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Abstract: Understanding the intricate interplay between actions and their consequential effects is a
cornerstone of human intelligence and decision-making processes. Enabling artificial agents to emulate
such capabilities is essential for fostering seamless interaction in dynamic, real-world environments.
In response to this demand, we present a novel approach, termed Differential Effect-Aware Reasoner
(DEAR), which systematically leverages the structured representations encapsulated within scene-
graphs to model the nuanced outcomes of actions articulated in natural language. Unlike prior
methods that predominantly rely on monolithic visual features paired with linguistic cues, DEAR
capitalizes on observing relational differences across state transitions induced by actions. By employing
paired scene-graphs reflecting pre-action and post-action states, our approach enhances the agent’s
sensitivity to subtle state variations. To empirically validate the effectiveness and robustness of DEAR,
we conduct extensive evaluations on the CLEVR_HYP dataset. The experimental results consistently
demonstrate that DEAR surpasses baseline models in terms of reasoning accuracy, data efficiency, and
cross-scenario generalization, thus underscoring its potential as a foundational mechanism for future
action-effect reasoning systems.

Keywords: action reasoning; visual commonsense; action-effect modeling; differential state learning;
language-vision reasoning

1. Introduction

The capacity to comprehend and anticipate the outcomes of deliberate actions constitutes a
fundamental element of human cognition. This faculty allows individuals to envision whether a
sequence of events will culminate in an intended objective, elucidate past occurrences by inferring
plausible action chains, and diagnose failures by tracing the sequence of actions that precipitated an
adverse state [2]. As artificial intelligence systems become increasingly embedded in everyday settings,
these agents must acquire parallel competencies to navigate and manipulate complex physical and
social contexts effectively. For instance, as articulated by Davis and Marcus [4], if a robot tasked with
serving wine discerns that the offered glass is either fractured or contaminated, it should intuitively
refrain from fulfilling the request. Similarly, in scenarios where a domestic cleaning agent encounters
obstacles, such as a cat darting across its path, the agent must exercise restraint, neither causing
harm nor mismanaging the object. These illustrative examples accentuate the criticality of robust
action-effect reasoning mechanisms within artificial agents.

Historically, Reasoning about Actions and Change (RAC) has been heralded as a central research
agenda since the formative years of Al. The pioneering work of McCarthy et al. [9] laid the intellectual
groundwork by conceptualizing systems capable of deductive reasoning over sequences of actions,
exemplified through scenarios like journey planning from home to the airport by aggregating micro-
actions such as walking and driving. Subsequently, the breadth of RAC applications has expanded,
permeating domains ranging from robotic planning to fault diagnosis, necessitating sophisticated
modeling of state transitions and the interactive dynamics of agents with their environments [1].

While the RAC paradigm was predominantly nurtured within the knowledge representation and
logical reasoning communities, contemporary advancements have spurred burgeoning interest among
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NLP and computer vision researchers. This interdisciplinary shift has been systematically chronicled in
the survey by Sampat et al. [13], which cataloged a wealth of studies probing neural models’ capacity
to reason about actions and their aftermath when supplied with visual and/or linguistic stimuli.
Salient among these are the contributions of Park et al. [10], Sampat et al. [12], Shridhar et al. [14],
Yang et al. [17], Gao et al. [5], Patel et al. [11], whose works exemplify the diverse approaches adopted
in this nascent yet rapidly evolving field.
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Figure 1. Existing methods for learning paradigm, and our proposed method.

Within this contextual backdrop, we critically reexamine prevailing methodologies for action-
effect modeling, which predominantly follow an intuitive paradigm wherein raw visual features
extracted from images are amalgamated with embedded action descriptions to simulate possible
outcomes. However, through rigorous introspection, we contend that such approaches, herein referred
to as the conventional LS1 strategy, may inadequately encapsulate the differential nuances that
characterize the true effects of actions. Rather than implicitly expecting the model to infer such
effects from static representations, our proposed DEAR framework introduces an explicit comparative
mechanism wherein the agent observes and encodes state alterations via juxtaposed scene-graphs
depicting pre-action and post-action conditions.

More precisely, DEAR capitalizes on extracting relational deltas, effectively highlighting distinc-
tions such as the emergence of decay in an apple following the action of rotting. By establishing direct
associations between these observed deltas and the corresponding linguistic action descriptors (e.g.,
“rotten”), the agent fosters a more grounded and interpretable internal representation of action-effect
dynamics. This structured comparative approach, we argue, is poised to amplify the agent’s reasoning
acuity, rendering it more adept at discerning causality and generalizing to unfamiliar scenarios where
nuanced state shifts are critical indicators of action outcomes.

In subsequent sections, we will systematically articulate the architectural intricacies underpin-
ning DEAR, delineate its operational mechanics through mathematical formalization, and present
empirical assessments substantiating its superiority over LS1-based models. Our experiments on the
CLEVR_HYP [12] benchmark underscore DEAR's efficacy across multiple metrics, heralding it as a
promising foundation for advancing action-effect reasoning in visually grounded Al systems.

2. Related Work
2.1. Reasoning About Actions and Change

Reasoning about Actions and Change (RAC) has been a foundational topic in artificial intelligence,
deeply rooted in classical knowledge representation and logical reasoning traditions. Early works
such as McCarthy et al. [9] established the necessity for systems capable of modeling and deducing
the consequences of actions in dynamic worlds. The seminal contributions in this domain focused on
developing formalisms like the Situation Calculus and the Event Calculus, which provided declarative
representations of how actions alter the state of the world. These frameworks facilitated deductive
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reasoning and planning, enabling agents to model hypothetical sequences of actions to achieve
desired goals.

In the realm of commonsense reasoning, Davis and Marcus [4] emphasized the crucial role
of action reasoning in enabling Al systems to navigate the intricacies of everyday environments
where explicit programming is insufficient. The ability to reason about preconditions, effects, and
ramifications of actions was identified as an indispensable competence for agents operating in open-
world settings.

Recent years have witnessed a growing interest in extending RAC paradigms into data-driven
domains, leveraging advancements in deep learning to learn action-effect dynamics from visual
and linguistic observations. Banerjee et al. [1] explored neural approaches for modeling transitions
in structured environments, while Park et al. [10] pioneered the task of generating commonsense
consequences of visual events using pretrained language models, thereby bridging symbolic RAC
traditions with modern neural architectures.

2.2. Scene Graph-Based Visual Reasoning

Scene graphs have emerged as a powerful intermediate representation that encapsulates the
semantic structure of visual scenes by modeling objects, their attributes, and inter-object relationships.
This structured abstraction has been extensively employed in visual reasoning tasks, including Visual
Question Answering (VQA) [18], visual captioning, and object-centric representation learning.

In the context of action-effect reasoning, Sampat et al. [12] introduced CLEVR_HYP, a synthetic
dataset designed to study the reasoning capabilities of models in scenarios where actions modify the
scene’s state. Their work demonstrated the viability of leveraging scene-graph representations to
facilitate interpretable action-effect modeling and highlighted the limitations of existing models that
predominantly rely on direct visual-linguistic feature fusion.

Building upon this trajectory, Chen et al. [3] proposed graph-editing networks capable of simu-
lating the transformations induced by actions on scene-graphs, framing action reasoning as a graph
manipulation task. Such approaches underline the potential of scene-graph-centric models to serve as
transparent and structured reasoning substrates, capable of generalizing across diverse action types
and complex scenes.

2.3. Neuro-Symbolic Reasoning Approaches

The intersection of neural networks and symbolic reasoning has gained significant momentum as
a promising paradigm for combining the scalability and perceptual prowess of deep learning with the
interpretability and systematic reasoning capabilities of symbolic systems. Neuro-symbolic models
such as those proposed by Yi et al. [18] have demonstrated impressive capabilities in executing complex
reasoning over structured representations like scene-graphs, achieving near-human performance on
benchmarks such as CLEVR [8].

These methods leverage neural modules to parse visual inputs into structured scene-graphs,
followed by symbolic program execution over these graphs to answer compositional questions. While
effective in static reasoning scenarios, these approaches often assume fully observable and static
environments, lacking mechanisms to model dynamic changes induced by actions.

Our proposed DEAR framework aligns with this line of work by adopting scene-graphs as a
reasoning substrate but extends these paradigms by explicitly modeling state transitions and action-
induced graph transformations, thereby enabling dynamic reasoning capabilities that are absent in
purely neuro-symbolic models.

2.4. Language-Vision Grounded Reasoning

Recent advances in multimodal Al have yielded significant progress in developing models capable
of jointly reasoning over visual and linguistic modalities. Pretrained vision-language transformers such
as LXMERT [15], ViLBERT, and VisualBERT have achieved state-of-the-art performance on various
downstream tasks by learning cross-modal representations over large-scale image-text corpora.
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These models, however, are primarily optimized for tasks such as Visual Question Answering
(VQA) and Visual Commonsense Reasoning (VCR), where the input scene remains static, and the
reasoning revolves around inferring latent knowledge from the given scene. They lack explicit
mechanisms to model and simulate how actions modify the state of the environment, which is critical
for action-effect reasoning.

Vo et al. [16] explored text-conditioned image editing, where models learn to synthesize modified
images based on action descriptions. While such approaches enable implicit modeling of action effects,
they often struggle with compositional generalization and lack interpretability due to their reliance on
dense feature manipulations.

Our work builds upon these insights but diverges by introducing explicit state differential learning
via paired scene-graphs, thereby promoting interpretability and facilitating compositional reasoning
about actions and their consequences in a structured and disentangled manner.

Bridging the Gaps.

Despite the advancements across these domains, a unified approach that holistically integrates
scene-graph-based reasoning, neuro-symbolic program execution, and language-guided action-effect
modeling remains underexplored. Our DEAR framework seeks to bridge these gaps by introducing
a novel differential effect-aware reasoning paradigm that synergistically combines the strengths
of structured scene-graph representations, neural language-action alignment, and graph-editing
mechanisms. By doing so, we aim to advance the frontiers of action reasoning and establish a robust
foundation for developing agents capable of performing dynamic, interpretable, and compositional
reasoning in complex visual environments.
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Figure 2. Overview of the overall framework.

3. Proposed Differential Effect-Aware Reasoner Framework

In this section, we elaborate on the comprehensive architecture of our proposed Differential Effect-
Aware Reasoner (DEAR), meticulously designed to enhance action-effect reasoning by leveraging
paired scene-graph differentials. Our central hypothesis postulates that by exposing the model to
explicit visual differences between pre-action and post-action states, and aligning these deltas with
natural language action descriptions, the model can develop a more grounded and interpretable
representation of action semantics.

To systematically model this paradigm, DEAR comprises a meticulously engineered three-stage
pipeline, each addressing a critical subtask that cumulatively facilitates robust action-effect compre-

hension and reasoning.

3.1. Stage-1: State Differential Encoder-Decoder Module

The initial stage of DEAR architecture is dedicated to constructing an Action-Effect Differentiation
Encoder-Decoder module. This component is entrusted with the task of encoding the difference
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between two scene-graphs—S (pre-action) and S’ (post-action), followed by reconstructing S’ condi-
tioned on S and the encoded differential representation Ag g . This stage is critical, as it establishes a
structured latent representation that captures the delta induced by specific actions.
Given the CLEVR_HYP dataset [12], which provides meticulously annotated scene-graph pairs (S,
S’), we select a balanced subset of 20k pairs ensuring uniform representation across action categories
(add, remove, change, move). The encoder module encodes the relational differences and object-level
alterations into an embedding Ag s/, while the decoder reconstructs S, optimizing the following joint
objective function:
argmax logP(S'|S, Ags/) (1)
OEncoderODecoder
Here, Ag s = Encoder(S,S’). Additionally, to ensure robust scene consistency, we introduce a reg-
ularization term leveraging scene-graph structural similarity measured via graph edit distance Lggp:

Lcep = 1f(S) = f(§)Il2 (2)
where $' denotes the decoder’s reconstruction and f(-) is a scene-graph feature extractor based on

Graph Convolution Networks (GCN).
The overall objective becomes:

Lstager = LRecon + AGEDLGED 3)
where Aggp controls the weight of graph consistency regularization.

3.2. Stage-2: Linguistic-to-Action Representation Alignment Module

Building upon the representations obtained in Stage-1, Stage-2 focuses on bridging the gap
between linguistic actions and their induced visual differentials. The goal is to map the natural
language action description T4 to an action-effect representation Ay, that approximates Ag /.

We freeze the encoder-decoder module from Stage-1 and introduce a Neural Language-to-Action
Representation module. This module employs a stack of embedding layers, an LSTM encoder with a
hidden size of 200, followed by multi-head attention and dense layers to capture contextual semantics.

The optimization objective is defined as:

argmax log P(S'|S, Arep) @)

®NL2AcrianRep
where Ay = NL2ActionRep(T4). To ensure alignment between A,ep and Ag s/, we introduce an
auxiliary contrastive loss Lontrast formulated as:
exp(sim(Ag g, Arep)/T)
Ly exp(sim(Asg, Arep;) /T)

)

Leontrast = — log

where sim(-, ) denotes cosine similarity, T is the temperature hyperparameter, and N is the batch size.
The cumulative objective becomes:

EStageZ = LGen + contrast Lcontrast (6)

This dual-objective encourages DEAR to not only generate plausible post-action scenes but also
ensures that its action representations are discriminative across varying actions.

3.3. Stage-3: Visual-Linguistic Reasoning Integration with Scene Graph Parsing

In the final stage, we integrate the learned modules with established visual recognition and
reasoning backbones. Specifically, we employ a Mask R-CNN [6] followed by ResNet-34 [7] pipeline to
extract fine-grained object attributes, spatial relationships, and scene semantics, which are subsequently
converted into structured scene-graphs.
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These generated scene-graphs are then fed into the Scene-Graph Question Answering (SGQA)
module inspired by [18], which utilizes a neuro-symbolic execution engine over scene-graph represen-
tations to answer complex queries. This component ensures that the reasoning capabilities of DEAR
can be seamlessly evaluated via established benchmarks such as CLEVR [8].

To ensure smooth integration, we introduce a scene normalization module that aligns feature
distributions from pre-trained detectors with our internal representations:

Lorm = ||,upretrained - ,uDEARl |2 + ||Upretruined - UDEAR| |2 @)
This ensures compatibility across modules while mitigating domain shift issues.

3.4. Comparative Baselines for Evaluation

To validate the effectiveness of DEAR, we compare its performance against two strong baselines
reported in Sampat et al. [12].

*  (TIE) Text-conditioned Image Editing: This method employs a text-adaptive encoder-decoder
augmented with residual gating mechanisms [16] to synthesize modified images conditioned
on the action text. Subsequently, LXMERT [15], a vision-language transformer, processes the
generated image and the associated query to predict answers.

¢ (SGU) Scene-Graph Update: This baseline formulates the action-text understanding as a graph-
editing problem. The initial image is translated into a scene-graph, and the action text is parsed
into a functional program (FP). Following the approach of Chen et al. [3], the FP is executed to
update the scene-graph, which is then utilized by a neuro-symbolic VQA model [18] to generate
the final answer.

In addition to these baselines, we augment our evaluation by introducing a novel ablation variant
of DEAR where the contrastive alignment loss Lontrast is disabled, allowing us to empirically quantify
the significance of explicit action-effect alignment within DEAR’s reasoning process.

4. Experiments

In this section, we conduct comprehensive empirical evaluations to assess the effectiveness,
generalization ability, and robustness of our proposed Differential Effect-Aware Reasoner (DEAR)
model. We benchmark DEAR against several strong baselines on the CLEVR_HYP dataset [12],
followed by detailed ablation studies, qualitative analyses, and additional diagnostic experiments to
uncover the behavior and limitations of our approach.

4.1. Benchmark Comparison with State-of-the-Art Methods

Evaluation Metrics: Following the task design in CLEVR_HYP, we adopt Exact Match Accuracy
(%) as our primary evaluation metric, which measures the proportion of correctly predicted answers
matching the ground truth.

As shown in Table 1, DEAR achieves substantial performance gains over existing models, par-
ticularly excelling on the most challenging settings involving multi-step actions and complex logical
queries. These results underscore the superior reasoning capabilities and better action-effect modeling
achieved by DEAR’s explicit differential learning mechanism.

Table 1. Comparison of our DEAR model against two competitive baselines on CLEVR_HYP dataset. DEAR
consistently outperforms prior methods across all evaluation splits.

Performance Comparison on CLEVR_HYP (%)

TIE sGU DEAR
Ordinary Test 63.4 712 78.9
2Hop Action Test 53.1 65.5 71.8
2Hop Logic Test 57.9 66.0 73.1
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4.2. Fine-Grained Analysis by Action and Reasoning Types

To gain deeper insights, we analyze model performance disaggregated by action and reasoning
categories.

The results in Table 2 and Table 3 clearly show that DEAR achieves consistent improvements
across all action and reasoning types. Notably, DEAR reduces the performance gap on traditionally
challenging ‘Add + Move’ and logical combinations such as “And’ and ‘Not’ queries, validating the
effectiveness of explicit state-differential modeling.

Table 2. Breakdown of accuracy by different action types on validation split. DEAR demonstrates superior
performance especially on more challenging Add and Move actions.

Accuracy (%) by Action Types (Validation Set)

Action Type TIE SGU DEAR
Add 56.3 63.5 714
Remove 87.8 89.1 95.3
Change 86.4 92.3 96.7
Move 60.2 70.1 75.6

Table 3. Performance breakdown by logical reasoning categories on 2Hop Logic Test. DEAR demonstrates
superior compositional reasoning capabilities.

Accuracy (%) by Reasoning Types (2Hop Logic Test)

Reasoning Type TIE sGu DEAR
And 58.2 68.5 73.6
Or 57.5 67.8 72.4
Not 56.4 65.3 70.2

4.3. Qualitative Evaluation and Visualization

We present qualitative results to visually assess DEAR’s reasoning competence. As shown, DEAR
accurately captures the intended scene alterations resulting from various action descriptions, even
when synonyms or paraphrases are used. Additionally, we show the t-SNE plot of learned action
vectors, where DEAR forms distinct and semantically coherent clusters, indicating meaningful action
representation learning. We further extend the qualitative study by introducing a confusion matrix of
action classification results, as presented in Table 4.

Table 4. Confusion matrix for DEAR'’s action type recognition. High diagonal values indicate strong action
discrimination capabilities.

Add Remove Change Move
Add 94.1 1.8 2.9 12
Remove 2.3 96.7 0.7 0.3
Change 3.2 1.1 93.4 2.3
Move 2.8 0.5 1.9 94.8

4.4. Robustness and Error Analysis

To further stress-test DEAR'’s robustness, we introduce noisy action descriptions by adding
irrelevant modifiers or introducing paraphrased variants. Table 5 shows the accuracy degradation
compared to clean queries.

The error analysis reveals that the majority of failures stem from ambiguous actions (e.g., where
both ‘remove’ and ‘change’ might be plausible) or occlusion-induced visual ambiguities.
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Table 5. Robustness evaluation under noisy action descriptions. DEAR shows graceful degradation, indicating
robustness to language variations.

Test Setting Accuracy (%) Accuracy Drop (%)
Clean Queries 78.9 -
Noisy Queries 73.4 55

4.5. Ablation Studies

We perform extensive ablations to evaluate the contribution of DEAR’s key components, including
the differential learning module, action vector dimensionality, and data size requirements. The results,
shown in Table 6, and newly introduced Table 7, confirm the indispensable role of Stage-1 in enabling
strong action-effect reasoning and identify 125 as the optimal action vector length.

Table 6. Ablation showing the importance of Stage-1 pretraining for learning action-effect representations.

Setting Scene-Graph Accuracy (%) QA Accuracy (%)
Without Stage-1 56.3 45.7
With Stage-1 87.2 76.4

Table 7. Ablation showing the impact of action vector length on DEAR’s performance.

Action Vector Length Scene-Graph Accuracy (%) QA Accuracy (%)
25 63.2 54.9
50 72.6 65.1
125 87.2 76.4
200 86.9 76.1

4.6. Extended Diagnostic: Compositional Generalization to Unseen Actions

To evaluate DEAR’s compositional generalization, we design a new test set combining unseen
combinations of action sequences (‘Remove + Move + Change”). The results in Table 8 show that DEAR
significantly outperforms baselines, highlighting its compositional reasoning strength.

Table 8. Performance on a newly designed Compositional Generalization Test Set involving unseen action sequences.

Model Accuracy (%)
TIE 48.1
SGU 58.7
DEAR 69.8

5. Conclusions

The ability to reason about the intricate interplay between actions and their consequences is
widely recognized as a cornerstone of human intelligence and decision-making processes. As artificial
agents increasingly permeate human environments, endowing them with such sophisticated reasoning
capabilities becomes paramount for achieving seamless, context-aware, and trustworthy interactions.
In this paper, we introduced the Differential Effect-Aware Reasoner (DEAR), a novel and data-efficient
framework meticulously designed to address this challenging goal within the context of vision-
language reasoning.

Our proposed DEAR framework advances the state-of-the-art by introducing an explicit and
interpretable action-effect modeling mechanism, which systematically leverages paired scene-graph
differentials to ground action semantics. Unlike previous methods that primarily relied on implicit fea-
ture manipulation or heuristic program generation, DEAR formulates action reasoning as a structured
state transition modeling problem, fostering more robust generalization and enhanced interpretability.
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We operationalized our approach through a carefully designed three-stage architecture. The first
stage learns explicit state differentials by observing pre- and post-action scene-graph pairs, enabling
the model to internalize fine-grained relational shifts induced by diverse action types. The second
stage bridges natural language actions to these visual differentials via a neural alignment module,
ensuring that linguistic cues can effectively trigger accurate visual predictions. Finally, the third stage
integrates the learned modules into a reasoning pipeline capable of answering complex visual queries
over modified scenes.

Through extensive experiments on the CLEVR_HYP benchmark, our method demonstrates
superior performance across multiple evaluation splits, consistently surpassing strong baselines in both
accuracy and generalization to unseen action combinations and complex logical queries. Additionally,
our ablation studies reveal the indispensable role of DEAR’s state-differential learning component
in enabling these gains. Our qualitative analyses further confirm that DEAR learns meaningful and
disentangled action representations, which manifest as semantically coherent clusters in the learned
embedding space.

Beyond empirical validation, DEAR exhibits several desirable properties, including data efficiency
and robustness to linguistic variations, as evidenced by our robustness evaluations and compositional
generalization tests. These qualities position DEAR as a promising foundation for building real-world
Al systems capable of interacting with dynamic environments and collaborating effectively with
humans in complex physical tasks.

Despite its strengths, DEAR also opens several avenues for future exploration. Currently, our
approach focuses on a finite set of predefined action types and operates within a synthetic domain.
Extending DEAR to support open-ended and ambiguous real-world actions, possibly incorporating un-
certainty modeling and probabilistic reasoning, remains an exciting direction. Furthermore, integrating
DEAR with embodied agents and testing its capabilities in embodied reasoning scenarios, such as em-
bodied question answering or task planning, could unlock new potentials for Al-human collaboration.

In conclusion, we believe DEAR offers a meaningful step forward in equipping Al agents with
structured and interpretable action-effect reasoning abilities, and we hope this work will inspire
further research at the intersection of scene understanding, commonsense reasoning, and grounded
language understanding.
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