);b1=THETA_hat_RLS(4,i+1);

Af(;,i)=[1 al a2]’; Bf(;,i)=[b0 b1];
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% Determine R,S, & T for CONTROLLER

r1=(b1/b0)+(b1"2-am1*b0*b1+am2*b0"2)*(-b1+a0*b0)/(b0*(b1"2-al*b0*b1+a2*b0"2));

s0=b1*(a0*am1l-a2-am1*al+al”2+am2-al*a0)/(b1"2-al*b0*b1+a2*b0"2)+b0*(am1*a2-al*a2-a0*am2+a0*a2)/(b1"2-
al*b0*b1+a2*b0"2);

sl=b1*(al*a2-am1*a2+a0*am2-a0*a2)/(b1"2-al*b0*b1+a2*b0"2)+b0*(a2*am2-a2"2-a0*am2*al+a0*a2*am1)/(b1"2-
al*b0*b1+a2*b0"2);

R=[1 r1];S=[s0 s1];T=BETA*[1 a0];

Rmatrix=[Rmatrix r1];

% Calculate control signal

U_RLS(t)=[T(1) T(2) -R(2) -S(1) -S(2)]*[Uc_RLS(t) Uc_RLS(t-1) U_RLS(t-1) Y_RLS(t) Y_RLS(t-1)];

U_RLS(t)=1.3*[T(1) T(2) -R(2) -5(1) -5(2)]*[Uc_RLS(t) Uc_RLS(t-1) U_RLS(t-1) Y_RLS(t) Y_RLS(t-1)]’; % Arbitrarily increased to
duplicate text
end
%% % %% %% %% % % % % % % % END OF RECURSIVE LEAST SQUARES % % % % % % % % % % % % % %

%% Algorithm for Autoregressive moving average (ARMA):
% Setup system parameters

al=0; a2=0; b0=0.01; b1=0.2;

Am=poly([0.2+0.2j 0.2-0.2j]); Bm=[0 0.1065 0.0902];
aml=Am(2); am2=Am(3); a0=0;

Rmatrix=[];

lambda=1;

time=zeros(1,nzeros); Y_ARMA=zeros(1,nzeros);
U_ARMA=ones(1,nzeros); Uc_ARMA=[ones(1,nzeros),Uc];
THETA_hat_ARMA=zeros(4,maxtime);

THETA_hat_ ARMAC(;,1)=[-al -a2 b0 b1]'; beta=[];

n=§;

P=10000%*eye(n); P(1,1)=1000; P(2,2)=100; P(3,3)=100;
P(4,4)=10000; P(5,5)=1000; P(6,6)=100;

phi=[];

% % %% % % % %% % % AUTOREGRESSIVE MOVING AVERAGE %% % % % % % % % % % % % % % % % %
for i=1:maxtime
t=i+nzeros; time(t)=i;
Y_ARMA(t)=[-A(2) -A(3) B(2) BB)]*[Y_ARMA(t-1) Y_ARMA(t-2) U_ARMA(t-1) U_ARMA(t-2)]'+...
Noise(t-1) + Noise(t-2); % Create truth output
BETA=(Am(1)+Am(2)+Am(3))/(b0+b1); beta=[beta BETA];
phi=[phi; Y_ARMA(t-1) Y_ARMA(t-2) U_ARMA(t-1) U_ARMA(t-2)];
if (1> 3)
THETA_hat_ ARMAC(;i+1) = inv(phi*phi)*phi*Y_ARMA (1+nzeros:t)’;
else
THETA_hat_ ARMAC(;i+1) = THETA_hat_ ARMAL(:,i);
end
al=-THETA_hat_ ARMA(1,i+1); a2=-THETA_hat_ARMA(2,i+1);
b0=THETA_hat_ARMA(3,i+1); blI=THETA_hat_ARMA(4,i+1); % Update A & B coefficients

% Store final A and B for comparison with real A&B to generate epsilon errors
Af(;,i)=[1 al a2]’; Bf(;,i)=[b0 b1];

% Determine R,S, & T for CONTROLLER

r1=(b1/b0)+(b1"2-am1*b0*b1+am2*b02)*(-b1+a0*b0)/(b0*(b1"2-al*b0*b1+a2*b0"2));

s0=b1*(a0*am1l-a2-am1*al+al”2+am2-al*a0)/(b1"2-al*b0*b1+a2*b0"2)+b0*(am1*a2-al*a2-a0*am2+a0*a2)/(b1"2-
al*b0*b1+a2*b0"2);

s1=b1*(al*a2-am1*a2+a0*am2-a0*a2)/(b1"2-al*b0*b1+a2*b0"2)+b0*(a2*am2-a2"2-a0*am2*al+a0*a2*am1)/(b1"2-
al*b0*b1+a2*b0"2);

R=[1 r1]; S=[s0 s1]; T=BETA*[1 a0];

Rmatrix=[Rmatrix r1];

% Calculate control signal
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U_ARMA)=[T(1) T(2) -R(2) -S(1) -5(2)]*[Uc_ARMA(t) Uc_ARMA(t-1) U_ARMA(t-1) Y_ARMA(t) Y_ARMA(t-1)];

% Arbitrarily increased to duplicate text

U_ARMAt)=1.3*[T(1) T(2) -R(2) -5(1) -S2)]*[Uc_ARMA(t) Uc_ARMA(t-1) U_ARMA(t-1) Y_ARMA(t) Y_ARMA(t-1)];
end
%% %% % %% % % % % END OF AUTOREGRESSIVE MOVING AVERAGE %% % % %% %% % % % %

%% Algorithm for Extended Least Squares (ELS):

% Setup system parameters

al=0; a2=0; b0=0.01; b1=0.2;

Am=poly([0.2+0.2j 0.2-0.2j]); Bm=[0 0.1065 0.0902];

am1=Am(2); am2=Am(3); a0=0;

Rmatrix=[];

lambda=1;

time=zeros(1,nzeros); Y_ELS=zeros(1,nzeros); Ym_ELS=zeros(1,nzeros);
U_ELS=ones(1,nzeros); Uc_ELS=[ones(1,nzeros),Uc];
THETA_hat_ELS(;,1)=[-al -a2 b0 b1]';beta=[]; % initialize P(t), THETA_hat(t) & Beta
epsilon=[zeros(1,nzeros+tmaxtime)];

n=§;

P=10000*eye(n); P(1,1)=1000; P(2,2)=100; P(3,3)=100;

P(4,4)=10000; P(5,5)=1000; P(6,6)=100;

theta_hat_els=zeros(n,1);

%% %% % % %0 %o %0 %o %o %0 %o % % %o % S EXTENDED LEAST SQUARES % % % % % % % % % % % % % %o % % %
for i=l:maxtime

phi=[]; t=i+tnzeros; time(t)=i;

Y_ELS(t)=[-A(2) -A(3) B(2) B(3)]*[Y_ELS(t-1) Y_ELS(t-2) U_ELS(t-1) U_ELS(t-2)]'+...

Noise(t-1) + Noise(t-2); % create truth output
Ym_ELS(t)=[-Am(2) -Am(3) Bm(2) Bm(3)]*[Ym_ELS(t-1) Ym_ELS(t-2) Uc_ELS(t-1) Uc_ELS(t-2)]’;
BETA=(Am(1)+Am(2)+Am(3))/(b0+b1); beta=[beta BETA];
k=i+nzeros;
phi=[Y_ELS(t-1) Y_ELS(t-2) U_ELS(t-1) U_ELS(t-2) epsilon(t) epsilon(t-1) epsilon(t-2) epsilon(k-3)]’;
K=P*phi*1/(1+phi*P*phi);

P=P-P*phi*pinv(1+phi*P*phi)*phi*P;

error(i)=Y_ELS(k)-phi*theta_hat_els(:i);
theta_hat_els(:,i+1)=theta_hat_els(:,i)+K*error(i);
epsilon(k)=Y_ELS(k)-phi*theta_hat_els(;,i+1); % Form Posterior Residual
THETA_hat_ELS(:;,i+1)=theta_hat_els(1:4,i+1);

% Update A & B coefficients
al=-THETA_hat_ELS(1,i+1); a2=-THETA_hat_ELS(2,i+1);
bO=THETA_hat_ELS(3,i+1); bI=THETA_hat_ELS(4,i+1);

% Store final A and B for comparison with real A&B to generate epsilon errors

Af(;,i)=[1 al a2]’; Bf(;,i)=[b0 b1];

r1=(b1/b0)+(b172-am1*b0*b1+am2*b0"2)*(-b1+a0*b0)/(b0*(b1"2-a1*b0*b1+a2*b0"2));

s0=b1*(a0*am1l-a2-am1*al+al”2+am2-al*a0)/(b1"2-al*b0*b1+a2*b0"2)+b0*(am1*a2-al*a2-a0*am2+a0*a2)/(b1"2-
al*b0*b1+a2*b0"2);

s1=b1*(al*a2-am1*a2+a0*am2-a0*a2)/(b1"2-al*b0*b1+a2*b0"2)+b0*(a2*am2-a2"2-a0*am2*al+a0*a2*am1)/(b1"2-
al*b0*b1+a2*b0"2);

R=[1 r1]; S=[s0 s1]; T=BETA*[1 a0];

Rmatrix=[Rmatrix r1];

% Calculate control signal

U_ELS(t)=[T(1) T(2) -R(2) -S(1) -S(2)]*[Uc_ELS(t) Uc_ELS(t-1) U_ELS(t-1) Y_ELS(t) Y_ELS(t-1)]';

U_ELS(t)=1.3*[T(1) T(2) -R(2) -S(1) -S(2)]*[Uc_ELS(t) Uc_ELS(t-1) U_ELS(t-1) Y_ELS(t) Y_ELS(t-1)]'; % Arbitrarily increased to
duplicate text
end
%% % %% %% %0 %0 % %% % % % END OF EXTENDED LEAST SQUARES %% % % % % % % % % % % % %%

%% Algorithm for Deterministic Artificial Intelligence (DAI):
% Create command signal
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nzeros=5; time=zeros(1,nzeros);

Y_DAl=zeros(1,nzeros); % initialize ouput vectors
U_DAI=ones(1,nzeros);

t=0:200;

hvy_m = [zeros(1,nzeros) traj_Uc];

eb=Y_DAI(1) - hvy_m(1);

err=0; kp=2.0; kd =6.0;

phid =[]; ustar =[J;

hatvec = zeros(4,1);

Rmatrix=[];

%% %% %0 % %o Yo %o %o %o %o Yo %o Yo %o %o %0 % % Yo DETERMINISTIC AT % % % % %% % % % % % %o %o Yo Yo %o %o %o Yo
% Loop through the output data Y(t)
for i=1:maxtime+1
t=itnzeros; time(t)=i;
de = err-eb;
u = kp*err + kd*de;
U_DAI(t-1) =w;
Y_DAI(t)=[-A(2) -A(3) B(2) BB)[*[Y_DAI(t-1) Y_DAI(t-2) U_DAI(t-1) U_DAI(t-2)]'+...
Noise(t-1) + Noise(t-2);
phid = [phid; Y_DAI(t) -Y_DAI(t-1) Y_DAI(t-2) -U_DAI(t-2)];
ustar = [ustar; u];
newest = phid \ ustar;
hatvec(:,i) = newest;
eb =err;
err = hvy_m(t)-Y_DAI(t);
end
%% %% % %o %o %o %0 %o % %o %o % % % %o Yo END OF DETERMINISTIC AT %% % % % % % % % % % % % % % % % %o

THETA_hat_DAI = [hatvec(2,:)./hatvec(1,:); hatvec(3,:)./hatvec(l,:);...
ones(1,201)./hatvec(1,:); hatvec(4,:)./hatvec(l,:)];

mean_abs_error_DAI = mean(abs(traj_Uc - Y_DAI(1,6:end)))
mean_abs_error_ELS = mean(abs(Uc - Y_ELS(1,6:end)))
mean_abs_error_ARMA = mean(abs(Uc - Y_ARMA(1,6:end)))
mean_abs_error_RLS = mean(abs(Uc - Y_RLS(1,6:end)))
std_error_DAI = std(traj_Uc - Y_DAI(1,6:end))

std_error_ELS = std(Uc - Y_ELS(1,6:end))

std_error_ARMA = std(Uc - Y_ARMA(1,6:end))
std_error_RLS = std(Uc - Y_RLS(1,6:end))

%% Plotting results:

figure(); hold on; grid on;

plot(time(1,1:205), Y_RLS,'g--*"); plot(time(1,1:205), Y_ARMA, b--0');
plot(time(1,1:205), Y_ELS,'r-."); plot(time, Y_DAL'm:");

xlabel('Time step (in sec)'); ylabel('Output (Y)");
plot(time(1:200),Uc, 'k-');

axis([0 50,-0.5 2.0]);

% legend('RLS',’ARMA','ELS',' DAI, Reference Input');
title("Discretization using First Order Hold and Sample Time "+ ts);
PrepFigPresentation(gcf);

function PrepFigPresentation(fignum)

% Prepares a figure for presentations

% Font size: 10

% Font Name: Times

% LineWidth: 2

%

figure(fignum);

fig_children=get(fignum,'children'); % find all sub-plots
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for i=1:length(fig_children)
set(fig_children(i), FontSize',10);
set(fig_children(i), FontName', times');
fig_children_children=get(fig_children(i),'Children');
set(fig_children_children, LineWidth',2);

end

end
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