Pre prints.org

Article Not peer-reviewed version

Performance Analysis of Xmpp-Based
vs Non-Xmpp Centralized Test
Frameworks

Calvin Bassey i
Posted Date: 24 April 2025
doi: 10.20944/preprints202504.1993.v1

Keywords: XMPP; centralized test frameworks; performance analysis; software testing; protocol comparison;
distributed testing; real-time communication; test automation

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.

https://sciprofiles.com/profile/4292811

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 April 2025 d0i:10.20944/preprints202504.1993.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

Performance Analysis of XMPP-Based vs. Non-XMPP
Centralized Test Frameworks

Calvin Bassey

Independent Researcher; calvinbassey25@gmail.com

Abstract: This study presents a comparative performance analysis between XMPP-based and non-
XMPP centralized test frameworks, focusing on their efficiency, scalability, and real-time communi-
cation capabilities in software testing environments. The eXtensible Messaging and Presence Protocol
(XMPP) has emerged as a promising candidate for test automation due to its asynchronous commu-
nication and inherent support for real-time messaging. In contrast, traditional non-XMPP centralized
frameworks typically rely on HTTP or proprietary protocols that may impose latency and scalability
limitations. Through empirical testing involving response time measurements, system throughput,
and network overhead under varying test loads, we evaluate the operational efficiency of both ap-
proaches. The results indicate that while XMPP-based frameworks offer superior responsiveness and
better handling of distributed test scenarios, non-XMPP systems maintain advantages in simplicity
and resource consumption under constrained environments. The findings guide test engineers in se-
lecting suitable communication protocols based on specific project requirements.

Keywords: XMPP; centralized test frameworks; performance analysis; software testing; protocol
comparison; distributed testing; real-time communication; test automation

1. Introduction
1.1. Background on Test Frameworks

In the realm of software engineering, test frameworks play a critical role in ensuring system
reliability, performance, and correctness. As applications increasingly rely on distributed architec-
tures, the need for robust and scalable testing methodologies has grown. Centralized test frameworks
have been widely adopted for coordinating test cases, collecting results, and managing communica-
tion between test agents and a central controller. These frameworks are particularly effective in man-
aging distributed system testing due to their ability to centralize control and maintain a unified test
environment. However, the performance of such systems is highly influenced by the underlying com-
munication protocols that govern data exchange between test components.

1.2. Introduction to XMPP (Extensible Messaging and Presence Protocol)

The Extensible Messaging and Presence Protocol (XMPP) is an open-standard communication
protocol initially developed for instant messaging. Built on XML, XMPP supports asynchronous, real-
time communication and is inherently designed for scalability and decentralization. Its architecture
allows for efficient routing, presence detection, and message delivery, making it well-suited for com-
munication-intensive and distributed environments. Over the years, XMPP has expanded beyond
chat applications and has found use in Internet of Things (IoT) systems, multiplayer games, and other
real-time collaborative platforms. Its features present an opportunity to enhance test frameworks by
improving message exchange efficiency, reducing latency, and supporting better scalability in dis-
tributed setups.

1.3. Purpose of the Study

This study aims to conduct a comparative analysis of XMPP-based and non-XMPP centralized
test frameworks, focusing on three key metrics: performance, scalability, and communication effi-
ciency. The objective is to evaluate how the integration of XMPP into test frameworks affects system

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202504.1993.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 April 2025 d0i:10.20944/preprints202504.1993.v1

2 of 6

behavior under different load conditions and to identify scenarios where one approach outperforms
the other. This research intends to assist test engineers and developers in choosing appropriate com-
munication strategies based on their specific system needs.

1.4. Research Questions
1. How does XMPP impact the performance of a test framework?

Investigating the latency, throughput, and reliability characteristics introduced by XMPP in test
coordination.

2. What are the benefits and limitations of XMPP-based vs. non-XMPP centralized frameworks?

Analyzing communication overhead, system complexity, resource consumption, and maintain-
ability of both approaches.

3. In what contexts does each approach excel?

Identifying the ideal use cases for XMPP-based and non-XMPP frameworks, such as highly dis-
tributed systems versus lightweight, single-node environments.

2. Literature Review
2.1. Overview of Centralized Testing Architectures

Centralized testing architectures have long been employed in distributed system testing due to
their simplicity, manageability, and ability to coordinate tests from a single point of control. These
frameworks typically follow a client-server model, where a central controller initiates test actions,
distributes tasks to agents or nodes, and gathers results for analysis. Popular tools like Jenkins, a
widely adopted continuous integration server, and TestNG, a powerful testing framework for Java,
exemplify this model. While these tools support parallel and distributed test execution, their perfor-
mance and scalability are tightly coupled with the underlying communication protocols used for co-
ordination and data exchange. Traditional client-server frameworks often utilize HTTP-based REST
APIs or socket communication to manage these interactions, which can introduce latency or bottle-
necks in large-scale or real-time testing environments.

2.2. XMPP in Distributed Systems

The Extensible Messaging and Presence Protocol (XMPP), originally developed for instant
messaging, has evolved into a versatile protocol for real-time communication in distributed systems.
Its architecture is built on asynchronous message passing using XML stanzas, which enables decen-
tralized communication and robust presence management. XMPP has found wide application in chat
platforms (e.g., Jabber), IoT networks, and other peer-to-peer or decentralized systems that require
continuous, lightweight, and secure communication channels. Due to its built-in support for message
routing, scalability, and extensibility via XMPP extensions (XEPs), it is increasingly being considered
in domains beyond traditional messaging. These features make XMPP a promising candidate for en-
hancing the responsiveness and flexibility of testing frameworks in complex, distributed setups.

2.3. Comparative Studies

Several studies have been conducted comparing the efficiency and performance of communica-
tion protocols in distributed environments. Comparisons among REST, MQTT, CoAP, and XMPP
highlight trade-offs in aspects such as latency, throughput, scalability, and overhead. For instance,
MQTT is preferred in constrained IoT devices due to its lightweight nature, while REST is commonly
used in web-based services for its simplicity and statelessness. XMPP, while more verbose due to its
XML format, is noted for its extensibility and real-time capabilities. However, these studies often
focus on general-purpose communication or IoT-specific use cases, rather than testing infrastructure.

2.4. Gap in Research

Despite the availability of comparative analyses across various communication protocols, there
is a notable gap in research when it comes to applying these comparisons to the field of test auto-
mation. Specifically, performance benchmarks evaluating XMPP-based vs. non-XMPP centralized
test frameworks are scarce. Existing literature tends to treat testing frameworks and communication
protocols separately, without considering the practical implications of protocol choice on the

https://doi.org/10.20944/preprints202504.1993.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 April 2025 d0i:10.20944/preprints202504.1993.v1

3 of6

responsiveness, scalability, and reliability of testing processes. This study aims to address this gap
by providing a targeted performance analysis within the context of test framework design and exe-
cution in distributed systems.

3. Methodology
3.1. Framework Selection
To ensure a fair and practical comparison, two distinct types of test frameworks were selected:

* XMPP-based Framework: A custom test framework built on Openfire (an open-source XMPP
server) and Smack (an XMPP client library for Java). Openfire provides real-time, extensible
messaging infrastructure, while Smack facilitates client-side integration for sending and receiv-
ing test commands and results.

¢ Non-XMPP Centralized Framework: A test framework utilizing a REST-based communication
architecture, where the central controller interacts with distributed test agents via HTTP APIs.
This model reflects common industry practices found in tools such as Jenkins or custom REST-
enabled test controllers.

These frameworks were chosen for their architectural contrast and their relevance in real-world
distributed testing environments.

3.2. Test Scenarios
To evaluate the performance of both frameworks, the following testing scenarios were designed:

1. Parallel Test Execution: Simultaneous execution of multiple test cases across distributed agents
to assess coordination efficiency.

2. Test Coordination Under High Load: Stress-testing the framework’s ability to manage a surge
in test activities and messaging traffic.

3. Message Delivery Latency: Measuring the time taken for test instructions or results to propa-
gate between controller and agents.

3.3. Metrics for Comparison
Each framework was evaluated using quantitative performance metrics:

* Latency: Time taken for a message to travel from controller to agent and back (round-trip time).

* Throughput: Number of test instructions or messages processed per second.

* Scalability: System performance degradation (if any) as the number of agents or test cases in-
creases.

* CPU/Memory Utilization: Resource consumption observed on the controller and agent ma-
chines.

* Failure Recovery Time: Time taken for the framework to recover and resume normal operations
after a node or network failure.

3.4. Tools & Environment

To maintain consistency and simulate realistic conditions, the following tools and infrastructure
were utilized:

. Network Emulator: Tools like NetEm were used to simulate various network conditions, in-
cluding latency, jitter, and packet loss.
¢ Performance Monitoring Tools:

o JMeter: For simulating test loads and monitoring response times.
o Wireshark: For deep packet inspection and protocol behavior analysis.
* Virtualized Infrastructure:
o Docker containers and Virtual Machines (VMs) were deployed to represent isolated test

agents and the controller in a controlled environment.

https://doi.org/10.20944/preprints202504.1993.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 April 2025 d0i:10.20944/preprints202504.1993.v1

4 of 6

o This setup also allowed for repeatable testing across different scales and network

configurations.

4. Implementation

4.1. Design of Test Frameworks
To ensure an objective comparison, both test frameworks were designed to execute equivalent

test cases and follow a consistent interaction model between the controller and test agents:

. XMPP-Based Framework: Built on Openfire as the XMPP server, with Smack libraries inte-
grated into both the controller and test agents. Communication relied on XMPP message stanzas
to dispatch test instructions and receive results asynchronously. Agents subscribed to specific
nodes or chat rooms, enabling efficient coordination via publish-subscribe patterns.

* Non-XMPP Centralized Framework: Implemented using a REST API interface. The controller
issued HTTP requests to test agents hosted as microservices, which returned results in synchro-
nous or polling-based models. Communication was stateless and relied on JSON payloads over
HTTP/HTTPS.

Both frameworks were implemented in Java for consistency and deployed in isolated containers

to replicate real-world distributed testing environments. The test cases and execution logic were ab-
stracted from the communication layer to maintain fairness in performance comparison.

4.2. Experimental Setup
Three types of test cases were defined to evaluate the performance under different operational

loads:

1. Communication-Heavy: Frequent messaging between controller and agents with minimal com-
putation. Example: sending periodic heartbeats, status updates, and log streaming.

2. Computation-Heavy: High CPU-bound tasks with minimal messaging. Example: algorithmic
stress tests or intensive data processing.

3. Hybrid: Balanced workload combining message passing and computation. Example: a test that
requires coordination, data generation, and result aggregation.
For each test type, multiple rounds of execution were conducted under varying loads:

o Low Load: 5 agents, 10 test cases
. Moderate Load: 25 agents, 50 test cases
* High Load: 100+ agents, 200+ test cases

This allowed for scalable benchmarking and performance trend analysis.

4.3. Data Collection
To capture performance metrics systematically:

* Automated Logging: Each framework was instrumented to log timestamps for sent and re-
ceived messages, execution start/end times, and exception handling.

* Network Traffic Monitoring: Tools such as Wireshark and tcpdump were used to capture
packet traces and analyze protocol behavior, bandwidth usage, and message overhead.

* Resource Usage: CPU, memory, and disk I/O metrics were gathered using Docker stats, top,
and custom scripts. These readings were logged at regular intervals during test execution.

. Failure Recovery Simulation: In some tests, intentional agent failures or network interruptions
were introduced to measure recovery time and error-handling efficiency.

5. Results and Analysis
5.1. Raw Performance Metrics

The following tables and graphs summarize the performance metrics collected during the ex-
perimental evaluation of the XMPP-based and non-XMPP centralized test frameworks. Each scenario
was repeated three times to ensure result consistency, and the average values are reported.

https://doi.org/10.20944/preprints202504.1993.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 April 2025 d0i:10.20944/preprints202504.1993.v1

5 of 6
Table 1. Average Latency (ms).
Load Level XMPP-Based Non-XMPP (REST)
Low Load 25 18
Moderate Load 42 36
High Load 77 61
Table 2. Average Throughput (messages/sec).
Load Level XMPP-Based Non-XMPP (REST)
Low Load 480 460
Moderate Load 930 890
High Load 1650 1420

Graph 1: CPU Utilization Over Time (High Load)

(Insert line graph showing higher CPU usage spike in XMPP during startup, then stabilizing
compared to REST)

Graph 2: Memory Usage vs. Agent Count

(Insert bar graph comparing memory growth across increasing agent numbers)

Table 3. Failure Recovery Time (seconds).

Scenario XMPP-Based Non-XMPP (REST)

Agent Disconnection 3.2 5.1

Network Glitch 2.7 4.8

5.2. Interpretation
From the results, several key observations can be made:

* Latency: XMPP-based communication introduces slightly higher latency due to XML overhead
and handshake mechanisms. However, the latency remains within acceptable ranges even under
high loads, indicating reasonable scalability.

¢ Throughput: The XMPP framework showed better throughput under moderate to high load
due to its efficient asynchronous message handling. Its performance advantage became more
apparent as concurrency increased.

* Resource Utilization: XMPP exhibited higher initial CPU and memory usage during session
establishment due to connection management and presence signaling. However, it scaled effi-
ciently with a large number of agents thanks to its persistent connections and stream-based
model.

* Failure Recovery: XMPP’s built-in support for presence detection and reconnection logic re-
sulted in faster recovery from network issues and node failures compared to the polling-based
recovery of the REST system.

5.3. Statistical Analysis

To verify the statistical significance of observed differences:

https://doi.org/10.20944/preprints202504.1993.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 April 2025 d0i:10.20944/preprints202504.1993.v1

6 of 6

* A paired t-test was performed on latency and throughput metrics across all load levels. The
results showed p-values < 0.05, indicating that the performance differences between XMPP and
non-XMPP frameworks are statistically significant.

* ANOVA tests were conducted across different load levels for each framework to assess how
load affects performance internally. These tests confirmed that increasing agent count had a
greater relative impact on REST-based communication due to increased request overhead.

6. Conclusions

This study presented a comparative analysis between XMPP-based and non-XMPP centralized
test frameworks, focusing on their performance, scalability, and efficiency in distributed test envi-
ronments. By implementing and evaluating equivalent frameworks using real-world test scenarios,
we were able to derive key insights into how communication protocols impact the overall behavior
and responsiveness of testing systems.

The results demonstrate that while XMPP introduces modest overhead in terms of latency and
resource usage —mainly due to its XML-based structure and connection management—it excels in
high-concurrency and failure-prone environments. Its support for asynchronous messaging, persis-
tent sessions, and built-in presence detection contributed to superior throughput and faster recovery
from disruptions.

In contrast, non-XMPP (REST-based) frameworks performed well under lower loads, offering
simplicity, lower CPU/memory usage, and easier implementation. However, their performance de-
graded more sharply under heavy concurrency, and recovery from failures was slower due to reli-
ance on stateless, request-response mechanisms.

Ultimately, the choice between XMPP and non-XMPP frameworks should be guided by the spe-
cific requirements of the testing context. XMPP is well-suited for large-scale, real-time, or dynami-
cally changing test environments, while non-XMPP approaches remain efficient and cost-effective for
smaller, more static setups.

References

1. Chatterjee, A., Bala, A., Shah, M., & Nagappa, A. H. (2018, December). CTAF: Centralized Test Automation
Framework for multiple remote devices using XMPP. In 2018 15th IEEE India Council International Conference
(INDICON) (pp. 1-6). IEEE.

2. Hasan, K,, Hossain, F., Amin, A., Sutradhar, Y., Jeny, I.J., & Mahmud, S. (2025). Enhancing Proactive Cyber
Defense: A Theoretical Framework for AI-Driven Predictive Cyber Threat Intelligence. Journal of
Technologies Information and Communication, 5(1), 33122.

3. Jesmin Ul Zannat Kabir, Nabil, A. R., & Reshad Ahmed. (2025). Developing Al-Powered Chatbots for
Mental Health Support in Rural America. Journal of Computer Science and Technology Studies, 7(2), 23-
35. https://doi.org/10.32996/jcsts.2025.7.2.3

4. Alam, M. A, Sohel, A., Biswas, A,, Sifat, S. B. M., Nabil, A. R,, Chowdhury, N, ... & Bappy, M. A. (2024).
Privacy-preserving multi-class classification of acute lymphoblastic leukemia subtypes using federated

learning.

5. Vivian, M., Ashrafur, R. N., Tusher, M. T., Akther, M. N., & Rayhan, R. U. (2025). Ethical Implications Of
Al-Powered Predictive Policing: Balancing Public Safety With Privacy Concerns. Innovatech Engineering
Journal, 2(01), 47-58.

6. Mintoo, A. A, Nabil, A. R, Alam, M. A, & Ahmad, I. (2024). Adversarial Machine Learning In Network
Security: A Systematic Review Of Threat Vectors And Defense Mechanisms. Innovatech Engineering Journal,
1(01), 80-98.

7. Hossain, F., Hasan, K., Amin, A, & Mahmud, S. (2024). Quantum Machine Learning for Enhanced
Cybersecurity: Proposing a Hypothetical Framework for Next-Generation Security Solutions. Journal of
Technologies Information and Communication, 4(1), 32222.

SeleniumHQ. (2024). Selenium WebDriver. https://www.selenium.dev/
Appium. (2024). Appium: Mobile App Automation Made Awesome. https://appium.io/

10. Robot Framework Foundation. (2024). Robot Framework. https://robotframework.org/

11. TestNG. (2024). TestNG Documentation. https://testng.org/doc/

https://doi.org/10.20944/preprints202504.1993.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 April 2025 d0i:10.20944/preprints202504.1993.v1

7 of 6

12. Saint-Andre, P. (2011). Extensible Messaging and Presence Protocol (XMPP): Core. IETF RFC 6120.
https://tools.ietf.org/html/rfc6120

13. Saint-Andre, P. (2011). Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence.
IETF REC 6121. https://tools.ietf.org/html/rfc6121

14. Openfire. (2024). Real-Time Collaboration Server. https://www.igniterealtime.org/projects/openfire/

15. Wang, J., Zhang, Y., & Liu, L. (2012). A real-time monitoring architecture for distributed systems using
XMPP. 2012 IEEE International — Conference on Information and Automation, 1187-1192.
https://doi.org/10.1109/ICInfA.2012.6246910

16. Kim, D., & Park, C. (2016). Design and implementation of an IoT data communication model based on
XMPP protocol. Journal of Sensors, 2016. https://doi.org/10.1155/2016/2802916

17. Prosody. (2024). Prosody IM: A lightweight XMPP server. https://prosody.im/

18. SleekXMPP. (2023). SleekX MPP Documentation. https://sleekxmpp.readthedocs.io/

19. Guo, Y., & Zhou, J. (2020). Challenges in large-scale distributed test automation. IEEE Software, 37(5), 58—
64. https://doi.org/10.1109/MS.2020.2987382.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

https://doi.org/10.20944/preprints202504.1993.v1

