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Abstract

Turning images and scenes from imagination and memory has applications from engineering to
artistic expression. Electroencephalography (EEG) is a non-invasive technique for recording the
brain’s electrical activity via scalp electrodes, accessible with low-cost headsets. Previous work used
EEG to encode images with the assistance of a generative adversarial network (GAN), allowing EEG-
based image reconstruction. Successive images, encoding objects at separate temporal points, were
used to train a classification system. EEG data from healthy participants (N =20) were used to encode
images, each divided into an “initial state” and a “later state.” A modified “one versus rest” system
using a random forest classifier was used for both offline and online use. Compared to the intersubject
model, the individualized models worked most reliably with gamma and beta features on frontal
electrodes, reaching a mean accuracy of 92 + 4%, a mean F1 score of 0.64 + 0.08, and a mean AUC-
ROC of 0.87 £ 0.09. In line with prior literature, changes in spectral activity across the brain were also
observed. The “paired” images of objects were converted into short films and 3D objects with the
assistance of a ComfyUI pipeline. The system uses temporal encoding to capture dynamic object
transformations, reliably reconstructing time-specific representations from EEG despite limitations,
demonstrating potential for scalable, real-time visual memory reconstruction in research, industry,
and art.

Keywords: EEG; electroencephalography; image reconstruction; generative Al; 3D printing

1. Introduction

1.1. Overview

Electroencephalography (EEG) is a non-invasive technique for recording the brain’s electrical
activity via scalp electrodes, typically arranged using standardized systems such as the International
10-20 method [1-3]. While EEG has been widely used for identifying and reconstructing static, two-
dimensional images, recent advances in generative artificial intelligence (AI) have enabled the
transformation of 2D images into dynamic movies and three-dimensional objects [4,5]. However,
most EEG-based image reconstruction efforts have focused on static images with limited categories,
overlooking the dynamic nature of real-world objects and scenes [6]. In this study, we collected EEG
data from healthy volunteers using a low-cost OpenBClI headset as they viewed images of the same
objects at different time points. We employed a modified one-versus-rest classifier to distinguish
objects not only between categories but also across different temporal presentations. By encoding
static images as chronological sequences, our approach leverages Al to reconstruct movies from EEG
data and enables the identification and 3D conversion of single objects at specific time points.
Decoding distinctive, sequential states of the same object from EEG on low-cost, open-source
hardware could improve the accessibility of uses in art, animation, transportation, manufacturing,

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202508.1454.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 August 2025 d0i:10.20944/preprints202508.1454.v1

2 of 16

research, and medicine. This integration of low-cost EEG and Al has the potential to lower barriers
for digital reconstruction of imagined sequences and physical realization through 3D printing,
expanding the possibilities for brain-computer interface (BCI) applications [4-7].

1.2. Background

1.2.1. Summary

In EEG-based BCI has existed for decades, ranging in scope and purpose [8-11]. Earlier work
converted EEG to image through encoding 1D temporal data with 2D images [12,13]. Recent work
demonstrated the capability to convert EEG into images in real time, but requiring specialized
systems and complex Al models [6]. Others have even reported on object retrieval, leveraging
synergies in verbal and visual processing [4,14-16]. Al has also been used to convert images into
videos and 3D objects. However, the prerequisite required encoding EEG to images, often with
expensive EEG systems and requiring an intense software backend [4,17,18].

1.2.2. EEG to Image

The extraction of 3D models from remembered images using electroencephalography (EEG) has
garnered significant attention in recent years. Researchers have made notable strides in decoding
neural signals to reconstruct visual stimuli, leveraging various methodologies and technologies,
especially as they pertain to the nuanced nature of human perception.

Image “reconstruction” from EEG has referred in the literature for both encoding patterns of
EEG, often corresponding to specific visual images, to attempts at reconstructing images without
prior prompts [19-21]. While certain overlap exists in the literature, EEG patterns associated with
visual recall generate consistently identifiable features [22-25]. If an image can be recalled and
“encoded” with EEG, then it may be converted to a 3D object or image.

Wakita et al. demonstrate the reconstruction of visual textures from EEG signals, effectively
utilizing spatially global image statistics in this process. Their work builds on research that outlines
how EEG patterns correlate with texture perception, thus establishing a foundation for reconstructive
approaches that can be adapted to encompass more complex images, including 3D models [26].
Moreover, Ling et al. highlight the ability of EEG signals to support fine-grained visual
representations, confirming methodologies applicable to image reconstruction processes, particularly
with visual stimuli like words and faces [27,28].

The complexity of EEG signals necessitates sophisticated modeling techniques for effective
image reconstruction. For instance, the work by Fuad and Taib, although focusing primarily on
brainwave patterns, underscores the necessity of understanding EEG data relationships in image
processing tasks. However, it's important to note that their research does not directly address 3D
reconstructions [29]. Similarly, the integration of advanced neural networks such as Generative
Adversarial Networks (GANSs) has been explored. Khaleghi et al. propose a geometric deep network-
based GAN that associates EEG signals with visual saliency maps, suggesting methodologies that
could be extended for reconstructing 3D visual information from remembered images [30]. These 2D
to 3D conversion techniques, such as depth map estimation, were also used in photogrammetry [31].

Additional research by Nemrodov et al. showcases the reconstruction of faces from EEG data,
emphasizing EEG's potential for gaining insights into processing dynamic visual stimuli, thus
indicating a progression towards more complex 3D interpretations [32]. This highlights the
advancements towards utilizing EEG not just for static images but for complex scenarios requiring
3D representations.

Ongoing developments in models that leverage variational inference for image generation from
EEG data, as presented by Yang and Liu, indicate a burgeoning interest in employing diffusion
models alongside conventional neural networks. Their innovative framework addresses the high-
dimensional nature of EEG signals, potentially leading to credible 3D reconstructions from brain
activity [5]. On the other hand, Acar et al. emphasize the integration of head tissue conductivity
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estimations with EEG source localization, underlining the importance of physiological modeling in
improving the accuracy of reconstructed visual outputs [1].

1.2.3. EEG to Video

The evolution of reconstructing movies from brain activity measured through EEG is an area of
growing research interest, driven by advancements in signal processing and machine learning. EEG
provides superior temporal resolution relative to other imaging modalities like functional magnetic
resonance imaging (fMRI), which is pivotal for capturing the dynamic nature of movie stimuli.
Previous findings indicate that EEG can effectively decode visual stimuli, making it a promising
candidate for movie reconstruction, although challenges remain regarding noise and signal
alignment [27,32].

A well-defined area of visual memory is sequence memory, recording EEG during a
presentation of consecutive images or other stimuli. The encoding period can be as short as 200-400
ms, and distinctive EEG is generated during image recall [22,25,33]. Notably, separate brain regions
recalling sequential images activate in the order they were first observed. The EEG corresponding to
each recalled phase in the sequence has been consistent enough to characterize [24]. This “slideshow”
may be applicable to dynamic visual stimuli.

Recent studies by Ling et al. and Nemrodov et al. highlight the potential for extending existing
EEG-based image reconstruction techniques to dynamic visual stimuli. These studies emphasize that
while much work has focused on static images or specific types of visual stimuli, the methodologies
could be adapted to reconstruct short movie segments by leveraging the temporal dynamics that EEG
can capture [27,32]. This opens new avenues for utilizing EEG in creating more immersive and
interactive BCls, potentially applying real-time feedback loops to enrich the user experience during
movie screenings [34,35].

Innovative algorithms, such as those proposed by Khaleghi et al. and Yang and Liu, employ
generative models to synthesize images from EEG signals [5,30]. The geometric deep network-based
generative adversarial network (GDN-GAN) introduces a method that emphasizes visual stimuli
saliency while leveraging deep learning frameworks to achieve higher fidelity in reconstructions.
Yang and Liu's EEG-ConDiffusion framework exemplifies a structured approach to image generation
through a pipeline that addresses the inherent complexities of EEG data [5,30]. Moreover, works by
Shimizu and Srinivasan demonstrate that combining perceptual and imaginative tasks improves
reconstruction accuracy, suggesting that a multifaceted approach may be pivotal in refining
reconstruction methodologies [13].

Wang et al. and Shen et al. provide insights into using generative models to align EEG data with
visual stimuli more precisely. Their research illustrates the integration of neural activity data to better
facilitate the representation of visual experience during movie watching, thus accentuating the
correlation between the viewer's cognitive activity and reconstructed content [36,37]. The
implications of using EEG for such purposes lie not only in advancing neuroscience but also in
enhancing technologies like virtual and augmented reality, where understanding and predicting user
responses can lead to more engaging experiences.

Despite the promising advancements, challenges remain in achieving reliable synchronization
between reconstructed images and the cognitive experiences they intend to represent. Issues related
to noise, signal interference, and individual variations in brain activity necessitate ongoing research
to refine these methods further. The integration of multidisciplinary approaches, encompassing
advanced machine learning techniques and cognitive neuroscience, appears essential for overcoming
these limitations and enhancing the quality of reconstructions from EEG data.

In conclusion, the current landscape of reconstructing movies from EEG signals demonstrates a
blend of established techniques and cutting-edge innovations. As the field progresses, it is likely that
prospective applications will emerge, ranging from entertainment to therapeutic settings, while
significantly enhancing our understanding of brain function related to visual processing.
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1.2.4. EEG to Object

In recent years, the integration of EEG with methods for reconstructing three-dimensional (3D)
objects has gained significant attention within the research community. The fundamental challenge
of reconstructing 3D objects from EEG data rests in deciphering the spatiotemporal neural activity
that corresponds to visual stimuli or user interactions, and recent advancements show promising
approaches in improving the accuracy and effectiveness of these reconstructions.

EEG-based 3D reconstruction systems often employ high-density electrode montages to enhance
the spatial resolution of the neural signals. Taberna et al. highlighted the importance of accurate
electrode localization for reliable brain imaging, suggesting that their developed 3D scanning method
can significantly contribute to improving EEG's usability as a brain imaging tool, hence aiding in the
spatial contextualization of neural data [38]. Complementary to this, Clausner et al. proposed a
photogrammetry-based approach that utilizes standard digital cameras to accurately localize EEG
electrodes. This method not only surpasses traditional electromagnetic digitization techniques in
terms of efficiency but also facilitates better integration with magnetic resonance imaging (MRI) for
source analysis [39].

The reconstruction process can benefit significantly from advanced machine learning
techniques, particularly deep learning architectures such as convolutional neural networks (CNNs)
and generative adversarial networks (GANSs). For instance, Yang et al. introduced a generative
adversarial learning framework (3D-RecGAN) designed for inferring complete 3D structures from
single depth views. This approach leverages the strengths of autoencoders and generative models,
thereby enhancing the detail and accuracy of the reconstructed objects, although this research did not
directly correlate with EEG data [31]. Furthermore, advancements in CNN architectures demonstrate
the ability to effectively integrate multi-dimensional EEG data, yielding superior performance in
decoding tasks relevant to object recognition and manipulation [33,40].

Additionally, studies have explored using EEG data to reconstruct visual stimuli by analyzing
the neural correlates of visual perception. The work by Nemrodov et al. emphasizes the potential of
using EEG in conjunction with advanced image reconstruction techniques to recover dynamic visual
stimuli. Their findings support the premise that the temporal resolution of EEG might enable effective
reconstruction of dynamic visual information, which could also be applicable in real-time object
recognition and tracking scenarios [32].

Overall, the fusion of EEG datasets with sophisticated image reconstruction techniques shows
promise for advancing our understanding of the neural underpinnings of visual cognition and the
generation of 3D models. While significant challenges remain in ensuring accuracy and real-time
processing capabilities, ongoing research is striving to refine these methods. As the technology
progresses, we may witness a broader application of EEG-based 3D reconstructions in both clinical
and cognitive neuroscience domains.

1.2.5. Prior Work

The reconstruction and processing of remembered images using low-cost, open-source EEG
offers several advantages that significantly enhance research capabilities and accessibility for broader
applications. One primary benefit is the economic viability of such systems, which democratizes
access to brain imaging technologies. Historically, advanced EEG setups are expensive and complex,
limiting their use primarily to well-funded research institutions. The advent of open-source EEG
platforms, such as OpenBCI and Creamino, provides an affordable alternative that maintains
compatibility with existing software frameworks, thus enabling new research avenues and
educational applications at lower costs [14,41].

Using low-cost EEG systems for reconstructing remembered images enhances the scalability of
research studies focusing on cognitive processes such as memory recall. The integration of innovative
machine learning models with EEG data can effectively decode the neural correlates associated with
visual memory. For instance, advancements in computational algorithms and open-source software
frameworks illustrates how researchers can tailor their analyses and improve data handling through
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accessible technological solutions, allowing for sophisticated and reproducible research designs [42-
44]. Furthermore, systems that facilitate real-time data processing enhance interactive research
applications and brain-computer interfaces, contributing to fields ranging from psychology to
robotics [2].

The ability to conduct experiments with high temporal resolution using portable EEG systems
is particularly advantageous in studying dynamic cognitive phenomena, such as the spatiotemporal
trajectories inherent in visual object recall [45]. Research demonstrates that EEG can reveal rapid
neural responses and patterns associated with memory reactivation during active recall or visual
imagery tasks [46,47]. Early findings underscore the potential of utilizing such methodologies to
further explore brain functions related to memory and cognition, pushing the boundaries of our
understanding of the human brain [48].

In summary, low-cost, open-source EEG systems serve as pivotal tools in reconstructing
remembered images, providing significant benefits in terms of accessibility, cost-effectiveness,
scalability, and collaborative research practices. Future studies utilizing these technologies are well-
positioned to deepen our understanding of neural mechanisms linked to memory recall, paving the
way for advances in both scientific knowledge and applicable technology.

2. Materials and Methods

2.1. Overview

The deployment of an EEG-based image identification system necessitated careful consideration
of stimulus selection, signal acquisition, feature extraction, and classification algorithms. During data
collection, each participant was instructed to visually and aurally engage with the presented stimuli
while EEG signals were recorded. Data acquisition was conducted using an OpenBCI EEG headset
in conjunction with a Cyton board and OpenBCl acquisition software (OpenBCI Foundation, New
York). Feature extraction focused on identifying the most robust EEG signatures associated with
visual recall, informed by existing literature. For classification, a model was selected based on its
ability to achieve high accuracy while minimizing overfitting. The overall system design leveraged
validated methodologies from prior research to maximize reliability and performance [27,45,49].

2.2. Participants

A total of 20 adult participants (mean age = 24.3 + 4.2 years; 4 females, 16 males) were recruited
during Summer 2025 via word-of-mouth and printed flyers. Eligibility criteria included age between
18 and 40 years, normal hearing, and normal or corrected-to-normal vision. All participants provided
written informed consent in accordance with IRB approval (STUDY20250042). Participants were
seated at a standardized distance of at least 24 inches (61 cm) from the display monitor. Following
consent, the experimenter fitted each participant with a standard EEG cap and attached the reference
electrode. Experimental instructions were presented onscreen, and EEG data acquisition commenced
immediately thereafter.

2.3. Stimulus Presentation

All software was implemented in Python [50]. Prior EEG-based image reconstruction
implementations used visual stimuli in generating training data [4,12,49]. To implement temporal
encoding, images depicting the same object at distinct, visually recognizable timepoints (e.g., a ship
progressing along a river) were arranged in sequential pairs. The protocol ensured that the six images
representing the "initial" state were always presented prior to the six corresponding "later" state
images. The full chronological sequence of stimuli is illustrated in Figure 1, while the OpenBCI Cyton
board command protocol is detailed in Figure 2.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202508.1454.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 August 2025 d0i:10.20944/preprints202508.1454.v1

6 of 16

— | [ | ‘ > > o

Title Slide (25) Rules Slide (7 s) Cue (4s) Wait Slide (13) Trial 1 25)

Figure 1. Chronological sequence of stimuli presentation.
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Figure 2. Operational diagram for each section.

For each image, data acquisition comprised a single demonstration phase followed by ten
experimental trials. During the demonstration, a stimulus consisting of a white background with
black characters was displayed for 4 seconds. Subsequently, a 1-second “wait” screen was presented,
followed by a 2-second blank screen, during which participants were instructed to retain the image
in memory. Another 1-second “wait” screen was interleaved after the blank interval. This fixed
sequence was repeated for a total of ten trials per image. Each session encompassed ten trials of 12
unique images presented in pseudo-random order, with “initial state” images consistently preceding
their corresponding “later state” versions. The total duration of each session was approximately 20
minutes, and only a single session was recorded per participant. If it was not possible to complete the
entire session, as much data as possible was collected. Data were excluded from analysis if a complete
set of trials for all images was not obtained.

2.4. Image Processing

The images used are shown in Figure 3. Each image was encoded with an integer from 1-12. The
first “initial state” images (1-6) were always displayed before the “later state” images (7-12). The
inception score was used to ensure quality outcomes [51].

Figure 3. Images detailing temporally separate states.

After classification, the image was sent to a pipeline prepared using ComfyUI [52]. Each image
was combined with its pair (e.g., between the “initial state” and “later state) and animated. The
conversion of two sequential images to an animation has been used well before generative Al, but
ComfyUl enables a generative solution for it [52]. before A parallel pipeline converted the image to a
3D solid, corresponding to OBJ format. As detailed in prior work, the use of ComfyUI to convert 2D
to 3D started with the ComfyUl-Hunyuan3DWrapper and ComfyUI-Y7-S5BS-2Dto3D, which
employed depth map estimation and related photogrammetric techniques [52]. From OB] format,
each 3D model was converted to an STL file for 3D printing using Python.
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2.5. Design Requirements

EEG data acquisition was implemented using open-source hardware and software, specifically
the OpenBCI Cyton biosensing board in conjunction with the Ultracortex Mark IV headset. Sixteen
channels of scalp EEG data were recorded at a sampling rate of 250 Hz. Data acquisition and
timestamping were automated via a custom Python script to ensure temporal precision and
reproducibility. As illustrated in Figure 4, electrodes were positioned according to the international
10-20 system at the following sites: Fp1, Fp2, F7, F3, F4, F8, T3, C3, C4, T4, T5, T6, P3, P4, O1, and O2.

FP2 FP1

Figure 4. Electrocephalographic headset used for data acquisition, shown with 16 electrodes in 10-20
International System and an OpenBCI Cyton board.

Each trial was recorded as an individual file, with the filename encoding the image identifier,
trial number, and participant ID. Trials lacking valid timestamp data were excluded from further
analysis, which amounted to less than 2% of total trials. Inclusion criteria required a minimum of two
trials with valid timestamps for each image-participant combination for that participant's data to be
retained in the final dataset. Feature extraction and classification processes were executed offline after
data collection. Additionally, a real-time pipeline was prototyped that implemented a sliding
window of 2 seconds advanced in 200 ms increments.

2.6. Feature Extraction

Selecting feature types was based on prior work, principally the spatiotemporal features and
amplitude [53]. Each file contained approximately 20 seconds of EEG data. Data from each EEG
channel were segmented into 1-second non-overlapping windows and processed independently. For
each window, time-domain features were extracted. Windows exhibiting total signal amplitudes
exceeding +3 standard deviations from the session baseline were identified as artifacts and excluded
from further analysis. Remaining signals were bandpass filtered between 0.1 Hz and 125 Hz using a
4th-order Butterworth filter, with additional notch filtering applied to suppress 60 Hz line noise. A
temporal average was then computed for each window, as this feature has demonstrated utility in
previous imagined speech BCI studies. Subsequently, the 99.95th percentile of signal amplitude
(percent intensity) was calculated for each window. Finally, power spectral density (PSD) features
were computed using Welch’s method for major EEG frequency bands: delta (1-4 Hz), theta (5-8 Hz),
alpha (8-12 Hz), beta (13-30 Hz), and gamma (30-100 Hz), in alignment with standard EEG analysis
protocols [54,55]. The mean power within the lower and upper sub-bands of each EEG frequency
band was computed (e.g., 8-10 Hz for the lower alpha sub-band). Extracted features included both
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absolute (non-normalized) spectral power values and values normalized with respect to the total
spectral power across all frequency bands.

2.7. Data Classification

The classification framework comprised both intrasubject and intersubject analyses. Intrasubject
classification evaluated the feasibility of subject-specific EEG-based image identification by assessing
the classifier’s performance on data from a single participant. Low classification metrics—such as
accuracy, F1 score, or area under the ROC curve (AUC-ROC)—were indicative of suboptimal signal
quality or insufficient feature separability. In contrast, intersubject classification assessed model
generalizability across participants, providing insight into the potential for a subject-agnostic EEG-
based image identification system. Successful decoding across subjects suggested that model
performance could scale with larger datasets. Feature selection was performed using the Average
Distance between Events and Non-Events (ADEN) method, incorporating two statistical weighting
schemes to identify the most informative features for each classification scenario [55].

ADEN is a supervised feature selection technique designed to identify the top three to six
discriminative features per run, using only the training dataset. For each class, feature values were
averaged, followed by a scaling step that applied a combination of z-score normalization and Cohen’s
d effect size. The absolute difference between the scaled class averages was then computed for each
feature. Features were ranked by the magnitude of this inter-class distance, with the highest value
indicating the greatest separability between classes. The feature selection process ran independently
for each participant and each classifier model, so the exact number of unique features varied. For
each case, the top-ranked three to six features were selected for downstream application on the
validation data [55].

Given the presence of 16 input channels and the potential for noise in the data, overfitting was
identified as a significant concern. To mitigate this, evaluation metrics that are less sensitive to class
imbalance and better reflect model generalization—such as the F1 score and AUC-ROC—were
prioritized over overall classification accuracy. In light of these concerns, traditional machine
learning algorithms were favored over more complex deep learning models to reduce the risk of
overfitting. Based on prior methodologies used in comparable BCI systems, three classifiers were
implemented for evaluation: Linear Discriminant Analysis (LDA), Random Forest (RF), and k-
Nearest Neighbors (KNN) [56]. For each classification task, the dataset was randomly partitioned
into four blocks. Classification was modeled as a one-vs-rest problem for each of the 12 images, with
class balance achieved using methods suitable for limited sample sizes. Training and testing splits
were designed to maintain equivalent class distributions. Each classifier specific to an image
employed four-fold leave-one-out cross-validation (LOOCV), holding out one block at a time for
validation to assess generalization reliability. Classification metrics—accuracy, F1 score, and AUC-
ROC—were computed for each configuration and then averaged across both systems and image
categories. Experiments were conducted for both intrasubject and intersubject classification scenarios
to evaluate model robustness.

2.8. Design Requirements

The “Thunderhead” device designed in this study is a handheld vortex ring generator capable
of extinguishing fires at a distance. Conductive vortex rings, with this requisite, were utilized to
determine the device’s effective range.

To evaluate the potential performance enhancement offered by an instinctive image
identification system in processing electronic commands and messages, the information transfer rate
(ITR) was computed for each system configuration using Equation (Eq.) 1 [10].

bits

) = log, (V) + P xlog,(P) + (1 - P) xlog, (35) (1)

ITR (

tria
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As shown in Eq. 1, ITR is quantified as bits per trial. The effectiveness of a classification system
is directly influenced by both the number of distinct classes (N) and classification accuracy (P).

In the implemented system illustrated in Figure 5, integers from 1 to 12 were assigned for each
image. The participant wore the OpenBCI EEG headset, and the presentation displayed each image
with the “StimPres” Python script. The participant was instructed to remember the prior image for
10 trials. Each participant had a number of uniquely coded EEG trials, with file names corresponding
toimage code and trial number. A portion randomized of the EEG files from an individual participant
were processed and trained classifiers using the “train” Python script. Testing and validation
occurred with the “trial” Python script, which used previously withheld validation EEG files on each
classifier model. When the classifier model observed a validation EEG file, it was assigned an integer,
from 1 to 12, corresponding to which image the model calculated it belonged to. The classifier output
was compared to the “gold standard,” which was used to generate the confusion matrix and
performance metrics.

Training:

R £op Iz
-‘;’.‘.'..(‘I sigi ._
Opeanc) Classifier
Cyton
Classification: /
e () - T o
PECIRN ) AP y
'.;. -1.(. =) P ARG A =
trislpy ) l-;‘;"
OpenBCl EEO Signals Classifier
Cyton K /

Figure 5. Training and operation of classification system.

Owing to the structure of the classifier, each image is also evaluated against itself at a temporally
distinct point. Consistent and accurate identification of the same object across different timepoints
serves as evidence of discrete temporal encoding [57]. To streamline the computation, a 1-second
sampling window was adopted in accordance with the data acquisition protocol. Subsequently,
Equation 2 was applied to convert the results to bits per minute.

bits bits trial seconds
ITR( )=1TR( )*1( ) 60 (28 (2)

min min seconds

Classifier performance is a critical factor in achieving a high Information Transfer Rate (ITR).
Based on prior benchmarking results, it was anticipated that the Random Forest (RF) classifier would
achieve superior average performance across key metrics including accuracy, AUC, and F1 score [27].
Previous studies also suggest that the most informative features for classification are spectral band
power and average mean amplitude, particularly when extracted from electrodes positioned on the
upper and posterior regions of the scalp [49,53]. Specifically, electrodes located at parietal and
occipital sites—such as Pz, P4, and Oz within the 10-20 International System —have been consistently
associated with EEG patterns linked to visual recall, likely due to their anatomical proximity to the
visual cortex [6,49]. Additionally, while gamma-band activity related to visual recall has been
observed in frontal electrodes, these signals may be confounded by ocular artifacts [58]. To validate
the feasibility of the proposed approach, initial classification tests were conducted in an offline
setting. Statistical testing was performed to determine any significant differences between the
classifiers, using paired t-tests.

3. Results

3.1. Overview

Classifier performance was evaluated for the image identification system across multiple
scenarios. The first scenario assessed intrasubject classification, measuring the system’s ability to
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discriminate images within individual subjects. The second scenario focused on intersubject
classification, testing the generalizability of the model when trained on one subject's data and
validated on another's. The third analysis involved feature and electrode selection to identify those
contributing most significantly to robust image separation. For each phase, the ITR was computed to
quantify system effectiveness. Subsequently, 3D object reconstructions were generated using the
ComfyUI pipeline.

3.2. Intrasubject Competition

For intrasubject classification shown in Figure 6, the highest-performing classifier for F1 and
AUC-ROC was RF. RF reached a mean accuracy of 92 + 4%, a mean F1 score of 0.64 + 0.08, and a mean
AUC-ROC of 0.87 + 0.09. LDA achieved a mean accuracy of 92 + 4%, a mean F1 score of 0.64 + 0.05,
and a mean AUC-ROC of 0.87 + 0.11. KNN achieved a mean accuracy of 89 + 1%, a mean F1 score of
0.71 + 0.08, and a mean AUC-ROC of 0.87 + 0.09. No significant differences were found between
classifier types.

1.00

0.80
0.6
0.4
0.2
0.00
LDA RF KNN

Classifier Model

o

o

Performance

o

HMAcc mF1 mAUC

Figure 6. Average results from intrasubject classification.

Performance across individual participants was plotted for RF in Figure 7. The average rate of
bits per intrasubject trial was 2.83, leading to an ITR of 170.2 bits per minute.

1.00
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19 20

Performance

Participant

HAcc BF1 mAUC

Figure 7. Performance from individual participants for Random Forest.
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3.3. Intersubject Competition

In Figure 8, the results for intersubject classification were plotted in Figure 8. Significant
differences were found with post-hoc tests (p value <0.02), contrasting both LDA against RF and LDA
against KNN.

1.00

0.80

0.60
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o

HMAcc mF1 mAUC

Figure 8. Average results from intersubject classification.

On intersubject classification, the highest average performance was with RF, which resulted in
a mean accuracy of 92 + 0.015%, a mean F1 score of 0.48 + 0.01, and a mean AUC-ROC of 0.63 + 0.05.
For intersubject classification, the bits per trial for RF was 2.91, and the ITR was 174.4 bits per minute.

3.4. Top Features

Based on the average maximum distances between images, spectral power on gamma and beta
spectral powers were the most consist separable feature across each image and electrode channel.
The most consistent electrode positions for the features were frontal, including Fp1, Fp2, F3, and F4.

The normalized EEG bands are shown in Figure 9, indicating the power on higher frequency
bands.
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Figure 9. Normalized power spectral density for EEG bands for frontal channels.
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3.5. Image to Object

Each object was converted into a 3D object, as shown in Figure 10. Other conversions are detailed
in the supplemental details.

Image 3D Model STL (3D Printing)

Figure 10. Conversion of a static 2D image to a 3D printable model with software pipeline.

The files and code are available in the repository, linked in the data availability statement.
4. Discussion

4.1. Overview

EEG data from all 20 participants was viable for an image reconstruction system. Compared to
the intersubject model, the individualized models worked most reliably with gamma and beta
features on frontal electrodes, reaching a mean accuracy mean accuracy of 92 + 4%, a mean F1 score
of 0.64 = 0.08, and a mean AUC-ROC of 0.87 + 0.09. Earlier studies in visual recall noted F3 and F4
were active, although Fpl and Fp2 often had ocular artifact contamination [58]. Prior work did not
directly incorporate temporal encoding of discrete stages, the transformation of objects over time [42—
44]. Objects can be reliably separated from themselves at different time points reliably, even with a
low-cost EEG headset. Incorporating transformation and dynamism into encoding of visual memory
directly enables more naturalistic and realistic context of individual objects. The use of low-cost EEG
headsets with open-source software could greatly improve the accessibility of the technique and
technology, especially in engineering and expression [4,26]. From art to the physically impaired, the
technology could assist with rapid prototyping of designs [4,26]. The use of an older, less complex
machine learning technique precludes the need to run a GAN, although higher resolution models
would require extensive training and hardware. Starting with a finite number of images, the “one
versus rest” classifier framework can be generalized for a higher, dynamic number of categories.
While limitations remain, the system reliably differentiates and reconstructs object representations at
distinct time points. These foundational results highlight the potential for developing robust,
scalable, and interactive EEG-driven image reconstruction systems, paving the way for real-time
applications in research, engineering, and creative industries. The conversion of EEG into temporally
encoded 3D objects has been demonstrated reliably, although limitations were present.

4.2. Limitations

The current system primarily was validated offline, although the system requires substantial
improvement. A primarily limitation was the reliance on offline performance, but it was essential to
establish a proof of concept. A second limitation was potential noise from ocular artifacts, although
this could be compensated for by using certain frontal channels for artifact rejection and other
techniques [58]. Another limitation was the relatively small size of participants and images, which
was due to establishing a precedent that could be built on. A potential limitation was using a modified
“one versus rest” classifier ensemble with a fixed number of categories, rather than a dynamic
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number. While the system could be dynamically updated in future configurations, the number of
active categories is likely to be dynamic. Another potential shortcoming was bypassing the use of a
GAN in widely existed prior work [4,5,26]. Similarly, the quality of 3D objects could be improved,
which could require a specialized model [26]. However, future work could simply scale existing
precedents established in this study and elsewhere. These limitations detail clear precedents for
improvement.

4.3. Future Work

The clear next step is optimization of the real-time system. The prototypical “one versus rest”
classifier could be adapted for a dynamic number of categories. A pre-trained GAN could be
included, in order to refine the resolution of 3D objects. The separability of objects in a scene could
also be improved to ensure greater reliability [4,5,26]. Methods incorporating human-computer
interaction, and ability to customize objects or edit generated videos intuitively, further bridging the
gap between imagination and engineering. Advances in other generative Al fields could also be
applied, such as extrapolating or interpolation the state of an object more efficiently [40,56]. The
system could also be adapted for specific uses, such as manufacturing (using different versions of a
product), animation (streamlining animation for 2D images), or transportation (recalling landmarks
along a route) [25]. Real-time streaming of memories, imagined images, and dynamic scenes has
already been established, but reducing hardware requirements directly improves its accessibility
[4,5,14,26].

5. Conclusions

This study establishes the technical feasibility of reconstructing dynamic visual imagery from
EEG data using individualized models, even when constrained to low-cost consumer-grade headsets
and open-source software environments. The proposed system demonstrates robust classification
and reconstruction performance, achieving high accuracy, F1 score, and AUC-ROC, with optimal
results observed when gamma and beta band features are extracted from frontal electrodes-regions
known to be associated with cognitive control and visual processing [58]. By integrating temporal
encoding mechanisms, the approach captures object transformations across time, yielding a more
ecologically valid representation of visual memory compared to static or single-frame reconstruction
paradigms [4,5,14,26]. Despite inherent limitations, including offline validation, a modest sample
size, and the use of relatively simple machine learning algorithms, the system reliably differentiates
and reconstructs object representations at distinct temporal intervals. While there remain significant
opportunities for improvement-such as real-time operation, artifact mitigation, the foundational
results presented here underscore the potential for developing more robust, scalable, and interactive
EEG-driven image reconstruction systems, paving the way for practical deployment in research, art,
and industrial contexts.
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