Pre prints.org

Article Not peer-reviewed version

Predicting Length of Stay Based on
Patient-Physician Matching: A
Deeplearning Latent Discovery
Approach

Minjeong Kima and Dohyoung Rim i
Posted Date: 20 June 2025
doi: 10.20944/preprints202506.1714 v1

Keywords: length of stay; patient-physician matching; deep learning; health personnel; cyclic dual
latentdiscovery

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.



https://sciprofiles.com/profile/4539275

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 June 2025 d0i:10.20944/preprints202506.1714.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

Predicting Length of Stay Based on Patient-Physician
Matching: A Deep Learning Latent Discovery
Approach

Minjeong Kim ! and Dohyoung Rim 2*

1

Ewha Womans University College of Medicine, 25, Magokdong-ro 2-gil, Gangseo-gu, 07804, Seoul, South
Korea

Rowan, Yonsei Severance Bld 18F 10 Tongil-ro Jung-gu, 04527, Seoul, South Korea

Yonsei University Cognitive Science, 50, Yonsei-ro, Seodaemun-gu, 03722, Seoul, South Korea

* Correspondence: dh-rim@hanmail.net

Abstract

Length of stay (LoS) is a critical metric in healthcare management, influenced by various factors,
including the matching between patients and physicians. This encompasses elements such as the
quality of the patient—physician relationship, personality compatibility, and the alignment between
the patient’s disease domain and the physician’s clinical expertise —all of which significantly affect
LoS. Appropriately matching patients with physicians can improve the hospitalization experience
and reduce LoS; however, most predictive models rely primarily on patient-specific information. To
address this gap, we employed a deep learning (DL) model —Cyclic Dual Latent Discovery (CDLD)—
to predict LoS by incorporating patient-physician matching. The model was evaluated using the
Medical Information Mart for Intensive Care (MIMIC-IV) version 3.1. CDLD discovers latent trait
representations for each patient and physician from their interaction data, which are then used to
predict LoS. The model predicts both overall LoS and duration-specific subgroups, including short
(<5 days) and long (>5 days) stays. Performance evaluation using root mean square error (RMSE)
with 10-fold cross-validation yielded RMSEs of 0.0212 for the full dataset, 0.1767 for the short-stay
group, and 0.1561 for the long-stay group. As this is the first study to incorporate patient—physician
matching into LoS prediction, no direct baselines exist. To validate the significance of the discovered
latent traits, we conducted indirect comparisons using common machine learning models—simple
deep neural network, XGBoost, CatBoost, and LightGBM —with and without the inclusion of these
latent traits. Across all models, incorporating latent traits consistently improved performance, with
an average RMSE reduction of 4.6280%. Despite limited prior research on incorporating patient—
physician matching into LoS prediction, our findings underscore its significant impact and highlight
its potential for optimizing patient assignments and promoting personalized healthcare.

Keywords: length of stay; patient-physician matching; deep learning; health personnel; cyclic dual
latent discovery

1. Introduction

Length of stay (LoS) is defined as the duration of a patient’s hospitalization, from admission to
discharge. It serves as a key metric reflecting the consumption of medical resources and the
performance of hospital systems, including factors such as diagnostic accuracy and the effectiveness
of therapeutic strategies. Accurate LoS prediction is crucial for optimizing hospital resource
allocation and reducing healthcare costs. By anticipating LoS, hospital administrators can allocate
resources more efficiently, improve patient flow, enhance patient safety, and boost overall
operational effectiveness. Accordingly, developing reliable LoS prediction models is critical for
improving patient care and hospital performance [1-3]. LoS is known to be influenced by numerous
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factors, including patient demographics, physician characteristics, treatment complexity, the doctor—
patient relationship, and discharge planning [4].

One significant factor influencing LoS is patient-physician matching. When patient—physician
matching is optimal, patients tend to experience better treatment outcomes, foster trust, higher
satisfaction, and improved adherence to medical recommendations [5-7]. For physicians, a good
match with the patient facilitates more effective communication, enables a better understanding of
patient needs, and supports more efficient care delivery —ultimately enhancing care coordination
and improving patient outcomes [8,9]. Patient-physician matching encompasses various elements
such as physician interventions and skills, professional ethics, training background, physician and
patient personality, disease domain, and the quality of the doctor—patient relationship. All of these
aspects can significantly impact patient care [10, 11]. Several studies have demonstrated the clinical
importance of such matching: racial concordance between patients and physicians has been
associated with lower mortality rates [12], while gender concordance has also shown measurable
effects on patient survival [13]. Furthermore, alignment in cultural understanding and
communication styles has been linked to improved treatment adherence and better survival
outcomes [14]. These findings underscore that effective patient—physician matching can have life-
saving implications. Accordingly, fostering well-aligned patient-physician relationships advances
healthcare delivery and policy, and can translate into improved outcomes such as reduced LoS [15-
17]. To effectively reflect patient—physician matching in LoS prediction, it is essential to incorporate
not only patient information but also physician characteristics. However, previous LoS prediction
models have largely overlooked the role of the physician [3, 4, 18]. This gap in prior work highlights
the novelty of our approach, which explicitly incorporates the physician’s influence on LoS. By
comparing predicted LoS under different matching configurations, our current approach has the
potential to reveal physician latent factors that contribute to effective patient-physician alignment
and better healthcare outcomes.

To address this gap, we applied the Cyclic Dual Latent Discovery (CDLD) model [19], leveraging
patient—physician matching as a predictive factor for LoS. CDLD jointly learns latent representations
for both entities. These latent traits are then incorporated into separate LoS prediction models. We
applied CDLD to the large dataset, Medical Information Mart for Intensive Care (MIMIC-IV) version
3.1 after preprocessing [20]. Because, to our knowledge, this is the first study to incorporate patient—
physician matching into LoS prediction, there is no established baseline for direct comparison.
Therefore, we performed indirect comparisons using alternative machine learning models to evaluate
the effectiveness of our discovered latent traits by our approach.

In summary, we introduce a novel deep learning (DL) approach for LoS prediction that
incorporates patient—physician matching. The following sections detail our data preprocessing and
entity construction steps, describe the CDLD model architecture and training procedure, present the
prediction results (including indirect validation experiments), and discuss the implications and
limitations of our findings.

2. Related Work

A wide range of approaches have been explored for LoS prediction, spanning from traditional
statistical models to modern machine learning and DL techniques [3, 4]. Early studies often relied on
linear regression or survival analysis to estimate LoS and patient flow [2, 4]. More recently, data-
driven models have become dominant: many studies apply machine learning algorithms (e.g.,
random forests, gradient boosting machines) or neural networks to predict LoS, as noted in
contemporary reviews [3, 4]. These models generally leverage patient-centric features such as age,
sex, diagnoses, comorbidity indices, vital signs, and laboratory results, and are sometimes
supplemented with hospital administrative details (e.g., admission source or service unit).

Recent studies have also begun incorporating multi-modal electronic health record (EHR) data
to improve LoS prediction accuracy. For example, Chen et al. developed a DL model that combined
structured EHR variables with unstructured clinical notes, outperforming models that used only a
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single data source [21]. Although recent models incorporate multi-modal patient data, no prior LoS
prediction model explicitly accounts for the relational dynamics based on patients and physicians
matching or physician-specific factors. This omission is particularly significant given the well-
established impact of the patient-physician matching and individual physician characteristics on
clinical outcomes.

In this study, we apply the CDLD framework to LoS prediction with hyperparameter
modifications; the core architecture and training strategy remain the same as in the original CDLD.
The CDLD model can discover latent trait representations for both patients and physicians based on
their interactions, enabling it to capture the otherwise intangible impact of patient—physician
matching on LoS.

3. Method

3.1. Data Preprocessing

We loaded the MIMIC-1IV dataset into a structured query environment [22] and calculated LoS
by subtracting the “admittime” column from the “dischtime” column from the “admissions.csv”. We
then applied a series of filters to remove incomplete or irrelevant records. Specifically, we excluded
any admissions with missing key values, negative LoS (which corresponded to organ donor cases),
any recorded death time, or an admission type classified as “OBSERVATION” (e.g., “EU
OBSERVATION”, “OBSERVATION ADMIT”, “AMBULATORY OBSERVATION”, and “DIRECT
OBSERVATION”). We retained only admissions with types indicating standard hospital stays
(“DIRECT EMER”, “ELECTIVE”, “EW EMER”, “SURGICAL SAME DAY ADMISSION”, and
“URGENT”). Moreover, we treated extremely short stays (LoS < 10 minutes) as outliers and removed
them. After applying these criteria, the dataset was reduced from 546,028 admissions to 300,358
(retaining about 55.0% of the original records). The resulting dataset contains only valid, clinically
relevant hospitalizations, providing a robust basis for our analysis (Fig. 1).

546,028 || 545,853 || 533,926 || 300373 =) o0

All admissions Data that are Data with no Admissions LoS of more
data from EHR complete and deathtime type other than  than 10 minutes
non-negative observation

Figure 1. The process of obtaining the dataset used in the experiment for LoS prediction.

In the filtered dataset, LoS ranged from 13 minutes up to 463,074 minutes (approximately 321
days). It encompassed 149,891 patients and 1,817 physicians across 300,358 hospital admissions. The
distribution of LoS was highly skewed toward shorter stays (Fig. 2A), which can bias model training
by overemphasizing the most common outcomes. To mitigate this, we partitioned the data into short-
stay and long-stay groups for separate analysis. Since there is no universal cut-off for defining a
“short” hospital stay [23], we selected thresholds informed by prior studies and the characteristics of
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our data. We defined short LoS as stays lasting more than 2 hours and up to 5 days, aligning with
literature on short-stay units [24]; this subset comprised 189,974 admissions (covering 138,044
patients and 1,706 physicians) as shown in Fig. 2B. We defined long LoS as > 5 days and < 28 days
(Fig. 2C), choosing 28 days such that each day in this range had at least 500 records. The long-stay
subset contained 104,552 admissions (covering 83,367 patients and 1,506 physicians). For consistency,
all LoS values were recorded in minutes in our analysis.

B0

G0

0 IR TR T R T T AT

Tog 200 300

LoS in days

B 100

LoS in days

13 16 19 22
LoS in days

Figure 2. Distribution of LoS in days (A) Full dataset. (B) Short-LoS between 2 hours and 5 days. (C) Long-LoS
between 5 days and 28 days.
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3.2. Entity Representation

The CDLD model is designed to discover latent traits for two types of entities using two coupled
latent-trait discoverer networks, and then utilize these discovered traits in the predictor network for
the final prediction. In this study, we define the two entities as the patient entity and the physician
entity. Each entity representation consists of a set of observed features and a set of latent traits. The
features are directly obtained from the MIMIC-IV dataset and preprocessed, whereas the latent traits
are initially unknown and randomly initialized, to be discovered by the model during training.

3.2.1. Patient Entity

To construct the feature set for the patient entity, we merged several tables from MIMIC-IV
(“admissions.csv”, “patients.csv”, “microbiologyevents.csv”, and “omr.csv”) on the patient identifier
(“subject_id”). This integration provided a comprehensive view of each patient’s data. We then
performed feature engineering and cleaning as follows:

In “admissions.csv”, we first consolidated rare categories by grouping similar values for
categorical attributes (“language” and “race”). We then applied one-hot encoding to categorical
variables (“insurance”, “language”, “marital status”, and “race”), converting each category into a
binary indicator. Missing entries in these categorical fields were set to “UNKNOWN”. The “gender”
was label-encoded (0 = female, 1 = male). We normalized continuous variables “anchor_age” using
min-max scaling to range [0,1] for comparability [25-27]. In “microbiologyevents.csv”, “isolate_num”
was set to 0 if it had no value. (assuming no isolate grew).

In the "omr.csv", the "eGFR" variable had over 95% missing values and was therefore removed
to avoid introducing bias. For the remaining numeric variables, we computed z-scores and excluded
entries beyond +3 standard deviations to minimize the influence of extreme outliers. Special handling
was applied to body measurements: if any one of "BMI", "height", or "weight" was missing, it was

estimated using the other two via Formula 1 to ensure consistency among these interrelated variables.

weight (lbs)x703
height(inches)?

k
BMI G5 = (1)

After these steps, any remaining missing values were imputed using a random forest model that
leveraged correlations among available features to infer plausible values [28]. Additionally, blood
pressure data were collected in multiple patient positions (lying, sitting, standing, and orthostatic
measurements after 1 and 3 minutes). We averaged the systolic and diastolic readings in each position
to create aggregated high blood pressure and low blood pressure features, capturing overall blood
pressure trends for each patient. Table 1 provides a summary of all features incorporated into the
patient entity, along with their sources and any preprocessing steps.

Table 1. Patient entity features (merged from MIMIC-IV tables by subject_id) with categories and preprocessing
details.

Dataset Columns Count Values

1. Medicaid, 2. Medicare, 3. Private,

4. Other, 5. No charge, 6. UNKNOWN

1. “English’: “English’

2. ‘Spanish-Portuguese’: ‘Spanish’,

insurance 6

admissions.csv
‘Portuguese’
language 298
3. ‘East Asia’: ‘Chinese’, ‘Japanese’, ‘Korean’

4. ‘Southeast Asia”: ‘Vietnamese’, ‘Khmer’,
“Thai’
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5. ‘Europe” ‘Russian’, ‘French’, ‘Modern
Greek (1453-)’, ‘Polish’, ‘Italian’, “Armenian’
6. ‘Middle East Asia’: ‘Arabic’, ‘Persian’,
‘Hindi’, ‘Bengali’

7.'Africa’: “Amharic’, ‘Somali’, “Haitian’,

8. ‘Other’: Others

1. WIDOWED, 2. MARRIED, 3. SINGLE,

4. DIVORCED, 5. UNKNOWN

1. “White”: “WHITE’, “WHITE - RUSSIAN’,
‘WHITE - OTHER EUROPEAN’, “WHITE -
BRAZILIAN’, ‘WHITE -  EASTERN
EUROPEAN’

2. ‘Black/African’: ‘BLACK/AFRICAN
AMERICAN’, ‘BLACK/CAPE VERDEAN’,
‘BLACK/AFRICAN’, ‘BLACK/CARIBBEAN
ISLAND’

3. ‘Asian”: ‘ASIAN’, ‘ASIAN - CHINESE’,
‘ASIAN - SOUTHEAST ASIAN’, ‘ASIAN
KOREAN’, “ASIAN - ASIAN INDIAN’

4. ‘Hispanic/Latino’: ‘HISPANIC/LATINO
SALVADORAN’, ‘HISPANIC/LATINO
PUERTO RICAN’, ‘HISPANIC/LATINO
race 33—7 | GUATEMALAN’, ‘HISPANIC/LATINO
DOMINICAN’,  “HISPANIC/LATINO
MEXICAN’, ‘HISPANIC OR LATINO’,

marital_status 5

"HISPANIC/LATINO - CUBAN’,
‘HISPANIC/LATINO -  HONDURAN/,
"HISPANIC/LATINO - CENTRAL

AMERICAN, ‘HISPANIC/LATINO -
COLOMBIAN, ‘SOUTH AMERICAN’

5. ‘Native American’: "AMERICAN
INDIAN/ALASKA NATIVE’

6. ‘Multiple Race/Ethnicity’: ‘MULTIPLE
RACE/ETHNICITY’

7. ‘Declined/Unknown’: ‘UNKNOWN’,
‘UNABLE  TO  OBTAIN’, ‘PATIENT
DECLINED TO ANSWER’, missing values

gender 2 Female: 0, Male: 1
patients.csv
anchor_age Normalized values (0-1 range)
microbiologyevents.csv | isolate_num Normalized values (0-1 range)
high_BP Normalized mean values of ‘high BP,
omr.csv
(mmHg) ‘high_BP_lying’, ‘high_BP_Sitting’,
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‘high_BP_Standing’, ‘high_BP_1’, and
‘high_BP_3’ (0-1 range)

Normalized mean values of ‘low_BF,

low_BP ‘low_BP_lying/, ‘low_BP_Sitting’,
(mmHg) ‘low_BP_Standing’, ‘low_BP_1, and
‘low_BP_3’ (0-1 range)
BMI (kg/m?2) Normalized mean values (0-1 range)
height
Normalized mean values (0-1 range)
(inches)
weight (Lbs) Normalized mean values (0-1 range)

3.2.2. Physician Entity

To construct the physician entity, we extracted the attending physician identifier from each
admission record. In the MIMIC-IV “admissions.csv”, the column “admit_provider_id” indicates the
clinician who admitted the patient; we treated each unique provider ID as a distinct physician entity
in our model. However, the MIMIC-IV dataset does not contain additional attributes about these
physicians (such as specialty, experience, or demographics). Therefore, the physician entity does not
have feature variables analogous to the patient features. Instead, each physician is represented only
by a unique ID and its associated latent traits (which the CDLD model will discover during training).

3.3. CDLD Model
3.3.1. Cyclic Dual-Network Training Mechanism

Our predictive method is built on the CDLD approach, which is designed to uncover hidden
“traits” of two interacting entities. In our context, CDLD uses two parallel neural networks—one
dedicated to patients and one to physicians—to discover latent trait for each. CDLD alternates
updates between the patient and physician networks in a coordinated loop. During training, it
iteratively refines the latent traits by updating one network’s weights while keeping the other
network fixed, then swapping roles in the next iteration. In each cycle, one network treats the current
latent representation of the other entity as a constant context and learns to better encode its own
entity’s traits given that context. For example, when updating the patient network, the physician
network’s output is held fixed, and vice versa. This alternating update “locks in” one side of the
interaction at a time, allowing the model to progressively capture the interdependent patterns of
patient-physician matching without one side overwhelming the learning process. Conceptually, this
mirrors an expectation—-maximization or alternating optimization procedure, where each network
incrementally improves its latent representation of one entity, assuming the other’s latent factors are
temporarily accurate. The cyclic dual-network mechanism is crucial for modeling patient—physician
matching because it forces the latent traits of each party to co-evolve: the patient representation is
learned in the context of how physicians behave, and the physician representation is learned in the
context of patient characteristics. Over successive cycles, this yields a pair of latent vectors (one for
the patient, one for the physician) that jointly encode their compatibility, which is highly informative
for predicting outcomes like LoS based on patient-physician matching.

3.3.2. Two-Stage Model Architecture

We adjusted the network architecture (e.g., the sizes of dense layers) to suit our dataset, ensuring
that each network has sufficient capacity to model its entity’s characteristics without overfitting.
Batch normalization is applied after each layer to stabilize training by normalizing layer inputs [29,
30], and dropout regularization is used to prevent overfitting [31]. Based on preliminary trials, we set
a batch size of 512, which provided a good balance between training speed. with the dropout rate
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tuned through experimentation. (The overall structure of the patient and physician latent discoverer
networks is illustrated in Fig. 3.)

Patient feature (36) | Patient latent (32) | |Physician latent (32) Patient feature (36) Patient latent (32) | |Physician latent (32)

1 3 ) i
Dense Layer (16) Dense Layer (16) Dense Layer (16) Dense Layer (16)
1 ! ) 1
Dense Layer (4) Dense Layer (8) Dense Layer (8) Dense Layer (4) Dense Layer (8) Dense Layer (8)

Dense Layer (64) Dense Layer (64)
I I

Dense Layer (32) Dense Layer (32)
| !

| Dropout Dense Layer (16) Dense Layer (16)
| |

Sigmoid (1) Sigmoid (1)

! l

Figure 3. Architecture of patient latent discoverer (left) and physician latent discoverer (right) in CDLD. The
numbers in parentheses indicate the number of nodes in each layer. 'L2' denotes L2 normalization, 'BN' denotes
batch normalization. The labels 'fixed' and 'update' above the feature and the latent indicate whether the

parameters are frozen or updatable during training.

After training the dual latent trait discoverers, we obtain a discovered latent vector for each
patient and each physician. These latent traits are then fed into the predictor network that produces
the final LoS prediction. The predictor is a standard feed-forward neural network that receives as
input the concatenation of patient and physician latent vectors with patient features. Architecturally,
the predictor network is similar in depth and layer structure to an individual latent trait discoverer
network, but it does not use cyclic training; instead, it is trained in the usual forward manner on the
prediction task. The predictor essentially learns how the interaction of the discovered patient and
physician traits translates into LoS. This two-stage design (discoverer followed by predictor) allows
the model to first capture who the patient and physician are (in terms of latent factors derived from
their interactions) and then use that information to predict what they will achieve together (LoS). We
found this separation beneficial for modeling the patient-physician matching: the CDLD discoverer
isolates the latent compatibility effects, and the predictor leverages these effects for more accurate
LoS prediction.

3.3.3. Model Training Detail

We initially partitioned the data into 90% for training and 10% for hold-out testing. For fair
comparison across models, we used the same 80%/10%/10% train/validation/test split and applied
10-fold cross-validation on the training portion to obtain robust performance estimates [32]. Prior to
model training, we augmented the training data by adding small random noise (of maximum
magnitude 0.1) to LoS values, effectively expanding the training set five-fold. This data augmentation
was intended to improve generalization and make the model more robust to overfitting [33].

We first trained the latent trait discoverer networks for 30 epochs, where each epoch was
composed of 10 updates alternating between the patient and physician latent trait networks as
described above. After the discoverer stage converged, we trained the predictor network for up to
1,000 epochs, using an early stopping criterion to prevent overfitting [34]. We adopted the Mean
Squared Error (MSE) [35] as the loss function for both the discovery phase and the prediction phase.
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3.4. Comparison Models

In the absence of an established benchmark specific to patient—physician matching, we
performed an indirect evaluation of our approach by comparing multiple baseline models with and
without the inclusion of latent traits. Specifically, we considered four widely used prediction models
as benchmarks: a simple deep neural network (DNN) [36], XGBoost [37], LightGBM [38], and
CatBoost [39]. Each model was trained in two configurations: one using only the engineered patient
features, and one using the combination of those features plus the discovered patient and physician
32-dimensional latent traits. We represented patient latent traits as “latent_0” through “latent_31",
and physician latent traits as “Latent_0” through “Latent_31". These latent traits, each represented
as a 32-dimensional vector, were directly concatenated with the features and fed into the model as
input variables. For a fair comparison, we trained all models on the same dataset of 300,358
admissions, using an identical 80%/20% split for training and testing.

For the simple DNN, we used a feed-forward architecture with three hidden layers of 128, 64,
and 32 neurons, respectively, followed by a single output node for regression. We applied the Swish
activation function at each hidden layer [40] and included a dropout rate of 0.2 to reduce overfitting
[31]. For the tree-based gradient boosting models (XGBoost, LightGBM, and CatBoost), we set each
model to use 300 trees/estimators with a learning rate of 0.05 and a maximum tree depth of 7. We also
applied subsampling of 80% of the training data for each tree and 80% column sampling (feature
subsampling) to further prevent overfitting in these models.

3.4. Evaluation Metrics

We employed Root Mean Square Error (RMSE) as the primary metric to quantify prediction
error [41]. Additionally, to assess the consistency of model performance across the cross-validation
folds, we calculated the coefficient of variation (CV) of the RMSE [42, 43]. The CV provides a
normalized measure of variability (defined as the standard deviation of the RMSE across folds
divided by the mean RMSE). Lower CV values indicate more stable performance. (Formula 2)

g
€V = =% 100% )

* CV: Coefficient of variation

¢ o0: Standard deviation

* u: Mean

To quantify the contribution of the discovered latent traits, we compared the RMSE results

of each model with and without latent traits (as reported in the Results section for the
baseline models). In addition to error metrics, we performed a SHapley Additive
exPlanations (SHAP) [44] analysis to examine how the inclusion of latent traits alters the
models’” decision-making. SHAP provides insight into model interpretation by assigning
each feature (including our latent trait features) an important value that represents its
contribution to a specific prediction [45-47]. By comparing SHAP outputs for models using
only original features versus those using features plus latent traits, we could assess how the
latent representations influence feature importance and ultimately the LoS predictions.
4. Results
4.1. CDLD Results
4.1.1. Full-LoS Results

RMSE per fold loss reduction over epoch (fold-wise)
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(C) long-LoS between 5 days and 28 days

Figure 4. RMSE per fold and loss reduction over epoch (fold-wise). The figures show consistent RMSE values
across 10 folds.

For LoS prediction across the full-LoS dataset, the 10-fold cross-validation yielded an average
test RMSE of 0.0219 (£0.0007). The per-fold RMSE values ranged from 0.0212 to 0.0233 (0.0212, 0.0214,
0.0221, 0.0216, 0.0233, 0.0227, 0.0214, 0.0212, 0.0223, and 0.0221), with the best-performing fold
achieving an RMSE of 0.0212. The variability across folds was low (CV =3.18%), indicating consistent
performance (Fig. 4A).

Given the skewed distribution of LoS in the overall dataset, we further evaluated our model on
two subsets (short-LoS and long-LoS) to ensure the performance was robust across different
hospitalization durations.

4.1.2. Short-LoS (Between 2 Hours and 5 Days) Results

In the short-LoS subset (LoS between 2 hours and 5 days), the model achieved an average RMSE
of 0.1801 (+0.0023) across 10 folds. The per-fold RMSE values ranged from 0.1767 to 0.1828 (0.1820,
0.1828, 0.1823, 0.1767, 0.1768, 0.1781, 0.1790, 0.1805, 0.1812, and 0.1814). The best fold obtained an
RMSE of 0.1767. Performance variability was very low (CV = 1.25%), reflecting high stability in this
range (Fig. 4B).

4.1.3. Long-LoS (Between 5 Days and 28 Days) Results

In the long-LoS subset (LoS between 5 to 28 days), the model’s average RMSE was 0.1597
(£0.0035) over 10 folds. The per-fold RMSE values ranged from 0.1561 to 0.1639 (0.1581, 0.1617, 0.1597,
0.1606, 0.1561, 0.1588, 0.1601, 0.1639, 0.1608, and 0.1571). The best RMSE observed was 0.1561. The
model maintained consistent accuracy in this range as well (CV =1.43% across folds; Fig. 4C).

Overall, the low CV values in all scenarios (full, short, and long LoS) indicate minimal variance
in the model’s predictive performance. The stability observed across these experiments demonstrates
the effectiveness of incorporating patient-physician matching into LoS prediction. Table 2
summarizes the RMSE and CV results for the full dataset as well as the short- and long-LoS subsets

[48].
Table 2. RMSE and CV values for overall, short, and long-LoS.
standard
average RMSE best RMSE CV (%)
deviation RMSE

full-scope LoS 0.0219 0.0212 0.0007 3.18
short-LoS between

0.1801 0.1767 0.0023 1.25
2 hours and 5 days
long-LoS between

0.1597 0.1561 0.0023 1.43
5 days and 28 days

4.2. Comparative Results
4.2.1. With or Without Latent Trait Comparison

In comparative experiments, all four benchmark models showed improved accuracy when
latent traits were added. The simple DNN’s RMSE improved from 0.0228 (features only) to 0.0214
(features + latent). Similarly, XGBoost’s RMSE dropped from 0.0226 to 0.0217, LightGBM’s from
0.0226 to 0.0216, and CatBoost’s from 0.0227 to 0.0218 after incorporating latent traits. On average,
these reductions correspond to roughly a 4.63% decrease in RMSE. This consistent improvement
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across diverse models suggests that the latent patient—physician matching information enhances
predictive performance regardless of the modeling approach (Table 3).

Table 3. Simple DNN, XGBoost, LightGBM, and CatBoost model RMSE values comparing two datasets.

feature only feature and latent trait decrease rate (%)
simple DNN 0.0228 0.0214 6.1404
XGBoost 0.0226 0.0217 3.9823
LightGBM 0.0226 0.0216 4.4248
CatBoost 0.0227 0.0218 3.9648

4.2.2. SHAP Analysis: Feature-Only vs Feature+Latent

The SHAP analysis for XGBoost highlighted clear shifts when latent traits were added. For
XGBoost using feature-only dataset, the top SHAP features were ‘isolate_num’, ‘lower_count’,
‘“upper_count’, ‘high_BP’, and “anchor_age’ (Fig. 5A, Appendix Al, 2). However, after introducing
latent traits, many of those original SHAP features became less influential. Instead, latent dimensions
(e.g., 'Latent_3’, ‘Latent_14’, ‘Latent_15’, etc.) emerged among the most important predictors —in fact,
15 of the top 20 SHAP features in the model were latent traits in the featuretlatent dataset (Fig. 5B,
Appendix A3, 4). This shift suggests that by including latent traits, XGBoost was able to capture
hidden patient—physician matching effects that improve its LoS predictive power.

We observed the same pattern in LightGBM and CatBoost. For Light GBM without latent traits,
the top SHAP features were similar features (‘isolate_num’, ‘upper_count’,
‘marital_status_MARRIED’, ‘anchor_age’, etc.) (Fig. 5C, Appendix A5, 6). Once latent traits were
included, 15 of the top 20 SHAP features were latent dimensions, indicating that the latent traits had
become the dominant drivers of the model’s predictions (Fig. 5D, Appendix A7, 8). CatBoost showed
a comparable shift: latent dimensions like ‘Latent_3’, ‘Latent_14’, and ‘Latent_15" moved into the top
ranks (again about 15 of the top 20) (Fig. 5F, Appendix A11, 12), displacing many of the original SHAP
features that previously ranked highest in the feature-only dataset (Fig. 5E, Appendix A9, 10). These
consistent trends across XGBoost, LightGBM, and CatBoost confirm that adding latent patient—
physician traits significantly changes the SHAP feature importance landscape in favor of the latent
traits.

Overall, the SHAP analyses confirm that including latent traits of both patients and physicians
fundamentally alters and often improves the models’ decision-making process. In every model
examined, latent traits not only contributed to increased accuracy but also assumed top positions in
SHAP feature importance rankings, underscoring their value in capturing complex patterns that raw
features alone cannot capture. These findings demonstrate that our approach effectively captures the
underlying structure of patient-physician matching, which in turn leads to better LoS predictions

(Fig. 5).
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Figure 5. The feature importance plot’s x-axis represents the mean (ISHAP valuel), which indicates the average
impact on the model output magnitude. The y-axis displays the top 20 most influential features ranked by their
SHAP values.

The feature impact plot’s x-axis represents the SHAP value, which shows the direction and
magnitude of each feature's effect on the model output. The y-axis lists the top 20 most influential
features, ranked based on their SHAP value distributions. For a high-resolution version of this figure,
please refer to Appendix A.

5. Discussion and Limitations
5.1. Discussion

Our results demonstrate that reflecting patient-physician matching into LoS predictions
provides measurable benefits. The proposed CDLD model, which couples patient and physician
entities in a cyclic training process, achieved stable LoS predictions within the extensive MIMIC-IV
dataset. This improvement confirms that differences in physician practice styles can significantly
influence patient outcomes like LoS. In fact, accounting for the physician’s latent characteristics
captured intangible variability that traditional patient-only models miss, underscoring the value of
including physician information and patient-physician matching in predictive modeling. These
findings support prior observations that physician factors impact hospital metrics [9,12-14], and they
validate our hypothesis that patient—physician pairing is a critical component in predicting LoS.

From a healthcare efficiency standpoint, accurate and stable prediction of LoS could contribute
to more effective resource management. Hospitals continuously seek to reduce unnecessary LoS
because even modest reductions can translate into improved bed availability and lower costs [1-3].
With more precise LoS predictions, administrators can make better-informed decisions regarding
admissions, staffing, and resource allocation. By identifying key factors that improve prediction
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accuracy —such as physicians’ latent traits —our model reduces unexpected LoS, thereby enabling
smoother patient flow and more efficient hospital operations.

In healthcare delivery, there has been growing interest in formalizing how patients are assigned
to physicians, whether to improve satisfaction, outcomes, or efficiency. Our data-driven evidence,
enabled by a DL approach that captures nuanced interaction dynamics through flexible and diverse
inputs, demonstrates that physician assignment impacts patient outcomes (LoS), supporting the
potential for optimized patient-physician matching to yield tangible benefits. This could potentially
improve throughput and reduce strain on limited resources, complementing existing initiatives in
operational efficiency. The better alignment of patient needs with physician strengths, guided by Al,
could improve clinical outcomes and increase the overall efficiency of care delivery.

More broadly, this work aligns with the goals of personalized medicine. By incorporating the
clinician’s entity alongside the patient’s entity, the CDLD model effectively personalizes the
prediction to the context of who is providing the care. This approach not only enhances predictive
accuracy but also opens the door to assigning each patient their most suitable physician. Such
personalization is in line with current trends in healthcare Al that emphasize context-aware modeling
[49]. Our results illustrate that including this often-neglected dimension leads to consistently better
predictions, suggesting that a more holistic, personalized approach to clinical outcome modeling can
indeed enhance accuracy.

5.2. Limitations and Future Research Directions

Nevertheless, several limitations of this study should be acknowledged. First, the MIMIC-IV
database lacks detailed information about hospital identity or physician characteristics beyond
anonymized IDs. This made it impossible to include certain contextual factors (e.g., hospital-level
effects or physician attributes like specialty or years of experience). We mitigated this by using the
“admit_provider_id” as a proxy for the physician, but this is an imperfect substitute for richer
physician data. Future research should seek out or incorporate larger datasets that contain more
comprehensive physician information to further refine the model. Incorporating detailed physician-
level feature data—such as training background, specialty, or clinical experience—could enhance the
model’s accuracy. Moreover, this would enable greater flexibility in real clinical applications by
allowing the model to operate physician entity more flexible, from individual physicians to specific
hospitals.

Second, as this work is, to our knowledge, the first to explore patient-physician matching for
LoS prediction, no established baseline model existed for direct comparison. We addressed this by
performing indirect comparisons with existing modeling approaches; however, this approach is
inherently limited. As more studies on patient—physician matching emerge, it will become feasible to
conduct direct benchmarks and head-to-head comparisons. Future studies should also explore
different model architectures or matching algorithms to validate and extend our findings.

6. Conclusion

In conclusion, we have demonstrated a novel application of the DL model, CDLD to predict LoS
by incorporating patient—physician matching—a factor previously unaddressed in LoS prediction
studies. Our findings indicate that the latent traits of both patients and physicians can enhance
prediction accuracy and uncover previously unmodeled dynamics in LoS estimation by capturing
their interaction. This approach offers a promising tool for anticipating LoS more precisely in clinical
settings, thereby supporting more effective patient management and resource planning. By framing
patient—-physician compatibility as a key element in outcome optimization, this study demonstrates
the potential to advance personalized healthcare delivery and improve operational efficiency.
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