Pre prints.org

Article Not peer-reviewed version

Beyond Retrieval Competition:
Asymmetric Effects of Retroactive and
Proactive Interference in Associative
Memory

Yahui Zhang , Weihai Tang , Mei Peng , Xiping_Liu i

Posted Date: 30 July 2025

doi: 10.20944/preprints202507.2445v1

Keywords: proactive interference; retroactive interference; associative recognition; source memory;
encoding processes; response time

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.



https://sciprofiles.com/profile/4286699
https://sciprofiles.com/profile/3610232
https://sciprofiles.com/profile/3886892
https://sciprofiles.com/profile/3097015

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 July 2025 d0i:10.20944/preprints202507.2445.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
Beyond Retrieval Competition: Asymmetric Effects

of Retroactive and Proactive Interference in
Associative Memory

Yahui Zhang !, Weihai Tang 2, Mei Peng ? and Xiping Liu 2*

! Faculty of Psychology, Tianjin Normal University, 300387, Tianjin, China

2 Development of Psychology, University of Sanya, Hainan 572022, China

3 School of Mental Health, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
* Correspondence: Ixp3771@sina.com

Abstract

Interference between similar associations poses a core challenge for episodic memory. While
retrieval-based accounts have dominated past theories, it remains unclear whether retroactive
interference (RI) and proactive interference (PI) can emerge independently of retrieval competition.
To address this, we employed a two-alternative forced-choice (2AFC) associative recognition task
that minimized retrieval competition by using same-list distractors. Participants studied overlapping
(A-B, A—C) and non-overlapping (E-F, G-H) associations, followed by associative recognition and
source memory judgments. Results revealed an asymmetric interference pattern: RI impaired
recognition accuracy without affecting response times, suggesting degraded recollection due to
representational suppression. In contrast, PI was reflected in longer response times without accuracy
loss, consistent with increased retrieval demands stemming from encoding-related differentiation.
Source judgments showed no integration-induced cost and even faster RTs for overlapping pairs,
further supporting the operation of pattern separation during A-C encoding. These findings
highlight the critical role of encoding —rather than retrieval alone—in shaping interference. RI and
PI reflect distinct processes: suppression-driven weakening of prior traces versus complexity-
induced retrieval delays, respectively. Our results challenge retrieval-centric models and underscore
the need for encoding-focused frameworks in memory interference research. Future work should
examine how encoding strength, contextual differentiation, and individual variability modulate
interference effects across memory tasks.

Keywords: proactive interference; retroactive interference; associative recognition; source memory;
encoding processes; response time

1. Introduction
1.1. Associative Interference in Episodic Memory

Episodic memories are characterized by the composed of associative connections between items
that are spatially and temporally proximate. The associative memories—where items are linked
together based on their co-occurrence in an event—enable individuals to recall not only isolated items
but also the associations between them—such as a person’s face and name. However, episodic
memories often share overlapping elements across different experiences, allowing for generalization
(Moscovitch et al., 2016; Renoult et al., 2015)but can also lead to interference (Kim et al., 2017) when
shared elements serve as retrieval cues.

This is particularly relevant in AB/AC paradigm, also known as the paired associate learning
paradigm (Martin, 1971; Postman & Gray, 1977) which has often been used to investigate associative
interference. In the AB/AC paradigm, participants study two lists of cue-target pairs (e.g., picture-
word pairs), where cues (A) are paired with different targets in List 1 (A-B) and List 2 (A-C).
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Retroactive interference (RI) is typically measured by comparing memory for List 1 (A-B pairs)
between an experimental group (who also study List 2, A-C pairs) and a control group (who do not
study List 2). Similarly, proactive interference (PI) is assessed by comparing memory for List 2 (A-C
pairs) between participants who have or have not studied List 1 (A-B pairs). These “pure” control
conditions, in which one list is entirely omitted, serve to isolate the effects of interference attributable
to the presence of competing associations (Martin, 1971; Postman & Underwood, 1973). However,
such control conditions lack ecological validity —real-world memory rarely involves complete
absence of prior or subsequent learning. More importantly, these traditional control conditions do
not distinguish between interference driven by cue-overlap-based similarity and interference arising
from general cognitive load or list-based competition.In the present study, we adopt a similarity-
based contrast design in which the control condition consists of non-overlapping associative pairs
(e.g., E-F and G-H) drawn from the same lists as the overlapping pairs (A-B and A-C). That is, all
participants study both List 1 and List 2, but only some pairs involve shared cues (i.e., A-B/A-C) while
others do not (i.e,, E-F, G-H). This within-subject, mixed-list paradigm enables a more precise
comparison between conditions with and without cue overlap, isolating interference effects
specifically attributable to associative similarity, rather than to general learning or list position.This
design approach has been increasingly adopted in recent studies examining memory interference and
integration, where cue similarity and representational overlap are treated as critical experimental
factors (Chanales et al., 2019; Kuhl et al., 2010; Ritvo et al., 2024a)

1.2. Two-Factor Interference Theory: Retrieval Competition and Associative Unlearning

Classic theories of interference attribute memory disruption primarily to retrieval-phase
processes. The retrieval competition account (McGeoch, 1932; Watkins & Watkins, 1975) posits that
cue overload diminishes retrieval specificity, leading to competition among associated memories

The Search of Associative Memory (SAM) model (Mensink, 1988; Mensink & Raaijmakers, 1989;
Raaijmakers & Shiffrin, 1981) formalizes this process, representing memory as a network of
interconnected nodes, where a cue activates multiple nodes, and their relative activation strengths
determine retrieval success. In the SAM model, retrieval is governed by a probabilistic process where
the probability of retrieving a specific memory trace is proportional to its activation strength divided
by the sum of the activation strengths of all traces associated with the cue.This competitive process
means that stronger traces dominate retrieval, reducing the likelihood of retrieving weaker traces and
causing interference (Favila et al., 2016; Gabitov et al., 2019; Sajikumar et al., 2014).

Associative Unlearning posits that retroactive interference occurs during encoding, when new
learning (A-C) weakens prior associations (A-B) independent of retrieval competition (Barnes &
Underwood, 1959). especially when cue-outcome contingencies are violated (Mujezinovic¢ et al,,
2024). This view, however, has primarily been supported in overlearning contexts, leaving its
applicability to episodic memory less clear.

1.3. Encoding-Based Accounts: Integration, Differentiation, and Similarity-Based Interference

Recent research suggests that encoding overlapping associations (A-C) can reactivate and
modify prior memories (A-B), leading to integration or differentiation (Chanales et al., 2019; Kuhl et
al.,, 2010, 2012; Ritvo et al., 2024a). Similarity-based interference during encoding arises when new
information (A-C) shares overlapping cues with prior content (A-B), altering the encoding process
compared to non-overlapping pairs (E-F, G-H). This alteration, driven by hippocampal pattern
completion (Ritvo et al., 2024b; Ritvo et al., 2019; Zeithamova & Preston, 2010, 2017), depends on the
reactivation strength of A-B during A-C encoding.

Strong reactivation strengthens shared features, forming cohesive memory representations
(Herszage & Censor, 2017; Koen & Rugg, 2016) lead to memory integration. This may enhance A-B
retention (retroactive facilitation) but increase PI risks by blurring distinctions between A-B and A-C
during retrieval (Chanales et al., 2019; Huijbers et al., 2009; Richter et al., 2016); Moderate reactivation
triggers hippocampal pattern separation, weakening overlapping features to reduce interference
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(Norman et al., 2007; Ritvo et al., 2019) which will result in differentiation. This enhances memory
distinctiveness, potentially mitigating RI and PI, but may cause distortions if features are overly
suppressed (Chanales et al., 2021); No Interaction: Minimal reactivation results in no modification of
either memory trace, avoiding interference but also integration or differentiation benefits.

Similarity-based interference is amplified by cue overlap, making encoding-based effects more
pronounced for A-B/A-C pairs than for E-F/G-H pairs. Neural mechanisms, such as hippocampal
differentiation or medial prefrontal cortex (mPFC) integration (Schlichting & Preston, 2015), further
modulate these outcomes, suggesting that RI and PI may originate from memory reorganization
during encoding, not solely retrieval or unlearning.

1.4. The Present Work

While prior research has focused predominantly on retrieval-based interference, it remains
unclear whether RI and PI can emerge independently of retrieval competition. The present study
addresses this gap by using a non-competitive, two-alternative forced-choice (2AFC) associative
recognition task in which targets are selected among same-list distractors, minimizing direct
competition between overlapping associations.Participants also make source memory judgments to
identify whether recognized associations originated from List 1 or List 2. This dual-task design allows
for dissociation of retrieval- and encoding-related mechanisms by testing the following hypotheses:

Presence of Interference: If RI exists, A-B recognition (List 1) will be lower than E-F due to
subsequent A-C learning. If PI exists, A-C recognition (List 2) will be lower than G-H due to prior A-
B learning. The presence of only RI, only PI, both, or neither will inform the relative contributions of
encoding vs. retrieval mechanisms.

Asymmetric Interference: If encoding-based processes such as integration or differentiation
dominate, RI and PI effects may differ in magnitude or direction, depending on reactivation strength
during A-C encoding.

Source Memory as a Diagnostic: Integration should impair source discrimination (e.g.,
misattributing A-B to List 2), while differentiation should enhance it. Source memory accuracy and
response times (RTs) will serve as behavioral markers of these encoding processes.

In addition to accuracy measures, we examine response times (RTs) during associative
recognition and source memory judgments as process-sensitive indices of memory interference. Prior
studies have shown that even when retrieval is successful, longer RTs can reveal latent competition
or increased cognitive demands during memory access (Anderson & Reder, 1999; Norman et al.,
2007). In the context of associative memory, RTs provide insight into the accessibility and resolution
difficulty of overlapping traces, which may not be apparent from accuracy alone. For example,
Wimber et al. (2009) demonstrated that retrieval-induced forgetting is accompanied by slower RTs
when competing items are partially activated (Wimber et al., 2009), and Horner et al. (2015) found
that integrated memories result in slower source discrimination due to increased representational
overlap (Horner et al., 2015).

Thus, if cue overlap triggers interference during encoding or retention, we expect slower RTs for
A-B and A-C recognition (compared to E-F and G-H), even in the absence of significant accuracy
differences. Similarly, elevated RTs during source judgments would reflect increased contextual
ambiguity, especially under integration. By jointly analyzing accuracy and latency, the present design
provides a comprehensive behavioral profile of associative interference mechanisms.

By controlling for cue-target familiarity, emotional valence, and output order effects, this study
isolates the role of encoding and retention dynamics in associative interference. It thus provides a
process-level understanding of how cue overlap and memory reactivation shape the structure and
accessibility of episodic memories beyond retrieval competition.
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2. Method

Experiments were approved by the University’s Institutional Review Board. All participants
read and signed an informed consent form and were compensated appropriately upon completion.
The experiment was approved by the Ethics Committee of the host institution.

2.1. Design

We used a 2 (List: List 1 vs. List 2) x 2 (Pair type: Cue overlap vs. Non-overlap) repeated measure
design. Participants completed two lists memory tasks: an initial list followed by second list. Both
lists contained both cue overlap and non-overlap associations to measure interference effects. The
dependent variables were accuracy and reaction time for associative recognition, and accuracy and
reaction time for list source judgments, specifically for associative recognition pairs that were
successfully identified.

2.2. Participants

Based on prior research and an a priori power analysis (at = .05, power = .80, two-tailed), a sample
size of 78 participants was determined to be sufficient to detect a medium effect size (f=0.25) (Cohen,
2013). Seventy-eight undergraduate students (25 men, 53 women; M = 21.94 years, SD = 2.40) were
recruited for the study. All participants were right-handed and reported normal or corrected-to-
normal vision. Each participant was tested individually in a quiet, controlled laboratory
environment.

2.3. Materials

The experimental materials included both verbs and images, selected and arranged to create
conditions of cue overlap and non-overlap in list 1 and list 2. A total of 100 Chinese verbs were
selected from the Chinese Affective Words System (CAWS) (Wang et al.,, 2008). Of these, 4 were
reserved for practice trials. The remaining 96 verbs were divided into four sets of 24, matched on
emotional valence and familiarity. Mean valence ratings (M + SD) were: Group 1 (4.92 +1.59), Group
2 (4.90 = 1.50), Group 3 (4.62 + 1.54), and Group 4 (5.11 + 1.50). Familiarity ratings were comparable:
Group 1 (5.09 £1.95), Group 2 (5.07 £ 1.96), Group 3 (5.10 + 1.93), and Group 4 (5.06 = 2.07). 76 images
were selected from the Bank of Standardized Stimuli (BOSS) (Brodeur et al., 2010), with four images
reserved for practice trials. The remaining 72 experimental images were evenly divided into two
categories: biotic (e.g., mammals, birds, insects; n = 36) and abiotic (e.g., furniture, clothing, tools,
buildings; n = 36). All images were highly familiar to participants. The 36 biotic and 36 abiotic images
were further randomized into three groups, each containing 12 biotic and 12 abiotic images. The
groups were matched on both familiarity (M + SD: Group 1=4.43 + 0.78, Group 2 =4.50 + 0.80, Group
3 =4.51 £ 0.75) and visual complexity (Group 1 =2.62 + 1.27, Group 2 = 2.56 + 1.24, Group 3 =2.61 +
1.25), with no significant differences across groups (all ps > .05).

2.4. Experimental Pairings Were as Follows:

One set of 24 images was used in both List 1 and List 2. In List 1, each image was paired with a
unique verb (A-B); in List 2, the same image was paired with a different, unrelated verb (A-C). These
formed the cue-overlap pairs (A-B, A-C), where the image served as the repeated retrieval cue, and
B and C were pre-assigned with low semantic relatedness.To verify low semantic overlap between
co-paired verbs (B and C), 24 participants rated the association strength of the AB-AC word pairs on
a 7-point Likert scale (1 = not at all associated, 7 = very strongly associated). The average rating was
low (M =2.43, SD = 0.48), confirming minimal semantic association.

The remaining 48 images (two sets) were used only once: one set appeared in List 1 and the other
in List 2, paired with different sets of verbs (EF or GH). These formed the non-overlap pairs, with no
shared cues across lists

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.2445.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 July 2025

5 of 17

2.5. Procedure.

The experiment was programmed in E-Prime 3.0 (Psychology Software Tools) and presented on
a 16-inch laptop with 1920 x 1080 resolution (60 Hz refresh rate). Participants responded via keyboard
while maintaining a viewing distance of approximately 40 cm from the screen center. Images (500 x
500 pixels) were presented in the upper center of the screen, with words displayed directly below
each image.Participants first completed a 4-trial practice block using stimuli not included in the main
experiment. The formal experiment consisted of five sequential phases:

Encoding Phase (List 1): Participants studied list lword—image pairs. Half of these were cue-
overlap pairs (AB type)—images that would later be repeated in List 2 with a different verb. The
other half were non-overlap pairs (EF type) —images and words that appeared only in List 1. Each
trial began with a 500 ms fixation cross, followed by a 3,000 ms presentation of a word—image pair.
Pairs were presented in a randomized order;

Distractor Task 1: Participants completed a 60-second Chinese Cancellation Task to prevent
rehearsal of List 1 material;

Encoding Phase (List 2): Participants studied another list word—image pairs. For half of the
trials, the images from the cue-overlap set in List 1 were repeated and paired with new, unrelated
words (AC pairs). The remaining trials featured new word-image pairs (GH type) that did not appear
in List 1, forming the non-overlap condition for List 2.

Distractor Task 2: A 3-minute distractor task was used before testing.

Test Phase: Participants completed two tasks. In the Associative Recognition Task, participants
were presented with an image and two previously studied words (e.g., Investigate vs. march) and
were asked to select the word that had originally been paired with the image. Both the target and the
foil were drawn from the same list (either List 1 or List 2), ensuring that associative recognition for
AB pairs (List 1) and for AC pairs (List 2) was tested independently.After selecting the correct verb,
participants indicated whether the chosen word-image pair had been studied in List 1 or List 2. The
order of test pair from List 1 and List 2 was randomized across trials. A schematic illustration of the
entire procedure is shown in Figure 1.

Encoding List 1 Encoding List 2 Associative Recognition List 1 and List 2
500ms . 500ms
+ +
- -
“ 3000ms ‘ Choose left word or right word
investigat marclf UP to 5s

assist

investig

500ms Learned in List 1| Choose 1 or 2

up to 5s

or List 22

3000ms +

march

assist hide

1 minutes distraction 3 minutes distraction

time

Figure 1. Experimental procedure. Participants studied two lists of word-picture pairs, each
containing half cue overlap pairs (AB or AC condition, shown in red frames for illustrative purposes)
and half non-overlap pairs (EF or GH condition, shown in green frames for illustrative purposes).

3. Results

Data analysis was conducted using R version 4.5.0 (R Core Team, 2025). A two-way repeated-
measures analysis of variance (ANOVA) was performed using the afex package (Singmann et al.,
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2025) to examine the effects of pair type (cue-overlap vs. non-overlap) and list (List 1 vs. List 2) on
associative recognition accuracy, with a significance level set at a = .05. Trials with reaction times
(RTs) exceeding 5,000 ms (2.36% of total trials) were excluded because the experimental design
automatically advanced to the next trial after 5000 ms, indicating no participant response.
Additionally, trials with recognition RTs < 200 ms or > 35D, and source judgment RTs < 100 ms or >
3SD, were removed to ensure data quality.The data and analysis scripts are available at
https://osf.io/pfgca/

3.1. Associative Recognition Results

Descriptive statistics for associative recognition accuracy are presented in Table 1. A 2 (List: List
1 vs. List 2) x 2 (Pair Type: Cue-Overlap vs. Non-Overlap) repeated-measures ANOVA revealed a
significant main effect of list, F(1, 77) = 13.31, p < .001, partial n2 = .15, with higher accuracy observed
in List 1 (M =0.78, SD = 0.14) than in List 2 (M = 0.75, SD = 0.14). A significant main effect of pair type
was also found, F(1, 77) = 5.01, p = .028, partial n?> = .06, indicating higher accuracy for non-overlap
pairs (M =0.78, SD = 0.15) than for cue-overlap pairs(M = 0.75, SD = 0.13).The interaction between list
and pair type was also significant, F(1, 77) = 9.28, p = .003, partial n? = .11 (see Figure 2).

Table 1. Mean (+SD) recognition accuracy and reaction times (ms) by pair type, list, and response accuracy.

List Pair Tvoe Recognition Correct Reaction Incorrect Reaction
yp Accuracy (M + SD) Time(ms) Time(ms)
Cue-overlap 0.75+0.15 2339.94 + 363.04 2667.74 + 647.66
List1
Non-overlap 0.81+0.13 2319.70 + 346.73 2631.99 + 645.72
Cue-overlap 0.75+0.11 2513.32 + 427.81 2867.40 + 572.10
List 2
Non-overlap 0.74+0.17 2273.00 + 354.35 2668.13 + 639.50

Note. RT = reaction time (in milliseconds). Accuracy is reported as proportion correct.
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Figure 2. Associative recognition accuracy as a function of pair type and study list. Boxes show IQR
(25th-75th percentiles), solid lines represent medians, whiskers extend to 1.5xIQR, and white circles
indicate condition means. Significant differences between cue-overlap and non-overlap pairs are
marked with asterisks (*p <0.05, *p <0.01, ***p < .001); n.s. = not significant (p = .05). Post hoc tests
adjusted with Bonferroni correction.

To explore this interaction, simple effects analyses were conducted using the emmeans package
(Lenth et al., 2025). For List 1, accuracy was significantly higher for non-overlap pairs (M = 0.81, SD
= 0.13) compared to cue-overlap pairs (M = 0.75, SD =0.15), #(77) = -4.45, p < .001, Cohen’s d = -0.50. In
contrast, for List 2, there was no significant difference between cue-overlap (M =0.75, SD =0.11) and
non-overlap pairs (M = 0.74, SD = 0.17), t(77) = 0.68, p = .50, Cohen’s d = 0.08. All p-values are two-
tailed and Bonferroni-adjusted where applicable.

To complement the accuracy analysis, recognition reaction times (RTs) were analyzed to
examine potential interference effects that may not be evident from accuracy alone. RTs were
subjected to a 2 (List) x 2 (Pair Type) x 2 (Recognition Accuracy: Correct, Incorrect) repeated-measures
ANOVA using the afex package (Singmann et al., 2025). Due to incomplete data, 7 participants were
excluded, resulting in a final sample of 71 participants. Descriptive statistics are presented in Table
1, and patterns are illustrated in Figure 3.
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Figure 3. Boxplots of recognition response time by pair type and learning list, separated by
recognition accuracy. Boxes show IQR (25th-75th percentiles), solid lines represent medians,
whiskers extend to 1.5xIQR, and white circles indicate condition means. Significant differences
between cue-overlap and non-overlap pairs are marked with asterisks (*p <0.05, **p <0.01, ***p <.001);
n.s. = not significant (p = .05). Post hoc tests adjusted with Bonferroni correction.

The analysis revealed a significant main effect of list, F(1, 70) = 6.99, p =.010, partial 2 = .09, with
shorter RTs in List 1 (M = 2,491, SD = 353.7) than in List 2 (M = 2,574, SD = 346.9). There was also a
significant main effect of pair type, F(1, 70) = 15.12, p < .001, partial n2 = .18, with longer RTs for cue-
overlap pairs (M = 2,592, SD = 357.6) than non-overlap pairs (M = 2,473, SD = 341.5). A highly
significant main effect of recognition accuracy was found, F(1, 70) = 82.41, p < .001, partial 1? = .54,
reflecting faster responses for correct (M = 2,367, SD = 273.3) versus incorrect recognition (M = 2,698,
SD =423.8).

A significant interaction emerged between list and pair type, F(1, 70) = 10.72, p = .002, partial 12
=.13. No significant interactions were observed between recognition accuracy and the other factors,
all ps > .05. Follow-up comparisons indicated that for List 1, the RT difference between cue-overlap
(M =2,513, SD = 383.7) and non-overlap pairs (M = 2,469, SD = 368.2) was not significant, +(70) =1.21,
p =.231, Cohen’s d = 0.12. For List 2, RTs were significantly longer for cue-overlap (M = 2,671, SD =
380.4) than for non-overlap pairs (M = 2,477, SD = 369.7), £(70) = 4.86, p < .001, Cohen’s d = 0.51.

3.2. Source Judgement Results

To examine source memory, we analyzed the proportion of correct source judgments for
successfully recognized associations. A 2 (Pair Type: Cue-Overlap vs. Non-Overlap) x 2 (List: List 1
vs. List 2) repeated-measures ANOVA revealed a significant main effect of List, F(1, 77) =4.79, p =
.032, partial n2=.06, with higher source accuracy in List 1 (M =0.74, SD = 0.14) than in List 2 (M = 0.70,
SD =0.15). The main effect of pair type was not significant, F(1, 77) = 0.77, p = .383, partial 2 = .01, nor
was the interaction, F(1, 77) = 0.07, p = .790, partial n? < .001. These findings suggest that cue overlap
did not significantly affect source memory, although source accuracy was generally better for List 1.
Descriptive statistics are shown in Table 2 and Figure 4.
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Table 2. Mean Accuracy and Reaction Times for Source Judgments by Pair Type in List 1 and List 2.
. . Source Judgement Correct Reaction Incorrect Reaction
List Pair Type . .
Accuracy (M + SD) Time(ms) Time(ms)
Cue-overlap 0.75+0.15 561.45+ 343.75 680.074 + 406.29
List1
Non-overlap 0.73+0.14 608.35 + 381.49 750.08 +442.67
Cue-overlap 0.70+0.15 620.62 + 394.04 662.81 +427.18
List 2
Non-overlap 0.69+0.16 628.75 + 379.66 667.05 +427.20

Note. RT = reaction time (in milliseconds). Accuracy is reported as proportion correct.

List 1 | [ List 2
n.s. n.s.
mr L |
1.0
>
)
©
£
3
3 Sep
< 0.8 L
g O— ol i
s e
S 06 T . —— T
S
= .
[]
o
£
3
8 044
02 T T T T
Cue-Overlap Non-overlap Cue-Overlap Non-overlap
Pair Type

Pair Type E Cue-Overlap E Non-overlap

Figure 4. Boxplots of source judgement accuracy by pair type and learning list. Boxes show IQR (25th-75th
percentiles), solid lines represent medians, whiskers extend to 1.5xIQR, and white circles indicate condition
means. Significant differences between cue-overlap and non-overlap pairs are marked with asterisks (*p <0.05,

**p <0.01, ***p <.001); n.s. = not significant( p >.05). Post hoc tests adjusted with Bonferroni correction.

A 2 (List) x 2 (Pair Type) x 2 (Source Accuracy: Correct, Incorrect) repeated-measures ANOVA
was conducted to examine mean response times during the source judgment task. Six participants
were excluded due to missing data, yielding a final sample of 72 participants. Descriptive statistics
are reported in Table 2.

There was a significant main effect of source accuracy, F(1, 71) = 39.17, p < .001, partial n? = .36,
indicating faster RTs for correct judgments (M = 616.5, SD = 374.8) than incorrect judgments (M =
700.0, SD = 425.8). The main effect of pair type was marginal, F(1, 71) = 3.36, p = .071, partial 2 = .05,
suggesting slightly faster RTs for cue-overlap (M = 645.5, SD = 392.8) compared to non-overlap pairs
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(M =671.0, SD = 407.8). The main effect of list was not significant, F(1, 71) = 0.02, p = .880, partial 2 <
.01.

Incorrect Judgement | | Correct Judgement
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Figure 5. Boxplots of source judgement response time by pair type and learning list, separated by judgement
accuracy. Boxes show IQR (25th-75th percentiles), solid lines represent medians, whiskers extend to 1.5xIQR,
and white circles indicate condition means. Significant differences between cue-overlap and non-overlap pairs
are marked with asterisks (*p <0.05, **p <0.01, ***p <.001); n.s. = not significant (p > .05). Post hoc tests adjusted

with Bonferroni correction.

Significant two-way interactions were found between list and pair type, F(1, 71) =8.96, p = .004,
partial n2 = .11, and between list and source accuracy, F(1, 71) = 8.09, p = .006, partial 2 = .10. A
significant three-way interaction was also observed among list, pair type, and source accuracy, F(1,
71) =4.85, p = .031, partial n2 = .06. To follow up on the three-way interaction, we first examined the
interaction between list and pair type separately for correct and incorrect source judgments. When
source judgments were incorrect, the interaction between list and pair type was significant, F(1, 71) =
8.68, p = .005. Simple effects analyses revealed that in List 1, RTs were significantly slower for non-
overlap pairs (M =764, SD = 443.0) than for cue-overlap pairs (M = 674, SD = 406.0), t(71) =-2.46, p =
.017, Cohen’s d =-0.29. In contrast, in List 2, the difference between cue-overlap (M =710, SD = 427.0)
and non-overlap pairs (M =652, SD =427.0) was not significant, ¢(71) = 1.65, p =.104. For correct source
judgments, the interaction between list and pair type was not significant, F(1, 71) = 1.02, p = .316.
However, a significant simple effect of pair type was observed in List 1, with cue-overlap pairs
eliciting faster responses (M = 572, SD = 344) than non-overlap pairs (M =619, SD = 381), #(71) =-2.55,
p =.013, Cohen’s d = -0.30. In List 2, the difference was non-significant, #(71) = -1.30, p = .198, with
mean RTs of 626 (SD = 394.0) for cue-overlap and 649 (SD = 380) for non-overlap pairs.

These results indicate that cue-overlap facilitated faster source decisions relative to non-overlap
pairs, particularly in List 1 and more so when the source judgment was incorrect. The pattern
suggests that encoding differences between overlapping and non-overlapping associations may
differentially affect the fluency of source retrieval depending on list context and judgment accuracy.

4. Discussion

4.1. Memory Interference Persists Beyond Retrieval Competition

The present study investigated whether retroactive interference (RI) and proactive interference
(PI) can arise in associative memory even in the absence of retrieval competition. Using a non-
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competitive two-alternative forced-choice (2AFC) recognition paradigm, in which targets were
selected among same-list distractors, we minimized cue-based retrieval conflict between overlapping
associations. Despite this control, both RI and PI were observed, demonstrating that interference can
emerge independently of retrieval-based competition, which challenge models that localize
associative interference solely to retrieval dynamics (e.g., retrieval competition or response selection
conflict) and instead align with accounts emphasizing encoding-phase processes, such as trace
integration (Shohamy & Wagner, 2008) or interference during consolidation (Dewar et al., 2007).

Specifically, recognition accuracy revealed significant RI (A-B < E-F), while response time data
revealed PI effects (A-C > G-H). These findings indicate that memory interference is not limited to
retrieval-phase competition, as traditionally emphasized (Anderson et al., 1994; Levy & Anderson,
2002), but can also originate from mechanisms operating during encoding or retention. Importantly,
the observed interference was cue-specific, appearing only when associations shared overlapping
cues, thereby underscoring the role of cue-based representational similarity in shaping interference
even under conditions of minimal output interference.

This result aligns with recent theoretical frameworks suggesting that memory interference is
highly dependent on representational overlap and organizational dynamics during encoding (Kuhl
et al., 2011; Norman et al., 2007). The findings suggest that interference effects can arise from
structural similarity across learning episodes, irrespective of retrieval mode, and manifest in distinct
ways depending on when and how such overlap affects memory processing.

Dissociable Mechanisms Underlying Retroactive and Proactive Interference

Although both RI and PI were observed, their behavioral signatures diverged, pointing toward
distinct underlying mechanisms. RI was manifested as a decline in recognition accuracy for A-B
associations, whereas PI was not detectable in accuracy but revealed through increased response
times for A-C recognition. This asymmetry suggests that RI and PI operate via functionally distinct
pathways, consistent with prior research proposing differential encoding versus retention
vulnerabilities (Polack et al., 2017; Postman & Underwood, 1973).

With respect to RI the observed reduction in recognition accuracy for A-B associations
compared to E-F pairs indicates that subsequent learning of A-C associations interfered with memory
for the original A-B pairs. However, source memory results complicate the interpretation that this
interference is driven by integrative encoding. If strong integration between A-B and A-C had
occurred during the encoding of A-C, we would expect impaired source discrimination for
overlapping (A-B and A-C) associations relative to non-overlapping controls. Contrary to this
prediction, source accuracy in the cue-overlap condition was not significantly worse than in the non-
overlap condition, and in fact, source judgments for overlapping pairs were often faster, particularly
when correct. This pattern is inconsistent with the integration account, which posits that reactivated
A-B memories are merged with newly encoded A-C representations, leading to increased source
confusion and delayed decisions (Horner et al., 2015). Instead, the data favor a differentiation-based
encoding mechanism, wherein partial or weak reactivation of A-B during A-C learning prompts
representational separation rather than fusion (Hulbert & Norman, 2015; Kim et al., 2017). This
process reduces later retrieval competition but may come at the cost of damaging the relational
components of the original A-B memory, especially those required for recollection-based recognition.

According to dual-process theories of recognition memory (Wixted & Mickes, 2010; Yonelinas,
2002), associative recognition tasks rely more heavily on recollection than item recognition,
particularly when distinguishing between highly familiar associations. Consequently, when
participants attempt to recognize previously studied A-B pairs, failure to retrieve specific relational
details can lead them to rely predominantly on familiarity-based processes. Although familiarity is
generally preserved, it is less diagnostic for associative judgments. This reliance on familiarity rather
than recollection likely accounts for why recognition accuracy for A-B pairs declined compared to
novel E-F pairs (which maintained both recollection and familiarity). It also explains the absence of
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differences in reaction times, as familiarity-driven responses tend to be consistently rapid regardless
of their accuracy (Ratcliff & McKoon, 2008).

Differentiation mechanisms such as pattern suppression or representational repulsion have been
proposed as neural strategies for minimizing interference between overlapping memories (Norman
et al., 2007; Kim et al., 2017). These mechanisms act by suppressing or altering previously encoded
traces when similar information is encountered again —effectively creating more orthogonal memory
representations to prevent future confusion. Although this strategy benefits the encoding of new
associations (e.g., A—C), it may concurrently disrupt the relational coherence of prior associations
(e.g., A-B), rendering them more difficult to retrieve via recollection.

Such findings are consistent with the view that pattern separation processes in the hippocampus
(Favila et al., 2020; Hulbert & Norman, 2015) can support memory specificity by reducing shared
representational features. However, by creating distinct and non-overlapping traces, this process
may simultaneously weaken original, relational linkages that support recollection in associative
recognition tasks (Yonelinas, 2002).

In summary, differentiation-based encoding offers a powerful mechanism to protect new
memories from interference, but it does so by compromising the retrievability of prior relational
structures, particularly those dependent on recollection. The observed accuracy deficit without RT
slowing for A-B recognition reflects this dissociation —a byproduct of strategic reorganization during
encoding that prioritizes future distinctiveness over backward compatibility with earlier associations.

While proactive interference did not impair recognition accuracy, the prolonged response times
for A-C pairs—relative to non-overlapping controls —suggest increased cognitive demands during
retrieval. From an encoding perspective, this effect may be attributed to differentiation-based
processes that were engaged to distinguish newly encoded A-C associations from prior A-B pairs
sharing the same cue. During A-C encoding, participants likely engaged in comparative and
separation-based processing, which not only increased representational distinctiveness but also
introduced greater complexity into the resulting memory trace (Hulbert & Norman, 2015).
Consequently, although recollection remained intact, retrieval required more time-consuming
evidence accumulation, reflecting greater internal decisional uncertainty or representational
reconfiguration.

Supporting this interpretation, pattern separation mechanisms in the hippocampus have been
shown to increase source discriminability while simultaneously delaying successful pattern
completion due to reduced associative overlap (Favila et al., 2020; Kim et al., 2017). According to
diffusion models of decision-making, such changes in representational structure can slow the rate of
information accumulation, thereby increasing recognition latency even when final accuracy remains
unaffected (Ratcliff et al., 2016). Thus, the observed PI effect in RTs reflects the cognitive cost of
encoding-based interference resolution, where the mnemonic benefit of reduced interference is offset
by increased retrieval effort.

4.2. The Central Role of Encoding in Interference Mechanisms

Although traditional memory models have prioritized retrieval as the primary locus of
interference (e.g., SAM: Raaijmakers & Shiffrin, 1981; REM: Shiffrin & Steyvers, 1997), our findings
reinforce the emerging view that encoding is not merely a precursor to retrieval, but a dynamic,
constructive process that actively shapes the susceptibility of memories to interference. In our study,
both retroactive and proactive interference effects emerged under conditions where retrieval
competition was minimized, suggesting that the organization and differentiation of overlapping
associations during encoding play a pivotal role in determining later accessibility and response
efficiency.

Recent neuroscientific and computational theories support this interpretation. For example, the
Complementary Learning Systems (CLS) framework (Norman & O'Reilly, 2003) posits that the
hippocampus dynamically engages pattern separation to reduce representational overlap between
similar episodes, especially during encoding. In this view, the same hippocampal system can later
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engage in pattern completion during retrieval to reconstruct full memory representations from partial
cues—highlighting that the encoding-retrieval processes are two sides of the same computational
coin. Importantly, the extent and direction of these operations (separation vs. completion) depend on
contextual similarity, retrieval goals, and prior encoding dynamics (Ritvo et al., 2019; Yassa & Stark,
2011).

In our paradigm, source memory RT benefits for cue-overlap pairs, despite increased associative
overlap, suggest that encoding-related differentiation mechanisms successfully reduced cross-list
interference. This aligns with findings from studies showing that differentiation during encoding
leads to increased neural separation and reduced retrieval interference (Hulbert & Norman, 2015;
Favila et al., 2020). Moreover, theories like stimulus-encoding theory (Martin, 1968) and encoding
variability models (Bower, 1972; Tzeng, 1973) emphasize that the same nominal stimulus (e.g., a
repeated cue word) can produce qualitatively different internal traces when encoded under distinct
contextual or associative constraints.

However, despite mounting behavioral and neural evidence for the encoding basis of
interference, formal models of memory have disproportionately focused on retrieval dynamics, often
treating encoding as a fixed or uniform process. While models like SAM and REM simulate forgetting
through probabilistic cue competition or noise in retrieval strength, they lack a rich account of how
encoding strategies like item integration, contextual reinstatement, or differentiation modulate
memory formation and later performance (Cowan, 2019; Ranganath, 2010). This imbalance limits
their ability to account for findings such as ours, where memory strength (accuracy) and accessibility
(RT) dissociate as a function of encoding manipulations.

Together, these results advocate for a reconceptualization of memory interference as an
emergent property of encoding-retrieval interactions, not retrieval alone. Encoding is not a passive
imprinting of associations but a strategic, sometimes competitive process that actively sculpts the
structure of memory representations, with downstream consequences for how these memories are
accessed, discriminated, or forgotten. Future models should incorporate computational mechanisms
for representational modulation during encoding, including those sensitive to similarity, context, and
retrieval history.

4.3. Limitations and Future Directions

While the present study offers important insights into the asymmetric mechanisms of retroactive
and proactive interference and the central role of encoding processes, several limitations warrant
consideration. First, the use of weakly associated word-picture pairs and brief encoding durations
may have constrained the engagement of recollection-based retrieval, potentially amplifying
familiarity-driven recognition effects. Given that associative recognition often relies on recollection,
future studies should systematically manipulate associative strength and encoding duration to
disentangle the relative contributions of familiarity and recollection under varying memory demands
(Yonelinas, 2002; Wixted, 2007).

Second, although the two-alternative forced-choice (2AFC) paradigm employed here effectively
minimized retrieval competition, it may not fully capture the complexity of naturalistic memory
interference, where multiple associative traces may simultaneously compete during recall.
Incorporating complementary paradigms—such as free recall, cued recall, or retrieval-induced
forgetting tasks—could provide a richer characterization of how encoding- and retrieval-based
mechanisms jointly shape interference effects (Anderson, 2003; Hulbert & Norman, 2015).

Third, while we highlight the pivotal role of encoding dynamics (e.g., pattern separation and
differentiation) in shaping interference, this study did not directly measure neural correlates of
encoding processes, such as hippocampal activity patterns or neural similarity metrics. Future
research could integrate neuroimaging or computational modeling approaches (e.g., CLS models,
Norman & O'Reilly, 2003) to test how encoding operations like pattern suppression or
representational repulsion (Favila et al., 2020) mediate the trade-off between reduced interference
and potential costs to recollection.
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Finally, individual differences in encoding strategies, cognitive control, and working memory
capacity may systematically modulate the degree of interference observed. Our findings suggest that
adaptive encoding processes (e.g., differentiation) can either mitigate or exacerbate interference
depending on individual strategy use. Future studies could examine these factors by including
executive function measures or strategy assessments as covariates or moderators, which would
deepen our understanding of variability in interference effects across individuals.

In summary, while this study advances the theoretical account of memory interference by
emphasizing encoding as a critical locus of both retroactive and proactive effects, future research
should adopt multi-method and multi-level approaches—combining behavioral paradigms, neural
measures, and computational modeling—to further clarify the interplay between encoding and
retrieval processes in shaping associative memory.

5. Conclusion

The present study investigated the mechanisms of retroactive (RI) and proactive interference
(PI) in associative memory using a non-competitive two-alternative forced-choice (2AFC) paradigm.
By minimizing retrieval-based competition and incorporating a source memory judgment task, we
dissociated the effects of encoding and retention processes on memory interference. Our findings
revealed an asymmetric pattern of interference: RI impaired associative recognition accuracy,
whereas PI primarily manifested as slower response times, with no significant effect on accuracy.
This dissociation suggests that RI and PI arise from distinct cognitive operations—RI reflecting
degraded recollection due to representational suppression, and PI reflecting increased cognitive load
from encoding complexity, likely arising from differentiation-based processes.The observed
variability in interference effects suggests that memory is not only shaped by what is retrieved, but
fundamentally by how and under what conditions it is encoded.
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