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Abstract: The paper considers the issues of structural stability, electronic properties, and phonon 
dispersion of the cubic, tetragonal, and monoclinic phases of ZrO2. It was found that the monoclinic 
phase of zirconium dioxide is the most stable among the other two phases in terms of total energy, 
lowest enthalpy, highest entropy, and other thermodynamic values. The smallest negative modes 
were found for m-ZrO2. An analysis of the electronic properties showed that during the m–t phase 
transformation of ZrO2, the Fermi level first shifts by 0.125 eV towards higher energies, and then 
decreases by 0.08 eV in the t–c cross section. The band gap for c-ZrO2, t-ZrO2, and m-ZrO2 is 5.140 
eV, 5.898 eV, and 5.288 eV, respectively. Calculations based on the analysis of the influence of 
doping 3.23, 6.67, 10.35 and 16.15 mol. %Y2O3 on the m-ZrO2 structure showed that the enthalpy of 
m-YSZ decreases linearly, which accompanies further stabilization of monoclinic ZrO2 and an 
increase in their defectiveness. In this case, the position of the Fermi level changes abruptly, and the 
energy gap decreases. It has been established that not only for pure systems, including those doped 
with Y2O3, the main contribution to the formation of the conduction band is made by the p-states of 
electrons. An analysis of the mechanism of water adsorption on the surface of t-ZrO2 (101) and t-
YSZ (101) showed that H2O on unstabilized t-ZrO2 (101) is adsorbed dissociatively with an energy 
of -1.22 eV, as well as by the method of molecular chemadsorption with an energy of -0 .69 eV and 
the formation of a hydrogen bond with a bond length of 1.01 Å. In the case of t-YSZ (101), water is 
molecularly adsorbed onto the surface with an energy of -1.84 eV. Dissociative adsorption of water 
occurs at an energy of -1.23 eV, near the yttrium atom. 

Keywords: zirconia; stability; yttrium-stabilized zirconia; phase transition; Fermi level shift; water 
adsorption on the surface 

 

1. Introduction 

Zirconium ceramics have been extensively studied in recent years because of their excellent 
electrical, optical and mechanical properties. They are also biocompatible and have a wide range of  
biomedical applications. Tetragonal phase yttria stabilized zirconia (Y-TZP) has been used in various 
medical applications since the 1980s, particularly for dental crowns [1,2]. In addition, bulk materials 
and nanocomposites based on ZrO2 are used in electrochemical cells because of their high oxide ion 
conductivity and catalytic activity, low thermal conductivity and mechanical/chemical stability, as 
well as compatibility with electrolytes [3,4], which makes them from a structural point of view [3,4]. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
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One of the most remarkable properties of ceramics based on zirconia is the presence of three 
crystalline forms with different properties [5–9]. There are the most stable monoclinic (mineral 
baddeleyite; m-ZrO2), metastable tetragonal (medium temperature) and unstable cubic structure of 
zirconium dioxide (high temperature). High-pressure induced zirconium phases in the form of 
brookite (orthorhombic-I) and cotunnite (orthorhombic-II) are also known [10,11]. 

Pure zirconium dioxide undergoes a phase transformation from monoclinic to tetragonal (about 
1173°C), and then to cubic (about 2370°C), accompanied by a change in volume and, accordingly, 
their strength [12–14]: 

 

For the application of zirconia in advanced zirconia ion-conducting ceramic devices, it is 
important that the stabilized material has an adequate level of conductivity and the desired 
mechanical-chemical stability in both oxidizing and reducing atmospheres. Obtaining a stable 
material from zirconia is difficult due to a noticeable change in volume during the phase transition. 
Stabilization of zirconium dioxide is achieved by replacing some Zr4+ ions with larger ions in the 
crystal lattice [15–18]. For example, numerous studies have shown that doping with polyvalent 
oxides, including certain concentrations of yttrium oxide, stabilizes the high-temperature cubic and 
tetragonal phases of ZrO2 at room temperature. This also leads to an increase in the concentration of 
oxygen vacancies and oxygen-ion conductivity, which makes it possible to use stabilized ZrO2 as an 
electrolyte in fuel cells [17]). The ionic conductivity of ZrO2 strongly depends on the phase 
modification and the content of stabilizing additives in the system, which is also evidenced by the 
phase diagram given in [18]. 

Many technological applications of zirconia (pure ZrO2 or their stabilized alloys) are directly 
related to interaction with water. Examples are internal steam reforming in solid oxide fuel cells [19], 
catalysis [20], gas sensors [21], or their use as a biocompatible material [22]. ZrO2 surfaces are also 
proposed as suitable materials for hydrogen storage [21–23]. However, little is known about the 
interaction of water with ZrO2 surfaces at a fundamental level, which is mainly due to the lack of 
suitable samples. This is quite different for other oxide substrates [23–25]. Water is weakly adsorbed 
on many defect-free oxide surfaces; in ultrahigh vacuum, then stripped at a temperature below room 
temperature. Usually, at 160–250 K [26], water can bind more strongly to surfaces with defects, as 
was shown for rutile TiO2 (110) [27]. In these cases, H2O dissociates into an OH group, which fills the 
oxygen vacancy, and into a hydrogen atom, which binds to surface oxygen and forms a second OH 
group. On TiO2, these OH groups are stable up to 490 K [28]. On a defect-free surface oxide (a-
Cr2O3(001) [29], a-Fe2O3(012) [30] and oxides of alkaline earth metals, including Ca3Ru2O7(001) [31]), 
water can be strongly bound if the end of the surface includes highly active cations. Then it can easily 
dissociate. On the surface of RuO2(110), PdO(101), and Fe3O4(001), water binds coordinatively 
unsaturated cations and partially dissociated forms of the structure stabilized by hydrogen bonds 
[32–34]. Very high enthalpy adsorption of low H2O powder materials (≥ 2 eV on monoclinic and ≈ 1.5 
eV on tetragonal ZrO2) has been reported decreasing to liquid-water binding (0.45 eV) at coverages 
of approximately 2–4 H2O/nm2 [35]. In another work, Droshkevich A.S. and others [36] reported on 
the chemoelectric conversion of water adsorption energy into electricity on the surface of zirconium 
dioxide nanopowders when doped with 3 mol. %Y2O3, which were synthesized with sizes of 7.5 nm.  

However, despite numerous works in this direction, such detailed studies of water adsorption 
on the ZrO2 surface have not yet been carried out, and only a few reports on H2O adsorption can be 
found in the literature. In particular, studies of H2O adsorption on well-defined monoclinic surfaces 
of zirconia (m-ZrO2 (101) and m-ZrO2 (101) and their doped structures) have not yet been carried out. 
For example, it is especially difficult to study experimentally pure ZrO2 single crystals grown from a 
melt; they exhibit phase transformations upon cooling; therefore, their doped structures (eg YSZ) are 
usually investigated. However, the surface chemistry of YSZ is much more complex than that of pure 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 July 2023                   doi:10.20944/preprints202307.1163.v1

https://doi.org/10.20944/preprints202307.1163.v1


 3 

 

ZrO2, as shown for CO and CO2 adsorption [37]. In another work, Kobayashi et al. [38] found that 
YSZ slowly decomposed at about 250°C due to the t-m transformation. This t-m transformation is 
accompanied by microcracks and loss of material strength in a humid atmosphere, and this discovery 
cooled the excitement caused by the discovery of PPT in zirconia-based ceramics. This t-m 
transformation due to the presence of water or a humid environment in zirconia-based ceramic 
materials has been termed low-temperature degradation or aging of ZrO2 crystals. A lot of work has 
been done on this topic over the past couple of decades, including many hypotheses and discussions, 
and the most reliable hypothesis on the topic of YSZ is based on filling oxygen vacancies that were 
present in the matrix to maintain a stable t-YSZ phase. Thus, the filling of these O-vacancies with 
water radicals, either O2 or OH, destabilizes the t-YSZ phase. However, the YSZ stabilization 
mechanism itself has not been fully studied and is still the subject of numerous discussions. 
Therefore, the theoretical study and modeling of water adsorption on these surfaces is necessary as a 
starting point for a good understanding of the ongoing processes and phenomena from a 
fundamental point of view. On the other hand, aspects of the shift of the Fermi level after doping 
with yttrium oxide in ZrO2, as well as under the influence of water adsorption, are still not clear due 
to the difficulty of their detection in the experiment.       

For these reasons, in order to obtain detailed information on the process of adsorption of water 
molecules on the surface of ZrO2 and YSZ, as well as on the effect of doping on their electronic and 
structural properties, quantum chemical calculations were carried out in this work within the 
framework of the DFT. 

2. Modeling details 

Ab initio quantum chemical calculations were carried out on the basis of the density functional 
theory [39]. All three modifications of ZrO2 (Figure 1a–c) were first relaxed using the GGA functionals 
(PBE) [40] and strictly bounded normalized potential (SCAN) [41]. To obtain the most accurate value 
of the ground state energy, the total energy was calculated within the framework of the GGA 
exchange-correlation potential, and SCAN was used to correctly estimate the lattice parameters. The 
calculations were carried out using the Vienna Ab-initio Simulation Package (VASP 6.3.2) [42]. By 
comparing the total energy in the unit cell, a stable ZrO2 phase was found, and for stabilization to 
room temperature, a 2x2x2 supercell was created to simulate the effect of 3.23, 6.67, 10.34 and 16.15 
mol. %Y2O3 on the stability of ZrO2 and evaluate influence of Y2O3 doping on the position of the Fermi 
level. An orbital analysis was performed by summing the contributions of the individual atomic 
species in the unit cell and showing the contributions of the main atoms at the meeting point of the 
valence and conduction bands. Vacancies were taken into account by removing one O atom with each 
subsequent substitution of 2 Y3+ ions to the Zr4+ position. The atomic orbitals H (1s), O (2s, 2p), Zr (4d, 
5s), and Y (4s, 4p, 4d, 5s) were considered valence electrons, while the remaining electrons were 
considered nuclear electrons and remained frozen. The PAW method has been used to describe the 
interaction between valence electrons and electrons in the nucleus. The kinetic energy cutoff was 
fixed at the level of 600 eV, and all calculations were carried out taking into account spin-polarized 
effects.  
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Figure 1. Optimized cells of three ZrO2 phases (a-c), 2 × 2 × 2 monoclinic ZrO2 supercell model doped 
with Y2O3 (d), yttrium substitution sites in the surface matrix (e-f) and a box with the addition of a 35 
Å vacuum containing water molecules from the surface of the ZrO2 substrate (g). 

Next, ab initio calculations were carried out to study the mechanism of adsorption of a water 
molecule on the surface of ZrO2 and ZrO2 by stabilized Y2O3, where the adsorption energies of a water 
molecule on the surface of ZrO2 and YSZ were found, as well as an orbital analysis was carried out 
and the shift of the Fermi level was estimated. 

For such specific problems, the choice of an adsorbed surface is very important, and in order to 
obtain results consistent with experiment, we must accurately select a surface suitable for us, with 
the lowest density of surface broken bonds and electrostatic repulsion of neighboring layers, taking 
into account the thermodynamic stability of this surface. The higher the surface energy, the more 
thermodynamically unstable it is [43] and the more difficult it is to create the corresponding surface, 
namely, the surface energy is closely related to the number of atoms in the surface structure and the 
depth of the vacuum layer. 

In this work, in order to select a suitable optimal surface for water adsorption and study its 
behavior on this surface, we also calculated the surface energy (σ) using equation 1 taken from [44]: 

𝜎 = 12 ൣ𝐸௦௟௔௕ − ൫𝑁 𝑛ൗ ൯𝐸௕௨௟௞ ൧𝑆 , (1) 

where S — total surface area of the plate, 𝐸௦௟௔௕  — total plate energy, 𝐸௕௨௟௞  – total energy of an 
optimized bulk structure. N and n respectively represent the total number of atoms in the surface 
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structure and unit cell, and 2 represents the two surfaces of the calculated structure in the direction 
of the Z axis. 

Models of the crystal wafer surface were constructed based on an extended 2 × 2 supercell with 
a vacuum space of 35 Å along the z direction to minimize the interaction of neighboring layers. 
Taking into account the accuracy and calculation time, the lower layers of the surface plate were 
frozen, and the upper part was allowed to relax. Monkhorst-Pack grids with a 3 × 3 × 1 k-point grid 
were used to sample the reciprocal space for 2 × 2 plate calculations. Each molecule in the gas phase 
was placed in a large box (11 × 13 × 10 Å3) to avoid side interactions.  

Single H2O molecules were initially located at a height of 2.5 Å above the chosen surface, and 
different orientations, relaxing H2O molecules, and the upper layers of the plate were compared for 
each initial adsorption site. For each molecule, four initial adsorption centers were tested (above the 
Zr atom, above the terminal oxygen Ou (top) or Od (bottom), and also in the center above the Zr 
position (see Figure 1d)). For the YSZ surface model, various initial adsorption sites were also 
investigated: above the Zr atom, the extreme oxygen Ou (top), Od (bottom), in the oxygen vacancy 
position, the yttrium atom and the Ou-Od-Zr center (see Figure 1e) to find the most favorable 
adsorption sites leading to stable configurations. Nonequivalent initial adsorption sites have not been 
studied in detail.  

The adsorption energy (𝐸௔ௗ௦ ) was calculated as the difference between the energy of the plate 

with adsorbed water (𝐸ுଶО/௦௨௥௙௔௖௘) and the sum of the energies of the surface (𝐸௦௨௥௙௔௖௘) and 

the H2O molecule (𝐸ுଶО), according to the following equation:  𝐸௔ௗ௦ = 𝐸ுଶО/௦௨௥௙௔௖௘ − (𝐸௦௨௥௙௔௖௘ + 𝐸ுଶО)  (2) 

To take into account long-range uncoupled interactions, the van der Waals effects were taken 
into account as the difference between the calculated van der Waals energy of a plate with adsorbed 
H2O molecules (𝐸ுଶО /௦௨௥௙௔௖௘௩ௗௐ ) and the sum of the calculated van der Waals energies of the surface 
(𝐸௦௨௥௙௔௖௘௩ௗௐ ) and H2О molecules (𝐸ுଶО ௩ௗௐ): 𝐸௔ௗ௦ ௩ௗௐ = 𝐸ுଶО /௦௨௥௙௔௖௘௩ௗௐ − (𝐸௦௨௥௙௔௖௘௩ௗௐ + 𝐸ுଶО ௩ௗௐ) (3) 

where the interaction energy 𝑣𝑑𝑊 is taken into account by the Leonard-Jones potential. 

3. Results and discussion 

3.1. Structural stability and electron-phonon properties of ZrO2 

At the first stage of modeling, the structural-energy relaxation of pure ZrO2 phases was carried 
out using the VASP package. To find the optimal cutoff energy for the ENCUT plane wave basis 
functions and the corresponding number of k-points in the Brillouin zone, we tested the convergence 
of the total unit cell energy as a function of ENCUT and KPOINTS. 

The results of the k-point convergence test for ZrO2 cubic phases are shown in Figure 3, 2 and 
performed to build a grid from k-point data with an initial value of ENCUT = 1.3*ENMAX. Based on 
the results obtained, it can be concluded that for a 4x4x4 k-point grid with the Monkhrost-Pack 
scheme, it is optimal for the geometric relaxation of ZrO2. However, when calculating the electronic 
structure of these compounds, the number of k-points was at least doubled in order to obtain a better 
density of states (DOS).  
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Figure 2. The total energy of the c-ZrO2 unit cell as a function of the number of k-points under the 
condition ENCUT=1.3*ENMAX. 

Similar tests were carried out to establish the cutoff energy, which shows that the choice of 600 
eV is suitable for calculations, and a further increase in this energy increases the cost of the calculation 
without affecting its accuracy (Figure 3). Therefore, all further calculations were carried out at 
ENCUT = 600 eV.  

 

Figure 3. Total energy of the c-ZrO2 unit cell as a function of the cutoff energy (4 × 4 × 4 k-points). 

Similar convergence tests were also carried out for the tetragonal and monoclinic phases of ZrO2 
using the GGA potential. In Table 1 compares the calculated values of the crystal lattice constants of 
the ZrO2 phase, obtained from two exchange-correlation potentials, with the literature results. 

Table 1. Relaxation parameters of the ZrO2 phase. The calculation results are compared with 
experimental and previous theoretical results. 

 Lattice constants 
This work Another Calc. 

[52] 
Exp. 

GGA SCAN 

m-ZrO2 [P2_1/c] a (Å) 5.191 5.115 5.090 5.0950[45] 
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b (Å) 5.245 5.239 5.187 5.2116[45] 

c (Å) 5.202 5.304 5.243 5.3173[45] 

β◦ 99.639 99.110 99.432 99.230[45] 

V (Å3) 144.410 139.400 137.76 140.88[45] 

E − Em (eV/ZrO2) 0 0 0 0 

t-ZrO2 [P4_2/nmc] 

a=b (Å) 3.593 3.622  - 3.64[46] 

с (Å) 5.193 5.275 - 5.27[46] 

c/a 1.445 1.456 - 1.45[46] 

V (Å3) 67.05 69.214 - 69.83[46] 

dz 0.012 0.013 1.011 0.046[47] 

E − Em (eV/ZrO2) 0.4257 0.4257 0.048 0.065[49] 

c-ZrO2 [Fm-3m] 

a=b=c (Å) 5.075 5.12 5.031 5.129[50] 

V(Å3) 130.709 134.06 127.36 134.9[50] 

E − Em (eV/ZrO2) 0.833 0.833 0.087 0.14[51] 

According to the results given in Table 1, it can be seen that during the transition from the high-
temperature phase to the low-temperature phase, the lattice distortion leads to a displacement of O 
ions in the c direction by the value of dz, expressed in relative units. As a result of distortion in the 
tetragonal phase, all Zr-O bonds will become nonequivalent. According to Table 3, the SCAN 
functionality describes the geometry much better than the standard GGA-PBE. However, it is also 
seen from the available data that GGA and SCAN almost identically describe the energy difference 
between the monoclinic and tetragonal phases of ZrO2. Since the SCAN exchange-correlation 
functional describes the structural properties well, we decided to use this functional in the future 
when describing the geometry of other systems. 

Table 2 compares the total energies calculated by the GGA method for systems of the monoclinic, 
tetragonal, and cubic phases of ZrO2. It can be seen that among all systems, the most stable phase 
with the lowest energy is m-ZrO2, that is, in fact, in terms of the field energy at low temperatures, the 
stable phase is monoclinic with the space group P21/c.  

Table 2. GGA- calculated total electronic energies of c-ZrO2, t-ZrO2, m-ZrO2. 

System Energy ΔE 

m-ZrO2 -115.179 0 

t-ZrO2 -114.754 0.425 

c-ZrO2 -114.346 0.833 

Further, using the Phonopy code in the VASP package, the thermodynamic properties and 
phonon spectra of the ZrO2 phase were calculated for a more detailed discussion and substantiation 
of the structural stability of the ZrO2 monoclinic phase. Figure 4 shows the change in the entropy of 
the unit cells of the ZrO2 phase as a function of temperature.  
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Figure 4. Entropy as a function of absolute temperature per unit cell. 

According to Figure 4, as the transition from monoclinic to tetragonal and cubic phases, the 
entropy of these compounds decreases, which corresponds to the criterion of inverse dependence of 
enthalpy or direct dependence of entropy and stability of solid systems [53]. Thus, the monoclinic 
phase is the most stable with the highest entropy among other ZrO2 phases. This pattern can be clearly 
observed after analyzing the pattern of phonon frequencies of the three phases of ZrO2 (Figure 5a–c), 
from which it is clearly seen that the monoclinic phase has the smallest negative modes than the other 
two phases. 

 

Figure 5. Phonon dispersion relations of (a) monoclinic, (b) tetragonal, and (c) cubic ZrO2 at 0 K. 

Figure 6a–c shows the temperature dependence of the free energy, entropy, and heat capacity of 
a 12-atom supercell for m-ZrO2, t-ZrO2, and m-ZrO2. 
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Figure 6. Temperature dependence of free energy, entropy and heat capacity of a 12-atomic supercell 
for: m-ZrO2 (a), t-ZrO2 (b), and m-ZrO2 (c). 

The results of calculations of the density of phonon states presented in Figure 7a–c indicate that 
as the transition from monoclinic to tetragonal and cubic phases, the density of electronic states 
increases, and they also agree well with the results shown in Figure 5 and confirm that the monoclinic 
phase is the most stable among the other phases of ZrO2. This is also confirmed by the result of the 
Energy/Volume diagram presented in Figure 8. Therefore, for further stabilization by doping with 
Y2O3, it is reasonable to choose a monoclinic phase.  

 
Figure 7. Phonon density of state for: m-ZrO2 (a), t-ZrO2 (b), and m-ZrO2 (c). 
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Figure 8. Total energy as function of volume [54]. 

Next, using the well-optimized structures of the three phases of ZrO2, we performed calculations 
to study their electronic properties. Using the GGA and SCAN functionals and the HSE06 hybrid 
functional, we found the band gaps of these systems (Table 3), analyzed their orbital structure, and 
modeled the change in the position of the Fermi level in these systems. 

Table 3. Calculated and experimental band gap of c-ZrO2, t-ZrO2, m-ZrO2 in eV. 

System 
This work Experiment [55] 

GGA SCAN HSE06 VUV 

m-ZrO2 3.9 3.8 5.288 5.78 

t-ZrO2 4.42 4.37 5.898 5.83 

c-ZrO2 4.03 3.93 5.140 6.10 

According to the results presented in Table 3, the GGA and SCAN functionals showed a rather 
small band gap compared to the HSE06 hybrid functional [56], which makes it possible to overcome 
the underestimation of the band gap. On the other hand, it is obvious that the standard SCAN and 
GGA functionals greatly underestimate the band gap. Given the suitability of HSE06 for estimating 
the band gap energy, we further used this hybrid functional to describe all the problems associated 
with the electronic properties of the systems under study. 

Next, for ZrO2 structures relaxed using the SCAN functional, calculations were made of the 
density of available electronic states at the Fermi level (Figure 9), which is crucial for interpreting the 
electronic properties of ZrO2 and the transport characteristics of electronic devices based on this.  
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Figure 9. Total Density of Electronic States (TDOS) for: (a) monoclinic, (b) tetragonal, and (c) cubic 
ZrO2. 

According to Figure 9, the density of electronic states for c-ZrO2 is somewhat overestimated 
compared to other phases. In addition, secondary energy gaps are observed in the energy diagram of 
the tetragonal and cubic phases. Also, this gap increases during the transition from the tetragonal to 
the cubic phase. 

Next, the position of the Fermi level in ZrO2 crystals and the shift of this level during their phase 
transformation were determined. As can be seen from Figure 10, if we take the position of the Fermi 
level (maximum of the valence band) for the monoclinic phase as a reference point, then during the 
m-t phase transformation of ZrO2, this level first shifts by 0.125 eV towards higher energies (towards 
the valence band), and then , in the t-c section, decrease by 0.08 eV. This is also observed in detail 
from the band stacking results for the orbital analysis, which are shown in Figure 11 for the three 
phases of ZrO2. 

It can be seen that as the transition from the monoclinic to the tetragonal and cubic phases, the 
contribution of the p orbitals becomes more significant in CB, and the s orbitals make a small 
contribution, while the d state shows a different trend. It is assumed that this behavior may be 
associated with a change in the crystal field and covalence of ZrO2 during the phase transformation. 
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Figure 10. Conduction (red) - and valence (green)-band change for  c-ZrO2, t-ZrO2, m-ZrO2. The 
position of the Fermi level corresponds to the maximum of the valence band at each of the sites. 

 

Figure 11. Composite PDOS diagram showing the main contributions of the s-, p-, and d-orbitals to 
the states that form the CB bottom for c-ZrO2, t-ZrO2, and m-ZrO2. Top VB (green) scaled to zero. 

3.2. Structural and energy properties of Y2O3 doped with m-ZrO2. Electronic properties of YSZ. 

Next, supercells with a size of 2x2x2 of 96 atoms were created to simulate the effect of Y2O3 on 
the stability and electronic properties of the most stable (monoclinic) modification of ZrO2. To dope 
yttrium, it was necessary to replace some formula units of Y2O3 with ZrO2 in a 2x2x2 supercell, with 
each replacement creating one oxygen vacancy. A schematic description of the generation of YSZ 
structures is given below: 𝑥𝑍𝑟𝑂ଶ + 𝑘𝑌ଶ𝑂ଷ  →   𝑍𝑟௫𝑌ଶ௞𝑂ଶ௫ାଷ௞ + 𝑉௢ೖ  

%𝑌ଶ𝑂ଷ = 𝑘𝑥 + 𝑘   × 100%,  
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which can be considered as the union of x ZrO2 formula units with k Y2O3 formula units located on 
the initial lattice of x + k ZrO2 units, which leads to the formation of m oxygen defects. Based on this, 
we determine the percentage of vacancies equal to the percentage of yttrium units in the final 
structure. Thus, starting with a pure 96-atom ZrO2 supercell, we mainly focused on 4 different 
concentrations of Y2O3 in our calculations (Table 4). 

Table 4. The number of Zr, Y and O ions for various mol. %Y2O3 taking into account the oxygen 
vacancy. 

mol. %Y2O3 Zr Y O O vacancy Formula 

0 32 0 64 0 Zr32O64 

3.23 30 2 63 1 Zr30Y2O63 

6.67 28 4 62 2 Zr28Y4O62 

10.35 26 6 61 3 Zr26Y6O61 

16.15 22 10 59 5 Zr22Y10O59 

After the final preparation of the YSZ structures, geometric optimization and doping relaxation 
of the Y2O3 supercell were performed using the GGA and SCAN potentials. Figure 12 shows a 
diagram of the dependence of the change in the enthalpy of formation of YSZ on the concentration 
of Y2O3, calculated by formula 4: 

𝛥𝐻 =  ாೊೄೋି[௫ாೋೝೀమା௞ாೊమೀయ]௫ା௞   (4) 

from which it is clearly seen that doping with Y2O3 reduces the enthalpy and leads to the stabilization 
of zirconium dioxide. The empirical formula obtained by the least squares method says that the 
enthalpy of formation energy decreases linearly according to the law ΔН = -1.0407x + 63.532, where 
x is the concentration of Y2O3 in YSZ. 

 

Figure 12. Energy of YSZ formation as a function of Y2O3 concentration. 

Thus, with an increase in the Y2O3 concentration, the number of oxygen vacancies in YSZ 
increases, and the growth of these O vacancies is considered as a stabilizing mechanism of the 
monoclinic zirconium phase, as evidenced by a decrease in the enthalpy of formation.     
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Numerical values of the enthalpy formation energy are given in Table 6. Table 5 shows the 
geometric parameters of the ZrO2 and YSZ supercells at various Y2O3 concentrations after thorough 
relaxation using the SCAN functional. 

Table 5. Lattice parameters of 2x2x2 ZrO2 and YSZ supercells at various Y2O3 concentrations. 

System 
Lattice parameters  

Structure 
a (Å) b(Å) c (Å) α(◦) β (◦) γ(◦) 

0 10.382 10.491 10.757 90 99.64 90.00 m - YSZ 

3.23 mol. %Y2O3 10.274 10.524 10.536 90.21 98.84 89.94 m - YSZ 

6.67 mol. %Y2O3 10.512 10.544 10.603 89.90 90.12 89.62 t - YSZ 

10.35 mol. %Y2O3 10.529 10.541 10.546 89.98 90.09 90.08 t - YSZ 

16.15 mol. %Y2O3 10.540 10.541 10.543 90.08 90.00 90.02  c - YSZ 

After obtaining the optimized structures, the energy of formation (Ef) for ZrO2 and YSZ and the 
energy of formation of vacancies (Ev) for YSZ were calculated as: 

𝐸௙ =  𝐸௧௢௧ − ෍ 𝐸௧௢௧(𝑥)௫   

𝐸ௗ௙ = 𝐸௧௢௧௓௥32షೣ௒ೣ ை64షഃ − 𝐸௧௢௧௓௥32ை64 + 𝛿 ∗ 𝐸௧௢௧ை   

where 𝐸௧௢௧- total energy of the system, 𝐸௧௢௧(𝑥) – total energy of individual components, δ is the 

number of vacancies (defects) in the crystal.  The calculated values of 𝐸௙ and 𝐸ௗ௙for each atom 

are given in Table 6.  

Table 6. GGA-calculated value of enthalpy (ΔН) and energy of formation (𝐸௙) for ZrO2 and YSZ. 
Oxygen vacancy formation energy (𝐸ௗ௙) for YSZ. 

System ΔН 𝑬𝒇 𝑬𝒅𝒇 

0 64.02917222 -4.747216667 0 

3.23 mol. %Y2O3 59.91124404 -4.848422632 -1.874577368 

6.67 mol. %Y2O3 56.13271879 -4.967857447 -3.739875532 

10.35 mol. %Y2O3 52.7041267 -5.106527419 -5.596013441 

16.15 mol. %Y2O3 47.00229139 -5.384704945 -9.220196154 

Figure 13 shows the nature of the change in 𝐸௙ and 𝐸ௗ௙from the concentration of yttrium oxide, 
from which the regularity of their linear decrease is clearly visible.      
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Figure 13. Formation energies and formation energy of an oxygen vacancy for YSZ as a function of 
Y2O3 concentration. 

Next, calculations were performed to study the electronic structure of Y2O3-stabilized ZrO2 
supercells to reveal the effect of doping on the density of states, the behavior of the Fermi energy, 
and the orbital components. Figure 14 shows plots of changes in the density of electronic states YSZ 
for all doping concentrations of Y2O3.   

 
Figure 14. Total density of electronic states (TDOS) for ZrO2 doped with 3.23, 6.67, 10.34 and 16.15 
mol. %Y2O3. 

According to the results presented in Figure 14, it can be noted that after doping with Y2O3, new 
energy states do not appear in the TDOS patterns due to the introduction of defects, that is, there are 
no noticeable changes, except for a decrease in the band gap , which can be understood in detail after 
orbital analysis (Figure 16) and Fermi level mixing estimates (Figure 15). The band gap is 4.71 eV, 
4.92 eV, 4.75 eV, and 4.72 eV, respectively, for ZrO2 doped with 3.23, 6.67, 10.34, and 16.15 mol. %Y2O3. 

 

Figure 15. Conduction (red) - and valence (green)-band change for  ZrO2 doped with 3.23, 6.67, 10.34 
и 16.15 mol. %Y2O3. The position of the Fermi level corresponds to the maximum of the valence band 
in each section. 
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Figure 16. Composite PDOS diagram showing the main contributions of the s-, p- and d-orbitals to 
the states forming the CB bottom for ZrO2 doped with 3.23, 6.67, 10.34 and 16.15 mol. %Y2O3. Top VB 
(green), scaled to zero. 

According to Figure 15, after doping with 3.23 mol. %Y2O3 into pure m-ZrO2, the Fermi level 
drops by 0.067 eV and then shifts by 0.007 eV towards the conduction band upon doping with 6.67 
mol. %Y2O3. Then, at a doping concentration of 10.34 mol. %Y2O3, it still increases by 0.01 eV, which 
is 0.017 eV more than in the case of 3.23 mol. %Y2O3. However, after doping with 16.15 mol. %Y2O3, 
it drops to 0.012 eV. The PDOS diagram also interprets the stepped conduction band pattern in terms 
of the contribution of the s, p, and d orbitals. Understanding these features makes it possible to tune 
the Fermi energies in the band structure to solve the most important problems of materials science 
and instrumentation. 

The problems of studying the influence of doping of yttrium oxide on the properties and stability 
of tetragonal and cubic zirconia remain the subject of our future research. 

3.3. Water adsorption on ZrO2 and YSZ surfaces 

As already mentioned, the most important point is the choice of the surface with the lowest 
surface energy in order to correctly model the mechanism of water adsorption on the corresponding 
surface. To select the optimal adsorbed surface, we calculated the surface energy (σ) for several 
different surface models according to the equation after their geometric relaxation. The calculated 
value of the surface energy for ZrO2 is shown in Table 7. 

Table 7. Surface energies (σ) of the main phases of ZrO2. 

Phase Miller indices 

m-ZrO2 [010] [100] [110] [101] [011] [111] 

σ, 1019 Эв/м2 1.54 1.16 1.10 1.23 1.08 0.81 

t-ZrO2 [001] [010] [101] [100] [111]  

σ, 1019 Эв/м2 0.98 0.95 0.78 1.01 0.79  

c-ZrO2 [100] [110] [111]    

σ, 1019 Эв/м2 1.51 1.34 1.12    

According to the results presented in Table 7, it can be seen that the most stable surfaces can be 
obtained due to the tetragonal and monoclinic phases, namely, t-ZrO2 (101) and m-ZrO2 (111). The 
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results obtained are in qualitative agreement with the work of Maliki et al. [57], who report that the 
most stable surface can be obtained from t-ZrO2 (101). As for the comparison of the results with 
experimental data, there were no data for comparison in the literature. This is due to the fact that the 
surface energy of solid metal oxides is difficult to measure experimentally. In total, the measurement 
of the surface energy of some types of zirconium dioxide surfaces by the method of multiphase 
balancing at high temperatures was reported [58].  Based on the results obtained, the t-ZrO2 (101) 
surface was chosen for this study as the most stable surface for the adsorption of water molecules. 

After the final surface preparation, single H2O molecules were initially located at a height of 2.5 
Å above the selected surface with different orientations, which is greater than the bond distance 
between Zr and O (2.12 Å) in the solid state. The structures were then optimized by freezing the 
bottom layers of the wafer (Figure 17a).   

 

Figure 17. Configuration of adsorption of a water molecule on the surface of t-ZrO2 (101): (a) model 
of a lamellar t-ZrO2 (101) cell with the initial configuration of water on its surface, (b) dissociative 
adsorption in a side view, (c) model of molecular physisorption water on the surface of t-ZrO2 in side 
view. 

The optimized structure of the H2O + t-ZrO2 (101) system is shown in Figure 17b, which shows 
that the H2O molecule is dissociatively adsorbed with an energy of -1.221 eV even in the most 
favorable region (where the system has the minimum energy of the stable configuration). Dissociative 
adsorption of water on ZrO2 was also observed by Korhonen et al. [59], where it was experimentally 
and theoretically proven that water dissociates on the surface of m-ZrO2 at low coverage, and the 
adsorption energy calculated by us on t-ZrO2 (101) for [H+OH]-ZrO2(101) is similar to their results 
for monoclinic (111) and (101) surfaces with energy -1.20 eV. It was also found that water is adsorbed 
on this surface by the method of molecular chemisorption, in which water oxygen coordinates the 
surface cation, and a slight elongation of one O–H water bond (1.13 Å) occurs in the form of hydrogen 
bonding water with the surface oxygen ion (Figure 17c). In this case, the adsorption energy is 0.69 eV, 
and the distance between the oxygen of the water molecule and the surface zirconium atom is 2.205 
Å. In this case, the proton (H) in the water molecule and oxygen from the surface of the plate form a 
hydrogen bond with a bond length of 1.01 Å.  

Further, in order to study the mechanism of water adsorption on the surface of t-YSZ, we 
replaced two Zr (from the uppermost and subsurface O-Zr-O trilayers by Y with the removal of one 
oxygen from the third atomic layer nearest neighbor of Y atoms) to obtain a surface similar to t-
YSZ(101). The results showed that the water molecule is molecularly adsorbed and also dissociated 
on the t-YSZ(101) surface. Molecular adsorption of water at the most optimal configuration occurs 
from an energy of -1.84 eV, and the bond length of water with the t-YSZ (101) surface increases to 
2.73 Å (Figure 18a). In this case, the O-H distance in water molecules will remain unchanged.  
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Figure 18. Molecularly adsorbed water (a) and dissociated surface hydroxyls. (b) in the H2O-YSZ (101) 
model/. 

The dissociative adsorption of water was accompanied by the movement of oxygen in the area 
of the plate vacancies, which leads to a very strong adsorption of -1.23 eV, blocking surface areas for 
oxygen activation. In both cases, H2O is adsorbed near the yttrium atom (Figure 18b). 

Unlike water adsorption on t-ZrO2(101), H2O is more stably adsorbed on t-YSZ(101), since the 
adsorption energy of H2O-YSZ(101) is more favorable than that of (H+OH)-YSZ(101). 

Doping with Y2O3 stabilizes t-ZrO2(101) and is accompanied by large relaxations of O atoms. 
Calculations based on the GGA functional greatly underestimate the band gap of the system (3.24 eV 
for the H2O-ZrO2(101) system and 3.21 eV for H2O-YSZ(101 )), however, despite the presence of the 
Oth vacancy, the average gap energy states did not appear in the t-YSZ band diagram, as is observed 
in the systems under study. A comparative analysis of the electronic structure of the H2O-ZrO2(101) 
and H2O-YSZ(101) systems indicates that the interaction of H2O practically does not change the 
electronic configuration of the system (with the exception of an increase in the density of state) during 
the transition of the system to being modified by Y impurities (Figure 19). However, water molecules 
are predominantly prone to molecular adsorption on the t-YSZ (101) surface, and more often 
dissociatively on t-ZrO2(101). Table 8 lists some key data obtained by modeling water adsorption on 
t-ZrO2(101) and t-YSZ surfaces.  
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Figure 19. Total density of states (TOS) calculated by the GGA for H2O molecules adsorbed on t-
ZrO2(101) and t-YSZ (101). 

Table 8. Adsorption energies (Eads) and structural characteristics of t-ZrO2(101) and t-YSZ (101) with 
adsorbed water. 

 t-ZrO2(101) t- YSZ (101) 

Eads (H2O), eV - - 1.84 

Eads (H+OH), eV - 1.22 - 1.23 

Dist O(H2O)-surf, Å 2.08 2.73 

Dist O(H2O)-H1(H2O), Å 0.97 0.96 

Dist O(H2O)-H2(H2O), Å 1.13 0.97 

H-O-H  bond angle, (°) 111.3 105.54 

In such studies, it is also important to take into account the hydrophilic nature of ZrO2. Studies 
show that, in addition to physically adsorbed water, the substrate surface contains terminal, 
bibridging, and triple bridging OH groups, which are actively involved in the surface reaction [60,61]. 
Surface hydroxyl groups and H2O adsorbed on the surface can partially block active sites (lattice 
oxygen ions on the surface) of YSZ oxidation. The surface configuration model for fully hydroxylated 
t-YSZ(101) is shown in Figure 20a. The results show that the OH groups form strong bonds on the 
surface. Figure 20b shows the adsorption structure of a single water molecule on a fully hydroxylated 
YSZ surface.  

 

Figure 20. Relaxation configurations: (a) fully hydroxylated t-YSZ (101), (b) single water adsorption 
on a fully hydroxylated t-YSZ (101) surface, and (c) t-YSZ(101) surface hydration model. 

It can be seen that the repulsive forces of oxygen and hydrogen atoms in a water molecule and 
OH atoms on a completely hydroxylated surface do not prevent the adsorption of an H2O molecule 
on t-YSZ (101). When water is adsorbed on a hydroxylated surface, two strong hydrogen bonds are 
formed at a distance of 1.56 and 1.63 Å from each other. In this case, water is adsorbed with an 
adsorption energy of 0.34 eV. The adsorption model of a single water molecule and other similar 
systems will help in the future to study in detail more complex models, including the multilayer 
hydration structure of the interface (Figure 20). Although this model requires large computational 
power for DFT calculations, nevertheless, it can be assumed that in the layer closest to the surface 
(hydroxyl hydration layer), most of the water molecules can be adsorbed dissociatively. Further, due 
to hydrogen bonds, H2O molecules will continue to be adsorbed and regularly located on the 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 July 2023                   doi:10.20944/preprints202307.1163.v1

https://doi.org/10.20944/preprints202307.1163.v1


 20 

 

hydroxylated surface, forming primary and secondary hydrated layers. The regular arrangement of 
H2O molecules in the outer layer can be considered as a transition layer, and the hydration structure 
of the first three H2O layers located near the surface can be considered as a group of water molecules 
capable of being stably adsorbed and existing on the m-NSC surface (101). However, a detailed study 
of the complete model of t-YSZ(101) surface hydration remains the subject of our future research.   

Conclusions 

The stability, electronic properties and dispersion of phonons in the three phases of the ZrO2 
phases were investigated using quantum chemical calculations. The stable phase is defined in terms 
of the total energy, enthalpy, entropy, and band structure of phonons. It has been established that 
during the m-t-phase transformation of ZrO2, the Fermi level first shifts by 0.125 eV towards higher 
energies, and then decreases by 0.08 eV in the t-c region. Analysis of Tthe influence of doping 3.23, 
6.67, 10.35 and 16.15 mol. %Y2O3 on the m-ZrO2 structure showed that the m-YSZ enthalpy decreases 
linearly, which accompanies further stabilization of monoclinic ZrO2.An analysis of the mechanism 
of water adsorption on the surface of t-ZrO2 (101) and t-YSZ (101) showed that H2O on unstabilized 
t-ZrO2 (101) is adsorbed dissociatively with an energy of -1.22 eV, as well as by the method of 
molecular chemisorption with an energy of -0 .69 eV and the formation of a hydrogen bond with a 
bond length of 1.01 Å. In the case of t-YSZ (101), water is molecularly adsorbed onto the surface with 
an energy of -1.84 eV. Dissociative adsorption of water occurs at an energy of -1.23 eV, near the 
yttrium atom. Thus, with an increase in the Y2O3 concentration, the number of oxygen vacancies in 
YSZ increases, and the growth of these O vacancies is considered as a stabilizing mechanism of the 
monoclinic zirconium phase, as evidenced by a decrease in the enthalpy. The presence of these 
oxygen vacancies also gives YSZ a high ionic conductivity property, making YSZ suitable for use in 
full solid oxide cells. This study will help in the future to build a more accurate calculation model for 
other types of surfaces like YSZ by characterizing their structural and electronic properties. 
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