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Abstract 

Turning images and scenes from imagination and memory has applications from engineering to 
artistic expression. Electroencephalography (EEG) is a non-invasive technique for recording the 
brain’s electrical activity via scalp electrodes, accessible with low-cost headsets. Previous work used 
EEG to encode images with the assistance of a generative adversarial network (GAN), allowing EEG-
based image reconstruction. Successive images, encoding objects at separate temporal points, were 
used to train a classification system. EEG data from healthy participants (N = 20) were used to encode 
images, each divided into an “initial state” and a “later state.” A modified “one versus rest” system 
using a random forest classifier was used for both offline and online use. Compared to the intersubject 
model, the individualized models worked most reliably with gamma and beta features on frontal 
electrodes, reaching a mean accuracy of 92 ± 4%, a mean F1 score of 0.64 ± 0.08, and a mean AUC-
ROC of 0.87 ± 0.09. In line with prior literature, changes in spectral activity across the brain were also 
observed. The “paired” images of objects were converted into short films and 3D objects with the 
assistance of a ComfyUI pipeline. The system uses temporal encoding to capture dynamic object 
transformations, reliably reconstructing time-specific representations from EEG despite limitations, 
demonstrating potential for scalable, real-time visual memory reconstruction in research, industry, 
and art. 

Keywords: EEG; electroencephalography; image reconstruction; generative AI; 3D printing 
 

1. Introduction 

1.1. Overview 

Electroencephalography (EEG) is a non-invasive technique for recording the brain’s electrical 
activity via scalp electrodes, typically arranged using standardized systems such as the International 
10–20 method [1–3]. While EEG has been widely used for identifying and reconstructing static, two-
dimensional images, recent advances in generative artificial intelligence (AI) have enabled the 
transformation of 2D images into dynamic movies and three-dimensional objects [4,5]. However, 
most EEG-based image reconstruction efforts have focused on static images with limited categories, 
overlooking the dynamic nature of real-world objects and scenes [6]. In this study, we collected EEG 
data from healthy volunteers using a low-cost OpenBCI headset as they viewed images of the same 
objects at different time points. We employed a modified one-versus-rest classifier to distinguish 
objects not only between categories but also across different temporal presentations. By encoding 
static images as chronological sequences, our approach leverages AI to reconstruct movies from EEG 
data and enables the identification and 3D conversion of single objects at specific time points. 
Decoding distinctive, sequential states of the same object from EEG on low-cost, open-source 
hardware could improve the accessibility of uses in art, animation, transportation, manufacturing, 
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research, and medicine. This integration of low-cost EEG and AI has the potential to lower barriers 
for digital reconstruction of imagined sequences and physical realization through 3D printing, 
expanding the possibilities for brain-computer interface (BCI) applications [4–7].  

1.2. Background 

1.2.1. Summary 

In EEG-based BCI has existed for decades, ranging in scope and purpose [8–11]. Earlier work 
converted EEG to image through encoding 1D temporal data with 2D images [12,13]. Recent work 
demonstrated the capability to convert EEG into images in real time, but requiring specialized 
systems and complex AI models [6]. Others have even reported on object retrieval, leveraging 
synergies in verbal and visual processing [4,14–16]. AI has also been used to convert images into 
videos and 3D objects. However, the prerequisite required encoding EEG to images, often with 
expensive EEG systems and requiring an intense software backend [4,17,18].    

1.2.2. EEG to Image 

The extraction of 3D models from remembered images using electroencephalography (EEG) has 
garnered significant attention in recent years. Researchers have made notable strides in decoding 
neural signals to reconstruct visual stimuli, leveraging various methodologies and technologies, 
especially as they pertain to the nuanced nature of human perception. 

Image “reconstruction” from EEG has referred in the literature for both encoding patterns of 
EEG, often corresponding to specific visual images, to attempts at reconstructing images without 
prior prompts [19–21]. While certain overlap exists in the literature, EEG patterns associated with 
visual recall generate consistently identifiable features [22–25]. If an image can be recalled and 
“encoded” with EEG, then it may be converted to a 3D object or image.  

Wakita et al. demonstrate the reconstruction of visual textures from EEG signals, effectively 
utilizing spatially global image statistics in this process. Their work builds on research that outlines 
how EEG patterns correlate with texture perception, thus establishing a foundation for reconstructive 
approaches that can be adapted to encompass more complex images, including 3D models [26]. 
Moreover, Ling et al. highlight the ability of EEG signals to support fine-grained visual 
representations, confirming methodologies applicable to image reconstruction processes, particularly 
with visual stimuli like words and faces [27,28].  

The complexity of EEG signals necessitates sophisticated modeling techniques for effective 
image reconstruction. For instance, the work by Fuad and Taib, although focusing primarily on 
brainwave patterns, underscores the necessity of understanding EEG data relationships in image 
processing tasks. However, it's important to note that their research does not directly address 3D 
reconstructions [29]. Similarly, the integration of advanced neural networks such as Generative 
Adversarial Networks (GANs) has been explored. Khaleghi et al. propose a geometric deep network-
based GAN that associates EEG signals with visual saliency maps, suggesting methodologies that 
could be extended for reconstructing 3D visual information from remembered images [30]. These 2D 
to 3D conversion techniques, such as depth map estimation, were also used in photogrammetry [31].  

Additional research by Nemrodov et al. showcases the reconstruction of faces from EEG data, 
emphasizing EEG's potential for gaining insights into processing dynamic visual stimuli, thus 
indicating a progression towards more complex 3D interpretations [32]. This highlights the 
advancements towards utilizing EEG not just for static images but for complex scenarios requiring 
3D representations. 

Ongoing developments in models that leverage variational inference for image generation from 
EEG data, as presented by Yang and Liu, indicate a burgeoning interest in employing diffusion 
models alongside conventional neural networks. Their innovative framework addresses the high-
dimensional nature of EEG signals, potentially leading to credible 3D reconstructions from brain 
activity [5]. On the other hand, Acar et al. emphasize the integration of head tissue conductivity 
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estimations with EEG source localization, underlining the importance of physiological modeling in 
improving the accuracy of reconstructed visual outputs [1].  

1.2.3. EEG to Video 

The evolution of reconstructing movies from brain activity measured through EEG is an area of 
growing research interest, driven by advancements in signal processing and machine learning. EEG 
provides superior temporal resolution relative to other imaging modalities like functional magnetic 
resonance imaging (fMRI), which is pivotal for capturing the dynamic nature of movie stimuli. 
Previous findings indicate that EEG can effectively decode visual stimuli, making it a promising 
candidate for movie reconstruction, although challenges remain regarding noise and signal 
alignment [27,32]. 

A well-defined area of visual memory is sequence memory, recording EEG during a 
presentation of consecutive images or other stimuli. The encoding period can be as short as 200-400 
ms, and distinctive EEG is generated during image recall [22,25,33]. Notably, separate brain regions 
recalling sequential images activate in the order they were first observed. The EEG corresponding to 
each recalled phase in the sequence has been consistent enough to characterize [24]. This “slideshow” 
may be applicable to dynamic visual stimuli. 

Recent studies by Ling et al. and Nemrodov et al. highlight the potential for extending existing 
EEG-based image reconstruction techniques to dynamic visual stimuli. These studies emphasize that 
while much work has focused on static images or specific types of visual stimuli, the methodologies 
could be adapted to reconstruct short movie segments by leveraging the temporal dynamics that EEG 
can capture [27,32]. This opens new avenues for utilizing EEG in creating more immersive and 
interactive BCIs, potentially applying real-time feedback loops to enrich the user experience during 
movie screenings [34,35]. 

Innovative algorithms, such as those proposed by Khaleghi et al. and Yang and Liu, employ 
generative models to synthesize images from EEG signals [5,30]. The geometric deep network-based 
generative adversarial network (GDN-GAN) introduces a method that emphasizes visual stimuli 
saliency while leveraging deep learning frameworks to achieve higher fidelity in reconstructions. 
Yang and Liu's EEG-ConDiffusion framework exemplifies a structured approach to image generation 
through a pipeline that addresses the inherent complexities of EEG data [5,30]. Moreover, works by 
Shimizu and Srinivasan demonstrate that combining perceptual and imaginative tasks improves 
reconstruction accuracy, suggesting that a multifaceted approach may be pivotal in refining 
reconstruction methodologies [13]. 

Wang et al. and Shen et al. provide insights into using generative models to align EEG data with 
visual stimuli more precisely. Their research illustrates the integration of neural activity data to better 
facilitate the representation of visual experience during movie watching, thus accentuating the 
correlation between the viewer's cognitive activity and reconstructed content [36,37]. The 
implications of using EEG for such purposes lie not only in advancing neuroscience but also in 
enhancing technologies like virtual and augmented reality, where understanding and predicting user 
responses can lead to more engaging experiences. 

Despite the promising advancements, challenges remain in achieving reliable synchronization 
between reconstructed images and the cognitive experiences they intend to represent. Issues related 
to noise, signal interference, and individual variations in brain activity necessitate ongoing research 
to refine these methods further. The integration of multidisciplinary approaches, encompassing 
advanced machine learning techniques and cognitive neuroscience, appears essential for overcoming 
these limitations and enhancing the quality of reconstructions from EEG data. 

In conclusion, the current landscape of reconstructing movies from EEG signals demonstrates a 
blend of established techniques and cutting-edge innovations. As the field progresses, it is likely that 
prospective applications will emerge, ranging from entertainment to therapeutic settings, while 
significantly enhancing our understanding of brain function related to visual processing. 
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1.2.4. EEG to Object 

In recent years, the integration of EEG with methods for reconstructing three-dimensional (3D) 
objects has gained significant attention within the research community. The fundamental challenge 
of reconstructing 3D objects from EEG data rests in deciphering the spatiotemporal neural activity 
that corresponds to visual stimuli or user interactions, and recent advancements show promising 
approaches in improving the accuracy and effectiveness of these reconstructions. 

EEG-based 3D reconstruction systems often employ high-density electrode montages to enhance 
the spatial resolution of the neural signals. Taberna et al. highlighted the importance of accurate 
electrode localization for reliable brain imaging, suggesting that their developed 3D scanning method 
can significantly contribute to improving EEG's usability as a brain imaging tool, hence aiding in the 
spatial contextualization of neural data [38]. Complementary to this, Clausner et al. proposed a 
photogrammetry-based approach that utilizes standard digital cameras to accurately localize EEG 
electrodes. This method not only surpasses traditional electromagnetic digitization techniques in 
terms of efficiency but also facilitates better integration with magnetic resonance imaging (MRI) for 
source analysis [39].  

The reconstruction process can benefit significantly from advanced machine learning 
techniques, particularly deep learning architectures such as convolutional neural networks (CNNs) 
and generative adversarial networks (GANs). For instance, Yang et al. introduced a generative 
adversarial learning framework (3D-RecGAN) designed for inferring complete 3D structures from 
single depth views. This approach leverages the strengths of autoencoders and generative models, 
thereby enhancing the detail and accuracy of the reconstructed objects, although this research did not 
directly correlate with EEG data [31]. Furthermore, advancements in CNN architectures demonstrate 
the ability to effectively integrate multi-dimensional EEG data, yielding superior performance in 
decoding tasks relevant to object recognition and manipulation [33,40]. 

Additionally, studies have explored using EEG data to reconstruct visual stimuli by analyzing 
the neural correlates of visual perception. The work by Nemrodov et al. emphasizes the potential of 
using EEG in conjunction with advanced image reconstruction techniques to recover dynamic visual 
stimuli. Their findings support the premise that the temporal resolution of EEG might enable effective 
reconstruction of dynamic visual information, which could also be applicable in real-time object 
recognition and tracking scenarios [32]. 

Overall, the fusion of EEG datasets with sophisticated image reconstruction techniques shows 
promise for advancing our understanding of the neural underpinnings of visual cognition and the 
generation of 3D models. While significant challenges remain in ensuring accuracy and real-time 
processing capabilities, ongoing research is striving to refine these methods. As the technology 
progresses, we may witness a broader application of EEG-based 3D reconstructions in both clinical 
and cognitive neuroscience domains. 

1.2.5. Prior Work 

The reconstruction and processing of remembered images using low-cost, open-source EEG 
offers several advantages that significantly enhance research capabilities and accessibility for broader 
applications. One primary benefit is the economic viability of such systems, which democratizes 
access to brain imaging technologies. Historically, advanced EEG setups are expensive and complex, 
limiting their use primarily to well-funded research institutions. The advent of open-source EEG 
platforms, such as OpenBCI and Creamino, provides an affordable alternative that maintains 
compatibility with existing software frameworks, thus enabling new research avenues and 
educational applications at lower costs [14,41]. 

Using low-cost EEG systems for reconstructing remembered images enhances the scalability of 
research studies focusing on cognitive processes such as memory recall. The integration of innovative 
machine learning models with EEG data can effectively decode the neural correlates associated with 
visual memory. For instance, advancements in computational algorithms and open-source software 
frameworks illustrates how researchers can tailor their analyses and improve data handling through 
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accessible technological solutions, allowing for sophisticated and reproducible research designs [42–
44]. Furthermore, systems that facilitate real-time data processing enhance interactive research 
applications and brain-computer interfaces, contributing to fields ranging from psychology to 
robotics [2]. 

The ability to conduct experiments with high temporal resolution using portable EEG systems 
is particularly advantageous in studying dynamic cognitive phenomena, such as the spatiotemporal 
trajectories inherent in visual object recall [45]. Research demonstrates that EEG can reveal rapid 
neural responses and patterns associated with memory reactivation during active recall or visual 
imagery tasks  [46,47]. Early findings underscore the potential of utilizing such methodologies to 
further explore brain functions related to memory and cognition, pushing the boundaries of our 
understanding of the human brain [48].  

In summary, low-cost, open-source EEG systems serve as pivotal tools in reconstructing 
remembered images, providing significant benefits in terms of accessibility, cost-effectiveness, 
scalability, and collaborative research practices. Future studies utilizing these technologies are well-
positioned to deepen our understanding of neural mechanisms linked to memory recall, paving the 
way for advances in both scientific knowledge and applicable technology.  

2. Materials and Methods 

2.1. Overview 

The deployment of an EEG-based image identification system necessitated careful consideration 
of stimulus selection, signal acquisition, feature extraction, and classification algorithms. During data 
collection, each participant was instructed to visually and aurally engage with the presented stimuli 
while EEG signals were recorded. Data acquisition was conducted using an OpenBCI EEG headset 
in conjunction with a Cyton board and OpenBCI acquisition software (OpenBCI Foundation, New 
York). Feature extraction focused on identifying the most robust EEG signatures associated with 
visual recall, informed by existing literature. For classification, a model was selected based on its 
ability to achieve high accuracy while minimizing overfitting. The overall system design leveraged 
validated methodologies from prior research to maximize reliability and performance [27,45,49].  

2.2. Participants 

A total of 20 adult participants (mean age = 24.3 ± 4.2 years; 4 females, 16 males) were recruited 
during Summer 2025 via word-of-mouth and printed flyers. Eligibility criteria included age between 
18 and 40 years, normal hearing, and normal or corrected-to-normal vision. All participants provided 
written informed consent in accordance with IRB approval (STUDY20250042). Participants were 
seated at a standardized distance of at least 24 inches (61 cm) from the display monitor. Following 
consent, the experimenter fitted each participant with a standard EEG cap and attached the reference 
electrode. Experimental instructions were presented onscreen, and EEG data acquisition commenced 
immediately thereafter.  

2.3. Stimulus Presentation 

All software was implemented in Python [50]. Prior EEG-based image reconstruction 
implementations used visual stimuli in generating training data [4,12,49]. To implement temporal 
encoding, images depicting the same object at distinct, visually recognizable timepoints (e.g., a ship 
progressing along a river) were arranged in sequential pairs. The protocol ensured that the six images 
representing the "initial" state were always presented prior to the six corresponding "later" state 
images. The full chronological sequence of stimuli is illustrated in Figure 1, while the OpenBCI Cyton 
board command protocol is detailed in Figure 2.  
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Figure 1. Chronological sequence of stimuli presentation. 

 

Figure 2. Operational diagram for each section. 

For each image, data acquisition comprised a single demonstration phase followed by ten 
experimental trials. During the demonstration, a stimulus consisting of a white background with 
black characters was displayed for 4 seconds. Subsequently, a 1-second “wait” screen was presented, 
followed by a 2-second blank screen, during which participants were instructed to retain the image 
in memory. Another 1-second “wait” screen was interleaved after the blank interval. This fixed 
sequence was repeated for a total of ten trials per image. Each session encompassed ten trials of 12 
unique images presented in pseudo-random order, with “initial state” images consistently preceding 
their corresponding “later state” versions. The total duration of each session was approximately 20 
minutes, and only a single session was recorded per participant. If it was not possible to complete the 
entire session, as much data as possible was collected. Data were excluded from analysis if a complete 
set of trials for all images was not obtained.  

2.4. Image Processing 

The images used are shown in Figure 3. Each image was encoded with an integer from 1-12. The 
first “initial state” images (1-6) were always displayed before the “later state” images (7-12). The 
inception score was used to ensure quality outcomes [51].  

 
Figure 3. Images detailing temporally separate states. 

After classification, the image was sent to a pipeline prepared using ComfyUI [52]. Each image 
was combined with its pair (e.g., between the “initial state” and “later state) and animated. The 
conversion of two sequential images to an animation has been used well before generative AI, but 
ComfyUI enables a generative solution for it [52]. before A parallel pipeline converted the image to a 
3D solid, corresponding to OBJ format. As detailed in prior work, the use of ComfyUI to convert 2D 
to 3D started with the ComfyUI-Hunyuan3DWrapper and ComfyUI-Y7-SBS-2Dto3D, which 
employed depth map estimation and related photogrammetric techniques [52]. From OBJ format, 
each 3D model was converted to an STL file for 3D printing using Python. 
  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 August 2025 doi:10.20944/preprints202508.1454.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1454.v1
http://creativecommons.org/licenses/by/4.0/


 7 of 16 

 

2.5. Design Requirements 

EEG data acquisition was implemented using open-source hardware and software, specifically 
the OpenBCI Cyton biosensing board in conjunction with the Ultracortex Mark IV headset. Sixteen 
channels of scalp EEG data were recorded at a sampling rate of 250 Hz. Data acquisition and 
timestamping were automated via a custom Python script to ensure temporal precision and 
reproducibility. As illustrated in Figure 4, electrodes were positioned according to the international 
10–20 system at the following sites: Fp1, Fp2, F7, F3, F4, F8, T3, C3, C4, T4, T5, T6, P3, P4, O1, and O2.  

 
Figure 4. Electrocephalographic headset used for data acquisition, shown with 16 electrodes in 10–20 
International System and an OpenBCI Cyton board. 

Each trial was recorded as an individual file, with the filename encoding the image identifier, 
trial number, and participant ID. Trials lacking valid timestamp data were excluded from further 
analysis, which amounted to less than 2% of total trials. Inclusion criteria required a minimum of two 
trials with valid timestamps for each image-participant combination for that participant's data to be 
retained in the final dataset. Feature extraction and classification processes were executed offline after 
data collection. Additionally, a real-time pipeline was prototyped that implemented a sliding 
window of 2 seconds advanced in 200 ms increments.  

2.6. Feature Extraction  

Selecting feature types was based on prior work, principally the spatiotemporal features and 
amplitude [53]. Each file contained approximately 20 seconds of EEG data. Data from each EEG 
channel were segmented into 1-second non-overlapping windows and processed independently. For 
each window, time-domain features were extracted. Windows exhibiting total signal amplitudes 
exceeding ±3 standard deviations from the session baseline were identified as artifacts and excluded 
from further analysis. Remaining signals were bandpass filtered between 0.1 Hz and 125 Hz using a 
4th-order Butterworth filter, with additional notch filtering applied to suppress 60 Hz line noise. A 
temporal average was then computed for each window, as this feature has demonstrated utility in 
previous imagined speech BCI studies. Subsequently, the 99.95th percentile of signal amplitude 
(percent intensity) was calculated for each window. Finally, power spectral density (PSD) features 
were computed using Welch’s method for major EEG frequency bands: delta (1–4 Hz), theta (5–8 Hz), 
alpha (8–12 Hz), beta (13–30 Hz), and gamma (30–100 Hz), in alignment with standard EEG analysis 
protocols [54,55]. The mean power within the lower and upper sub-bands of each EEG frequency 
band was computed (e.g., 8–10 Hz for the lower alpha sub-band). Extracted features included both 
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absolute (non-normalized) spectral power values and values normalized with respect to the total 
spectral power across all frequency bands.  

2.7. Data Classification 

The classification framework comprised both intrasubject and intersubject analyses. Intrasubject 
classification evaluated the feasibility of subject-specific EEG-based image identification by assessing 
the classifier’s performance on data from a single participant. Low classification metrics—such as 
accuracy, F1 score, or area under the ROC curve (AUC-ROC)—were indicative of suboptimal signal 
quality or insufficient feature separability. In contrast, intersubject classification assessed model 
generalizability across participants, providing insight into the potential for a subject-agnostic EEG-
based image identification system. Successful decoding across subjects suggested that model 
performance could scale with larger datasets. Feature selection was performed using the Average 
Distance between Events and Non-Events (ADEN) method, incorporating two statistical weighting 
schemes to identify the most informative features for each classification scenario [55].   

ADEN is a supervised feature selection technique designed to identify the top three to six 
discriminative features per run, using only the training dataset. For each class, feature values were 
averaged, followed by a scaling step that applied a combination of z-score normalization and Cohen’s 
d effect size. The absolute difference between the scaled class averages was then computed for each 
feature. Features were ranked by the magnitude of this inter-class distance, with the highest value 
indicating the greatest separability between classes. The feature selection process ran independently 
for each participant and each classifier model, so the exact number of unique features varied. For 
each case, the top-ranked three to six features were selected for downstream application on the 
validation data [55].   

Given the presence of 16 input channels and the potential for noise in the data, overfitting was 
identified as a significant concern. To mitigate this, evaluation metrics that are less sensitive to class 
imbalance and better reflect model generalization—such as the F1 score and AUC-ROC—were 
prioritized over overall classification accuracy. In light of these concerns, traditional machine 
learning algorithms were favored over more complex deep learning models to reduce the risk of 
overfitting. Based on prior methodologies used in comparable BCI systems, three classifiers were 
implemented for evaluation: Linear Discriminant Analysis (LDA), Random Forest (RF), and k-
Nearest Neighbors (KNN) [56]. For each classification task, the dataset was randomly partitioned 
into four blocks. Classification was modeled as a one-vs-rest problem for each of the 12 images, with 
class balance achieved using methods suitable for limited sample sizes. Training and testing splits 
were designed to maintain equivalent class distributions. Each classifier specific to an image 
employed four-fold leave-one-out cross-validation (LOOCV), holding out one block at a time for 
validation to assess generalization reliability. Classification metrics—accuracy, F1 score, and AUC-
ROC—were computed for each configuration and then averaged across both systems and image 
categories. Experiments were conducted for both intrasubject and intersubject classification scenarios 
to evaluate model robustness.  

2.8. Design Requirements 

The “Thunderhead” device designed in this study is a handheld vortex ring generator capable 
of extinguishing fires at a distance. Conductive vortex rings, with this requisite, were utilized to 
determine the device’s effective range. 

To evaluate the potential performance enhancement offered by an instinctive image 
identification system in processing electronic commands and messages, the information transfer rate 
(ITR) was computed for each system configuration using Equation (Eq.) 1 [10].  𝐼𝑇𝑅 ቀ ௕௜௧௦௧௥௜௔௟ቁ = lo gଶሺ𝑁ሻ + 𝑃 × lo gଶሺ𝑃ሻ + (1 − 𝑃) × lo gଶ ቀଵି௉ேିଵቁ   (1) 
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As shown in Eq. 1, 𝐼𝑇𝑅 is quantified as bits per trial. The effectiveness of a classification system 
is directly influenced by both the number of distinct classes (𝑁) and classification accuracy (𝑃).  

In the implemented system illustrated in Figure 5, integers from 1 to 12 were assigned for each 
image. The participant wore the OpenBCI EEG headset, and the presentation displayed each image 
with the “StimPres” Python script. The participant was instructed to remember the prior image for 
10 trials. Each participant had a number of uniquely coded EEG trials, with file names corresponding 
to image code and trial number. A portion randomized of the EEG files from an individual participant 
were processed and trained classifiers using the “train” Python script. Testing and validation 
occurred with the “trial” Python script, which used previously withheld validation EEG files on each 
classifier model. When the classifier model observed a validation EEG file, it was assigned an integer, 
from 1 to 12, corresponding to which image the model calculated it belonged to. The classifier output 
was compared to the “gold standard,” which was used to generate the confusion matrix and 
performance metrics.  

 

Figure 5. Training and operation of classification system. 

Owing to the structure of the classifier, each image is also evaluated against itself at a temporally 
distinct point. Consistent and accurate identification of the same object across different timepoints 
serves as evidence of discrete temporal encoding [57]. To streamline the computation, a 1-second 
sampling window was adopted in accordance with the data acquisition protocol. Subsequently, 
Equation 2 was applied to convert the results to bits per minute.   𝐼𝑇𝑅 ቀ௕௜௧௦௠௜௡ቁ = 𝐼𝑇𝑅 ቀ௕௜௧௦௠௜௡ቁ ∗ 1 ቀ ௧௥௜௔௟௦௘௖௢௡ௗ௦ቁ ∗ 60 (௦௘௖௢௡ௗ௦௠௜௡ )  (2) 

Classifier performance is a critical factor in achieving a high Information Transfer Rate (ITR). 
Based on prior benchmarking results, it was anticipated that the Random Forest (RF) classifier would 
achieve superior average performance across key metrics including accuracy, AUC, and F1 score [27]. 
Previous studies also suggest that the most informative features for classification are spectral band 
power and average mean amplitude, particularly when extracted from electrodes positioned on the 
upper and posterior regions of the scalp [49,53]. Specifically, electrodes located at parietal and 
occipital sites—such as Pz, P4, and Oz within the 10–20 International System—have been consistently 
associated with EEG patterns linked to visual recall, likely due to their anatomical proximity to the 
visual cortex [6,49]. Additionally, while gamma-band activity related to visual recall has been 
observed in frontal electrodes, these signals may be confounded by ocular artifacts [58]. To validate 
the feasibility of the proposed approach, initial classification tests were conducted in an offline 
setting. Statistical testing was performed to determine any significant differences between the 
classifiers, using paired t-tests.  

3. Results 

3.1. Overview  

Classifier performance was evaluated for the image identification system across multiple 
scenarios. The first scenario assessed intrasubject classification, measuring the system’s ability to 
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discriminate images within individual subjects. The second scenario focused on intersubject 
classification, testing the generalizability of the model when trained on one subject's data and 
validated on another's. The third analysis involved feature and electrode selection to identify those 
contributing most significantly to robust image separation. For each phase, the ITR was computed to 
quantify system effectiveness. Subsequently, 3D object reconstructions were generated using the 
ComfyUI pipeline.  

3.2. Intrasubject Competition  

For intrasubject classification shown in Figure 6, the highest-performing classifier for F1 and 
AUC-ROC was RF. RF reached a mean accuracy of 92 ± 4%, a mean F1 score of 0.64 ± 0.08, and a mean 
AUC-ROC of 0.87 ± 0.09. LDA achieved a mean accuracy of 92 ± 4%, a mean F1 score of 0.64 ± 0.05, 
and a mean AUC-ROC of 0.87 ± 0.11. KNN achieved a mean accuracy of 89 ± 1%, a mean F1 score of 
0.71 ± 0.08, and a mean AUC-ROC of 0.87 ± 0.09. No significant differences were found between 
classifier types.  

 
Figure 6. Average results from intrasubject classification. 

Performance across individual participants was plotted for RF in Figure 7. The average rate of 
bits per intrasubject trial was 2.83, leading to an ITR of 170.2 bits per minute.  

 

Figure 7. Performance from individual participants for Random Forest. 
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3.3. Intersubject Competition  

In Figure 8, the results for intersubject classification were plotted in Figure 8. Significant 
differences were found with post-hoc tests (p value < 0.02), contrasting both LDA against RF and LDA 
against KNN.   

 

Figure 8. Average results from intersubject classification. 

On intersubject classification, the highest average performance was with RF, which resulted in 
a mean accuracy of 92 ± 0.015%, a mean F1 score of 0.48 ± 0.01, and a mean AUC-ROC of 0.63 ± 0.05. 
For intersubject classification, the bits per trial for RF was 2.91, and the ITR was 174.4 bits per minute.    

3.4. Top Features  

Based on the average maximum distances between images, spectral power on gamma and beta 
spectral powers were the most consist separable feature across each image and electrode channel. 
The most consistent electrode positions for the features were frontal, including Fp1, Fp2, F3, and F4. 

The normalized EEG bands are shown in Figure 9, indicating the power on higher frequency 
bands. 

 

Figure 9. Normalized power spectral density for EEG bands for frontal channels. 
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3.5. Image to Object  

Each object was converted into a 3D object, as shown in Figure 10. Other conversions are detailed 
in the supplemental details.  

 
Figure 10. Conversion of a static 2D image to a 3D printable model with software pipeline. 

The files and code are available in the repository, linked in the data availability statement.   

4. Discussion 

4.1. Overview  

EEG data from all 20 participants was viable for an image reconstruction system. Compared to 
the intersubject model, the individualized models worked most reliably with gamma and beta 
features on frontal electrodes, reaching a mean accuracy mean accuracy of 92 ± 4%, a mean F1 score 
of 0.64 ± 0.08, and a mean AUC-ROC of 0.87 ± 0.09. Earlier studies in visual recall noted F3 and F4 
were active, although Fp1 and Fp2 often had ocular artifact contamination [58]. Prior work did not 
directly incorporate temporal encoding of discrete stages, the transformation of objects over time [42–
44]. Objects can be reliably separated from themselves at different time points reliably, even with a 
low-cost EEG headset. Incorporating transformation and dynamism into encoding of visual memory 
directly enables more naturalistic and realistic context of individual objects. The use of low-cost EEG 
headsets with open-source software could greatly improve the accessibility of the technique and 
technology, especially in engineering and expression [4,26]. From art to the physically impaired, the 
technology could assist with rapid prototyping of designs [4,26]. The use of an older, less complex 
machine learning technique precludes the need to run a GAN, although higher resolution models 
would require extensive training and hardware. Starting with a finite number of images, the “one 
versus rest” classifier framework can be generalized for a higher, dynamic number of categories. 
While limitations remain, the system reliably differentiates and reconstructs object representations at 
distinct time points. These foundational results highlight the potential for developing robust, 
scalable, and interactive EEG-driven image reconstruction systems, paving the way for real-time 
applications in research, engineering, and creative industries. The conversion of EEG into temporally 
encoded 3D objects has been demonstrated reliably, although limitations were present.    

4.2. Limitations 

The current system primarily was validated offline, although the system requires substantial 
improvement. A primarily limitation was the reliance on offline performance, but it was essential to 
establish a proof of concept. A second limitation was potential noise from ocular artifacts, although 
this could be compensated for by using certain frontal channels for artifact rejection and other 
techniques [58]. Another limitation was the relatively small size of participants and images, which 
was due to establishing a precedent that could be built on. A potential limitation was using a modified 
“one versus rest” classifier ensemble with a fixed number of categories, rather than a dynamic 
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number. While the system could be dynamically updated in future configurations, the number of 
active categories is likely to be dynamic. Another potential shortcoming was bypassing the use of a 
GAN in widely existed prior work [4,5,26]. Similarly, the quality of 3D objects could be improved, 
which could require a specialized model [26]. However, future work could simply scale existing 
precedents established in this study and elsewhere. These limitations detail clear precedents for 
improvement.    

4.3. Future Work 

The clear next step is optimization of the real-time system. The prototypical “one versus rest” 
classifier could be adapted for a dynamic number of categories. A pre-trained GAN could be 
included, in order to refine the resolution of 3D objects. The separability of objects in a scene could 
also be improved to ensure greater reliability [4,5,26]. Methods incorporating human-computer 
interaction, and ability to customize objects or edit generated videos intuitively, further bridging the 
gap between imagination and engineering. Advances in other generative AI fields could also be 
applied, such as extrapolating or interpolation the state of an object more efficiently [40,56]. The 
system could also be adapted for specific uses, such as manufacturing (using different versions of a 
product), animation (streamlining animation for 2D images), or transportation (recalling landmarks 
along a route) [25]. Real-time streaming of memories, imagined images, and dynamic scenes has 
already been established, but reducing hardware requirements directly improves its accessibility 
[4,5,14,26].   

5. Conclusions 

This study establishes the technical feasibility of reconstructing dynamic visual imagery from 
EEG data using individualized models, even when constrained to low-cost consumer-grade headsets 
and open-source software environments. The proposed system demonstrates robust classification 
and reconstruction performance, achieving high accuracy, F1 score, and AUC-ROC, with optimal 
results observed when gamma and beta band features are extracted from frontal electrodes-regions 
known to be associated with cognitive control and visual processing [58]. By integrating temporal 
encoding mechanisms, the approach captures object transformations across time, yielding a more 
ecologically valid representation of visual memory compared to static or single-frame reconstruction 
paradigms [4,5,14,26]. Despite inherent limitations, including offline validation, a modest sample 
size, and the use of relatively simple machine learning algorithms, the system reliably differentiates 
and reconstructs object representations at distinct temporal intervals. While there remain significant 
opportunities for improvement-such as real-time operation, artifact mitigation, the foundational 
results presented here underscore the potential for developing more robust, scalable, and interactive 
EEG-driven image reconstruction systems, paving the way for practical deployment in research, art, 
and industrial contexts.  
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