

Review

Not peer-reviewed version

Psychometric Characteristics of Smartphone-Based Gait Analysis in Chronic Health Conditions: A Systematic Review

Tobias Bea, Helmi Chaabene, Constantin W Freitag, Lutz Schega

Posted Date: 27 January 2025

doi: 10.20944/preprints202501.1968.v1

Keywords: validity; reliability; feasibility; inertial measurement units; gait parameters; patients; chronic diseases

Preprints.org is a free multidisciplinary platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Review

Psychometric Characteristics of Smartphone-Based Gait Analysis in Chronic Health Conditions: A Systematic Review

Tobias Bea 1, Helmi Chaabene 1,2,*,+, Constantin W. Freitag 1 and Lutz Schega 1,+

- Department of Health and Physical Activity, Institute III, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- ² Université de Jendouba, Institut Supérieur de Sport et de l'Éducation Physique du Kef, 7100, Le Kef, Tunisie
- * Correspondence: helmi.chaabene@ovgu.de
- [†] These authors contributed equally to this work.

Abstract: Background/Objectives: Chronic health conditions frequently result in gait disturbances, impacting quality of life and mobility. Smartphone-based gait analysis has emerged as a promising alternative to traditional methods, offering accessibility, cost-effectiveness, and portability. This systematic review evaluates the validity, reliability, and sensitivity of smartphone-based inertial measurement units for assessing gait parameters in individuals with chronic conditions. Methods: A comprehensive literature search in Web of Science, PubMed, Google Scholar, and SportDiscus identified 54 eligible studies. Results: Validity was evaluated in 70% of the included studies, with results showing moderate-to-strong associations between smartphone apps and gold-standard systems (e.g., Xsens), particularly for parameters such as gait speed and stride length (e.g., r = 0.42– 0.97). However, variability was evident across studies depending on the health condition, measurement protocols, and device placement. Reliability, examined in only 27% of the included studies, displayed a similar trend, with intraclass correlation coefficients (ICCs) ranging from moderate (ICC = 0.53) to excellent (ICC = 0.95) for spatiotemporal parameters. Sensitivity and specificity metrics were explored in 41% and 35% of the included studies, respectively, with several applications achieving over 90% accuracy in detecting gait abnormalities. Feasibility was rated positively in 94% of the included studies, emphasizing the practical advantages of smartphones in diverse settings. Conclusions: Overall, the findings of this systematic review underscore the clinical potential of smartphones for remote and real-world gait analysis, while highlighting the need for standardized methodologies. Future research should adopt a more comprehensive approach to psychometric evaluation, ensuring that reliability aspects are adequately explored. Additionally, long-term studies are needed to assess the effectiveness of smartphone-based technologies in supporting personalized treatment and proactive management of chronic conditions.

Keywords: validity; reliability; feasibility; inertial measurement units; gait parameters; patients; chronic diseases

1. Introduction

Chronic health conditions significantly contribute to reduced mobility and diminished quality of life worldwide, placing a considerable burden on healthcare systems (1, 2). These conditions, prevalent across all age groups, often manifest in gait disturbances, which not only impair daily functioning but also serve as key indicators of overall health and disease progression (3). Gait disorders are linked to adverse health outcomes, including falls, fractures, loss of independence, and mortality. (4–7). For example, studies have shown that slower gait speed is a predictor of frailty and higher mortality risk, while abnormalities in cadence and step length can indicate underlying

neuromuscular or cardiovascular issues (6, 7). In this context, a systematic review and meta-analysis revealed that individuals with persistent low back pain exhibit a slower walking speed and a shorter stride length compared to healthy controls without back pain (8). Therefore, precise gait analysis is essential not only for understanding the severity and progression of chronic diseases but also for enabling early intervention to prevent falls and related complications.

Traditionally, gait assessment has relied on sophisticated and expensive technologies, including motion capture systems and force plates, typically available only in specialized clinical or research settings (9). Additionally, these systems require trained personnel and extensive infrastructure, limiting their accessibility and feasibility for widespread clinical use. Moreover, these methods are time-consuming and often impractical for monitoring patients in real-life or home-based environments (10, 11). As such, the need for alternative solutions has become increasingly evident, particularly during global health crises such as the COVID-19 pandemic, which underscored the importance of remote monitoring technologies.

Recent advances in mobile technology have highlighted smartphones as promising tools for gait analysis (12–14). With embedded sensors such as accelerometers and gyroscopes, smartphones offer a cost-effective, portable, and accessible solution for capturing motion data (15, 16). These devices enable both real-time and long-term monitoring of gait parameters in natural environments, providing insights that are often more representative of a patient's functional abilities (17). Studies in populations such as individuals with Parkinson's disease, Multiple Sclerosis and/or healthy older adults have demonstrated the utility of smartphone-based gait analysis (18–24).

Earlier systematic reviews have focused on specific populations, such as individuals with Parkinson's disease or Multiple Sclerosis (25, 12). The results showed that smartphone applications have great potential to validly assess gait and balance impairments in individuals with Multiple Sclerosis and Parkinson's disease, but that further studies are needed to comprehensively evaluate their reliability and sensitivity (25, 12). However, to the best of the authors' knowledge, no comprehensive review has yet synthesized the psychometric properties of smartphone-based gait analysis across a broad range of health conditions and age groups. Addressing this gap is essential, as it may offer valuable insights into the potential generalisability of smartphone-based gait analysis across a wide spectrum of health conditions and age groups. Therefore, this systematic review aims to critically evaluate the validity, reliability, and sensitivity of smartphone-based gait analysis in young and older adults with different chronic conditions. By synthesizing the existing evidence, this review seeks to assess the clinical potential of smartphone-based inertial measurement units (IMU) for gait monitoring, identify limitations in current research, and propose directions for future studies.

2. Methods

The present systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (26). Additionally, this study has been registered on the Open Science Framework (OSF) at https://doi.org/10.17605/OSF.IO/QFU8D. Search strategy

A comprehensive literature search was conducted for studies published between 2014 and 2024, utilizing the electronic databases: Web of Science, PubMed, Google Scholar and SportDiscus. Only peer-reviewed studies written in English were included. The timeframe chosen reflects an important consideration: prior to 2014, the integration of smartphones and related technologies into daily life was less widespread, limiting their use in general and specifically in gait analysis. Keywords were collected through expert opinion, literature review, and controlled vocabulary (e.g., Medical Subject Headings [MeSH]). The search was carried out using the Boolean operators "AND" and "OR". In the following our search strategy applied with PubMed: ("Gait" [MeSH] OR "Gait Analysis" OR "Walking" OR "Locomotion") AND ("Mobile Applications" OR "Smartphones" OR "Wearable Devices" OR "Mobile Health") AND ("Pathological Conditions, Anatomical" [MeSH] OR "Neurological Diseases" OR "Musculoskeletal Diseases" OR "Chronic Diseases" OR "Parkinson Disease" OR "Stroke" OR "Multiple Sclerosis" OR "Arthritis" OR "COPD" OR "low back pain").

Additional manual searches of reference lists were performed. Two review authors (TB and CF) conducted the study selection process independently, who screened the titles and abstracts of all identified records. Each author compiled a list of potentially eligible studies based on the inclusion criteria. These lists were then compared and discussed to reach a consensus. In cases of discrepancy, a third author (HC) was consulted to ensure an unbiased and rigorous selection process.

Inclusion and Exclusion Criteria

The inclusion criteria for eligible studies were elaborated based on the PICOS (Population, Intervention, Comparison, Outcome, Study Design) approach. The following criteria were defined: (1) Population: young and old adult participants (age \geq 18 years) with chronic health conditions (e.g., Parkinson's disease, Multiple Sclerosis, musculoskeletal, cardiovascular and metabolic diseases) (2) Intervention: smartphone-based gait analysis using embedded IMUs, (3) Comparison: gold-standard methods for gait analysis (e.g., motion capture systems, force plates) or other validated assessment tools (e.g., trundle wheel or XSens), (4) Outcome: validity, reliability, sensitivity, and feasibility data (5) Study design: observational studies, cross-sectional studies, cohort studies or validation studies.

Studies were excluded if they focused solely on healthy participants, involved individuals under 18 years of age, were not in English, and lacked assessments of reliability, validity, sensitivity, and feasibility. The focus on adults (age \geq 18 years) was chosen to avoid variability arising from maturation changes in younger populations, which are better suited to separate investigations.

Data Extraction and Analysis

From the included studies, detailed data were extracted, including participant demographics such as sample size, age, sex, and underlying chronic conditions. Information about the study design and context, including whether the study was cross-sectional, observational, or a prospective cohort study, was also recorded. Data were systematically gathered on the devices and applications used, such as the smartphone models, application names, intended users, test location and sensor placement (e.g., sternum or pocket). Key gait parameters, including velocity, step length, and cadence, were noted alongside the gold-standard systems used for validation, such as motion analysis platforms or pressure-sensitive mats. The primary outcomes focused on test–retest reliability, typically reported as intraclass correlation coefficients (ICCs) or typical error of measurement (TEM), and validity metrics, often expressed through correlation or agreement with gold standards. Furthermore, sensitivity, specificity, feasibility, main findings, intended users, and limitations of the studies were extracted. The results of the included studies were qualitatively synthesized. Descriptive analyses were performed to compare reliability and validity outcomes across studies, while variations in device placement and methodologies were highlighted as potential sources of heterogeneity.

Methodological Quality Appraisal

The methodological quality of the included studies was assessed using a modified version of the "Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies" originally developed by the National Institute of Health (27). This tool initially comprises 14 criteria, each rated as "Yes" or "No". The quality of the studies was classified using clearly defined thresholds: studies with a "Yes" response for at least 8 criteria were categorized as "good quality," those with 5 to 7 positive assessments were considered "fair quality," and studies with fewer than 5 positive ratings were classified as "low quality" (28).

3. Results

Study Selection

The study selection process and its outcomes are displayed in Figure 1. The search initially identified a total of 946 studies. After removing duplicates, 867 unique studies remained for further evaluation. Screening the titles and abstracts led to the exclusion of 746 studies. Consequently, the full texts of the remaining 121 studies were reviewed. Of these, 45 studies were excluded for not assessing the reliability or validity of gait measurements, 15 studies were excluded due to their focus on healthy participants, and 7 studies were excluded because they involved participants younger than 18 years. Finally, our systematic literature search resulted in 54 studies eligible for inclusion.

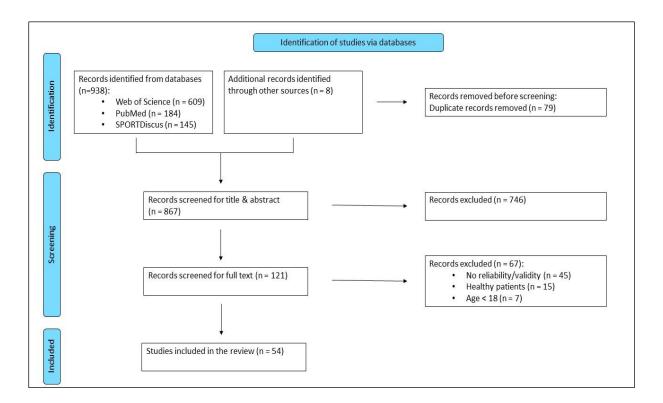


Figure 1. Flowchart for the inclusion and exclusion process for all studies of the systematic review.

Study Analysis

The results from a total of 54 studies investigating smartphone-based applications for gait analysis are displayed in Table 1. The number of participants varied significantly across studies, ranging from 10 (29) to 1414 participants (30). Overall, 70% (38 studies) of the included studies focused on participants with specific health conditions such as Parkinson's disease (31) or Multiple Sclerosis (32). The remaining 30% (16 studies) analysed either neurological conditions (33) or patients with other conditions like rheumatoid arthritis (34). The average age of participants ranged from 21 years (35) to 73 years (36). Around 29 studies (54%) focused on middle-aged adults (40 to 65 years). Of the 54 studies, 15 studies (28%) were cross-sectional, 11 studies (20%) observational, five (9%) prospective, four validation (7%) studies while 6% (3 studies) used longitudinal designs.

Additionally, 52% (28 studies) (37–43, 31, 44–57, 35, 36, 58–61) of the included studies conducted measurements in clinical settings, 37% (20 studies) (37, 62, 38, 63, 29, 64, 40, 65–69, 20, 70, 71, 30, 53, 72–74) collected data in home environments, and 7% (4 studies) (38–40, 53) combined both clinical and home settings. Parkinson's disease was the most commonly studied health condition, with 46% (25 studies) (62, 37, 63, 29, 41, 65, 31, 45, 68, 75, 20, 69, 70, 48, 71, 30, 53, 52, 76, 72, 56, 77, 36, 60, 61), Multiple Sclerosis was investigated in 10 studies (19%) (38, 39, 64, 32, 66, 67, 78, 55, 73, 74), stroke was

the focus of three studies (6%) (44, 46, 54), rheumatoid arthritis was addressed in two studies (4%) (34, 59), as well as pulmonary diseases (4%) (47, 79) and only one study focused on chronic low back pain patients (2%) (80).

The range of smartphone models used in the studies was diverse. 14 studies (26%) employed iPhone models, including older devices like the iPhone 4s (40) and newer models like the iPhone 13 (58). Eight studies (15%) used specialized apps like the mPower app (37, 71), while 16 studies (30%) relied on standard apps such as Google Fit or proprietary applications, as seen in the work from Polese et al. (54). Of the 54 studies, 32 (62%) placed the smartphone at the hip or in the pocket, such as in the works by Adams et al. (37) and Balto et al. (39). Six studies (11%), including e.g., Regev et al. (55), positioned the devices on the chest, while fewer than 5% of included studies (2 studies) examined alternative positions, such as the thigh (43) or the sacrum (41).

Gait speed was measured in 47 studies (87%), including works by Tang et al. (36) and Adams et al. (37). Step length and stride length were a focus in 32 studies (59%), such as Capecci et al. (41) and Mehrang et al. (71). Gait variability and fluctuation width were analysed in 16 studies (30%), including Kim et al. (20) and Pepa et al. (53). Five studies (9%), such as Kim et al. (20), investigated specific parameters like the freezing index. Validation was addressed in 17% of the included studies (9 studies). To validate smartphone measurements, 19 studies (35%) used biomechanical analysis methods such as video analysis (e.g., (41)). Clinical scales like the Expanded Disability Status Scale were used in 20% of the studies (11 studies), like Creagh et al. (66). Wearable sensors such as actigraphs were employed in 24% of the studies (13 studies), as in the work by Brooks et al. (40).

Table 1. Characteristics of the included studies.

Referenc	Participan	ts		Study design	Intended users /	Disease	Mobilephone (App)	Placemen	Gait parameters	Reference
2	n	Sex	Age		Test location			t		(system)
Abujrida	152	m(-)/f(-)	-	Cross-sectional	PD-patients / at	Parkinson	IPhone (mPower)	Pocket	Sway area, gait	-
et al., (62)				study	home				velocity, cadence, step	
									time, step length, step	
									count	
Adams et	82	m(46)/f(63.3 ± 9.4	Observational	Parkinson and HC	Parkinson	Iphone 10 and Iphone 11	Hip	Gait speed, step length,	
ıl., (37)		36)		study	/ in clinic & at		(BrainBaseline™ App)		stride length	
					home					
Alexande	100	m(30)/f(Median:	Pilot-	MS-patients /	Multiple	Iphone 6s (mSteps App)	Arm	Distance walked	Trundle wheel
et al.,		70)	53.5 (IQR:	/Validationstudy	Clinical (Indoor)	Sclerosis				
38)			47.8 - 58.0)		& Home					
					(Outdoor)					
Arora et	10	m(7)/f(3	65.1 ± 9.80	Prospektive	PD-patients / at	Parkinson	LG Optimus S (Specialized	Hip	-	Modified UPDRS
ıl., (29))		cohort study	home		Software)			
Arora et	334	m(210)/	66.1 ± 9.0	Prospektive	PD-patients / at	Parkinson	LG Optimus S (-)	-	-	Modified UPDRS
ıl., (63)		f(124)		cohort study	home					
Balto et	45	m(-)/f(-)	46.7 ± 10.0	Cross-sectional	MS-patients /	Multiple	Iphone 5 / Health (Apple),	Pocket	Acceleration, velocity	Digi-Walker SW
ıl., (39)				study	laboratory	Sclerosis	Health Mate (Withings),			200 pedomete
							and Moves (ProtoGeo Oy)			(Yamax), UP2 and
										UP Mov
										(Jawbone),
										Flex and On
										(Fitbit)

Banky et 35 al., (33)	m(22)/f(51.2 (19-85) 13)	Observational, criterion-standard comparison study	1	Neurological conditions	Samsung Galaxy S5 (-)	-	Joint angular velocity	Optitrack 3-D motion analysis
Bourke et 51	$m(24)/f(39.5 \pm 7.9)$	Cross-sectional	MS-patients / at	Multiple	Samsung Galaxy S7	Waist in	Spatiotemporal	-
al., (64)	27)	study	home	Sclerosis	(FLOODLIGHT)	belt bag or	parameters	
						pocket		
Brinkløv 27	$m(9)/f(1 64.2 \pm 5.9)$	Validation Study	Type 2 diabetes	Type 2 diabetes	Iphone 5c (InterWalk)	Pocket	VO2peak estimation,	Cosmed K4b ²
et al., (81)	8)		patients / field				acceleration vector	
							magnitude	
Brooks et 38	m(11)/f(25 - 76	Validation study	CHF- and pHTN-	CHF and pHTN	Iphone 4s (SA-6MWT App)	Pocket or	Walking distance, step	ActiGraph
al., (40)	27)		patients / clinic			Hip	count	accelerometer
			and home			holster		
Capecci 20	$m(15)/f(67.6 \pm 9.1)$	Controlled Cross-	PD-patients / in	Parkinson	Iphone 5 (Specialized	Hip joint	Cadence, freezing	Videoanalyse
et al., (41)	5)	sectional study	clinic		Software)		index, energy index	
Chan et 20	m(11)/f(20 - 65	Observational	Chronic Low back	LBP	Iphone 4 (-)	Lower	Cadence, step length,	Minimod
al., (80)	9)	study	Pain patients / in			back	velocity, stride time	
			clinic					
Chen et 37	m(-)/f(-) -	Prospektive	PD-patients / at	Parkinson	LG Optimus S (-)	Pocket	Gait variability	MDS-UPDRS
al., (65)		cohort study	home					
Cheng et 76	$m(36)/f(39.5 \pm 7.9)$	Cross-sectional	Clinicans and MS-	Multiple	Samsung Galaxy S7	Waist or	Timed 25 Foot Walk	Stopwatch in
al., (32)	40)	study	patients	Sclerosis		pocket		clinical setting
Chien et 20	$m(2)/f(1 67.95 \pm 7.30$	Observational	Patients with	Orthostatic	iPhone 6s (custom app)	Sacrum	Mean frequency of	-
al., (43)	9)	study	orthostatic tremor	tremor			acceleration, walking	
			/ in clinic				speed	
Clavijo- 30	$m(15)/f(71.7 \pm 5.1$	Observational	PD-patients / in	Parkinson	Samsung Galaxy S8	Front	Cadence, step length,	-
Buendía	15)	study	clinic		(RUNZI ®App)	Thigh	step count, gait velocity	
et al., (31)								

_						_	
Costa et 55	$m(30)/f(62.5 \pm 14.9)$	Observational	Stroke survivors / Stroke	•	Paretic/no	Step count	Actual steps (live
al., (44)	25)	study	laboratory	, ,	n-paretic		and video
				STEPZ, Pacer)	hip pocket		analysis)
Creagh et 73	m(23)/f(Mild 39.3 ±		MS-patients / at Multiple	Samsung Galaxy S7 (-)	Anterior	Step count	-
al., (67)	50) 8.3	/ study	home Sclerosis		waist		
	moderate						
	40.5 ± 6.9						
Creagh et 52 mild	$m(16)/f(39.3 \pm 8.3)$; Longitudinal	MS-patients / at Multiple	Samsung Galaxy S	Pocket or	Only adherence of	Expanded
al., (66) MS; 21	36); 40.4 ± 6.9	study	home Sclerosis	(Floodlight PoC App)	Belt Bag	2MWT over study	Disability Status
moderate	m(7)/f(1					duration	Scale (EDSS)
MS	4)						
Ellis et 12	$m(7)/f(5 65.0 \pm 8.4$	Validity study	PD-patients / in Parkinson	Apple iPod Touch	Torso	Step time, step length	Pressure sensor
al., (45))		clinic	(SmartMOVE)	(Navel)		mat (Steplength)
							Footswitch
							(Steptime)
Ginis et 40	$m(23)/f(68.6 \pm 6.8)$	Pilot RCT	PD-patientes / at Parkinson	Samsung Galaxy S3 Min	Pocket	Gait speed, stride	PKMAS
al., (68)	17)		home	(ABF-gait app and CuPiD)	(training)	length, double support	instrumented
					and	time (single and dual	walkway
					handheld	task)	
					(FOG		
					training)		
Goñi et 610	$m(399)/60.3 \pm 8.94$	Cross-sectional	PD-patients and Parkinson	x/(mPower app)	-	Average acceleration,	-
al., (75)	f(211)	study	HC / remote, self-			number of steps, stride	
			administered			intervall,	
						stride variability	
Hamy et 399	m(-)/f(-) -	Observational	RA-patients / Rheumato	d Iphone (PARADE App)	Pocket	Step length, step time	GAITRite mat
al., (34)		study	remote arthritis				
He et al., 119	$m(72)/f(64.1 \pm 7.9)$	Observational	Parkinsonpatients Parkinson	Iphone 4s and newer	Pocket	-	-
(69)	47)	study	/ at home	(NeuroEnhanceNet)			

Isho et 24 al., (46)	m(12)/f(71.6 ± 9.7 12)	Cross-sectional study	Older adults / in clinic	Chronic Stroke	Sony Xperia Ray SO-03C (-)	L3	Trunk acceleration while gait (anteropsoterior, mediolateral) interstride variability	-
Juen et 28 al., (47)	m(12)/f(50 - 89 16)	Cross-sectional study	Stroke survivors / laboratory	Pulmonary diseases	Samsung Galaxy S5, Ace (MoveSense)	L3	Walking distance, walking speed (6MWT), step count	Actigraph GT3X
Kim et 15 al., (20)	m(7)/f(8 -)	Cross-sectional study	PD-patients / at home	Parkinson	Google Nexus 5 (-)	Waist, pocket, ankle, chest	Freezing index, acceleration signals	Videoanalyse
Lam et 94 al., (78)	$m(26)/f(46.5 \pm 10.6$	Longitudinal study	MS-patients and Healthy / remote	•	x/(MS Sherpa App)	-	Walking distance	EDSS, T25FW
Lipsmeie 43 r et al., (70)	$m(35)/f(57.5 \pm 8.45)$	Prospektive cohort study	PD-patients / at home	Parkinson	Samsung Galaxy S3 Mini (Roche PD Mobile App v1)		•	MDS-UPDRS
Lopez et 10 al., (48)	m(7)/f(3 45 - 65)	Cross-sectional study	PD-patientes / gait lab (MOVISYS)	Parkinson	x/(Listenmee app)	-	Walking speed, stride length, cadence, freezing of gait	Vicon Motion System
Mak et 110 al., (49)	$m(109)/68.9 \pm 5.9$ $f(1)$	Observational study	Cardiovascular patients, remote and clinical	Cardiovascular disease	Iphone 7 (VascTrac App)	Pocket	Step count	Clinical Measure "Ground Truth"
Maldane 70 r et al., (50)	$m(43)/f(55.9 \pm 15.4$ 27)	Observational study	Lumbar degenerative disc patients / in clinic	Lumbar degenerative disc disease	(6WT App)	-	Walking distance	6 min walk normdata and Distance Wheel
Marom 28 et al., (51)	$m(17)/f(42.5 \pm 15.0$ 11)	Cross-sectional study	Rehabilitation patients / in clinic		Xiaomi Redmi Note 8 (OneStep App)	Pockets (front)	Cadence, gait speed, stride length, double support,	

							step length, swing/stance phase	
Mehrang 616	$m(413)/ 60.6 \pm 10.1$	Cross-sectional	PD-patients and	Parkinson	Iphone 4s or newer	Pocket or	Cadence, step length	-
et al., (71)	f(203)	study	HC / at home		(mPower App)	bag		
Omberg 1414	m(481)/ 60	Observational	PD-patients/ at	Parkinson	x/(mPower)	pocket	Average acceleration,	Clinical measures
et al., (30)	f(933)	study - remote	e home				jerk	(ObjectivePD
		cohort study						substudy)
Pepa et 18	$m(13)/f(69.0 \pm 9.7)$	Cross-sectional	PD-patients / in	Parkinson	Samsung Galaxy (-)	Pocket	Step length, step	Videoanalyse
al., (52)	5)	study	clinic				cadence	
Pepa et 44	m(-)/f(-) 68.02 ± 8.3	Cross-sectional	PD-patients / in	Parkinson	Iphone 5, Iphone 6s (-)	Hip	Step length, step	Videoanalyse
al., (53)		study	clinic and a home				cadence, freezing	
							index, power index,	
							energy derivative ratio	
Polese et 37	$m(28)/f(62 \pm 11)$	Observational	Strokepatients / in	Stroke	LG Nexus 5 (Google Fit	Paretic	Step count, walked	Actual step count
al., (54)	9)	study	clinic		App)	lower	distance	by examiner in
						limb		videotape
						pocket		
Raknim 17	$m(7)/f(1 72.0 \pm 6.8$	Longitudinal	Older adults	Parkinson	Android Smartphones	Pocket	Cadence, step length	-
et al., (76)	0)	study	without		Google, HTC, Samsung (-)			
			neurological					
			diseases					
Regev et 100	$m(33)/f(40.8 \pm 12.4)$	Cross-sectional	MSpatients / in	Multiple	$x/(Mon4t Clinic^{TM} app)$	Sternum	3m/10m TUG time,	EDSS, clinical
al., (55)	67)	study	clinic	Sclerosis			tandem walk metrics	rater
Rozanski 25	$m(12)/f(63.9 \pm 8.4)$	Retrospective	Patients in	Neurological or	x/(OneStep)	Left/right	Cadence, velocity, hip	-
et al., (82)	13)	repeated	rehabilitation	musculoskeletal		front or	range, base width, step	
		measures	program / -	conditions		back	and stride lengths,	
						pocket	stance and double	
							support times,	
							asymmetries of stance,	

					step length and double support
Salvi et 30 al., (79)	$m(11)/f(50 \pm 16.6$ 19)	Longitudinal study	PAH-patients / PAH indoor and outdoor	Android or iPhone - (SMWTApp)	Walking distance Observational by (6MWT) physiologists
Schwab 14 et al., (72)	m(-)/f(-) -	Observational study - remote cohort study	PD-patients / Parkinson e remote at home	x/(mPowerApp) Pocket	Tremor, rigidity, - freezing of gait, linear and angular acceleration
Serra- 29 Ano et al., (56)	m(-)/f(-) 68.9 ± 8.98	Cross-sectional study	PD-patients / in Parkinson clinic	Xiaomi Redmi 4x Waist (FallSkip®)	- Videoanalyse
Shema- 72 Shiratzky et al., (57)	$m(35)/f(57.2 \pm 1.9$ 37)	Cross-sectional study	Patients with Muscosceletal muscosceletal pathology (Kne pathology / in Back, Hip, Ankl clinic		Gait speed, cadence, The ProtoKinetics steplength, cycle time, Zeno™ Walkway single- und double-limb support, stancephase
Su et al., 52 (77)	$m(33)/f(63 \pm 10$	Cross-sectional study	PD-patients / in Parkinson clinic	iPhone (-) Front pocket	Stride time, stride time Mobility lab variability system
Sugimot 22 o et al., (35)	$m(8)/f(1 21.5 \pm 2.56$ 4)	Cross-sectional study	Recurrent Ankle Recurrent Ank Sprains patients / Sprains biomechanics lab	le Samsung Galaxy Xcover 2 Thigh Model GTS7710L (AccWalker)	Sagittal-plane thigh 3D motion angular RoM capture (Qualisys)
Tang et 20 al., (36)	m(11)/f(73.6 ± 9.1 9)	Observational study	PD-patients / in Parkinson clinic	Sony Xperia XZ F8331 (-) L2	Stride time, step time, Xsens MTw stance time, swing Awinda time, step length, step velocity, freezing of gait

Tao et al., 35 (58)	m(23)/f(71.133 ± 12) 8.585	cross-sectional study		Cerebral small vessel disease	Iphone 13 (MobileGait app)	Shank, waist	Cadence, stride time, stance phase, swing	
			laboratory				phase,	Unit (N200,
							stance time, stride	Wheeltec, China)
							length, walking speed	
Van 25	$m(15)/f(40.0 \pm 8.0$	Cross-sectional	MS-patients / at	Multiple	Android/iOS (MS Sherpa	Pocket	2 MW distance,	Distance markers
Oirschot	10)	study	home (outdoor)	Sclerosis	App)		walking speed	
et al., (73)								
Wagner 30	m(8)/f(2 61 (50 - 74)	Validation Study	RA-patients /	Rheumatoid	Google Pixel 4, Samsung	Waist	Step count, walking	Manual step
et al., (59)	2)		laboratory	arthritis	Galaxy A02 (BeSafe-App)	pouch at	speed, cadence	count (100 Steps)
						right front		
						hip		
Yahalom 18	$m(10)/f(50.7 \pm 8.8)$	Cross-sectional	PD-patients / in	Parkinson	Iphone 6 (EncephaLog)	Sternum	Step length, cadence,	Videoanalyse
et al., (60)	8)	study	clinic				mediolateral sway	
	$m(11)/f(67.3 \pm 6.8)$		PD-patients / in	Parkinson	IPhone (-)	Waist	Stride length, cadence,	-
et al., (61) normal	10); 67.8 ± 6.9	study	clinic				variability	
pull test,	m(13)/f(
23	10)							
with								
unnormal								
pull test								
Zhai et 67	$m(25)/f(42.9 \pm 10.9)$	Cross-sectional	MS-patients / at	Multiple	Samsung Galaxy S4 mini (-	-		ActiGraph
al., (74)	42)	study	home	Sclerosis)		magnitude, variance of	
							vector magnitude	
							steps/min	

Abbreviations: CHF = Congestive heart failure, CSVD: Cerebral small vessel disease, EDSS: expanded disability status scale, f: female, HC: healthy controls, m: male, MDS – UPDRS: Modified unified Parkinson's disease rating scale, MS: Multiple Sclerosis, PAH: Pulmonary arterial hypertension, PD: Parkinson Diseases, pHTN: Pulmonary hypertension, RA: Rheumatoid arthritis, RoM: Range of Motion, TUG: Timed up and go test, T25FW: Timed 25-foot walk, UPDRS: Unified Parkinson's disease rating scale, 2MWT: 2 minute walk test, 6MWT: 6 minute walk test.

Validation, Reliability and Feasibility Outcomes

Table 2 summarizes the psychometric properties of smartphone-based gait analysis across various pathological conditions. Among the 54 studies included in this review, 70% (38 studies) investigated the validity of smartphone-based gait analysis. These studies primarily evaluated concurrent validity by comparing smartphone-derived metrics with gold standard systems such as video analysis, standalone accelerometers, or force plates. Correlation coefficients (r) ranged from 0.42 to 0.97, highlighting variability in the strength of agreement across different conditions, populations, and measurement protocols. ICC values for agreement varied from 0.53 to 0.96. Additional validity aspects, including criterion (assessed in 28 studies, 52%) and construct validity (assessed in 6 studies, 11%), were investigated in a total of 34 studies (63%). These studies utilized metrics such as sensitivity (ranging from 43% to 98%) and specificity (ranging from 59% to 97%), primarily derived through ROC analyses to evaluate diagnostic accuracy.

Reliability was explored in 27% of studies (15 studies), focusing on test-retest reliability and, less commonly, inter- and intra-rater reliability. ICC values reported for temporal and spatiotemporal gait parameters ranged from 0.53 to 0.95, and the standard error of measurement (SEM) was documented in two studies (4%). Sensitivity and specificity were addressed in 41% (22 studies) and 35% (19 studies) of the included studies, respectively. The reported sensitivity and specificity for distinguishing pathological gait patterns from healthy controls ranged broadly, with values frequently exceeding 90% for detecting conditions such as Parkinson's disease and Freezing of Gait (FoG). However, 11 studies (20%) reported moderate accuracy, emphasizing the need for standardized methodologies and more robust algorithms. Feasibility was positively rated in 94% of the included studies (51 studies). Practical limitations such as sensor placement inconsistencies and environmental interferences (e.g., ambient noise) were noted in 12 studies (22%).

Table 2. Psychometric characteristics of the smartphone-based gait analysis across the different pathological diseases.

Reference	Reliability	Validity	Sensitivity	Specificity	Feasibility and Limitations	Main Results
Abujrida et al., (62)	NP	NP	96.0% for FoG detection	98.0% for FoG detection	Yes, but noise in home environment affects data	Machine learning accurately classified PD gait impairments, achieving high accuracy (up to 98%) and AUC values (up to 0.99)
Adams et al., (37)	Test –retest (ICC > 0.7) Inter/intra- rater reliability NP	NP	NP	NP	Yes	Significant decrease in gait parameters over 12 months
Alexander et al., (38)	-	Yes Content Criterion (concurrent) (95% LOA within ± 5 m)	NP	NP	Yes, but GPS accuracy and signal only outdoor	Outdoor GPS from mSteps showed acceptable agreement with the trundle wheel for the MS cohort. Indoor measurements showed high variability.
Arora et al., (29)	NP	NP	96.2% for PD discrimination	96.9% for PE) Yes	Demonstrated excellent discrimination between PD and HC using gait metrics.
Arora et al., (63)	NP	NP	91.9% for PD vs control	90.1% for PD vs control	Yes	Smartphones distinguished PD and controls with high accuracy; gait and balance were effective markers.
Balto et al., (39)	NP	No significant correlation was found between smartphone applications (Health, Health	NP	NP	Yes	Smartphone applications lacked the required accuracy and precision for step measurement, making them unsuitable for use in clinical research settings. (12)

		Mate, Moves) and walking speed (p > 0.05) (12)				
Banky et al., (33)	Test-retest (ICC Absolute = 0.21 - 0.93; ICC Relative: 0.40 - 0.99) Inter/intra- rater reliability NP	Criterion		NP	Yes, but limited with knee data	Smartphone application showed excellent validity (ICC > 0.8) for velocity, but poor accuracy for the knee.
Bourke et al., (64)	Test-retest (ICC = 0.68 - 0.95 for temporal gait parameters; ICC = 0.53 - 0.96 for spatiotempor al, spatial gait parameters) Inter/intrarater reliability NP		NP	NP	Yes	A single smartphone offers precise and reliable measurements of specific spatial, temporal, and spatiotemporal parameters during a self-administered 2-Minute Walk Test (2MWT). (12)
Brinkløv et al., (81)	Test-retest (ICC = 0.85 - 0.86) Inter/intra-	Yes Content Criterion	98%	77%	affects validity;	High reliability and validity for VO2-peak prediction with placement in pants. Sensitivity higher than specificity for risk stratification.

	rater	(concurrent)				
	reliability NP	(r2 = 0.45 - 0.60)				
Brooks et	Test-retest	Yes	94%	NP	Yes, but limited to iOS devices	High correlation between app-estimated and in-
al., (40)	(r = 0.94)	Content				clinic measured distances (ICC = 0.85 - 0.89).
	Inter/intra-	Criterion				Repeatable at-home results ($CoV = 4.6\%$).
	rater	(concurrent)				
	reliability	(r = 0.89; CI =				
	NP	0.78-0.99)				
Capecci et	Test-retest NP	NP	70.1% (Algorithmus 1)	84.1% (Algorithm 1)	Yes, but only in a clinical setting	Algorithm 2 showed significantly higher
al., (41)	Inter/intra-		87.57% (Algorithmus 2)	94.97% (Algorithm 2)		sensitivity and specificity than Algorithm 1
	rater					
	reliability					
	(ICC > 0.80)					
Chan et	Test-retest	NP	NP	NP	Yes	The results showed smart phones are feasible for
al., (80)	(ICC > 0.4)					gait tele-monitoring, with potential as prognostic
	Inter/intra-					and treatment outcome tools.
	rater					
	reliability NP					
Chen et	Test-retest NP	Yes	97.3% for PD severity	•	Yes, but requires consistent	The framework achieved high accuracy and
al., (65)	Inter/intra-	Content	discrimination	discrimination	training and device management	robustness in PD/HC classification and severity
	rater	Criterion				estimation
	reliability	(concurrent)				
	NP	(r = 0.54. p < 0.001)				
		for PD severity				
		assessment vs				
		MDS-UPDRS)				

Cheng et Tes	est-retest	Yes	NP	NP	Yes	A smartphone-based sensor measure for turn
al., (32) ICC	C = 0.87 (0.8)	Correlation				speed shows consistent reliability and concurrent
- 0.	0.92)	between turn				validity in evaluating gait and balance
Inte	ter/intra-	speed at 5UTT				impairments in people with Multiple Sclerosis
rate	ter	and T25FW				
reli	liability NP	(r=0.5, p < 0.001)				
Chien et Tes	est-retest NP	NP	NP	NP	Yes, but limited sample size	Significant mean frequency of acceleration
al., (43) Into	ter/intra-					differences between OT patients and controls
rate	ter					indicate balance and gait instability in OT.
reli	liability					
(IC	CC = 0.84-					
0.92	92 for mean					
free	equency of					
acc	celeration					
me	easures					
(int	ntra-group))					
Clavijo- Tes	est –retest	Yes	NP	NP	Yes	Moderate to excellent correlation with 10-MWT,
Buendía et (IC	CC = good -	Construct				good to excellent test-retest reliability for
al., (31) exc	cellent)	(convergent)				RUNZI® parameters
Inte	ter/intra-	(r = 0.424 - 0.957)				
rate	ter					
reli	liability NP					

CC - 0	Costa et	Test-retest	Yes	NP	NP	Yes	Pacer (iPhone) showed the highest validity (r =
Actual steps Criterion	al., (44)	(ICC = 0.99 for	Content				0.80, p < 0.01) and reliability (ICC = 0.80).
CC = 0.80 for CC = 0.80 fo		actual steps;	Criterion				-
CC = 0.68 for Health Iphone, p		_	(concurrent)				
Pacer Pace		Pacer iPhone;	(r = 0.18 for				
Android; CC = 0.28 for Inter-process Inter-process CC = 0.28 for Inter-process I		ICC = 0.68 for	Health Iphone, p				
CC = 0.25 for File		Pacer	= 0.21)				
STEPZ		Android;	(r = 0.80 for Pacer)				
File		ICC = 0.28 for	Iphone, p < 0.01)				
CC = 0.20 for		STEPZ	(r = 0.65 for				
STEPZ		iPhone;	STEPZ Iphone, p				
Android; Health Android. Final Fi		ICC = 0.20 for	< 0.01)				
CC = -0.70 for F = 0.70 F =		STEPZ	(r = 0.19 for				
Health		Android;	Health Android,				
Proper P		ICC = -0.70 for	p = 0.19)				
ICC = 0.10 for p < 0.05 Health (r = 0.68 for Pacer Android) Android, p < 0.01 Android, p < 0.01 Inter/intra-rater Feliability NP Feliabi		Health	(r = 0.30 for				
Health (r = 0.68 for Pacer Android) Android, p < 0.01 Inter/intra- rater reliability NP Creagh et Test-retest NP 67.5 % for mild MS 60.3 % for mild MS Yes, but inconsistent device Models utilizing smartphone features All (CC = 0.91 for Step number; 15.7 for mild vs moderat MS 87.2 % for moderat MS 87.8 for mild vs moderat MS 87.8 for		iPhone;	STEPZ Android,				
Android) Android, p < 0.01) Inter/intra- rater reliability NP Creagn of T25FW p < To a control of T25FW p < To a contro		ICC = 0.10 for	p < 0.05)				
Inter/intra- rater reliability NP Creagh et Test-retest NP 67.5 % for mild MS 60.3 % for mild MS Yes, but inconsistent device Models utilizing smartphone features al., (67) (ICC = 0.91 for 80.1 % for moderat MS 87.2 % for moderat MS placement significantly impacts demonstrated superior classification Step number; 75.7 for mild vs moderat MS 87.8 for mild vs moderat measurement accuracy performance, enabling accurate and remote r = 0.47 - 0.52		Health	(r = 0.68 for Pacer)				
rater reliability NP Creagh et Rot-retest NP 67.5 % for mild MS 60.3 % for mild MS Placement significantly impacts demonstrated superior classification Step number; 75.7 for mild vs moderat MS 87.8 for mild vs moderat MS measurement accuracy performance, enabling accurate and remote for T25FW p <		Android)	Android, p < 0.01)				
reliability NP Creagh et Test-retest NP 67.5 % for mild MS 60.3 % for mild MS Yes, but inconsistent device Models utilizing smartphone features al., (67) (ICC = 0.91 for Step number; 75.7 for mild vs moderat MS 87.8 for mild vs moderat MS For mild vs moderat MS Step number; MS For mild vs moderat MS Step number; MS For mild vs moderat MS For		Inter/intra-					
Creagh et Test-retest NP 67.5 % for mild MS 60.3 % for mild MS Yes, but inconsistent device Models utilizing smartphone features al., (67) (ICC = 0.91 for Step number; 75.7 for mild vs moderat MS 87.2 % for moderat MS placement significantly impacts demonstrated superior classification measurement accuracy performance, enabling accurate and remote for T25FW p < MS measurements with a single device. These models effectively distinguish gait-related dysfunction in		rater					
al., (67) (ICC = 0.91 for Step number; 75.7 for mild vs moderat MS 87.2 % for moderat MS placement significantly impacts demonstrated superior classification performance, enabling accurate and remote r = 0.47 - 0.52 MS measurements with a single device. These models for T25FW p <		reliability NP					
Step number; 75.7 for mild vs moderat MS 87.8 for mild vs moderat measurement accuracy performance, enabling accurate and remote r = 0.47 - 0.52 MS measurements with a single device. These models effectively distinguish gait-related dysfunction in	Creagh et	Test-retest	NP	67.5 % for mild MS	60.3 % for mild MS	Yes, but inconsistent device	Models utilizing smartphone features
r = 0.47 - 0.52 MS measurements with a single device. These models for T25FW p < effectively distinguish gait-related dysfunction in	al., (67)	(ICC = 0.91 for		80.1 % for moderat MS	87.2 % for moderat MS	placement significantly impacts	demonstrated superior classification
for T25FW p < effectively distinguish gait-related dysfunction in		Step number;		75.7 for mild vs moderat MS	87.8 for mild vs moderat	measurement accuracy	performance, enabling accurate and remote
		r = 0.47 - 0.52			MS		measurements with a single device. These models
0.01)		for T25FW p <					effectively distinguish gait-related dysfunction in
0.01) individuals with moderate multiple Scierosis		0.01)					individuals with moderate Multiple Sclerosis

	Inter/intra- rater reliability NP					from healthy controls and those with mild MS. (12)
Creagh et al., (66)	NP	Yes Content Criterion (concurrent) (95% LOA within ± 5 m)	NP	NP	Yes, but e.g., hall length influenced performance	Smartphone-based assessment via DCNN accurately estimated MS-related disability. Severity scores strongly correlated with EDSS, but variability noted due to testing conditions.
Ellis et al., (45)	NP	Yes Content Criterion (concurrent) (ANOVA: increased gait variability in PD- patients with medium to large effect sizes)		NP	Yes, but only in clinical setting	Highlight specific opportunities for smartphone-based gait analysis to serve as an alternative to conventional gait analysis methods (e.g., footswitch systems or sensorembedded walkways)
Ginis et al., (68)	Test-retest (n² = 0.29. p < 0.001) Inter/intra- rater reliability NP	NP	NP	NP	Yes,but device placement unspecified	CuPiD showed greater improvements in gait speed (9%) and dual-task speed (13.5%) compared to controls (5.2%, 5.8%).
Goñi et al., (75)	•	NP	3.69%	99.42%	Yes	Gait metrics provided moderate classification performance between PD and HC.

MoveSense-App,

20 of 41

Hamy et	Test-retest	Yes	NP	NP	Yes	Smartphone app demonstrated significant
al., (34)	(ICC = 0.86 -	Content				alignment with GAITRite measures (step length,
	0.91)	Criterion				step time).
	Inter/intra-	(concurrent)				
	rater	(r2 = 0.88, p <				
	reliability NP					
He et al.,	NP	Yes	FNR = 0.053	NP	Yes	NeuroEnhanceNet achieved the highest AUC
(69)		Content			(0.883) and lowest FNR (0.053) for early PD	
		Construct				detection.
		(discrimnativ)				
		(AUC = 0.883)				
	Test -retest	NP	72.7%	84.6%	Yes	Interstride variability of mediolateral acceleration
(46)	(ICC > 0.531 -					is significantly associated with fall history; AUC
	0.900)					= 0.745
	Inter/intra-					
	rater					
	reliability NP					
Juen et al.,	NP	Yes	NP	NP	Yes	Strong alignment with Actigraph GT3X validated
(47)		Content				by ANOVA.
		Criterion				
		(concurrent)				
		(ANOVA: F =				
		1.114e-4 (S5) and				
		9.36e-5 (Ace). p <				
		0.001;				
		no significant				
		differences				
		between				

Actigrap	oh.	GT3X
and	"(Ground
Truth")		

NP

Kim et al., (20)	NP	NP	Waist: 86%. Poo Ankle: 81%	ket: 84%.	Waist: 9		•	noise		Smartphone-based system detected FOG with high accuracy using acceleration and gyroscope data.
Lam et al., (78)	I., Test –retest Yes Moderate to strong (ICC = 0.764; Content correlation 95% CI (0.651 Criterion with EDSS and - 0.845)) (concurrent) T25FW (Q = -0.43 to -0.64) Inter/intra- (Spearmans rank rater correlation reliability coefficiant: p = - NP 0.43 to -0.64) Construct (convergent) (Mann–Whitney U. p < 0.05 for		[0.333. 0.63	32]); at for group-level	assessment but dependent on GPS		endent on GP adherenc	Group-level analyses lacked sensitivity to detect clinical changes due to variability, but individual-level curve fitting improved s2MWT reliability, identifying significant changes in walking function.		
Lipsmeier et al., (70)	Test –retest (ICC = 0.80 for Gait) Inter/intra- rater reliability	EDSS groups) NP	Greater sensitiv UPDRS	ity than	NP		Yes, feasi adherence participants requires pa	of 61	1% in Pl	; Smartphone-based assessments demonstrated excellent reliability and validity, detecting subtle PD motor impairments and correlating well with MDS-UPDRS ratings. Gait-related impairments were detected using passive monitoring.

Lopez et Test –retest al., (48) (Wilcoxon, p 0.0117) Inter/intra- rater reliability		NP	NP	unspecified; limited	Gait metrics improved significantly with auditory cues: walking speed (+40.6%), cadence (+30.2%), and stride length (+50.3%) compared to baseline.
Mak et al., Test –retest (49) (Cronbach's Alpha = 0.74 Inter/intra- rater reliability N	Content) Criterion (concurrent) (Cronbach's	69%	95%	Yes	High correlation between clinical and remote measurement; reliable for detecting frailty
Maldaner Test –retest et al., (50) (ICC = 0.82;	Yes Content n) Construct (convergent) (Pearson	NP	NP	Yes, but only outside for GPS	The smartphone app-based measurement of the 6WT is a convenient, reliable, and valid way to determine objective functional impairment in patients with lumbar degenerative disc disease
Marom et Test-retest al., (51) (ICC = 0.77 - Inter/intra- rater reliability N	Yes 1) Content Criterion (concurrent)	NP	NP	Yes	The app showed good-to-excellent reliability and moderate-to-excellent validity for all parameters, except step length of impaired leg (poor-to-good).

Mehrang NP et al., (71)	Yes Content Criterion (concurrent) (Random forest	70% st	70%	Yes	Identification of PD via step parameters with 70% accuracy (random forest classifier)
	accuracy = 70%)				
Omberg et NP al., (30)	Yes Content Criterion (concurrent) (r = 0.71, p 1.8×10-6 with UPDRS)		NP	Yes	Strong correlation between gait metrics collected remotely and UPDRS; While remote assessment demands careful interpretation of RWD, our findings support smartphones and wearables for objective, personalized disease evaluation
Pepa et al., NP (52)	NP	85.6% for Algorithm 1 and 2	93.4% for Algorithm 1 and 2	Yes, but requires calibration	Demonstrated high reliability and validity in measuring step length and cadence.
Pepa et al., NP (53)	NP	84.9% for FoG detection	95.2% for FoG detection	Yes, but requires calibration	Demonstrated high validity and sensitivity in freezing of gait detection using fuzzy logic algorithms.
Polese et NP al., (54)	Yes Content Criterion (concurrent) (ICC = 0.93; Content) 0.86 - 0.96) (r = 0.89, p < 0.001)		NP	Yes	Google Fit® application showed excellent agreement (ICC = 0.93) and high correlation with actual step counts.

Raknim et al., (76)	NP	NP	94%	NP	Yes, but only on Android	Applying smartphone sensor data to provide early warnings to potential PD patients Classification of changes in gait pattern with 94% accuracy for PD diagnoses
Regev et al., (55)	NP	Yes Content Construct (discriminative) $(\chi^2 \text{ test, p} < 0.05;$ AUC = 85.65%)	Sensitivity 75.86% (MS vs. HC. AUC = 85.65%)	Specificity 76.74% (MS vs. HC. AUC = 85.65%)		Digital markers differentiated MS patients from HC with AUC = 85.65%; correlations with EDSS
Rozanski et al., (82)	NP	Yes Construct (discrimnativ) (g = 0.32 - 0.48)	NP	NP	Yes	Active recordings showed higher stride length, velocity, and lower double support compared to passive recordings.
Salvi et al., (79)	Test-retest (ICC = 0.91; SEM = 36.97 m; CoV: 12.45%) Inter/intra- rater reliability NP	Yes Content	NP	NP	Yes	App measurements strongly correlated with physiologist-observed 6MWD (r = 0.89). ICC for repeatability was 0.91.
Schwab et al., (72)		Yes Content Criterion (concurrent) (AUC = 0.85; CI: 0.81 - 0.89)	43%	95%	Yes	Smartphone diagnostics achieved AUC of 0.85 with strong predictive performance for gait-based PD diagnosis.

Serra-Ano Test –retest	NP	NP	NP	Yes	Reliable differentiation of postural and gait
et al., (56) (ICC = 0.89	-				parameters between PD and HC groups.
0.92 for gait)					
Inter/intra-					
rater					
reliability					
NP					
Shema- Test –retest	Yes	NP	NP	Partial	High correlation for cadence and gait cycle time
Shiratzky (ICC = 0.460	- Content				(r = 0.996-0.997), moderate correlation for stride
et al., (57) 0.997)	Criterion				length and bipedal support
Inter/intra-	(concurrent)				
rater	(95% LOA)				
reliability N	P				
Su et al., NP	Yes	NP	NP	Yes	Demonstrated excellent reliability and validity
(77)	Content				for stride time and stride time variability in PD
	Criterion				patients.
	(concurrent)				
	(r = 0.99, p < 0.00)	1			
	for stride time.				
	r = 0.98 - 0.99, p	<			
	0.001 for strid	e			
	time variability)				
Sugimoto NP	Yes	NP	NP	• •	AccWalker effectively detected differences in
et al., (35)	Content			positioning of the device	thigh RoM between RAS and healthy controls.
	Criterion			on the thigh	
	(concurrent)				
	(Group-by-limb				
	interactions fo	or			
	sagittal-plane				

		11 11			
		ankle kinematio			
		F(1,42) = 63,786	p		
		< 0.01;			
		Group-by-limb			
		interactions fo	or		
		sagittal-plane			
		average thig	h		
		angular range-o	f-		
		motion F(1,42)	=		
		6,166 p < 0.017)			
Tang et al.,	Test-Retest-	Yes	90.6%	94.3%	Yes
(36)	Reliability	Content			
	(ICC 0.768 -	Criterion			
	0.896)	(concurrent)			
	Inter/intra-	(r = 0.858)			
	rater				
	reliability NP				
Tao et al.,	Test-retest:	Yes	NP	NP	Yes
(58)	(ICC: Thigh =	Content			
	0.877-0.999;	Criterion			
	Waist = 0.784-	(concurrent)			
	0.996)	(Regression			
	Inter/intra-	analysis: $p > 0.0$	5		
	rater	for mos	st		
	reliability	parameters			
	NP	(low/normal			
		speed); n	0		
		significant			
		differences			

High consistency between smartphone and XSens; sensitivity and specificity good for FoG detection

Reliable for healthy individuals and CSVD patients; higher reliability for thigh placement than waist.

		between the gait parameters of different gait velocitys)				
Van Oirschot et al., (73)	Test-retest (ICC = 0.649) Inter/intra- rater reliability NP	Yes Content Criterion (concurrent) (ICC = 0.82)	NP	NP	Yes, but GPS accuracy and signal only outdoor	The smartphone-based assessment provided a reliable and valid method for assessing gait speed and distance in persons with MS It enabled remote monitoring and offered a user-friendly solution for capturing real-world functional mobility data
Wagner et al., (59)	NP	Yes Content Criterion (concurrent) (Spearman's rho for Pixel vs. observed steps = 0.141. p = 0.075); (Spearman's rho for Samsung vs. observed steps = 0.033, p = 0.680)		NP	Yes, but bad results with low walking speed	Spearman correlations between Pixel and observed steps were weak (rho = 0.141), while Samsung showed minimal correlation (rho = 0.033). Accurate at moderate speeds; challenges at low walking speeds
Yahalom et al., (60)	NP	Yes Content Criterion (concurrent)	NP	NP	Partial, requires controlled clinical setup, potential impact of psychiatric conditions	Quantitative gait analysis was more sensitive than UPDRS for detecting NIP-related gait impairments.

	(F = 4.4 - 25.4. p <										
	0.05 for differen	ce									
	between PD ar	nd									
	HC										
Yahalom NP	Yes	NP	NP	Yes, but requires smartphone	e Reliable and valid for measuring stride length						
et al., (61)	Content			placement training;	and cadence in PD patients under real-world and						
	Criterion			accuracy depends or	clinical conditions.						
	(concurrent)		environmental factors								
	(r = 0.14 - 0.46, p	<									
	0.05 for gait										
Zhai et al., NP	Yes	57 % for varVM	84 % for varVM	Yes	Smartphone-based accelerometry offers a more						
(74)	Content	75 % for steps/min	59 % for steps/min		accurate assessment of mobility and disability in						
	Criterion				individuals with MS compared to wrist-worn						
	(concurrent)				accelerometers. Additionally, smartphones						
	$(\varrho = 0.29, p = 0.02)$	22			effectively differentiate between individuals with						
	for step/min)				MS, healthy controls, and various stages or						
					conditions of MS.						

Abbreviations: Ace: Samsung Galaxy Ace, ANOVA: Analysis of variance, AUC: Area under the curve, CI: Confidence interval, CoV: Coefficient of Variation, DCNN: Deep convolutional neural networks, EDSS: Expanded disability status scale, FNR: False negative rate, FoG: freezing of gait, GPS: Global positioning system, HC: Healthy control, ICC: Intraclass correlation coefficient, LoA: Limits of agreement, MDS-UPDRS: Modified Unified Parkinson's Disease Rating Scale, MS: Multiple Sclerosis, NP: Not Provided, OT: Orthostatic tremor, PD: Parkinson disease, p: Statistical significance, r: Pearson correlation coefficient, SEM: Standard error of the mean, S2MWT: Smartphone-based 2 minute walking test, S5: Samsung Galaxy S5, T25FW: Timed 25-foot walk, UPDRS: Unified Parkinson's Disease Rating Scale, varVM: Variance of vector magnitude, VO2: Volume of oxygen, 2MWT: 2 minute walk test, 5UTT: 5 U-Turn test.

Methodological Quality of the Included Studies

The methodological quality of the included studies is summarized in Table 3. 87% of the studies (47 studies) met requirements such as clear definitions of the target population and adequate sample sizes. However, notable weaknesses were observed in the blinding of assessors and the use of standardized measurement protocols. Only a small proportion of the studies (approximately 20%) reported fully blinded outcome assessments. Statistical analyses, however, were generally considered appropriate and robust, with a variety of approaches used, including linear models (e.g., regressions or ANOVAs), ICC calculations, and ROC analysis. Consequently, the majority (96%) of the included studies (52 studies) were rated as having a "good overall methodological quality" with two studies only rated as having a "fair overall quality".

Table 3. Methodological quality assessment of the included studies.

Author	Questio	Populatio	Participatio	Selection/	Expos	ır Timefram	Sampl	Levels	Exposur	Repeated	Outcom	Blindin	Follow	Statistic	Overal
	n/	n	n	recruitme	e aı	nd e	e	of	e	exposure	e	g of	-up	al	1
	Objectiv		Rate	nt	outcor	n between	size	exposur	measure	measureme	measur	outcom	rate	analyses	qualit
	e				e	exposure		e		nt	e	e			y
						and						assessor			
						outcome						s			
Abujrida et al., (62)	Yes	Yes	Yes	Yes	No	No	No	No	Yes	Yes	Yes	No	No	Yes	Good
Adams et al., (37)	Yes	Yes	Yes	Yes	No	No	Yes	No	Yes	Yes	Yes	No	No	Yes	Good
Alexander et al., (38)	Yes	Yes	Yes	Yes	No	No	No	No	No	No	Yes	No	No	Yes	Fair
Arora et al., (29)	No	Yes	No	Yes	No	No	Yes	No	Yes	No	Yes	No	No	No	Fair
Arora et al., (63)	No	Yes	Yes	Yes	No	No	No	Yes	Yes	Yes	Yes	No	No	No	Fair
Balto et al., (39)	Yes	Yes	Yes	Yes	No	No	No	No	Yes	Yes	Yes	No	No	Yes	Good
Banky et al., (33)	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes	No	No	Yes	Good
Bourke et al., (64)	Yes	Yes	No	Yes	No	No	No	No	Yes	No	Yes	No	No	Yes	Good
Brinkløv et al., (81)	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes	No	No	Yes	Good
Brooks et al., (40)	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes	No	No	Yes	Good
Capecci et al., (41)	Yes	Yes	No	Yes	No	No	Yes	Yes	Yes	Yes	Yes	No	No	Yes	Good
Chan et al., (80)	Yes	Yes	No	Yes	No	No	Yes	No	Yes	Yes	Yes	No	No	Yes	Good
Chen et al., (65)	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes	No	No	Yes	Good
Cheng et al., (32)	Yes	Yes	No	Yes	No	No	No	No	Yes	No	Yes	No	No	Yes	Good
Chien et al., (43)	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes	No	No	Yes	Good
Clavijo-Buendía et al.,	Yes	Yes	Yes	Yes	No	No	Yes	No	Yes	Yes	Yes	No	No	Yes	Good
(31)															
Costa et al., (44)	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Good
Creagh et al., (67)	Yes	No	No	No	Yes	Yes	No	No	Yes	Yes	Yes	No	No	Yes	Good
Creagh et al., (66)	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Good
Ellis et al., (45)	Yes	Yes	No	Yes	No	No	Yes	Yes	Yes	No	Yes	No	No	Yes	Good

Ginis et al., (68)	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	No	Yes	No	Yes	Yes	Good
Goñi et al., (75)	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	No	Yes	No	No	Yes	Good
Hamy et al., (34)	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes	No	No	Yes	Good
He et al., (69)	Yes	Yes	Yes	Yes	No	No	Yes	Good							
Isho et al., (46)	Yes	Yes	No	No	No	No	Yes	No	Yes	Yes	No	No	No	Yes	Fair
Juen et al., (47)	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes	No	No	Yes	Good
Kim et al., (20)	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes	No	No	Yes	Good
Lam et al., (78)	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Good
Lipsmeier et al., (70)	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes	No	No	Yes	Good
Lopez et al., (48)	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	No	Yes	Yes	No	Yes	Good
Mak et al., (49)	Yes	Yes	Yes	Yes	No	No	Yes	No	Yes	Yes	Yes	No	No	Yes	Good
Maldaner et al., (50)	Yes	Yes	Yes	Yes	No	No	Yes	No	Yes	No	No	No	No	Yes	Good
Marom et al., (51)	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	No	Yes	No	No	Yes	Good
Mehrang et al., (71)	Yes	Yes	Yes	Yes	No	No	Yes	No	Yes	No	Yes	No	No	No	Good
Omberg et al., (30)	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes	No	No	Yes	Good
Pepa et al., (52)	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes	No	No	Yes	Good
Pepa et al., (53)	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes	No	No	Yes	Good
Polese et al., (54)	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Good
Raknim et al., (76)	Yes	Yes	No	Yes	No	Yes	Yes	Good							
Regev et al., (55)	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	No	Yes	No	No	Yes	Good
Rozanski et al., (82)	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes	No	No	Yes	Good
Salvi et al., (79)	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	No	No	Yes	Good
Schwab et al., (72)	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	No	Yes	No	No	Yes	Good
Serra-Ano et al., (56)	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes	No	No	Yes	Good
Shema-Shiratzky et al.	, Yes	Yes	Yes	Yes	No	No	Yes	No	Yes	Yes	Yes	No	No	Yes	Good
(57)															
Su et al., (77)	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes	No	No	Yes	Good
Sugimoto et al., (35)	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes	No	No	Yes	Good
Tang et al., (36)	Yes	Yes	Yes	Yes	No	No	Yes	No	Yes	Yes	Yes	No	No	Yes	Good

Tao et al., (58)	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes	No	No	Yes	Good
Van Oirschot et al., (73)	Yes	Yes	Yes	Yes	No	No	Yes	No	Yes	Yes	Yes	No	No	Yes	Good
Wagner et al., (59)	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes	No	No	Yes	Good
Yahalom et al., (60)	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes	No	No	Yes	Good
Yahalom et al., (61)	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes	No	No	Yes	Good
Zhai et al., (74)	Yes	Yes	Yes	Yes	No	No	No	No	Yes	No	Yes	No	No	Yes	Good

4. Discussion

The objective of this study was to critically appraise the psychometric properties of smartphone-based gait analyses across various chronic diseases. Overall, the findings indicate that smartphone applications represent a valid, cost-effective, and accessible alternative to traditional gait analysis methods, such as motion capture systems or force plates, for assessing gait parameters across different chronic diseases, both in clinical and home environments. Additionally, the reliability of smartphone-based gait analysis can generally be rated as good, emphasizing the potential of smartphone applications to deliver consistent results. However, it is important to note that reliability has been studied less extensively than validity. Sensitivity and specificity were investigated in 37% of the included studies, with the majority demonstrating high accuracy in distinguishing pathological from healthy gait patterns. Feasibility was confirmed in 94% of the studies, underscoring the widespread acceptance and practicality of these technologies across diverse settings.

The use of smartphone applications has gained remarkable attention over the last couple of years. This is because these devices offer a unique combination of portability, cost-efficiency, and accessibility, making them suitable for both clinical assessments and home-based monitoring. Their widespread adoption has been driven by advancements in sensor technology, allowing precise and comprehensive data collection directly from everyday devices. Furthermore, the integration of machine learning algorithms has enhanced their ability to process and analyze gait-related data with high accuracy, further cementing their utility in modern healthcare practices. Among the included studies, 70% evaluated validity by comparing results with clinical or biomechanical reference systems. Brooks et al. (40) examined the concurrent validity and demonstrated a high correlation between app-based and clinical walking distance measurements (r = 0.89) in patients with congestive heart failure and pulmonary hypertension aged between 25 and 76 years. Likewise, Polese et al. (54) reported excellent agreement between Google Fit and actual step counts measured with video analyses (ICC = 0.93) in stroke survivors patients aged 62 years. Furthermore, Tang et al. (36) reported strong correlations between a smartphone and the XSens system in Freezing of Gait (FoG) detection (r = 0.86 to 0.97) in Parkinson patients aged 73 years, reflecting a good concurrent validity. Moreover, Chen et al. (65) reported using a self-designed framework for mobile phones a sensitivity of 97.3% and a specificity of 97.1% in classifying Parkinson's severity based on gait variability. Such results underscore the excellent discriminative validity and the potential of smartphone-based apps to replace traditional gait analysis systems, particularly in resource-limited settings where access to expensive technologies like force plates or motion capture systems is restricted. Despite these positive findings, some studies highlighted some limitations. For instance, Balto et al. (39) conducted a study including patients with Multiple Sclerosis (46 ± 10 years) and found that certain apps, such as Health, Health Mate and Moves, did not exhibit significant correlations with walking speed. This highlights the importance of carefully selecting appropriate algorithms, applications, and devices. It is indeed evident that not all smartphones and apps are equally suitable (39), which can significantly influence validity and reliability outcomes. These findings highlight the versatility of specific smartphone applications in capturing gait-related parameters.

Reliability was investigated in only 27% of the included studies, with consistently positive results. This indicates that, despite its relevance, reliability was relatively neglected. Bourke et al. (64) reported ICC values ranging from 0.53 to 0.96 for spatiotemporal parameters measured with the FLOODLIGHT software on the smartphone. Creagh et al. (67) demonstrated for patients with Multiple Sclerosis aged 40 years excellent reliability of step counts with an ICC of 0.91. Similar results were reported by Serra-Ano et al. (56), who found ICC values ranging from 0.89 to 0.92 for gait analyses using the FallSkip® app in patients with Parkinson disease aged 69 years. In the same sense, Tang et al. (36) reported high reliability in FoG detection (ICC = 0.768–0.896) for persons aged 73 ± 9 years. Overall, there is evidence that smartphone-based gait analyses provide consistent results, even though data in some areas, such as inter-rater reliability (2 of 54 studies [4%]), remain limited and methodological standardization is still lacking. However, the question remains as to why so few

studies have investigated reliability. This could suggest that many apps and devices are designed primarily for single measurements and have not been adequately validated for long-term use or in varying contexts. Future research should focus more on inter- and intra-rater reliability, particularly for applications intended for clinical practice or remote monitoring.

The ability of smartphones to differentiate pathological from healthy populations was examined in 37% of the included studies (20 studies). For example, Arora et al. (29) revealed sensitivity and specificity values of over 90% in distinguishing Parkinsons patients from controls. Similar findings have been reported by Tang et al. (36). Likewise, Mehrang et al. (71) and Pepa et al. (53) demonstrated moderate-to-high accuracy of smartphone algorithms in identifying Parkinson's disease based on gait parameters, with sensitivity reaching up to 84.9% and specificity up to 95.2%. Additionally, Creagh et al. (67) demonstrated that smartphone-based models could classify gait abnormalities in patients with mild to moderate Multiple Sclerosis with high precision (88%). Such findings are particularly promising for the early detection of gait disorders in the general population. However, results varied depending on the target population and algorithms used, as illustrated by Polese et al. (54), who reported excellent agreement between the actual step count counted with video analysis and the step count from the mobile phone in stroke survivors (ICC = 0.93), in contrast to Balto et al. (39), where certain applications failed to correlate with walking speed in Multiple Sclerosis patients. This emphasizes the importance of tailoring algorithms to specific diseases and populations.

The feasibility of smartphone-based gait analyses was addressed in almost all studies (51 of 54 (94%)), with the majority highlighting their ease of use at home and in clinical settings. Of note, device placement varied considerably across the included studies, from pockets to the hip or chest. While Kim et al. (20) found that the position of the smartphone did not significantly affect FoG detection, Creagh et al. (67) and Brinkløv et al. (81) stressed that inconsistent placements could lead to significant measurement errors. Additionally, Brinkløv et al. (81) showed that placing smartphones in jackets caused higher measurement errors. This highlights the need for standardized methods. Additionally, Abujrida et al. (62) reported that noise disturbances in home environments could affect data quality. Nonetheless, there is evidence indicating high participant acceptance and satisfaction with smartphone use in home settings (70). Such positive feedback is crucial for promoting acceptance of these technologies, especially in remote monitoring. However, only 19% of the included studies examined the feasibility and acceptance of the technologies. This is a critical aspect, as patients with motor impairments such as tremor or rigidity might face challenges in using such tools. Future studies should prioritize addressing the specific needs of the target population to ensure that these technologies are both accessible and practical for all user groups. Additionally, the role of smartphones in long-term monitoring and personalized treatment remains a promising but underexplored topic.

5. Limitations and Future Research Perspectives

Certain limitations of smartphone-based gait analysis are evident and warrant further investigation. While validity was the primary psychometric feature investigated—reported in 70% of the included studies—reliability received comparatively little attention, with only 27% of studies addressing it. Among these, inter-rater reliability was particularly underrepresented, investigated in just 4% of the studies. This imbalance suggests a need for future research to adopt a more comprehensive approach to psychometric evaluation, ensuring that reliability aspects are adequately explored. In addition, a key challenge lies in the lack of standardization across studies, particularly regarding device placement, algorithm design, and measurement protocols. Inconsistent methodologies can significantly influence the validity and reliability of findings, limiting their generalizability. Additionally, user experience and satisfaction with smartphone technologies remain underexplored, especially in populations with significant mobility challenges, such as those with advanced motor impairments. Future research should address these gaps by prioritizing the development of standardized methodologies and refining algorithms tailored to specific diseases and populations. Furthermore, feasibility studies should focus on the needs of diverse user groups to

ensure accessibility and practicality in both clinical and home environments. Long-term investigations into the effectiveness of smartphone-based technologies are also needed to evaluate their potential for personalized treatment and proactive management of chronic conditions. These advancements could promote the widespread adoption of smartphone-based gait analysis tools and enhance their impact on healthcare delivery.

6. Conclusions

This review underscores the growing role of smartphone applications in assessing gait parameters across various chronic conditions. Overall, the summarised evidence supports their capability to deliver valid, reliable, and sensitive measurements of gait impairments, as well as their utility in distinguishing pathological gait patterns from those of healthy individuals. These findings emphasize the potential of smartphone-based gait analysis to contribute meaningfully to clinical practice and remote monitoring. Smartphone applications have the potential to transform gait analysis by providing accessible, cost-effective, and scalable solutions for monitoring patients in their natural environments.

Author Contributions: Conceptualization, T.B. and H.C.; methodology, T.B., H.C. and C.F.; validation, T.B. and C.F.; investigation, T.B.; writing—original draft preparation, T.B.; writing—review and editing, H.C. and L.S.; All authors have read and agreed to the published version of the manuscript.

Funding: This research received no funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: None.

Conflicts of Interest: The authors declare no conflicts of interest.

References

- 1. Dionne, C. E.; Dunn, K. M.; Croft, P. R. Does back pain prevalence really decrease with increasing age? A systematic review. *Age Ageing* **2006**, *35* (3), 229–234. DOI: 10.1093/ageing/afj055.
- 2. Rapoport, J.; Jacobs, P.; Bell, N. R.; Klarenbach, S. Refining the measurement of the economic burden of chronic diseases in Canada, 2004.
- 3. Duncan, R. P.; van Dillen, L. R.; Garbutt, J. M.; Earhart, G. M.; Perlmutter, J. S. Low Back Pain--Related Disability in Parkinson Disease: Impact on Functional Mobility, Physical Activity, and Quality of Life. *Phys Ther* **2019**, *99* (10), 1346–1353. DOI: 10.1093/ptj/pzz094.
- 4. Carey, B. J.; Potter, J. F. Cardiovascular causes of falls. *Age Ageing* **2001**, *30 Suppl* **4**, 19–24. DOI: 10.1093/ageing/30.suppl_4.19.
- 5. McIntosh, S. J.; Lawson, J.; Kenny, R. A. Clinical characteristics of vasodepressor, cardioinhibitory, and mixed carotid sinus syndrome in the elderly. *The American journal of medicine* **1993**, 95 (2), 203–208. DOI: 10.1016/0002-9343(93)90261-m.
- 6. Montero-Odasso, M.; Schapira, M.; Duque, G.; Soriano, E. R.; Kaplan, R.; Camera, L. A. Gait disorders are associated with non-cardiovascular falls in elderly people: a preliminary study. *BMC Geriatr* **2005**, *5*, 15. DOI: 10.1186/1471-2318-5-15.
- 7. Verghese, J.; Holtzer, R.; Lipton, R. B.; Wang, C. Quantitative gait markers and incident fall risk in older adults. *The journals of gerontology. Series A, Biological sciences and medical sciences* **2009**, *64* (8), 896–901. DOI: 10.1093/gerona/glp033.
- 8. Smith, J. A.; Stabbert, H.; Bagwell, J. J.; Teng, H.-L.; Wade, V.; Lee, S.-P. *Do people with low back pain walk differently? A systematic review and meta-analysis*; Cold Spring Harbor Laboratory, **2021**. DOI: 10.1101/2021.05.08.21256890.

- 9. Salchow-Hömmen, C.; Skrobot, M.; Jochner, M. C. E.; Schauer, T.; Kühn, A. A.; Wenger, N. Review-Emerging Portable Technologies for Gait Analysis in Neurological Disorders. *Frontiers in human neuroscience* **2022**, *16*, 768575. DOI: 10.3389/fnhum.2022.768575.
- 10. Simon, S. R. Quantification of human motion: gait analysis-benefits and limitations to its application to clinical problems. *Journal of biomechanics* **2004**, *37* (12), 1869–1880. DOI: 10.1016/j.jbiomech.2004.02.047.
- 11. Rodrigues, T. B.; Salgado, D. P.; Catháin, C. Ó.; O'Connor, N.; Murray, N. Human gait assessment using a 3D marker-less multimodal motion capture system. *Multimed Tools Appl* **2020**, *79* (3-4), 2629–2651. DOI: 10.1007/s11042-019-08275-9.
- 12. Abou, L.; Wong, E.; Peters, J.; Dossou, M. S.; Sosnoff, J. J.; Rice, L. A. Smartphone applications to assess gait and postural control in people with multiple sclerosis: A systematic review. *Multiple sclerosis and related disorders* **2021**, *51*, 102943. DOI: 10.1016/j.msard.2021.102943.
- 13. Rashid, U.; Barbado, D.; Olsen, S.; Alder, G.; Elvira, J. L. L.; Lord, S.; Niazi, I. K.; Taylor, D. Validity and Reliability of a Smartphone App for Gait and Balance Assessment. *Sensors* **2021**, 22 (1), 124. DOI: 10.3390/s22010124.
- Parmenter, B.; Burley, C.; Stewart, C.; Whife, J.; Champion, K.; Osman, B.; Newton, N.; Green, O.; Wescott, A. B.; Gardner, L. A.; Visontay, R.; Birrell, L.; Bryant, Z.; Chapman, C.; Lubans, D. R.; Sunderland, M.; Slade, T.; Thornton, L. Measurement Properties of Smartphone Approaches to Assess Physical Activity in Healthy Young People: Systematic Review. *JMIR mHealth and uHealth* 2022, 10 (10), e39085. DOI: 10.2196/39085.
- 15. Chan, H.; Zheng, H.; Wang, H.; Gawley, R.; Yang, M.; Sterritt, R. Feasibility Study on iPhone Accelerometer for Gait Detection. In *Proceedings of the 5th International ICST Conference on Pervasive Computing Technologies for Healthcare*; IEEE, **2011**. DOI: 10.4108/icst.pervasivehealth.2011.245995.
- 16. McGuire, M. L. An Overview of Gait Analysis and Step Detection in Mobile Computing Devices. In 2012 Fourth International Conference on Intelligent Networking and Collaborative Systems; IEEE, 2012. DOI: 10.1109/incos.2012.110.
- 17. Del Din, S.; Godfrey, A.; Mazzà, C.; Lord, S.; Rochester, L. Free-living monitoring of Parkinson's disease: Lessons from the field. *Movement disorders : official journal of the Movement Disorder Society* **2016**, *31* (9), 1293–1313. DOI: 10.1002/mds.26718.
- 18. Ferrari, A.; Ginis, P.; Hardegger, M.; Casamassima, F.; Rocchi, L.; Chiari, L. A Mobile Kalman-Filter Based Solution for the Real-Time Estimation of Spatio-Temporal Gait Parameters. *IEEE transactions on neural systems and rehabilitation engineering: a publication of the IEEE Engineering in Medicine and Biology Society* **2016**, 24 (7), 764–773. DOI: 10.1109/tnsre.2015.2457511.
- 19. Ginis, P.; Nieuwboer, A.; Dorfman, M.; Ferrari, A.; Gazit, E.; Canning, C. G.; Rocchi, L.; Chiari, L.; Hausdorff, J. M.; Mirelman, A. Feasibility and effects of home-based smartphone-delivered automated feedback training for gait in people with Parkinson's disease: A pilot randomized controlled trial. *Parkinsonism & Related Disorders* **2016**, *22*, 28–34. DOI: 10.1016/j.parkreldis.2015.11.004.
- 20. Hanbyul Kim; Hong Ji Lee; Woongwoo Lee; Sungjun Kwon; Sang Kyong Kim; Hyo Seon Jeon; Hyeyoung Park; Chae Won Shin; Won Jin Yi; Jeon, B. S.; Park, K. S. Unconstrained detection of freezing of Gait in Parkinson's disease patients using smartphone. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); IEEE, 2015. DOI: 10.1109/embc.2015.7319209.
- 21. Ivkovic, V.; Fisher, S.; Paloski, W. H. Smartphone-based tactile cueing improves motor performance in Parkinson's disease. *Parkinsonism & Related Disorders* **2016**, 22, 42–47. DOI: 10.1016/j.parkreldis.2015.11.006.
- 22. Lipsmeier, F.; Taylor, K. I.; Kilchenmann, T.; Wolf, D.; Scotland, A.; Schjodt-Eriksen, J.; Cheng, W.-Y.; Fernandez-Garcia, I.; Siebourg-Polster, J.; Jin, L.; Soto, J.; Verselis, L.; Boess, F.; Koller, M.; Grundman, M.; Monsch, A. U.; Postuma, R. B.; Ghosh, A.; Kremer, T.; Czech, C.; Gossens, C.; Lindemann, M. [Duplikat] Evaluation of smartphone-based testing to generate exploratory outcome measures in a phase 1 Parkinson's disease clinical trial. Movement disorders: official journal of the Movement Disorder Society 2018, 33 (8), 1287–1297. DOI: 10.1002/mds.27376.
- 23. Jesus, M. O. de; Ostolin, Thatiane Lopes Valentim Di Paschoale; Proença, N. L.; Da Silva, R. P.; Dourado, V. Z. Self-Administered Six-Minute Walk Test Using a Free Smartphone App in Asymptomatic Adults: Reliability and Reproducibility. *International journal of environmental research and public health* 2022, 19 (3). DOI: 10.3390/ijerph19031118.

- 24. Pepa, L.; Verdini, F.; Spalazzi, L. Gait parameter and event estimation using smartphones. *Gait & posture* **2017**, *57*, 217–223. DOI: 10.1016/j.gaitpost.2017.06.011.
- 25. Abou, L.; Peters, J.; Wong, E.; Akers, R.; Dossou, M. S.; Sosnoff, J. J.; Rice, L. A. Gait and Balance Assessments using Smartphone Applications in Parkinson's Disease: A Systematic Review. *J Med Syst* **2021**, 45 (9), 87. DOI: 10.1007/s10916-021-01760-5.
- 26. Moher, D., Liberati, A., Tetzlaff, J., and Altman, D. G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. *Annals of Internal Medicine* **2009** (151), 264–269. DOI: 10.7326/0003-4819-151-4-200908180-00135.
- 27. NHLBI, N. I. *Study Quality Assessment Tools*. https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools (accessed 2024-12-27).
- Abou, L.; Alluri, A.; Fliflet, A.; Du, Y.; Rice, L. A. Effectiveness of Physical Therapy Interventions in Reducing Fear of Falling Among Individuals With Neurologic Diseases: A Systematic Review and Metaanalysis. Archives of Physical Medicine and Rehabilitation 2021, 102 (1), 132–154. DOI: 10.1016/j.apmr.2020.06.025.
- 29. Arora, S.; Venkataraman, V.; Zhan, A.; Donohue, S.; Biglan, K. M.; Dorsey, E. R.; Little, M. A. Detecting and monitoring the symptoms of Parkinson's disease using smartphones: A pilot study. *Parkinsonism & Related Disorders* **2015**, *21* (6), 650–653. DOI: 10.1016/j.parkreldis.2015.02.026.
- 30. Omberg, L.; Chaibub Neto, E.; Perumal, T. M.; Pratap, A.; Tediarjo, A.; Adams, J.; Bloem, B. R.; Bot, B. M.; Elson, M.; Goldman, S. M.; Kellen, M. R.; Kieburtz, K.; Klein, A.; Little, M. A.; Schneider, R.; Suver, C.; Tarolli, C.; Tanner, C. M.; Trister, A. D.; Wilbanks, J.; Dorsey, E. R.; Mangravite, L. M. Remote smartphone monitoring of Parkinson's disease and individual response to therapy. *NATURE BIOTECHNOLOGY* 2022, 40 (4), 480–487. DOI: 10.1038/s41587-021-00974-9.
- 31. Clavijo-Buendía, S.; Molina-Rueda, F.; Martín-Casas, P.; Ortega-Bastidas, P.; Monge-Pereira, E.; Laguarta-Val, S.; Morales-Cabezas, M.; Cano-de-la-Cuerda, R. Construct validity and test -retest reliability of a free mobile application for spatio-temporal gait analysis in Parkinson's disease patients. *Gait & posture* **2020**, 79, 86–91. DOI: 10.1016/j.gaitpost.2020.04.004.
- 32. Cheng, W.-Y.; Bourke, A. K.; Lipsmeier, F.; Bernasconi, C.; Belachew, S.; Gossens, C.; Graves, J. S.; Montalban, X.; Lindemann, M. U-turn speed is a valid and reliable smartphone-based measure of multiple sclerosis-related gait and balance impairment. *Gait & posture* **2021**, *84*, 120–126. DOI: 10.1016/j.gaitpost.2020.11.025.
- 33. Banky, M.; Clark, R. A.; Mentiplay, B. F.; Olver, J. H.; Kahn, M. B.; Williams, G. Toward Accurate Clinical Spasticity Assessment: Validation of Movement Speed and Joint Angle Assessments Using Smartphones and Camera Tracking. *Archives of Physical Medicine and Rehabilitation* **2019**, *100* (8), 1482–1491. DOI: 10.1016/j.apmr.2018.11.026.
- 34. Hamy, V.; Garcia-Gancedo, L.; Pollard, A.; Myatt, A.; Liu, J.; Howland, A.; Beineke, P.; Quattrocchi, E.; Williams, R.; Crouthamel, M. Developing Smartphone-Based Objective Assessments of Physical Function in Rheumatoid Arthritis Patients: The PARADE Study. *Digital biomarkers* **2020**, *4* (1), 26–43. DOI: 10.1159/000506860.
- 35. Sugimoto, Y. A.; Rhea, C. K.; Ross, S. E. Modified proximal thigh kinematics captured with a novel smartphone app in individuals with a history of recurrent ankle sprains and altered dorsiflexion with walking. CLINICAL BIOMECHANICS 2023, 105, N.PAG-N.PAG. DOI: 10.1016/j.clinbiomech.2023.105955.
- 36. Tang, S. T.; Tai, C. H.; Yang, C. Y.; Lin, J. H. Feasibility of Smartphone-Based Gait Assessment for Parkinson's Disease. *JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING* **2020**, 40 (4), 582–591. DOI: 10.1007/s40846-020-00551-6.
- 37. Adams, J. L.; Kangarloo, T.; Gong, Y. S.; Khachadourian, V.; Tracey, B.; Volfson, D.; Latzman, R. D.; Cosman, J.; Edgerton, J.; Anderson, D.; Best, A.; Kostrzebski, M. A.; Auinger, P.; Wilmot, P.; Pohlson, Y.; Jensen-Roberts, S.; Müller, M.; Stephenson, D.; Dorsey, E. R.; Tarolli, C.; Waddell, E.; Soto, J.; Hogarth, P.; Wahedi, M.; Wakeman, K.; Espay, A. J.; Gunzler, S. A.; Kilbane, C.; Spindler, M.; Barrett, M. J.; Mari, Z.; Dumitrescu, L.; Wyant, K. J.; Chou, K. L.; Poon, C.; Simuni, T.; Williams, K.; Tanner, N. L.; Yilmaz, E.; Feuerstein, J.; Shprecher, D.; Feigin, A.; Botting, E.; Parkinson Study Grp Watch Pd. Using a smartwatch

- and smartphone to assess early Parkinson's disease in the WATCH-PD study over 12 months. *NPJ PARKINSONS DISEASE* **2024**, *10* (1). DOI: 10.1038/s41531-024-00721-2.
- 38. Alexander, S.; Braisher, M.; Tur, C.; Chataway, J. The mSteps pilot study: Analysis of the distance walked using a novel smartphone application in multiple sclerosis. *MULTIPLE SCLEROSIS JOURNAL* **2022**, *28* (14), 2285–2293. DOI: 10.1177/13524585221124043.
- 39. Balto, J. M.; Kinnett-Hopkins, D. L.; Motl, R. W. Accuracy and precision of smartphone applications and commercially available motion sensors in multiple sclerosis. *Mult Scler J Exp Transl Clin* **2016**, 2, 2055217316634754. DOI: 10.1177/2055217316634754.
- 40. Brooks, G. C.; Vittinghoff, E.; Iyer, S.; Tandon, D.; Kuhar, P.; Madsen, K. A.; Marcus, G. M.; Pletcher, M. J.; Olgin, J. E. Accuracy and Usability of a Self-Administered 6-Minute Walk Test Smartphone Application. *CIRCULATION-HEART FAILURE* **2015**, *8* (5), 905–913. DOI: 10.1161/CIRCHEARTFAILURE.115.002062.
- 41. Capecci, M.; Pepa, L.; Verdini, F.; Ceravolo, M. G. A smartphone-based architecture to detect and quantify freezing of gait in Parkinson's disease. *Gait & posture* **2016**, *50*, 28–33. DOI: 10.1016/j.gaitpost.2016.08.018.
- 42. Herman Chan; Zheng, H.; Wang, H.; Newell, D. Assessment of gait patterns of chronic low back pain patients: A smart mobile phone based approach. In 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); IEEE, 2015, pp 1016–1023. DOI: 10.1109/bibm.2015.7359823.
- 43. Chien, J. H.; Torres-Russotto, D.; Wang, Z.; Gui, C. F.; Whitney, D.; Siu, K. C. The use of smartphone in measuring stance and gait patterns in patients with orthostatic tremor. *PloS one* **2019**, *14* (7). DOI: 10.1371/journal.pone.0220012.
- 44. Costa, P. H. V.; Jesus, T. P. D. de; Winstein, C.; Torriani-Pasin, C.; Polese, J. C. An investigation into the validity and reliability of mHealth devices for counting steps in chronic stroke survivors. *Clin Rehabil* **2020**, 34 (3), 394–403. DOI: 10.1177/0269215519895796.
- 45. Ellis, R. J.; Ng, Y. S.; Zhu, S.; Tan, D. M.; Anderson, B.; Schlaug, G.; Wang, Y. A Validated Smartphone-Based Assessment of Gait and Gait Variability in Parkinson's Disease. *PloS one* **2015**, *10* (10), e0141694. DOI: 10.1371/journal.pone.0141694.
- 46. Isho, T.; Tashiro, H.; Usuda, S. Accelerometry-Based Gait Characteristics Evaluated Using a Smartphone and Their Association with Fall Risk in People with Chronic Stroke. *JOURNAL OF STROKE & CEREBROVASCULAR DISEASES* 2015, 24 (6), 1305–1311. DOI: 10.1016/j.jstrokecerebrovasdis.2015.02.004.
- 47. Juen, J.; Cheng, Q.; Schatz, B. [Duplikat] A Natural Walking Monitor for Pulmonary Patients Using Mobile Phones. *IEEE journal of biomedical and health informatics* **2015**, 19 (4), 1399–1405. DOI: 10.1109/[BHI.2015.2427511.
- 48. Lopez, W. O. C.; Higuera, C. A. E.; Fonoff, E. T.; Oliveira Souza, C. de; Albicker, U.; Martinez, J. A. E. Listenmee® and Listenmee® smartphone application: Synchronizing walking to rhythmic auditory cues to improve gait in Parkinson's disease. *Human Movement Science* **2014**, *37*, 147–156. DOI: 10.1016/j.humov.2014.08.001.
- 49. Mak, J.; Rens, N.; Savage, D.; Nielsen-Bowles, H.; Triggs, D.; Talgo, J.; Gandhi, N.; Gutierrez, S.; Aalami, O. Reliability and repeatability of a smartphone-based 6-min walk test as a patient-centred outcome measure. EUROPEAN HEART JOURNAL - DIGITAL HEALTH 2021, 2 (1), 77–87. DOI: 10.1093/ehjdh/ztab018.
- 50. Maldaner, N.; Sosnova, M.; am Zeitlberger; Ziga, M.; Gautschi, O. P.; Regli, L.; Weyerbrock, A.; Stienen, M. N.; Int 6WT Study Grp. Evaluation of the 6-minute walking test as a smartphone app-based self-measurement of objective functional impairment in patients with lumbar degenerative disc disease. JOURNAL OF NEUROSURGERY-SPINE 2020, 33 (6), 779–788. DOI: 10.3171/2020.5.SPINE20547.
- 51. Marom, P.; Brik, M.; Agay, N.; Dankner, R.; Katzir, Z.; Keshet, N.; Doron, D. The Reliability and Validity of the OneStep Smartphone Application for Gait Analysis among Patients Undergoing Rehabilitation for Unilateral Lower Limb Disability. *Sensors* **2024**, *24* (11). DOI: 10.3390/s24113594.
- 52. Pepa, L.; Verdini, F.; Capecci, M.; Maracci, F.; Ceravolo, M. G.; Leo, T. Predicting Freezing of Gait in Parkinson's Disease with a Smartphone: Comparison Between Two Algorithms. *Ambient Assisted Living* **2015**, *11*, 61–69. DOI: 10.1007/978-3-319-18374-9_6.
- 53. Pepa, L.; Capecci, M.; Andrenelli, E.; Ciabattoni, L.; Spalazzi, L.; Ceravolo, M. G. A fuzzy logic system for the home assessment of freezing of gait in subjects with Parkinsons disease. *EXPERT SYSTEMS WITH APPLICATIONS* **2020**, *147*. *DOI:* 10.1016/j.eswa.2020.113197.

- 54. Polese, J. C.; E Faria, G. S.; Ribeiro-Samora, G. A.; Lima, L. P.; Coelho de Morais Faria, Christina Danielli; Scianni, A. A.; Teixeira-Salmela, L. F. Google fit smartphone application or Gt3X Actigraph: Which is better for detecting the stepping activity of individuals with stroke? A validity study. *J Bodyw Mov Ther* **2019**, 23 (3), 461–465. DOI: 10.1016/j.jbmt.2019.01.011.
- 55. Regev, K.; Eren, N.; Yekutieli, Z.; Karlinski, K.; Massri, A.; Vigiser, I.; Kolb, H.; Piura, Y.; Karni, A. Smartphone-based gait assessment for multiple sclerosis. *Multiple sclerosis and related disorders* **2024**, *82*, 105394. DOI: 10.1016/j.msard.2023.105394.
- 56. Serra-Añó, P.; Pedrero-Sánchez, J. F.; Inglés, M.; Aguilar-Rodríguez, M.; Vargas-Villanueva, I.; López-Pascual, J. Assessment of Functional Activities in Individuals with Parkinson's Disease Using a Simple and Reliable Smartphone-Based Procedure. *International journal of environmental research and public health* 2020, 17 (11), 4123. DOI: 10.3390/ijerph17114123.
- 57. Shema-Shiratzky, S.; Beer, Y.; Mor, A.; Elbaz, A. Smartphone-based inertial sensors technology Validation of a new application to measure spatiotemporal gait metrics. *Gait & posture* **2022**, 93, 102–106. DOI: 10.1016/j.gaitpost.2022.01.024.
- 58. Tao, S.; Zhang, H.; Kong, L. W.; Sun, Y.; Zhao, J. Validation of gait analysis using smartphones: Reliability and validity. *DIGITAL HEALTH* **2024**, *10*. *DOI*: 10.1177/20552076241257054.
- 59. Wagner, S. R.; Gregersen, R. R.; Henriksen, L.; Hauge, E.-M.; Keller, K. K. Wag. *Sensors* **2022**, 22 (23), 9396. DOI: 10.3390/s22239396.
- Yahalom, H.; Israeli-Korn, S.; Linder, M.; Yekutieli, Z.; Karlinsky, K. T.; Rubel, Y.; Livneh, V.; Fay-Karmon, T.; Hassin-Baer, S.; Yahalom, G. Psychiatric Patients on Neuroleptics: Evaluation of Parkinsonism and Quantified Assessment of Gait. CLINICAL NEUROPHARMACOLOGY 2020, 43 (1), 1–6. DOI: 10.1097/WNF.000000000000371.
- 61. Yahalom, G.; Yekutieli, Z.; Israeli-Korn, S.; Elincx-Benizri, S.; Livneh, V.; Fay-Karmon, T.; Tchelet, K.; Rubel, Y.; Hassin-Baer, S. Smartphone-Based Timed Up and Go Test Can Identify Postural Instability in Parkinson's Disease. *ISRAEL MEDICAL ASSOCIATION JOURNAL* **2020**, 22 (1), 37–42.
- 62. Abujrida, H.; Agu, E.; Pahlavan, K. Machine learning-based motor assessment of Parkinson's disease using postural sway, gait and lifestyle features on crowdsourced smartphone data. *BIOMEDICAL PHYSICS & ENGINEERING EXPRESS* **2020**, *6* (3). DOI: 10.1088/2057-1976/ab39a8.
- 63. Arora, S.; Baig, F.; Lo, C.; Barber, T. R.; Lawton, M. A.; Zhan, A. D.; Rolinski, M.; Ruffmann, C.; Klein, J. C.; Rumbold, J.; Louvel, A.; Zaiwalla, Z.; Lennox, G.; Quinnell, T.; Dennis, G.; Wade-Martins, R.; Ben-Shlomo, Y.; Little, M. A.; Hu, M. T. Smartphone motor testing to distinguish idiopathic REM sleep behavior disorder, controls, and PD. NEUROLOGY 2018, 91 (16), 1528–1538. DOI: 10.1212/WNL.00000000000006366.
- 64. Bourke, A. K.; Scotland, A.; Lipsmeier, F.; Gossens, C.; Lindemann, M. Gait Characteristics Harvested during a Smartphone-Based Self-Administered 2-Minute Walk Test in People with Multiple Sclerosis: Test-Retest Reliability and Minimum Detectable Change. *Sensors* **2020**, *20* (20). DOI: 10.3390/s20205906.
- 65. Chen, O. Y.; Lipsmeier, F.; Phan, H.; Prince, J.; Taylor, K. I.; Gossens, C.; Lindemann, M.; Vos, M. de. Building a Machine-Learning Framework to Remotely Assess Parkinson's Disease Using Smartphones. *IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING* **2020**, *67* (12), 3491–3500. DOI: 10.1109/TBME.2020.2988942.
- Creagh, A. P.; Dondelinger, F.; Lipsmeier, F.; Lindemann, M.; Vos, M. de. Longitudinal Trend Monitoring of Multiple Sclerosis Ambulation Using Smartphones. *IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY* 2022, 3, 202–210. DOI: 10.1109/OJEMB.2022.3221306.
- Creagh, A. P.; Simillion, C.; Bourke, A. K.; Scotland, A.; Lipsmeier, F.; Bernasconi, C.; van Beek, J.; Baker, M.; Gossens, C.; Lindemann, M.; Vos, M. de. Smartphone- and Smartwatch-Based Remote Characterisation of Ambulation in Multiple Sclerosis During the Two-Minute Walk Test. *IEEE journal of biomedical and health informatics* 2021, 25 (3), 838–849. DOI: 10.1109/[BHI.2020.2998187.
- 68. Ginis, P.; Nieuwboer, A.; Dorfman, M.; Ferrari, A.; Gazit, E.; Canning, C. G.; Rocchi, L.; Chiari, L.; Hausdorff, J. M.; Mirelman, A. Feasibility and effects of home-based smartphone-delivered automated feedback training for gait in people with Parkinson's disease: A pilot randomized controlled trial. *Parkinsonism & Related Disorders* **2016**, 22, 28–34. DOI: 10.1016/j.parkreldis.2015.11.004.

- 69. He, T.; Chen, J.; Xu, X.; Fortino, G.; Wang, W. Early Detection of Parkinson's Disease Using Deep NeuroEnhanceNet With Smartphone Walking Recordings. *IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society* **2024**, 32, 3603–3614. DOI: 10.1109/TNSRE.2024.3462392.
- 70. Lipsmeier, F.; Taylor, K. I.; Kilchenmann, T.; Wolf, D.; Scotland, A.; Schjodt-Eriksen, J.; Cheng, W.-Y.; Fernandez-Garcia, I.; Siebourg-Polster, J.; Jin, L.; Soto, J.; Verselis, L.; Boess, F.; Koller, M.; Grundman, M.; Monsch, A. U.; Postuma, R. B.; Ghosh, A.; Kremer, T.; Czech, C.; Gossens, C.; Lindemann, M. Evaluation of smartphone-based testing to generate exploratory outcome measures in a phase 1 Parkinson's disease clinical trial. *Movement disorders: official journal of the Movement Disorder Society* **2018**, 33 (8), 1287–1297. DOI: 10.1002/mds.27376.
- 71. Mehrang, S.; Jauhiainen, M.; Pietil, J.; Puustinen, J.; Ruokolainen, J.; Nieminen, H. Identification of Parkinson's Disease Utilizing a Single Self-recorded 20-step Walking Test Acquired by Smartphone's Inertial Measurement Unit. *Annu Int Conf IEEE Eng Med Biol Soc* **2018**, 2018, 2913–2916. DOI: 10.1109/EMBC.2018.8512921.
- 72. Schwab, P.; Karlen, W. PhoneMD: Learning to Diagnose Parkinson's Disease from Smartphone Data. *AAAI* **2019**, 33 (01), 1118–1125. DOI: 10.1609/aaai.v33i01.33011118.
- 73. Pim van Oirschot; Marco Heerings; Karine Wendrich; Bram den Teuling; Frank Dorssers; René van Ee; Marijn Bart Martens; Peter Joseph Jongen. *A two-minute walking test with a smartphone app for persons with multiple sclerosis: Validation study,* **2021**.
- 74. Zhai, Y. Y.; Nasseri, N.; Pöttgen, J.; Gezhelbash, E.; Heesen, C.; Stellmann, J. P. Smartphone Accelerometry: A Smart and Reliable Measurement of Real-Life Physical Activity in Multiple Sclerosis and Healthy Individuals. FRONTIERS IN NEUROLOGY 2020, 11. DOI: 10.3389/fneur.2020.00688.
- 75. Goñi, M.; Eickhoff, S. B.; Far, M. S.; Patil, K. R.; Dukart, J. Smartphone-Based Digital Biomarkers for Parkinson's Disease in a Remotely-Administered Setting. *IEEE Access* **2022**, *10*, 28361–28384. DOI: 10.1109/ACCESS.2022.3156659.
- 76. Raknim, P.; Lan, K. C. Gait Monitoring for Early Neurological Disorder Detection Using Sensors in a Smartphone: Validation and a Case Study of Parkinsonism. *Telemedicine journal and e-health: the official journal of the American Telemedicine Association* **2016**, 22 (1), 75–81. DOI: 10.1089/tmj.2015.0005.
- 77. Su, D. N.; Liu, Z.; Jiang, X.; Zhang, F. Z.; Yu, W. T.; Ma, H. Z.; Wang, C. X.; Wang, Z.; Wang, X. M.; Hu, W. L.; Manor, B.; Feng, T.; Zhou, J. H. Simple Smartphone-Based Assessment of Gait Characteristics in Parkinson Disease: Validation Study. *JMIR mHealth and uHealth* **2021**, *9* (2). DOI: 10.2196/25451.
- 78. Lam, K.-H.; Bucur, I. G.; van Oirschot, P.; Graaf, F. de; Strijbis, E.; Uitdehaag, B.; Heskes, T.; Killestein, J.; Groot, V. de. Personalized monitoring of ambulatory function with a smartphone 2-minute walk test in multiple sclerosis. *MULTIPLE SCLEROSIS JOURNAL* 2023, 29 (4-5), 606–614. DOI: 10.1177/13524585231152433.
- 79. Salvi, D.; Poffley, E.; Tarassenko, L.; Orchard, E. App-Based Versus Standard Six-Minute Walk Test in Pulmonary Hypertension: Mixed Methods Study. *JMIR mHealth and uHealth* **2021**, *9* (6). DOI: 10.2196/22748.
- 80. Chan, H.; Zheng, H.; Wang, H.; Sterritt, R.; Newell, D. Smart mobile phone based gait assessment of patients with low back pain. In 2013 Ninth International Conference on Natural Computation (ICNC); IEEE, 2013, pp 1062–1066. DOI: 10.1109/icnc.2013.6818134.

- 81. Brinkløv, C. F.; Thorsen, I. K.; Karstoft, K.; Brøns, C.; Valentiner, L.; Langberg, H.; Vaag, A. A.; Nielsen, J. S.; Pedersen, B. K.; Ried-Larsen, M. Criterion validity and reliability of a smartphone delivered submaximal fitness test for people with type 2 diabetes. *BMC sports science, medicine & rehabilitation* **2016**, *8*, 1–9. DOI: 10.1186/s13102-016-0056-7.
- 82. Rozanski, G.; Putrino, D. Recording context matters: Differences in gait parameters collected by the OneStep smartphone application. *CLINICAL BIOMECHANICS* **2022**, 99. *DOI:* 10.1016/j.clinbiomech.2022.105755.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.