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Abstract

Discovering and effectively utilizing the latent traits of students and questions is essential for enabling
personalized education in digital learning environments. In this study, we apply the Cyclic Dual Latent
Discovery (CDLD) methodology to large-scale educational dataset (EdNet) to discover the latent traits
of students and questions, and to predict problem-solving outcomes based on these traits. CDLD
employs two neural networks trained in a cyclic manner to iteratively refine the latent representations
of each entity. Unlike traditional knowledge tracing approaches that rely on predefined features or
partial representations, CDLD enables comprehensive latent traits to emerge directly from interaction
data. Experimental evaluation using the EdNet dataset demonstrates that the latent traits discovered
by CDLD contribute more significantly to prediction performance than observable features. These
results highlight the value of CDLD in discovering latent traits in educational data and suggest its
applicability to personalized question recommendation, adaptive learning group formation, and other
educational applications.

Keywords: Cyclic Dual Latent Discovery (CDLD); knowledge tracing; latent trait modeling; student
modeling

1. Introduction

In educational environments, analyzing and predicting interactions between students and ques-
tions is essential for providing personalized learning experiences. With the proliferation of digital
educational platforms and the accumulation of large-scale educational data, extracting meaningful
insights from such data has become increasingly critical. In this context, Knowledge Tracing (KT)
has established itself as a core methodology for modeling student-question interactions to predict
learning performance. It serves as the foundation for intelligent tutoring systems to infer conceptual
understanding and skill acquisition levels, enabling customized curricula delivery [2].

The student responses observed in educational interactions represent more than superficial
phenomena—they result from interactions between the "latent traits’ of both students and questions.
These latent traits refer to internal state values that, while not directly observable, significantly influence
entities” observable behaviors. For students, latent traits can include knowledge state, conceptual
understanding, problem-solving ability, learning style, and cognitive characteristics. For questions,
latent traits can include difficulty, complexity, cognitive demand level, and required prerequisite
knowledge.

However, existing KT approaches have limitations in comprehensively addressing the latent traits
of both students and questions. To overcome these limitations, this study applies the Cyclic Dual Latent
Discovery (CDLD) methodology [7] to educational data. CDLD is a methodology that progressively
discovers the comprehensive latent traits of users and items through cyclic learning between dual deep
learning models. This is based on the premise that all interactions are manifestations of the underlying
latent traits of the respective entities.
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This study aimed to validate CDLD’s applicability to the educational domain. To achieve this,
we applied the CDLD methodology to the educational dataset EdNet[10] to discover the latent traits
of students and questions, and use the discovered latent trait values to predict the interaction results
between students and questions.

2. Related Work
Traditional KT approaches are limited by their simplistic modeling techniques and their inability

to effectively discover complex latent traits. Bayesian Knowledge Tracing (BKT) [8] represents students’
knowledge states only as binary variables (‘mastered’ or 'not mastered’) failing to capture comprehen-
sive student latent traits beyond binary mastery states. Performance Factor Analysis (PFA) [9], while
improving predictive accuracy, primarily models student-question interactions through linear combi-
nations of predefined parameters, thereby providing limited capacity to capture complex nonlinear
relationships between comprehensive latent traits.

Deep learning-based approaches have demonstrated systematic progress in modeling educational
interaction patterns, as evidenced by recent comprehensive analyses [1]. Early architectures like Deep
Knowledge Tracing (DKT) [3] established the viability of recurrent neural networks for temporal
sequence modeling. Subsequent developments introduced specialized components—Dynamic Key-
Value Memory Networks (DKVMN) [4] incorporated memory mechanisms for concept relationship
tracking, while Self-Attentive Knowledge Tracing (SAKT) [5] utilized transformer architectures to
capture long-range dependencies. The SAINT [6] and SAINT+ [11] frameworks extended these
foundations through encoder-decoder configurations. Contemporary extensions address specific
modeling challenges: DKVMN&MRI [12] integrates exercise-knowledge relationships with forgetting
curve dynamics, DyGKT [13] employs continuous-time dynamic graphs to handle infinitely growing
learning sequences, and AAKT [14] reformulates knowledge tracing as a generative process using
question-response alternate sequences. Despite architectural diversity, existing approaches model
only partial aspects of student or question latent traits—such as knowledge states for students or
difficulty levels for questions—rather than discovering comprehensive latent representations. They
remain constrained to predefined latent traits instead of uncovering the comprehensive latent traits for
each entity.

The Cyclic Dual Latent Discovery (CDLD) approach addresses this limitation by discovering
comprehensive latent trait vectors for both students and questions through cyclic optimization. Unlike
methods that predefine which traits to model, CDLD enables latent traits to emerge from interaction
data, capturing the diverse factors that influence educational outcomes and providing a foundation for
applications beyond performance prediction.

3. Proposed Method: CDLD Application for Latent Trait Discovery

This section details the CDLD methodology applied for predicting interactions in educational
data. The user and item specified in the CDLD methodology correspond to student and question
respectively in this study. Accordingly, unless otherwise noted, user refers to student and item refers
to question.

3.1. Entity-Processor Perspective and Latent Trait Modeling

In educational interactions, students and questions interact as mutual processors rather than
independent entities. A student’s latent academic ability and a problem’s latent difficulty influence
each other, and the interaction between the two determines the resulting answer. From this perspective,
a question can be regarded as a processor that receives a student entity as input and produces an
answer that reflects the student’s academic ability. Similarly, a student can be viewed as a processor
that receives a question entity and generates a answer that reflects the perceived difficulty of the
question. This perspective, as illustrated in Figure 1, suggests that the answer is the outcome of one
entity processing the latent traits of the other.
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Figure 1. Latent traits and processor perspective in educational interactions (a) Question processor takes student
entity and output answer. (b) Student processor takes question entity and output answer. (Adapted and modified
from [7])

Mathematically, the interaction result Answer between student S and question Q can be
expressed as:

Answer = g(S,Q) + € (1)

where ¢ denotes the interaction function, and e represents the noise term arising from in-
evitable variability and uncertainty in real-world educational settings. More specifically, this can
be expressed as:

Answer = g(S;,S¢,Q1, Q) + € @

Existing educational data analysis approaches typically rely only on observable student features
Sy and question features Qy to predict interaction results and either ignore or oversimplify student
latent traits S; and question latent traits Q;. In contrast, CDLD aims to directly discover the latent traits
S; and Qy from the interaction results Answer.

Although not directly observable, the latent traits of users are underlying factors that significantly
determine the outcomes of interactions. It’s very important for KT task. In CDLD, these latent traits
are represented as a d-dimensional vector S; € R? and Q; € R?, which is discovered through User
Latent Discoverer (ULD) and Item Latent Discoverer (ILD) of CDLD.

3.2. Cyclic Latent Trait Discovery Framework

ULD and ILD are deep neural networks (DNNs) that takes S;, S¢, Q;, and Qy as input and output
answer. ULD and ILD can be represented by Equations (3) and (4), respectively.

Answer = ULD*(S],S¢, Q1, Qf) &)
Answer = ILD*(S,S¢,Q;, Qf) @)

In contrast to conventional DNNs, where only the network parameters are updated during
training, (3) illustrates that CDLD updates both the parameters of the ULD network and the user’s
latent traits. Similarly, in (4), the item’s latent traits are updated along with the ILD network. In
both equations, the asterisk (*) denotes components—whether parameters or latent inputs—that are
updated during training. First, ULD is trained while updating S;, which is then used as a fixed input
for training ILD. After ILD training is completed and Q; is updated, it is used as a fixed input for
training ULD. By cyclic training ULD and ILD in this manner, the student latent traits and question
latent traits are discovered. The training procedure described above is illustrated in Figure 2.
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Figure 2. Cyclic training of CDLD. (Adapted and modified from [7])

4. Experiments

This section presents the experimental evaluation of the CDLD methodology on the EdNet dataset,
aiming to discover and assess the latent traits of students and questions through answer prediction.

4.1. Data Preparation

EdNet is a student-system interaction dataset collected from the online educational platform
Santa. We used EdNet-KT1, containing approximately 96.25 million response records from about
780,000 students and 13,000 questions. Each question includes features such as part (type), tags, and
correct answers. Since this dataset does not contain student features, we modified the original CDLD
model to operate without them.

For our preprocessing pipeline, we first selected 7,843 students who had the most responses
to ensure computational efficiency. We then focused on the 94 questions most frequently solved by
these students. When students answered the same question multiple times, we retained only their
latest response to capture their most recent knowledge state. To ensure sufficient data for meaningful
latent trait discovery, we filtered the dataset to include only students and questions with at least three
interactions each. This preprocessing resulted in 60,069 interaction records.

The categorical features were processed using one-hot encoding for the part attribute and multi-
hot encoding for the tags attribute. The target variable, indicating the correctness of student responses,
was binarized, resulting in a label distribution where 63.4% of responses were correct. No class
imbalance correction techniques were applied. To ensure randomized data distribution, the dataset
was thoroughly shuffled and subsequently partitioned into training, validation, and test sets using an
8:1:1 ratio.

4.2. Model Architecture

Figure 3 illustrates the architectures of the ILD and ULD modules. Each dense layer employs
the swish activation function, with the final layer using sigmoid. Notably, the item latent traits in
ILD and the user latent traits in ULD are implemented as model layers rather than input variables,
allowing them to be updated during training. The implementation follows the same methodology as
the original CDLD framework. The predictor model, which shares the same architecture, uses fixed
latent trait inputs without updates, consistent with standard deep neural network conventions.

4.3. Training Details

The dimensions of both user and item latent vectors were set to 64, and the batch size was set
to 2,048. The training process followed a cyclic scheme in which the ILD was trained for 10 epochs,
followed by 10 epochs of ULD training; this alternating cycle was repeated 10 times. The final predictor
model was trained for 100 epochs. The Adam optimizer was used with an initial learning rate of
5 x 107, and learning rate scheduling was applied using ReduceLROnPlateau, which reduced the
learning rate by 50% if validation performance did not improve for two consecutive epochs.
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Figure 3. Structure of ULD and ILD. Batch normalization was applied between all dense and dropout layers. The
number in parentheses for the layer indicates the number of nodes, while the number in parentheses for dropout
represents the probability value.

The model was trained using a composite loss function consisting of categorical cross-entropy
combined with L2 regularization. We applied a weight decay coefficient of 2 x 10~# to all dense layer
weights to prevent overfitting. To ensure optimal model selection, we implemented early stopping
that terminated training if the validation loss showed no improvement for 10 consecutive epochs. The
same 100-epoch training regime was applied to the predictor model. We evaluated model performance
using accuracy and Area Under the Receiver Operating Characteristic Curve (AUC) as our primary
metrics.

All experiments were conducted on a standard desktop equipped with Intel i7-11700 CPU and
32 GB of RAM.

4.4. Experimental Results

Figure 4 shows the loss graphs of ULD, ILD, and predictor training. All three models converged
before 50 epochs. Figure 5 shows the accuracy graph during training, ROC curve, and confusion
matrix. The model achieved 69.7% accuracy for correctness prediction. Precision was 0.739 and recall
was 0.811. The AUC was 0.746.

—— Training Loss —— Training Loss 0.70 —— Training Loss
0.62 —— Validation Loss 0.62 —— Validation Loss —— Validation Loss

0 20 40 60 80 100 0 20 40 60 80 100 ' 0 20 40 60 80 100
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Figure 4. Training loss graphs for (a) ULD, (b) ILD, and (c) predictor models.
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Figure 5. Model performance: (a) Training and validation accuracy, (b) ROC curve, and (c) Confusion Matrix.

5. Discussion
5.1. Confirming Feasibility for Educational Data Application

CDLD is a methodology for discovering the latent traits of two interacting entities based on the
outcomes of their interactions. While the original study applied CDLD to model the relationship
between users and movies, this study investigates its applicability to student-question interactions
in the educational domain. We found that CDLD can be applied to educational data with minimal
modifications. Table 1 presents the performance of existing methods on the same dataset. We did not
reproduce previous studies, and our data preprocessing pipeline differs from theirs. Therefore, direct
comparison is not appropriate. Nevertheless, as shown in Table 1, our model achieved an AUC of
0.746. This result shows a maximum gap of approximately 5.7% from prior methods, indicating that
the predictive performance of our approach is meaningful and competitive.

Table 1. Comparison with Existing Methods on EdNet

Method AUC Number of Students
SAINT+ 0.791 678,128
SAINT 0.781 627,347
PEBG+DKT 0.776 5,000
CDLD (ours) 0.746 7,843

Notably, our experiments required no EdNet-specific or educational domain knowledge, suggest-
ing CDLD’s potential across diverse domains.

5.2. Assessing of Latent Trait Informativeness

To assess the informativeness of the discovered latent traits, we conducted ablation experiments
using only observable features, without latent traits. We used macro F1-score as our primary evaluation
metric, which averages class-wise Fl-scores and offers a balanced assessment under class imbalance.
When using only observable features, the model achieved a macro Fl-score only slightly above the
random-guessing baseline, indicating limited predictive power. Table 2 shows the result. In contrast,
when latent traits were incorporated, the model’s performance improved substantially. This suggests
that the discovered latent traits encode meaningful information that is essential for accurate prediction.
Furthermore, when using only latent traits and excluding the features, the accuracy degradation was
only 0.5%. This finding indicates that the latent traits discovered through entity interactions carry
more predictive information than the observable features themselves.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Table 2. Ablation Study Results

Case Accuracy AUC Macro F1-Score
feature only 0.657 0.646 0.525
feature and latent 0.697 0.746 0.658
latent only 0.693 0.739 0.652

5.3. Educational Applications

The latent traits discovered through CDLD may offer potential benefits for various educational
applications. One such possibility is student grouping, in which clustering algorithms could be applied
to latent trait representations to identify students with similar learning profiles. This information may
assist educators in developing customized learning paths tailored to the characteristics of each group.
For example, students exhibiting lower values in certain latent dimensions might benefit from targeted
reinforcement materials addressing those specific areas.

Another potential application lies in question analysis and curriculum design. The latent traits
associated with questions may offer insights into their inherent difficulty and structural characteristics.
When certain latent trait patterns are consistently associated with low accuracy rates, these patterns
could serve as indicators of question difficulty. Additionally, by applying distance metrics such as
Euclidean or cosine similarity in the latent space, it may be possible to identify questions with similar
attributes, thereby supporting the construction of balanced assessments and targeted practice sets.

A particularly promising direction is the development of recommendation systems that utilize
both student and question latent traits derived from CDLD. Such systems could recommend questions
that align with a student’s current proficiency—those with high predicted success rates may help
maintain engagement, while questions within the learner’s zone of proximal development could
enhance learning effectiveness. This personalized selection mechanism offers a meaningful alternative
to traditional one-size-fits-all educational approaches. Collectively, these potential applications suggest
that CDLD can function not only as a predictive model but also as a general framework for data-driven
decision-making in educational settings.

5.4. Limitations

In this study, we did not use the entire EdNet dataset. Instead, users and questions were filtered
based on interaction frequency to construct a higher-quality subset for experimentation. The primary
objective was to apply the CDLD framework to educational data, validate its capability for latent
trait discovery, and evaluate its effectiveness in predicting student responses. While the results
confirm the feasibility of applying CDLD to educational data, the evaluation was conducted using
only a single dataset. Therefore, it remains difficult to claim general applicability across diverse
educational domains.

A notable challenge of the proposed approach lies in the interpretability of the discovered latent
traits. Although these traits are encoded as 64-dimensional vectors, the dimensions are entangled
and lack explicit correspondence to interpretable educational concepts. This entanglement hinders
the ability to provide educators with intuitive explanations regarding the meaning of each latent
dimension or its relationship to observable student attributes and question features. The abstract
nature of these representations may constrain their practical applicability in educational contexts
where clear and actionable insights are required by stakeholders.

Furthermore, the current CDLD model treats each student-question interaction as independent,
thereby failing to capture the temporal dynamics inherent in learning processes. Although students’
knowledge states evolve over time, the model does not consider sequential patterns or learning
trajectories. This static method may overlook important information regarding the progression of
student ability and the influence of prior interactions on subsequent performance.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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5.5. Future Work

Building on our findings and addressing the identified limitations, several promising directions
for future research emerge. To enhance the interpretability of latent traits, future work should develop
methods for analyzing correlations between specific latent dimensions and observable features such as
student achievement levels or question difficulty ratings. Dimensionality reduction techniques and
feature selection methods could help identify more interpretable latent representations.

Incorporating temporal modeling represents another crucial research direction. Integrating
CDLD with sequence modeling techniques such as recurrent neural networks (RNNs) or transformer
architectures could capture the evolving nature of student knowledge. Such temporal extensions
would enable the model to consider learning trajectories, identify knowledge retention patterns, and
predict long-term learning outcomes more accurately.

Domain generalization and practical deployment warrant further investigation. While the re-
sults on English language learning data are encouraging, validation across diverse educational do-
mains—such as mathematics, science, and the humanities—is necessary. Each domain may present
unique interaction patterns and require domain-specific adaptations of the CDLD framework. In
addition, user studies involving educators and students could offer valuable insights into the effective
use of latent trait information in classroom settings. Such studies should evaluate the practical benefits
of CDLD-based recommendations, the usability of latent trait visualizations, and their overall impact
on learning outcomes.

6. Conclusions

We successfully applied CDLD to the EdNet educational dataset to discover the latent traits
of students and questions and to predict question responses. CDLD achieved an AUC of 0.746,
indicating meaningful predictive performance. An ablation study was conducted to assess the infor-
mativeness of the discovered traits. These results suggest the potential utility of CDLD for various
educational applications.
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