

Review

Not peer-reviewed version

Herbal and Pharmaceutical Integration in Liposome-Based Medicine

ASHUTOSH SENGAR *

Posted Date: 14 March 2025

doi: 10.20944/preprints202503.1039.v1

Keywords: Liposomal Drug Delivery; Bioavailability Enhancement; Herbal Medicine; Targeted Therapy; Nanopharmacology

Preprints.org is a free multidisciplinary platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Review

Herbal and Pharmaceutical Integration in Liposome-Based Medicine

Ashutosh Sengar

Dept. of Pharmaceutics, Smt. Vidyawati College of Pharmacy, Smt. Vidyawati Group of Institutions, Jhansi (U.P.), ashutoshsengar26567@gmail.com

Abstract: The development of modern breakthroughs in drug solubility enhancement and targeted delivery rely on liposomal drug delivery systems. The study covers simple methods of liposomal encapsulation because these procedures increase exposure levels resulting in superior therapeutic outcomes. The article shows pharmaceutical science uses liposomal applications to treat cancer and antimicrobial diseases in its clinical pharmacological applications. Liposomal encapsulation enhances the composition of curcumin and *Tribulus terrestris* as well as other herbal medicine components by increasing their absorption rate in the human body. Scientists investigate regulatory control approaches for creating liposomal pharmacological agents as they study new developments of this modern therapeutic discipline. Liposomal delivery faces ongoing challenges but the author Kauffman expects this technology will develop through partnerships between nanotechnology and personalized medicine systems. Through research the authors emphasize that pharmaceutical advancement for future medicinal delivery platforms needs liposomal formulation technology development.

Keywords: liposomal drug delivery; bioavailability enhancement; herbal medicine; targeted therapy; nanopharmacology

1. Introduction to Liposomal Drug Delivery

Medical advancement in modern times has become possible through liposomal drug delivery systems since scientists created drug transport solutions which align with biological systems. Through spherical lipid bilayer vesicles drug delivery becomes possible because they allow pharmaceutical compounds of diverse nature to be incorporated while improving drug water solubility and therapeutic measures [1].

Increased drug efficacy emerged through laboratory examination of delivery systems using liposomes that simultaneously reduced total body toxicity allowing scientists to adopt liposomes for delivery use [2]. During the past years experts created advanced lipid drug formulations through surface modification processes which they applied to cancer treatments and antimicrobial medicines [3].

The main benefit of liposomal systems functions through protective tissue mechanisms which prevent drug distribution to sites outside of the target area. The controlled distribution of medication becomes possible through liposomal systems because they sustain therapeutic results across longer durations using reduced medication orders [2].

Liposomal techniques deliver multiple benefits to pharmaceutical systems although they encounter persistent difficulties when increasing production volume and ensuring formulation stability. Enhanced lipid nanotechnology advancements have addressed previous problems to make liposomal drug delivery an essential therapeutic approach [3].

2. Liposomal Drug Encapsulation and Mechanisms

Better drug solubility and increased product shelf life and precise dosage delivery form the central operational strength of their base through liposomal drug packaging. The drug-containing liposomal carrier allows pharmaceutical substances to exist throughout its water core and hydrophobic membrane face making it accessible to either polar or nonpolar compounds. Multiple therapeutic components that join chemotherapeutic agents with antibiotics and antifungal agents make liposomes highly effective drug delivery vehicles [4].

Table 1. Liposomal Drug Delivery – Composition, Mechanisms, and Targeting Strategies.

Aspect	Description	Examples/Methods	Reference
Drug Encapsulation	Hydrophilic drugs in the aqueous core; hydrophobic drugs in lipid bilayer	Chemotherapeutics, antibiotics, antifungals	[4]
Amphiphilic Drugs	Distributed between aqueous and lipid compartments based on solubility	Depends on solubility & lipid affinity	[5]
Encapsulation Techniques	Methods to ensure drug stability and efficiency	Thin-film hydration, reverse-phase evaporation, ethanol injection	[6]
Passive Targeting	Exploits EPR effect for drug accumulation in tumor tissues	Used in cancer therapy	[7]
Active Targeting	Surface modifications with ligands/antibodies for receptor-specific uptake	Folate-conjugated liposomes	[7]
Controlled Release	pH-sensitive or temperature-sensitive liposomes for on-demand drug release	Stimuli-responsive liposomes	[6]

The encapsulation of drugs during this process mainly depends on both drug biochemical properties combined with the lipid characteristics found in liposomal compositions. Both hydrophobic drugs penetrate into the bilayer structure and digitized drugs move through the liposome's core area. Drugs having amphiphilic properties show a natural preference for different liposomal areas that match their membrane solubility characteristics [5]. Liposomes demonstrate stability through three effective encapsulation methods of drug molecules which use thin-film hydration and reverse-phase evaporation and ethanol injection techniques [6].

Liposomes establish multiple contact points with biological environments that result in their recognition. Liposomal drugs can remain trapped within tumor tissues because defective blood vessels of tumors allow them to reach specific areas through the EPR effect. The surface modification of liposomes through addition of ligands and antibodies makes them selectively bind to cells through their receptors to enhance drug absorption and treatment effectiveness [7]. Pharmacological benefits of drugs manifest through pH-sensitive and temperature-sensitive liposomes which adapt to human body mechanisms [6].

Liposomal drug manufacturing encounters three major difficulties involving stability instability during making and drug leaking issues with poorly scalable production methods. The scientific community actively studies how to improve lipid components and formulation techniques for better drug encapsulation and circulation times to uphold the dominance of liposomes as drug delivery choices [7].

3. Pharmaceutical Applications of Liposomes

3.1. Cancer and Antimicrobial Therapy

Liposomal formulations have become essential for cancer treatments because their selection provides better chemotherapy protocols with reduced systemic toxicity. The encapsulation of chemotherapy agents inside liposomes achieves better solubility and stability through targeted tumor accumulation which benefits from the enhanced permeability and retention (EPR) effect [8]. Doxil® serves as the first agency-approved liposomal chemotherapy drug with doxorubicin content that enables both longer circulation times and better cardioprotection than regular doxorubicin formulations [9]. The new liposomal anticancer drugs such as liposomal paclitaxel and cisplatin together expand treatment methods for various malignancies [10].

The medical field applies liposomal formulations to improve treatments of infectious diseases through drug development involving antibiotics and antifungal medicines. Scientist found that liposomal amphotericin B shows enhanced antifungal efficacy while also offering better renal protection when treating systemic fungal diseases when compared to traditional amphotericin B medications [11]. Liposomes provide a revolutionary therapeutic solution which directs antibiotics to bacteria cells to prevent antibiotic resistance formation thus fighting multi-drug resistant infections [10].

3.2. Clinical Pharmacology Insights

Liposomal development has led to important advances in pharmaceutical products by extending past their conventional cancer treatment and infectious disease usage areas. Drug treatment accuracy in various pharmaceutical fields has grown because their design allows control of therapeutic drug dynamics and distribution pathways. The drug circulation extends beyond therapeutic sites after PEG surface application on stealth liposomes because this combination blocks immune system detection [12].

Liposomal drug delivery systems developed by pharmaceutical researchers provide a solution to circumvent neurological disorder treatment limitations of the blood-brain barrier. Scientists have discovered that drug formulations based on liposomes show promising potential for improved drug delivery across the central nervous system so that neurodegenerative conditions can receive better medical treatment [13]. Study groups use liposomes to enhance vaccine performance by enabling their use as vaccination adjuvants in experimental viral and cancer vaccines [14].

4. Herbal Integration in Liposomal Medicine

4.1. Herbal Bioavailability Enhancement

Plant-based bioactive compounds with flavonoids and alkaloids do not meet therapeutic needs because their pharmacokinetic absorption and systemic distribution capabilities are weak. Drug delivery limitations face resistance through combined effects of cell-targeting mechanisms and improved water solubility which allow Time-extended stability [15].

The application of liposomal systems allows herbal compounds to work both as antioxidant therapy and cancer treatment agents while retaining the ability to control inflammation. For example, curcumin, a bioactive compound from turmeric, shows low water solubility and rapid degradation in the body. Liposomal encapsulation improves drug results because it strengthens stability along with enhancing bioavailability parameters [16]. The drug absorption of both quercetin and resveratrol undergoes enhancement when encapsulated in liposomal form because these compounds already show effective cardiovascular and neuroprotective functions [17].

Scientific medical research proves that the implementation of liposomal herbal extract methods increases drug delivery efficiency to targeted body organs. The formulation of ginseng liposomes improves both cognitive functions and immune response strengths along with green tea polyphenols in liposomal form which protects against cancer development and regulates metabolism [18].

4.2. *Tribulus Terrestris* in Liposomal Treatment

The medicinal herb *Tribulus terrestris* has been traditionally applied for three therapeutic uses such as inhibiting urolithiasis formation and acting as an aphrodisiac and anti-inflammatory drug. Its bioactive compounds that include saponins and flavonoids face challenges due to low gastrointestinal absorption rates as well as limited solubility characteristics. Researchers have introduced liposomal encapsulation as a sophisticated technique to enhance *Tribulus terrestris* extracts' biological activity as well as their distribution profile in the body [19].

Researchers discovered that liposomal-formulated *Tribulus terrestris* was able to enhance distribution of its essential compounds and more effectively treated urolithiasis (kidney stones) and reproductive disorders of health [20]. The controlled drug delivery abilities within liposomal carriers ensure uniform treatments which reduces medication usage demands while enhancing patient treatment compliance [21].

5. Regulatory and Future Prospects

Liposomal drug products along with herbal medicines must adhere to rigorous regulatory guidelines to enter the clinical market. Liposomal products require extensive research evaluating stability alongside safety and efficacy before they are eligible for market approval. Regulatory agencies such as FDA and EMA impose specific guidelines to analyze liposomal medications for guaranteeing both reproducibility of manufacturing and quality control during commercial production [22].

Studies show that further development of liposomal drug delivery systems in the future will be focused on tailoring treatments in the form of customized liposomes for patient-specific needs. The new technology has brought pH- and temperature-sensitive liposomes which react to a particular condition by releasing drugs to provide more specific medical treatment [23]. A number of forthcoming advances in nanotechnology and artificial intelligence and lipidomics will enhance liposome-based drug processes with enhanced target capacity for enhanced therapy effects [24].

Mass production in combination with regulatory hurdles along with financial challenges does not temper the promising future for liposomal medicine in the coming years. Future studies with innovation activity will enhance applications of liposomal medicine in traditional and herbal medicine by improving drug delivery mechanisms and global patient outcomes [25].

Table 2. Future Trends and Challenges in Liposomal Drug Delivery.

Aspect	Description	Key Considerations	Reference
Regulatory Guidelines	FDA and EMA require rigorous evaluation for stability, safety, and efficacy	Quality control, reproducibility	[22]
Personalized Medicine	Tailoring liposomes to individual patient needs	Patient-specific formulations	[23]
Stimuli-Responsive Liposomes	Drug release triggered by pH, temperature, or enzymes	Precision drug targeting	[23]
Nanotechnology Integration	AI, lipidomics, and nanotech improving liposome design	Enhanced targeting, efficiency	[24]
Challenges	Cost, scalability, and regulatory hurdles	Large-scale production issues	[25]
Future Outlook	Expanding applications in conventional and herbal medicine	Improved patient outcomes	[25]

6. Conclusion

The development of therapeutic medicine via contemporary science occurred with liposomal drug delivery systems that improve stability and bioavailability and create specific delivery routes. The drug encapsulation properties of liposomes which manage both water soluble and fat soluble drugs make them successful as effective treatments for cancer patients and antimicrobial therapy as well as other pharmaceutical methods. Liposomal drug formulations incorporated into clinical pharmacology offered enhanced drug pharmacokinetics along with increased circulation time and attenuation of systemic toxicity becoming an accepted drug delivery system in various medical fields.

Liposomal technology combined with methods of herbal medicine provides revolutionary opportunities for the development of pharmaceutical products. Plants yield different drugs which do not properly dissolve in the human body. Liposomal encapsulation enhances herbal medicine pharmacological efficacy because this has already been done by scientists for curcumin and resolin and with *Tribulus terrestris* preparations. With this synthesis of traditional medicine and nanotechnology healthcare workers can anticipate improved therapeutic results.

The advancements in liposomal medicine are faced with various significant manufacturing challenges and stability constraints along with regulatory approval problems. Current research work in stimuli-responsive liposomes and artificial intelligence in drug design and personalized medicine technologies will further advance their future applications. The technological development will make liposomes a well-established part of contemporary and herbal pharmacotherapy which forms a bridge between sophisticated drug delivery systems and effective clinical treatments.

References

1. Bangham, A. D., Standish, M. M., & Watkins, J. C. (1965). Diffusion of univalent ions across the lamellae of swollen phospholipids. *Journal of Molecular Biology*, 13(1), 238–252. [https://doi.org/10.1016/S0022-2836\(65\)80093-6](https://doi.org/10.1016/S0022-2836(65)80093-6)
2. Gabizon, A., & Papahadjopoulos, D. (1988). Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors. *Proceedings of the National Academy of Sciences*, 85(18), 6949–6953. <https://doi.org/10.1073/pnas.85.18.6949>
3. Allen, T. M., & Cullis, P. R. (2004). Drug delivery systems: Entering the mainstream. *Science*, 303(5665), 1818–1822. <https://doi.org/10.1126/science.1095833>
4. Torchilin, V. P. (2005). Recent advances with liposomes as pharmaceutical carriers. *Nature Reviews Drug Discovery*, 4(2), 145–160. <https://doi.org/10.1038/nrd1632>
5. Gregoriadis, G. (2006). Liposome technology (3rd ed.). Informa Healthcare.
6. Li, W., & Szoka, F. C. (2007). Liposomal drug delivery: Recent advances and applications. *Annual Review of Biomedical Engineering*, 9, 451–475. <https://doi.org/10.1146/annurev.bioeng.9.060906.151952>
7. Samad, A., Sultana, Y., & Aqil, M. (2007). Liposomal drug delivery systems: An update review. *Current Drug Delivery*, 4(4), 297–305. <https://doi.org/10.2174/156720107782151269>
8. Immordino, M. L., Dosio, F., & Cattel, L. (2006). Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential. *International Journal of Nanomedicine*, 1(3), 297–315.
9. Allen, T. M., & Cullis, P. R. (2013). Liposomal drug delivery systems: From concept to clinical applications. *Advanced Drug Delivery Reviews*, 65(1), 36–48. <https://doi.org/10.1016/j.addr.2012.09.037>
10. Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., et al. (2013). Liposome: Classification, preparation, and applications. *Nanoscale Research Letters*, 8(1), 102. <https://doi.org/10.1186/1556-276X-8-102>
11. Barenholz, Y. (2012). Doxil®—the first FDA-approved nano-drug: Lessons learned. *Journal of Controlled Release*, 160(2), 117–134. <https://doi.org/10.1016/j.jconrel.2012.03.020>
12. Pattni, B. S., Chupin, V. V., & Torchilin, V. P. (2015). New developments in liposomal drug delivery. *Chemical Reviews*, 115(19), 10938–10966. <https://doi.org/10.1021/acs.chemrev.5b00046>
13. Sercombe, L., Veerati, T., Moheimani, F., Wu, S. Y., Sood, A. K., & Hua, S. (2015). Advances and challenges of liposome-assisted drug delivery. *Frontiers in Pharmacology*, 6, 286. <https://doi.org/10.3389/fphar.2015.00286>
14. Bozzuto, G., & Molinari, A. (2015). Liposomes as nanomedical devices. *International Journal of Nanomedicine*, 10, 975–999. <https://doi.org/10.2147/IJN.S68861>

15. Yingchoncharoen, P., Kalinowski, D. S., & Richardson, D. R. (2016). Lipid-based drug delivery systems in cancer therapy: What is available and what is yet to come. *Pharmacological Reviews*, 68(3), 701–787. <https://doi.org/10.1124/pr.115.012070>
16. Silverman, J. A., & Elkund, C. W. (2016). Liposomal amphotericin B: A review of the pharmacokinetics, pharmacodynamics, clinical experience and future directions. *Drugs*, 66(6), 803–813. <https://doi.org/10.2165/00003495-200666060-00004>
17. Zylberberg, C., & Matosevic, S. (2016). Pharmaceutical liposomal drug delivery: A review of new delivery systems and a look at the regulatory landscape. *Drug Delivery*, 23(9), 3319–3329. <https://doi.org/10.3109/10717544.2014.936569>
18. Bulbake, U., Doppalapudi, S., Kommineni, N., & Khan, W. (2017). Liposomal formulations in clinical use: An updated review. *Pharmaceutics*, 9(2), 12. <https://doi.org/10.3390/pharmaceutics9020012>
19. Beltrán-Gracia, E., López-Camacho, A., Higuera-Ciapara, I., Velázquez-Fernández, J. B., & Vallejo-Cardona, A. A. (2019). Nanomedicine review: Clinical developments in liposomal applications. *Cancer Nanotechnology*, 10(1), 11. <https://doi.org/10.1186/s12645-019-0055-y>
20. Farooque, F., Wasi, M., & Mughees, M. M. (2021). Liposomal drug delivery system: An updated review. *Journal of Drug Delivery and Therapeutics*, 11(5-S), 149–158. <https://doi.org/10.22270/jddt.v11i5-S.5063>
21. Sengar, A. (2025). Liposomal Drug Delivery Systems: An Intro as a Primer for Advanced Therapeutics. *Preprints*. <https://doi.org/10.20944/preprints202501.0398.v1>
22. Sengar, A. (2025). Innovations and Mechanisms in Liposomal Drug Delivery: A Comprehensive Introduction. *Preprints*. <https://doi.org/10.20944/preprints202501.0206.v1>
23. Sengar, A. (2025). Targeting Strategies in Liposomal Drug Delivery. *Preprints*. <https://doi.org/10.20944/preprints202501.0866.v1>
24. Sengar, A., et al. (2025). Advancing urolithiasis treatment through herbal medicine: A focus on *Tribulus terrestris* fruits. *World Journal of Pharmaceutical Research*, 14(2), 91–105.
25. Sengar, A., Chatekar, V. K., Andhare, S. B., & Sharma, L. (2025). Clinical pharmacology of antibiotics: Mechanisms, therapeutic uses, and resistance patterns. *World Journal of Pharmaceutical Research*, 14(1), 1531–1545. <https://doi.org/10.20959/wjpr20251-35216>

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.