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Abstract 

Length of stay (LoS) is a critical metric in healthcare management, influenced by various factors, 

including the matching between patients and physicians. This encompasses elements such as the 

quality of the patient–physician relationship, personality compatibility, and the alignment between 

the patient’s disease domain and the physician’s clinical expertise—all of which significantly affect 

LoS. Appropriately matching patients with physicians can improve the hospitalization experience 

and reduce LoS; however, most predictive models rely primarily on patient-specific information. To 

address this gap, we employed a deep learning (DL) model—Cyclic Dual Latent Discovery (CDLD)—

to predict LoS by incorporating patient–physician matching. The model was evaluated using the 

Medical Information Mart for Intensive Care (MIMIC-IV) version 3.1. CDLD discovers latent trait 

representations for each patient and physician from their interaction data, which are then used to 

predict LoS. The model predicts both overall LoS and duration-specific subgroups, including short 

(<5 days) and long (>5 days) stays. Performance evaluation using root mean square error (RMSE) 

with 10-fold cross-validation yielded RMSEs of 0.0212 for the full dataset, 0.1767 for the short-stay 

group, and 0.1561 for the long-stay group. As this is the first study to incorporate patient–physician 

matching into LoS prediction, no direct baselines exist. To validate the significance of the discovered 

latent traits, we conducted indirect comparisons using common machine learning models—simple 

deep neural network, XGBoost, CatBoost, and LightGBM—with and without the inclusion of these 

latent traits. Across all models, incorporating latent traits consistently improved performance, with 

an average RMSE reduction of 4.6280%. Despite limited prior research on incorporating patient–

physician matching into LoS prediction, our findings underscore its significant impact and highlight 

its potential for optimizing patient assignments and promoting personalized healthcare. 

Keywords: length of stay; patient-physician matching; deep learning; health personnel; cyclic dual 

latent discovery 

 

1. Introduction 

Length of stay (LoS) is defined as the duration of a patient’s hospitalization, from admission to 

discharge. It serves as a key metric reflecting the consumption of medical resources and the 

performance of hospital systems, including factors such as diagnostic accuracy and the effectiveness 

of therapeutic strategies. Accurate LoS prediction is crucial for optimizing hospital resource 

allocation and reducing healthcare costs. By anticipating LoS, hospital administrators can allocate 

resources more efficiently, improve patient flow, enhance patient safety, and boost overall 

operational effectiveness. Accordingly, developing reliable LoS prediction models is critical for 

improving patient care and hospital performance [1-3]. LoS is known to be influenced by numerous 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 June 2025 doi:10.20944/preprints202506.1714.v1

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1714.v1
http://creativecommons.org/licenses/by/4.0/


 2 of 17 

 

factors, including patient demographics, physician characteristics, treatment complexity, the doctor–

patient relationship, and discharge planning [4]. 

One significant factor influencing LoS is patient–physician matching. When patient–physician 

matching is optimal, patients tend to experience better treatment outcomes, foster trust, higher 

satisfaction, and improved adherence to medical recommendations [5-7]. For physicians, a good 

match with the patient facilitates more effective communication, enables a better understanding of 

patient needs, and supports more efficient care delivery—ultimately enhancing care coordination 

and improving patient outcomes [8,9]. Patient-physician matching encompasses various elements 

such as physician interventions and skills, professional ethics, training background, physician and 

patient personality, disease domain, and the quality of the doctor–patient relationship. All of these 

aspects can significantly impact patient care [10, 11]. Several studies have demonstrated the clinical 

importance of such matching: racial concordance between patients and physicians has been 

associated with lower mortality rates [12], while gender concordance has also shown measurable 

effects on patient survival [13]. Furthermore, alignment in cultural understanding and 

communication styles has been linked to improved treatment adherence and better survival 

outcomes [14]. These findings underscore that effective patient–physician matching can have life-

saving implications. Accordingly, fostering well-aligned patient–physician relationships advances 

healthcare delivery and policy, and can translate into improved outcomes such as reduced LoS [15–

17]. To effectively reflect patient–physician matching in LoS prediction, it is essential to incorporate 

not only patient information but also physician characteristics. However, previous LoS prediction 

models have largely overlooked the role of the physician [3, 4, 18]. This gap in prior work highlights 

the novelty of our approach, which explicitly incorporates the physician’s influence on LoS. By 

comparing predicted LoS under different matching configurations, our current approach has the 

potential to reveal physician latent factors that contribute to effective patient–physician alignment 

and better healthcare outcomes. 

To address this gap, we applied the Cyclic Dual Latent Discovery (CDLD) model [19], leveraging 

patient–physician matching as a predictive factor for LoS. CDLD jointly learns latent representations 

for both entities. These latent traits are then incorporated into separate LoS prediction models. We 

applied CDLD to the large dataset, Medical Information Mart for Intensive Care (MIMIC-IV) version 

3.1 after preprocessing [20]. Because, to our knowledge, this is the first study to incorporate patient–

physician matching into LoS prediction, there is no established baseline for direct comparison. 

Therefore, we performed indirect comparisons using alternative machine learning models to evaluate 

the effectiveness of our discovered latent traits by our approach. 

In summary, we introduce a novel deep learning (DL) approach for LoS prediction that 

incorporates patient–physician matching. The following sections detail our data preprocessing and 

entity construction steps, describe the CDLD model architecture and training procedure, present the 

prediction results (including indirect validation experiments), and discuss the implications and 

limitations of our findings. 

2. Related Work 

A wide range of approaches have been explored for LoS prediction, spanning from traditional 

statistical models to modern machine learning and DL techniques [3, 4]. Early studies often relied on 

linear regression or survival analysis to estimate LoS and patient flow [2, 4]. More recently, data-

driven models have become dominant: many studies apply machine learning algorithms (e.g., 

random forests, gradient boosting machines) or neural networks to predict LoS, as noted in 

contemporary reviews [3, 4]. These models generally leverage patient-centric features such as age, 

sex, diagnoses, comorbidity indices, vital signs, and laboratory results, and are sometimes 

supplemented with hospital administrative details (e.g., admission source or service unit). 

Recent studies have also begun incorporating multi-modal electronic health record (EHR) data 

to improve LoS prediction accuracy. For example, Chen et al. developed a DL model that combined 

structured EHR variables with unstructured clinical notes, outperforming models that used only a 
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single data source [21]. Although recent models incorporate multi-modal patient data, no prior LoS 

prediction model explicitly accounts for the relational dynamics based on patients and physicians 

matching or physician-specific factors. This omission is particularly significant given the well-

established impact of the patient–physician matching and individual physician characteristics on 

clinical outcomes. 

In this study, we apply the CDLD framework to LoS prediction with hyperparameter 

modifications; the core architecture and training strategy remain the same as in the original CDLD. 

The CDLD model can discover latent trait representations for both patients and physicians based on 

their interactions, enabling it to capture the otherwise intangible impact of patient–physician 

matching on LoS. 

3. Method 

3.1. Data Preprocessing 

We loaded the MIMIC-IV dataset into a structured query environment [22] and calculated LoS 

by subtracting the “admittime” column from the “dischtime” column from the “admissions.csv”. We 

then applied a series of filters to remove incomplete or irrelevant records. Specifically, we excluded 

any admissions with missing key values, negative LoS (which corresponded to organ donor cases), 

any recorded death time, or an admission type classified as “OBSERVATION” (e.g., “EU 

OBSERVATION”, “OBSERVATION ADMIT”, “AMBULATORY OBSERVATION”, and “DIRECT 

OBSERVATION”). We retained only admissions with types indicating standard hospital stays 

(“DIRECT EMER”, “ELECTIVE”, “EW EMER”, “SURGICAL SAME DAY ADMISSION”, and 

“URGENT”). Moreover, we treated extremely short stays (LoS ≤ 10 minutes) as outliers and removed 

them. After applying these criteria, the dataset was reduced from 546,028 admissions to 300,358 

(retaining about 55.0% of the original records). The resulting dataset contains only valid, clinically 

relevant hospitalizations, providing a robust basis for our analysis (Fig. 1). 

 

Figure 1. The process of obtaining the dataset used in the experiment for LoS prediction. 

In the filtered dataset, LoS ranged from 13 minutes up to 463,074 minutes (approximately 321 

days). It encompassed 149,891 patients and 1,817 physicians across 300,358 hospital admissions. The 

distribution of LoS was highly skewed toward shorter stays (Fig. 2A), which can bias model training 

by overemphasizing the most common outcomes. To mitigate this, we partitioned the data into short-

stay and long-stay groups for separate analysis. Since there is no universal cut-off for defining a 

“short” hospital stay [23], we selected thresholds informed by prior studies and the characteristics of 
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our data. We defined short LoS as stays lasting more than 2 hours and up to 5 days, aligning with 

literature on short-stay units [24]; this subset comprised 189,974 admissions (covering 138,044 

patients and 1,706 physicians) as shown in Fig. 2B. We defined long LoS as > 5 days and ≤ 28 days 

(Fig. 2C), choosing 28 days such that each day in this range had at least 500 records. The long-stay 

subset contained 104,552 admissions (covering 83,367 patients and 1,506 physicians). For consistency, 

all LoS values were recorded in minutes in our analysis. 

 

Figure 2. Distribution of LoS in days (A) Full dataset. (B) Short-LoS between 2 hours and 5 days. (C) Long-LoS 

between 5 days and 28 days. 
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3.2. Entity Representation 

The CDLD model is designed to discover latent traits for two types of entities using two coupled 

latent-trait discoverer networks, and then utilize these discovered traits in the predictor network for 

the final prediction. In this study, we define the two entities as the patient entity and the physician 

entity. Each entity representation consists of a set of observed features and a set of latent traits. The 

features are directly obtained from the MIMIC-IV dataset and preprocessed, whereas the latent traits 

are initially unknown and randomly initialized, to be discovered by the model during training. 

3.2.1. Patient Entity 

To construct the feature set for the patient entity, we merged several tables from MIMIC-IV 

(“admissions.csv”, “patients.csv”, “microbiologyevents.csv”, and “omr.csv”) on the patient identifier 

(“subject_id”). This integration provided a comprehensive view of each patient’s data. We then 

performed feature engineering and cleaning as follows:  

In “admissions.csv”, we first consolidated rare categories by grouping similar values for 

categorical attributes (“language” and “race”). We then applied one-hot encoding to categorical 

variables (“insurance”, “language”, “marital status”, and “race”), converting each category into a 

binary indicator. Missing entries in these categorical fields were set to “UNKNOWN”. The “gender” 

was label-encoded (0 = female, 1 = male). We normalized continuous variables “anchor_age” using 

min–max scaling to range [0,1] for comparability [25-27]. In “microbiologyevents.csv”, “isolate_num” 

was set to 0 if it had no value. (assuming no isolate grew). 

In the "omr.csv", the "eGFR" variable had over 95% missing values and was therefore removed 

to avoid introducing bias. For the remaining numeric variables, we computed z-scores and excluded 

entries beyond ±3 standard deviations to minimize the influence of extreme outliers. Special handling 

was applied to body measurements: if any one of "BMI", "height", or "weight" was missing, it was 

estimated using the other two via Formula 1 to ensure consistency among these interrelated variables.  

𝐵𝑀𝐼 (
𝑘𝑔

𝑚2
) =  

𝑤𝑒𝑖𝑔ℎ𝑡 (𝑙𝑏𝑠)𝑥703

ℎ𝑒𝑖𝑔ℎ𝑡(𝑖𝑛𝑐ℎ𝑒𝑠)2
 (1) 

After these steps, any remaining missing values were imputed using a random forest model that 

leveraged correlations among available features to infer plausible values [28]. Additionally, blood 

pressure data were collected in multiple patient positions (lying, sitting, standing, and orthostatic 

measurements after 1 and 3 minutes). We averaged the systolic and diastolic readings in each position 

to create aggregated high blood pressure and low blood pressure features, capturing overall blood 

pressure trends for each patient. Table 1 provides a summary of all features incorporated into the 

patient entity, along with their sources and any preprocessing steps. 

Table 1. Patient entity features (merged from MIMIC-IV tables by subject_id) with categories and preprocessing 

details. 

Dataset Columns Count Values 

admissions.csv 

insurance 6 
1. Medicaid, 2. Medicare, 3. Private, 

4. Other, 5. No charge, 6. UNKNOWN 

language 29→8 

1. ‘English’: ‘English’ 

2. ‘Spanish-Portuguese’: ‘Spanish’, 

‘Portuguese’ 

3. ‘East Asia’: ‘Chinese’, ‘Japanese’, ‘Korean’ 

4. ‘Southeast Asia’: ‘Vietnamese’, ‘Khmer’, 

‘Thai’  
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5. ‘Europe’: ‘Russian’, ‘French’, ‘Modern 

Greek (1453-)’, ‘Polish’, ‘Italian’, ‘Armenian’ 

6. ‘Middle East Asia’: ‘Arabic’, ‘Persian’, 

‘Hindi’, ‘Bengali’ 

7. ‘Africa’: ‘Amharic’, ‘Somali’, ‘Haitian’,  

8. ‘Other’: Others 

marital_status 5 
1. WIDOWED, 2. MARRIED, 3. SINGLE,  

4. DIVORCED, 5. UNKNOWN 

race 33→7 

1. ‘White’: ‘WHITE’, ‘WHITE - RUSSIAN’, 

‘WHITE - OTHER EUROPEAN’, ‘WHITE - 

BRAZILIAN’, ‘WHITE – EASTERN 

EUROPEAN’ 

2. ‘Black/African’: ‘BLACK/AFRICAN 

AMERICAN’, ‘BLACK/CAPE VERDEAN’, 

‘BLACK/AFRICAN’, ‘BLACK/CARIBBEAN 

ISLAND’ 

3. ‘Asian’: ‘ASIAN’, ‘ASIAN - CHINESE’, 

‘ASIAN - SOUTHEAST ASIAN’, ‘ASIAN - 

KOREAN’, ‘ASIAN - ASIAN INDIAN’ 

4. ‘Hispanic/Latino’: ‘HISPANIC/LATINO - 

SALVADORAN’, ‘HISPANIC/LATINO - 

PUERTO RICAN’, ‘HISPANIC/LATINO - 

GUATEMALAN’, ‘HISPANIC/LATINO - 

DOMINICAN’, ‘HISPANIC/LATINO - 

MEXICAN’, ‘HISPANIC OR LATINO’, 

‘HISPANIC/LATINO - CUBAN’, 

‘HISPANIC/LATINO - HONDURAN’, 

‘HISPANIC/LATINO - CENTRAL 

AMERICAN’, ‘HISPANIC/LATINO - 

COLOMBIAN, ‘SOUTH AMERICAN’ 

5. ‘Native American’: ‘AMERICAN 

INDIAN/ALASKA NATIVE’ 

6. ‘Multiple Race/Ethnicity’: ‘MULTIPLE 

RACE/ETHNICITY’ 

7. ‘Declined/Unknown’: ‘UNKNOWN’, 

‘UNABLE TO OBTAIN’, ‘PATIENT 

DECLINED TO ANSWER’, missing values 

patients.csv 
gender 2 Female: 0, Male: 1 

anchor_age  Normalized values (0-1 range) 

microbiologyevents.csv isolate_num  Normalized values (0-1 range) 

omr.csv 
high_BP 

(mmHg) 
 

Normalized mean values of ‘high_BP’, 

‘high_BP_lying’, ‘high_BP_Sitting’, 
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‘high_BP_Standing’, ‘high_BP_1’, and 

‘high_BP_3’ (0-1 range) 

low_BP 

(mmHg) 
 

Normalized mean values of ‘low_BP’, 

‘low_BP_lying’, ‘low_BP_Sitting’, 

‘low_BP_Standing’, ‘low_BP_1’, and 

‘low_BP_3’ (0-1 range) 

BMI (kg/m2)  Normalized mean values (0-1 range) 

height 

(inches) 
 Normalized mean values (0-1 range) 

weight (Lbs)  Normalized mean values (0-1 range) 

3.2.2. Physician Entity 

To construct the physician entity, we extracted the attending physician identifier from each 

admission record. In the MIMIC-IV “admissions.csv”, the column “admit_provider_id” indicates the 

clinician who admitted the patient; we treated each unique provider ID as a distinct physician entity 

in our model. However, the MIMIC-IV dataset does not contain additional attributes about these 

physicians (such as specialty, experience, or demographics). Therefore, the physician entity does not 

have feature variables analogous to the patient features. Instead, each physician is represented only 

by a unique ID and its associated latent traits (which the CDLD model will discover during training). 

3.3. CDLD Model  

3.3.1. Cyclic Dual-Network Training Mechanism 

Our predictive method is built on the CDLD approach, which is designed to uncover hidden 

“traits” of two interacting entities. In our context, CDLD uses two parallel neural networks—one 

dedicated to patients and one to physicians—to discover latent trait for each. CDLD alternates 

updates between the patient and physician networks in a coordinated loop. During training, it 

iteratively refines the latent traits by updating one network’s weights while keeping the other 

network fixed, then swapping roles in the next iteration. In each cycle, one network treats the current 

latent representation of the other entity as a constant context and learns to better encode its own 

entity’s traits given that context. For example, when updating the patient network, the physician 

network’s output is held fixed, and vice versa. This alternating update “locks in” one side of the 

interaction at a time, allowing the model to progressively capture the interdependent patterns of 

patient–physician matching without one side overwhelming the learning process. Conceptually, this 

mirrors an expectation–maximization or alternating optimization procedure, where each network 

incrementally improves its latent representation of one entity, assuming the other’s latent factors are 

temporarily accurate. The cyclic dual-network mechanism is crucial for modeling patient–physician 

matching because it forces the latent traits of each party to co-evolve: the patient representation is 

learned in the context of how physicians behave, and the physician representation is learned in the 

context of patient characteristics. Over successive cycles, this yields a pair of latent vectors (one for 

the patient, one for the physician) that jointly encode their compatibility, which is highly informative 

for predicting outcomes like LoS based on patient-physician matching. 

3.3.2. Two-Stage Model Architecture 

We adjusted the network architecture (e.g., the sizes of dense layers) to suit our dataset, ensuring 

that each network has sufficient capacity to model its entity’s characteristics without overfitting. 

Batch normalization is applied after each layer to stabilize training by normalizing layer inputs [29, 

30], and dropout regularization is used to prevent overfitting [31]. Based on preliminary trials, we set 

a batch size of 512, which provided a good balance between training speed. with the dropout rate 
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tuned through experimentation. (The overall structure of the patient and physician latent discoverer 

networks is illustrated in Fig. 3.) 

 

Figure 3. Architecture of patient latent discoverer (left) and physician latent discoverer (right) in CDLD. The 

numbers in parentheses indicate the number of nodes in each layer. 'L2' denotes L2 normalization, 'BN' denotes 

batch normalization. The labels 'fixed' and 'update' above the feature and the latent indicate whether the 

parameters are frozen or updatable during training. 

After training the dual latent trait discoverers, we obtain a discovered latent vector for each 

patient and each physician. These latent traits are then fed into the predictor network that produces 

the final LoS prediction. The predictor is a standard feed-forward neural network that receives as 

input the concatenation of patient and physician latent vectors with patient features. Architecturally, 

the predictor network is similar in depth and layer structure to an individual latent trait discoverer 

network, but it does not use cyclic training; instead, it is trained in the usual forward manner on the 

prediction task. The predictor essentially learns how the interaction of the discovered patient and 

physician traits translates into LoS. This two-stage design (discoverer followed by predictor) allows 

the model to first capture who the patient and physician are (in terms of latent factors derived from 

their interactions) and then use that information to predict what they will achieve together (LoS). We 

found this separation beneficial for modeling the patient-physician matching: the CDLD discoverer 

isolates the latent compatibility effects, and the predictor leverages these effects for more accurate 

LoS prediction. 

3.3.3. Model Training Detail 

We initially partitioned the data into 90% for training and 10% for hold-out testing. For fair 

comparison across models, we used the same 80%/10%/10% train/validation/test split and applied 

10-fold cross-validation on the training portion to obtain robust performance estimates [32]. Prior to 

model training, we augmented the training data by adding small random noise (of maximum 

magnitude 0.1) to LoS values, effectively expanding the training set five-fold. This data augmentation 

was intended to improve generalization and make the model more robust to overfitting [33]. 

We first trained the latent trait discoverer networks for 30 epochs, where each epoch was 

composed of 10 updates alternating between the patient and physician latent trait networks as 

described above. After the discoverer stage converged, we trained the predictor network for up to 

1,000 epochs, using an early stopping criterion to prevent overfitting [34]. We adopted the Mean 

Squared Error (MSE) [35] as the loss function for both the discovery phase and the prediction phase. 
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3.4. Comparison Models 

In the absence of an established benchmark specific to patient–physician matching, we 

performed an indirect evaluation of our approach by comparing multiple baseline models with and 

without the inclusion of latent traits. Specifically, we considered four widely used prediction models 

as benchmarks: a simple deep neural network (DNN) [36], XGBoost [37], LightGBM [38], and 

CatBoost [39]. Each model was trained in two configurations: one using only the engineered patient 

features, and one using the combination of those features plus the discovered patient and physician 

32-dimensional latent traits. We represented patient latent traits as “latent_0” through “latent_31”, 

and physician latent traits as “Latent_0” through “Latent_31”. These latent traits, each represented 

as a 32-dimensional vector, were directly concatenated with the features and fed into the model as 

input variables. For a fair comparison, we trained all models on the same dataset of 300,358 

admissions, using an identical 80%/20% split for training and testing. 

For the simple DNN, we used a feed-forward architecture with three hidden layers of 128, 64, 

and 32 neurons, respectively, followed by a single output node for regression. We applied the Swish 

activation function at each hidden layer [40] and included a dropout rate of 0.2 to reduce overfitting 

[31]. For the tree-based gradient boosting models (XGBoost, LightGBM, and CatBoost), we set each 

model to use 300 trees/estimators with a learning rate of 0.05 and a maximum tree depth of 7. We also 

applied subsampling of 80% of the training data for each tree and 80% column sampling (feature 

subsampling) to further prevent overfitting in these models.  

3.4. Evaluation Metrics 

We employed Root Mean Square Error (RMSE) as the primary metric to quantify prediction 

error [41]. Additionally, to assess the consistency of model performance across the cross-validation 

folds, we calculated the coefficient of variation (CV) of the RMSE [42, 43]. The CV provides a 

normalized measure of variability (defined as the standard deviation of the RMSE across folds 

divided by the mean RMSE). Lower CV values indicate more stable performance. (Formula 2) 

𝐶𝑉 =  
𝜎

𝜇
× 100% (2) 

• CV: Coefficient of variation 

• σ: Standard deviation  

• μ: Mean 

To quantify the contribution of the discovered latent traits, we compared the RMSE results 

of each model with and without latent traits (as reported in the Results section for the 

baseline models). In addition to error metrics, we performed a SHapley Additive 

exPlanations (SHAP) [44] analysis to examine how the inclusion of latent traits alters the 

models’ decision-making. SHAP provides insight into model interpretation by assigning 

each feature (including our latent trait features) an important value that represents its 

contribution to a specific prediction [45-47]. By comparing SHAP outputs for models using 

only original features versus those using features plus latent traits, we could assess how the 

latent representations influence feature importance and ultimately the LoS predictions. 

4. Results 

4.1. CDLD Results 

4.1.1. Full-LoS Results 

RMSE per fold loss reduction over epoch (fold-wise) 
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(A) full-scope LoS 

  

(B) short-LoS between 2 hours and 5 days 
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(C) long-LoS between 5 days and 28 days 

Figure 4. RMSE per fold and loss reduction over epoch (fold-wise). The figures show consistent RMSE values 

across 10 folds. 

For LoS prediction across the full-LoS dataset, the 10-fold cross-validation yielded an average 

test RMSE of 0.0219 (±0.0007). The per-fold RMSE values ranged from 0.0212 to 0.0233 (0.0212, 0.0214, 

0.0221, 0.0216, 0.0233, 0.0227, 0.0214, 0.0212, 0.0223, and 0.0221), with the best-performing fold 

achieving an RMSE of 0.0212. The variability across folds was low (CV = 3.18%), indicating consistent 

performance (Fig. 4A). 

Given the skewed distribution of LoS in the overall dataset, we further evaluated our model on 

two subsets (short-LoS and long-LoS) to ensure the performance was robust across different 

hospitalization durations. 

4.1.2. Short-LoS (Between 2 Hours and 5 Days) Results 

In the short-LoS subset (LoS between 2 hours and 5 days), the model achieved an average RMSE 

of 0.1801 (±0.0023) across 10 folds. The per-fold RMSE values ranged from 0.1767 to 0.1828 (0.1820, 

0.1828, 0.1823, 0.1767, 0.1768, 0.1781, 0.1790, 0.1805, 0.1812, and 0.1814). The best fold obtained an 

RMSE of 0.1767. Performance variability was very low (CV = 1.25%), reflecting high stability in this 

range (Fig. 4B). 

4.1.3. Long-LoS (Between 5 Days and 28 Days) Results 

In the long-LoS subset (LoS between 5 to 28 days), the model’s average RMSE was 0.1597 

(±0.0035) over 10 folds. The per-fold RMSE values ranged from 0.1561 to 0.1639 (0.1581, 0.1617, 0.1597, 

0.1606, 0.1561, 0.1588, 0.1601, 0.1639, 0.1608, and 0.1571). The best RMSE observed was 0.1561. The 

model maintained consistent accuracy in this range as well (CV = 1.43% across folds; Fig. 4C). 

Overall, the low CV values in all scenarios (full, short, and long LoS) indicate minimal variance 

in the model’s predictive performance. The stability observed across these experiments demonstrates 

the effectiveness of incorporating patient–physician matching into LoS prediction. Table 2 

summarizes the RMSE and CV results for the full dataset as well as the short- and long-LoS subsets 

[48]. 

Table 2. RMSE and CV values for overall, short, and long-LoS. 

 average RMSE best RMSE 
standard 

deviation RMSE 
CV (%) 

full-scope LoS 0.0219 0.0212 0.0007 3.18 

short-LoS between 

2 hours and 5 days 
0.1801 0.1767 0.0023 1.25 

long-LoS between 

5 days and 28 days 
0.1597 0.1561 0.0023 1.43 

4.2. Comparative Results 

4.2.1. With or Without Latent Trait Comparison  

In comparative experiments, all four benchmark models showed improved accuracy when 

latent traits were added. The simple DNN’s RMSE improved from 0.0228 (features only) to 0.0214 

(features + latent). Similarly, XGBoost’s RMSE dropped from 0.0226 to 0.0217, LightGBM’s from 

0.0226 to 0.0216, and CatBoost’s from 0.0227 to 0.0218 after incorporating latent traits. On average, 

these reductions correspond to roughly a 4.63% decrease in RMSE. This consistent improvement 
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across diverse models suggests that the latent patient–physician matching information enhances 

predictive performance regardless of the modeling approach (Table 3). 

Table 3. Simple DNN, XGBoost, LightGBM, and CatBoost model RMSE values comparing two datasets. 

 feature only feature and latent trait decrease rate (%) 

simple DNN 0.0228 0.0214 6.1404 

XGBoost 0.0226 0.0217 3.9823 

LightGBM 0.0226 0.0216 4.4248 

CatBoost 0.0227 0.0218 3.9648 

4.2.2. SHAP Analysis: Feature-Only vs Feature+Latent 

The SHAP analysis for XGBoost highlighted clear shifts when latent traits were added. For 

XGBoost using feature-only dataset, the top SHAP features were ‘isolate_num’, ‘lower_count’, 

‘upper_count’, ‘high_BP’, and ‘anchor_age’ (Fig. 5A, Appendix A1, 2). However, after introducing 

latent traits, many of those original SHAP features became less influential. Instead, latent dimensions 

(e.g., ‘Latent_3’, ‘Latent_14’, ‘Latent_15’, etc.) emerged among the most important predictors – in fact, 

15 of the top 20 SHAP features in the model were latent traits in the feature+latent dataset (Fig. 5B, 

Appendix A3, 4). This shift suggests that by including latent traits, XGBoost was able to capture 

hidden patient–physician matching effects that improve its LoS predictive power. 

We observed the same pattern in LightGBM and CatBoost. For LightGBM without latent traits, 

the top SHAP features were similar features (‘isolate_num’, ‘upper_count’, 

‘marital_status_MARRIED’, ‘anchor_age’, etc.) (Fig. 5C, Appendix A5, 6). Once latent traits were 

included, 15 of the top 20 SHAP features were latent dimensions, indicating that the latent traits had 

become the dominant drivers of the model’s predictions (Fig. 5D, Appendix A7, 8). CatBoost showed 

a comparable shift: latent dimensions like ‘Latent_3’, ‘Latent_14’, and ‘Latent_15’ moved into the top 

ranks (again about 15 of the top 20) (Fig. 5F, Appendix A11, 12), displacing many of the original SHAP 

features that previously ranked highest in the feature-only dataset (Fig. 5E, Appendix A9, 10). These 

consistent trends across XGBoost, LightGBM, and CatBoost confirm that adding latent patient–

physician traits significantly changes the SHAP feature importance landscape in favor of the latent 

traits. 

Overall, the SHAP analyses confirm that including latent traits of both patients and physicians 

fundamentally alters and often improves the models’ decision-making process. In every model 

examined, latent traits not only contributed to increased accuracy but also assumed top positions in 

SHAP feature importance rankings, underscoring their value in capturing complex patterns that raw 

features alone cannot capture. These findings demonstrate that our approach effectively captures the 

underlying structure of patient–physician matching, which in turn leads to better LoS predictions 

(Fig. 5). 

 

Feature Importance Feature Impact Feature Importance Feature Impact 
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(A) XGBoost (Feature only) (B) XGBoost (Feature + Latent) 

    

(C) LightGBM (Feature only) (D) LightGBM (Feature + Latent) 

    

(E) CatBoost (Feature only) (F) CatBoost (Feature + Latent) 

Figure 5. The feature importance plot’s x-axis represents the mean (|SHAP value|), which indicates the average 

impact on the model output magnitude. The y-axis displays the top 20 most influential features ranked by their 

SHAP values. 

The feature impact plot’s x-axis represents the SHAP value, which shows the direction and 

magnitude of each feature's effect on the model output. The y-axis lists the top 20 most influential 

features, ranked based on their SHAP value distributions. For a high-resolution version of this figure, 

please refer to Appendix A. 

5. Discussion and Limitations  

5.1. Discussion  

Our results demonstrate that reflecting patient-physician matching into LoS predictions 

provides measurable benefits. The proposed CDLD model, which couples patient and physician 

entities in a cyclic training process, achieved stable LoS predictions within the extensive MIMIC-IV 

dataset. This improvement confirms that differences in physician practice styles can significantly 

influence patient outcomes like LoS. In fact, accounting for the physician’s latent characteristics 

captured intangible variability that traditional patient-only models miss, underscoring the value of 

including physician information and patient-physician matching in predictive modeling. These 

findings support prior observations that physician factors impact hospital metrics [9,12-14], and they 

validate our hypothesis that patient–physician pairing is a critical component in predicting LoS. 

From a healthcare efficiency standpoint, accurate and stable prediction of LoS could contribute 

to more effective resource management. Hospitals continuously seek to reduce unnecessary LoS 

because even modest reductions can translate into improved bed availability and lower costs [1-3]. 

With more precise LoS predictions, administrators can make better-informed decisions regarding 

admissions, staffing, and resource allocation. By identifying key factors that improve prediction 
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accuracy—such as physicians’ latent traits—our model reduces unexpected LoS, thereby enabling 

smoother patient flow and more efficient hospital operations. 

In healthcare delivery, there has been growing interest in formalizing how patients are assigned 

to physicians, whether to improve satisfaction, outcomes, or efficiency. Our data-driven evidence, 

enabled by a DL approach that captures nuanced interaction dynamics through flexible and diverse 

inputs, demonstrates that physician assignment impacts patient outcomes (LoS), supporting the 

potential for optimized patient-physician matching to yield tangible benefits. This could potentially 

improve throughput and reduce strain on limited resources, complementing existing initiatives in 

operational efficiency. The better alignment of patient needs with physician strengths, guided by AI, 

could improve clinical outcomes and increase the overall efficiency of care delivery.  

More broadly, this work aligns with the goals of personalized medicine. By incorporating the 

clinician’s entity alongside the patient’s entity, the CDLD model effectively personalizes the 

prediction to the context of who is providing the care. This approach not only enhances predictive 

accuracy but also opens the door to assigning each patient their most suitable physician. Such 

personalization is in line with current trends in healthcare AI that emphasize context-aware modeling 

[49]. Our results illustrate that including this often-neglected dimension leads to consistently better 

predictions, suggesting that a more holistic, personalized approach to clinical outcome modeling can 

indeed enhance accuracy. 

5.2. Limitations and Future Research Directions 

Nevertheless, several limitations of this study should be acknowledged. First, the MIMIC-IV 

database lacks detailed information about hospital identity or physician characteristics beyond 

anonymized IDs. This made it impossible to include certain contextual factors (e.g., hospital-level 

effects or physician attributes like specialty or years of experience). We mitigated this by using the 

“admit_provider_id” as a proxy for the physician, but this is an imperfect substitute for richer 

physician data. Future research should seek out or incorporate larger datasets that contain more 

comprehensive physician information to further refine the model. Incorporating detailed physician-

level feature data—such as training background, specialty, or clinical experience—could enhance the 

model’s accuracy. Moreover, this would enable greater flexibility in real clinical applications by 

allowing the model to operate physician entity more flexible, from individual physicians to specific 

hospitals. 

Second, as this work is, to our knowledge, the first to explore patient–physician matching for 

LoS prediction, no established baseline model existed for direct comparison. We addressed this by 

performing indirect comparisons with existing modeling approaches; however, this approach is 

inherently limited. As more studies on patient–physician matching emerge, it will become feasible to 

conduct direct benchmarks and head-to-head comparisons. Future studies should also explore 

different model architectures or matching algorithms to validate and extend our findings. 

6. Conclusion 

In conclusion, we have demonstrated a novel application of the DL model, CDLD to predict LoS 

by incorporating patient–physician matching—a factor previously unaddressed in LoS prediction 

studies. Our findings indicate that the latent traits of both patients and physicians can enhance 

prediction accuracy and uncover previously unmodeled dynamics in LoS estimation by capturing 

their interaction. This approach offers a promising tool for anticipating LoS more precisely in clinical 

settings, thereby supporting more effective patient management and resource planning. By framing 

patient–physician compatibility as a key element in outcome optimization, this study demonstrates 

the potential to advance personalized healthcare delivery and improve operational efficiency. 
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