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Abstract: The growing number of algorithmic decision-making environments, which blend machine
and bounded human rationality, strengthen the need for a holistic performance assessment of such
systems. Indeed, this combination amplifies the risk of local rationality, necessitating a robust
evaluation framework. We propose a novel simulation-based model to quantify algorithmic
interventions within organisational contexts, combining causal modelling and data science
algorithms. To test our framework’s viability, we present a case study based on a bike-share system
focusing on inventory balancing through crowdsourced user actions. Utilising New York’s Citi Bike
service data, we highlight the frequent misalignment between incentives and their necessity. Our
model examines the interaction dynamics between user and service provider rule-driven responses
and algorithms predicting flow rates. This examination demonstrates why these dynamics are
necessary for devising effective incentive policies. The study showcases how sophisticated machine
learning models, with the ability to forecast underlying market demands unconstrained by
historical supply issues, can cause imbalances that induce user behaviour, potentially spoiling plans
without timely interventions. Our approach allows problems to surface during the design phase,
potentially avoiding costly deployment errors in the joint performance of human and AI decision-
makers.

Keywords: machine learning; system dynamics; simulation modelling; algorithmic decision-
making; supply chain planning; NY Citi Bike

1. Introduction

Despite the rapid advancement of Artificial Intelligence (Al), particularly with generative AI[1],
human judgment remains critical in decision-making [2,3].

From a macroeconomic perspective, Al, as a General-Purpose Technology (GPT), requires
complementary structures, processes and systems to maximise its value [4,5]. This transition is
gradual, particularly for organisations not born digital, which will blend old and new processes for
some time [6]. While automation replicates existing rules, an augmentation approach—combining
humans and Al —creates opportunities to innovate and extend task boundaries, effectively “growing
the pie” by expanding the range of available options [7,8].

From an organisational decision-making perspective, Al's handling of tasks involving tacit
knowledge is often unreliable due to the variability in such tasks [9-11]. Effective Al integration
requires a shift from ‘point solutions’ to a system-level approach that considers interdependencies
within the organisation [6]. This transition from narrow ‘digitisation’ to a holistic, problem-led
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‘digital” view acknowledges the contextual richness of organisational decision-making, recognising
the limitations of reducing complex problems to a few variables [12-14]. As Gigerenzer points out,
simplifications are inadequate in a world that lacks stability, necessitating a systemic approach that
accounts for both uncertainty and the complexity of real-world contexts [15].

Technologically, the limitations of Large Language Models (LLMs) and the biases inherent in
machine learning highlight that data and models are not entirely objective [16-18]. Machine learning
models inevitably reflect the biases of their designers, refuting claims of “theory-free” Al [19,20].

These mutually reinforcing perspectives establish human-AI collaboration as the default for
complex problem-solving. Research shows that coordination dynamics, already complex with
traditional technologies and likened to navigating a rugged landscape, become even more intricate
with the introduction of machine learning [21-23].

In light of the need for collaborative decision-making between humans and Al, the challenge is
to make the dynamics of joint decisions transparent. Our proposed framework addresses this by
integrating deep learning as the centrepiece of the algorithmic component, complemented by human
judgment, within a simulation workbench designed to evaluate and refine decision policies. To
demonstrate the framework’s application, we applied it to inventory balancing in docked bike-
sharing systems, which often experience spatial and temporal inventory asymmetries, where stations
with similar initial stocks diverge over time. A widely used eco-friendly approach incentivises users
to rent or return bikes at stations facing inventory imbalances. Our framework tackles this challenge
by integrating heuristic and data-driven methods, enabling a comprehensive assessment of their
performance across different experimental conditions.

From a systems perspective, organisations with hierarchical structures, interacting parts, beliefs,
rules, and goals can be viewed as complex systems. System dynamics, which focuses on dynamic
complexity arising from interactions over time rather than the number of components, offers a viable
method for understanding organisational behaviour [24,25].

Traditionally, policy modelling in such systems has relied on judgmental heuristics, which
assume that system behaviour emerges from simple rules and component interactions [26]. The
introduction of PySD in 2015 [27], which incorporates Python’s data science libraries into system
dynamics models, creates opportunities to combine these heuristics with more sophisticated methods
like deep learning. Since one of the core principles of a complex system is its hierarchical structure—
what Simon calls “boxes-within-boxes” [28] —characterised by more interactions within subsystems
and fewer between them, we might model organisational behaviour as a mix of relatively closed
algorithmic subsystems and more open rule-based ones cohabiting, using PySD.

A key advantage of system dynamics modelling is its promotion of double-loop learning [30],
where real-world feedback continuously informs and shapes mental models. As shown in Figure 1,
modern organisations blend rule-based and Al-driven models, mirroring the heuristic-data science
approach used in our bike-sharing study. However, despite integrating human judgment and
algorithmic decision-making, organisations often fail to comprehensively evaluate the overall
performance of joint decision-making, meaning double-loop learning is not always achieved. This
gap highlights the proposed model’s novelty, facilitating a more comprehensive evaluation of
human-AlI collaboration.
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Figure 1. Double-loop learning.

2. Modelling Framework

Our primary deliverable is a quantitative model designed to bridge the gap between recognising
the need for ML in decision-making and its implementation. Since our model focuses on the technical
aspects of the modelling process, we leave the articulation of the problem and hypothesis generation
to the conceptual phase, providing only a brief overview. Our work lies in the evaluation phase,
following conceptualisation and preceding implementation. At this stage, we assume the focal firm
has identified the decision context where they would like to use ML —call it the intervention —where
a business problem or opportunity prompts a re-evaluation of decision policies, leading to an initial
concept combining ML and human judgment and has considered role separation.

As a first step in the evaluation phase, Causal Mapping produces causal diagrams to represent
current and future decision-making states, abstracting from operational details to establish system
boundaries and identify key feedback structures. Simulation and ML models step uses tools like
Vensim, PySD, and ML methods (e.g., Recurrent Neural Network (RNN)) to elaborate on these causal
maps and develop models to integrate ML and heuristic methods. Partial model testing verifies the
local rationality of subsystems, ensuring alignment with process-level objectives before full
integration. Finally, Integration and policy analysis assesses the global rationality of the intervention by
testing system-wide outcomes against organisational goals, identifying potential misalignments, and
exploring adaptations. In the implementation phase, the simulation model we develop in the
evaluation phase serves as a low-risk tool for evaluating the intervention’s effectiveness, supporting
the organisation in deciding whether to proceed with or adapt its human-AlI strategy.

3. The Bike-Share Problem
3.1. Business Context

The business context involves a docked bike-sharing system, modelled on New York’s Citi Bike
[31], where customers rent and return bikes at docking stations. Unlike the more flexible dockless
model, which allows rentals and returns anywhere [32], docked systems often face outages due to
inventory imbalances despite sufficient overall bike availability [33].

Outages occur when bikes are unavailable, or docking slots are full, reducing rentals due to
limited returns and causing future stockouts. Providers can address this through strategies, including
a) overnight inventory balancing, b) monitoring and rebalancing during the day, and c) incentivising
users to help with rebalancing. Option (c) is particularly attractive as a primary tool because it
crowdsources the problem to users (like Citi Bike’s Bike Angels program, which rewards users with
redeemable “angel points” [34]) and has green credentials.

However, its success depends on:

e  Accurate estimation of incentives” impact on bike flow rates.
e  Coordination with the provider’s rebalancing efforts.
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e  Forecasting rental and return demand to time incentives effectively. Success depends on the
provider’s ability to anticipate shortages and determine what can be resolved through incentives
before resorting to other measures, such as rebalancing with the provider’s own fleet (e.g., bike
trains).

3.2. Evidence of Problem at Citi Bike

We analyse hourly bike utilisation at seven stations within a chosen demand cluster (selection
criteria discussed in Subsection 3.3) over a typical week, with high utilisation defined as 85% (e.g., a
station with 40 bikes would have an average of six available per hour). Several instances show more
than one station at risk of outages simultaneously, highlighting significant opportunities for
inventory balancing through crowdsourcing among nearby stations to reduce stockouts.

However, examining the crowdsourcing strategy reveals poor incentive timing (further details
on the sampling strategy are provided in the Data section). For example, at station E 20 St & Park Ave
(which ranked second in incentives offered during the analysis period August 2023), we relax the
assumption about high utilisation further and assume that an incentive offered above 70% could be
reasonable and further suppose that a failure to initiate incentives above 85% is a missed opportunity,
and incentives when utilisation is below 70% are excessive. Figure 2 illustrates this scenario,
highlighting incorrectly timed incentives in red and correctly timed ones in green, showing a clear
pattern of more ill-timed than valid incentives. Given the evidence supporting crowdsourcing’s
effectiveness, it is reasonable to hypothesise that better timing could have prevented some stockouts.

Week 32 Week 33 Week 34 Week 35
100.00%

Monday

50.00%

0.00%
100.00% 85.00%
0Q%

50.00%

70.00%
0.00%

I I 70.00%
100.00% 85

70.00%
50.00%
0.00% n W | h
100.00% 85 00%

70.00%
50.00%

0.00% | | I |

100.00% 85.00%

Thursday Wednesday Tuesday

70.00%
50.00%
el el i e i
100.00% 85.00%
=1l lun o I
o | I N L i
100.00% 85.00%
50.00% I I I
oo | w I 1ol mli
0 10 20 0 10 20 o] 10 20 0 10 20
Hour of Timeslot Hour of Timeslot Hour of Timeslot Hour of Timeslot

Friday

70.00%

Saturday

70.00%

Sunday

Utilisation =~ Utilisation = Utilisation | Utilisation = Utilisation = Utilisation | Utilisation

Figure 2. Evidence of poor incentivisation strategy at a Citi Bike station in August 2023. Conditional
coloring formula: COLOUR = { GREEN: if CU > HUT and RI > 0; RED: if CU 2 HUT and (RI =0 or RI
is null); RED: if CU < RHUT and RI > 0; GRAY otherwise}, Where CU = Average Capacity Utilisation
= AVERAGE(DA / CA), RI = Sum of Return Incentives, HUT = High Utilisation Threshold, RHUT =
Reasonably High Utilisation Threshold, DA = Docks Available, and CA = Capacity Available.

3.3. Data

Forecasting user demand for rentals and returns is the first step in allocating bike inventories to
stations and anticipating balancing needs. We base our forecasts on Citi Bike’s monthly trip histories
published online (https://ride.citibikenyc.com/system-data).
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3.3.1. Justification for Focusing on a Subset of Bike Stations for the Model

The Bike Angels program incentivises users to balance inventory by offering redeemable ride
points. Incentives for users to rebalance inventory are inherently local, as they redirect returns from
overflowing stations to those in need, adjusting flows between nearby stations without significantly
altering overall demand. Given the asymmetries in stockout patterns between nearby stations,
modelling a carefully selected cluster of proximate stations is justified to test causal hypotheses.

We selected stations based on the following criteria:

(a) Availability of incentive data to correlate with demand, allowing analysis of its historical
effectiveness using a causal inference model, which estimates the impact of incentives on user
demand and adjusts demand accordingly.

(b) At least one station in the cluster should rank high in demand or ride counts to ensure the
analysis focuses on a high-impact cluster.

(c) Stations should be within walking distance, allowing users to switch between stations easily,
thus balancing inventory through guided incentives to “give” at one station and “take” at
another to improve overall balance.

For a  time, station incentive data was  accessible via an  API
(https://layer.bicyclesharing.net/map/vl/nyc/stations), but this ceased after August 25, 2023. Since
this data is critical for analysis (criterion a), we focused on August 2023, the latest month with
available data. To meet criteria b and ¢, we visualised station locations on a map, using circle sizes to
represent ride counts. E 17 St & Broadway, ranked fifth out of 400 stations, was chosen as the nodal
station, with the additional requirement to have several nearby stations (see Figure 3 -- Tableau
background map sourced from Mapbox). We then selected stations within a 350-metre radius to form
our demand cluster.

&4 7.4
£ O, Mg
i sstscavenl

Figure 3. Chosen demand cluster consisting of nine stations.

3.4. Evaluation - Causal Mapping

From the August 2023 data (Figure 2), we observe that when a station’s bike inventory is low
(blocking rentals) or high (blocking returns), incentives are often either absent or incorrectly applied,
indicating a flaw in the logic behind triggering incentives. In other words, since we have evidence
that crowdsourcing as a policy is effective, we can conclude that improving the inventory balancing
policy would reduce out-of-stock events (or no-service events).

Given that the scope is inventory balancing, Figure 4 illustrates the hypothesised mental model,
mapping the causal relationships between relevant variables, with an initial focus on a single bike
station for clarity. This general framework applies to bike-sharing systems beyond Citi Bike.
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Figure 4. A Causal Loop Diagram of the bike-share inventory balancing with a dynamic hypothesis.

The Return and Rental rates represent the inflows and outflows of the Bike stock, with base rates
reflecting demand influenced by weather or other contextual factors.
The difference between inflows and outflows, or the net inflow, integrates into the Bike stock.

Specifically (note that s represents any point in time between tpand t):
t

Bike stock(t) = f [ Return rate(s) — Rental rate(s)]ds + Stock(t,)
t0

As bike stock increases, Dock utilisation (Bike saturation) at the station increases, assuming all else
remains equal. This positive relationship (indicated by the plus sign on the arrow) reduces the
station’s attractiveness for returns (User perception of return attractiveness shown with negative
polarity), causing users to avoid full stations and creating some baulking. The balancing loop “B1”
resists this change, feeding back to stabilise the system.

A similar dynamic occurs in the balancing loop “B2”. As the Bike utilisation or Dock saturation
(number of free docks) increases, the attractiveness for rentals (User perception of rental attractiveness)
decreases, reducing the rental rate and inducing stronger baulking at near-empty stations. The
Simulation and ML Models section will provide mathematical precision to these qualitative
statements.

The outer loops “B3” and “B4” are more consequential to overall system behaviour. The Perceived
bike availability, a smoothed composite of Forecasted bike availability and real-time Bike utilisation,
influences the provider’s perception of risk. Delays in incorporating real-time data may, however,
occur, either due to system limitations or a deliberate “wait and see” approach (indicated by dashed
arrows) where the provider does not want to react too soon to fluctuations (thus, “smoothing”) [35].
As the perceived bike availability decreases, the Perceived risk of bike outage increases, which raises the
pressure to incentivise returns (User incentives for returns). These incentives boost the return rate,
increasing bike stock as intended. A similar dynamic plays out in the case of dock outage risk
(Perceived risk of dock outage) that triggers more rentals (User incentives for rentals). It is assumed, both
here and in the forthcoming equation formulation, that incentives reroute demand between stations
rather than increase overall demand. When coordinated effectively, especially between nearby
stations with asymmetric demand, crowdsourced inventory balancing through incentives reduces
imbalances across the system.

In this simplified example, we observe multiple feedback loops with varying strengths, delays,
and non-linear relationships (e.g., the effect of bike availability on the provider’s risk perception and
user perception), making a closed-form solution unfeasible.
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Based on the causal representation of the inventory imbalance problem, we might hypothesise
about the potential root causes (see numbered flags in Figure 4). These are:

The baulking behaviour reduces recorded demand, effectively censoring flows (1). When used
for forecasting, this results in a pessimistic outlook on future demand (2). In other words, historical
issues hinder the ability to predict future demand accurately, worsening the situation over time.
Additionally, inefficiencies in incorporating real-time availability or overemphasising it (where
demand outliers or temporary fluctuations heavily influence decisions) (3) affect the provider’s
perception of stock levels. Lastly, the rules for triggering incentives, based on perceived and desired
bike availability (4), impact their effectiveness.

The causal map’s feedback-oriented view helps explain the dynamic behaviour behind
inventory imbalance (the current state). Having identified the leverage points, we might further
hypothesise a mental model that addresses the problem —the envisaged future state. Our proposed
mental model likely involves a mix of human judgment and ML. For addressing bike-share inventory
imbalance, several factors need to be considered: initiating incentives cannot be fully algorithmic due
to budget constraints and other balancing methods; user response to station saturation is non-linear;
it is better to base outage risk on patterns of actual and projected bike availability, rather than reacting
to temporary demand fluctuations; and policy robustness is preferable over chasing “optimal”
incentive schemes.

3.5. Evaluation - Simulation and ML Models

Causal mapping established perceived bike availability, a synthesis of real-time and forecasted
data, as the bike-share provider’s key information source to assess outage risk and adjust incentive
actions. Incorporating flow rate predictions helps smooth the impact of real-time fluctuations on
outage risk perception. The data science component of the organisational mental model also includes
predictions of how incentives will impact bike-share demand, specifically the expected increase in
returns and rentals from crowdsourced inventory balancing. The accuracy of these predictions
directly influences projected bike stock and future incentive decisions.

Figure 5 illustrates how these information flows—expected demand and response to
incentives—impact material flows and system performance.
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Figure 5. Bike-share model high-level flows.

A standard metric for evaluating performance is the service level, which in the bike-share
context can be defined as:

(potential customers - no-service events)

potential customers
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In our case, improving prediction accuracy reduces no-service events, enhancing service levels.
Bike-share demand, both rentals and returns (Base Demand), is driven by market demand, influenced
by bike availability for rentals and dock availability for returns. Realised demand serves as the basis
for Demand Forecasting. Through data cleansing (de-censoring), realised demand is adjusted to
remove distortions from stockouts and outliers, producing a version closer to true market demand
(Inferred Base Demand). The Demand Forecasting process then generates a forecast (Expected Demand),
incorporating factors like weather forecasts that correlate with customer demand.

The Inventory Management process defines the provider’s policies for ensuring adequate stock
at individual stations (disaggregation of bike inventory) to meet expected demand. It also monitors
real-time availability and triggers balancing actions or customer incentives to prevent stockouts. The
process relies on expected demand and incentive impact predictions (Expected Response to Incentives)
based on causal inference from historical incentive effects (Inferred Incentivised Demand from
underlying Incentivised Demand).

We now discuss the ML forecasting process and causal inference that form the backbone of the
algorithmic content in the mental model.

3.5.1. Demand Forecasting

Demand de-censoring

A crucial step in preparing the historical rental and return data for forecasting is removing
outliers or de-censoring demands. Outlier correction aims to eliminate the impact of extraordinary
circumstances [37], providing a solid base for forecasting [38]. Unusual events disrupt the stationarity
assumption, which is essential for reliable forecasting, as it assumes historical patterns can be
extrapolated to predict future demand. Outlier correction seeks to minimise these disruptions.

For bike-share data, we detect and correct two types of outliers. The first occurs when the
provider cannot meet rental or return demand due to insufficient bike or dock inventory, censoring
legitimate demand and incorrectly assuming the supply issue will continue. The second type arises
from inventory balancing actions, such as bulk returns or rentals, which deviate demands significantly
from the average. Below, we outline the data preprocessing and cleansing steps used to create an
outlier-corrected rentals and returns file.

Data preprocessing. Citi Bike’s trip data contains transactional information used to determine
bike-share rental and return demand. The key fields are location details and ride start and end times.

We used Tableau Prep Builder (https://help.tableau.com/current/prep/en-us/prep_about.htm) to
transform the source data into the desired format for demand forecasting. We applied a filter to the
station fields (start or end) to focus the data on the nine stations selected for the case study’s demand
cluster. We split each day into ten-minute intervals and assigned ride start and end times to their
respective slots. This aggregation reduces granularity, minimises demand variability, and improves
forecast accuracy. Based on a preliminary analysis showing an average trip duration of 11 to 13
minutes, we selected ten-minute intervals to ensure we capture short trips to and from the same
station. We then split rentals and returns into two streams for individual forecasting.

For the incentives data from Citi Bike’s Bike Angel program, we developed a Python script to
run every ten minutes and pull real-time data. Using the fields “name,” “last_reported,” and
“bike_angels_action,” we determined the timing of incentives at the selected stations. Figure 6
illustrates the data pipeline, from demand and incentive data to the two critical prediction types for
inventory management.
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Figure 6. Data pipeline.

With the Raw Demands and Incentives Data in place, we split the demands into Incentivised
Demands and Un-incentivised Demands (or Base Demands).

Un-incentivised or Base Demands. If a demand period at a ten-minute time slot for individual
stations has no incentive, the base demand equals the raw demand. If an incentive is applied, the base
demand is the average demand for that timeslot at the station and filtered for periods without
incentives during that month.

Incentivised Demands. If a demand period is under incentive, the incentivised demand equals
the raw demand. Otherwise, it equals the average demand for that timeslot at the station/month,
filtered for periods with incentives.

Outlier correction. A demand is considered an outlier if it exceeds the Upper Threshold Limit
(UTL) or falls below the Lower Threshold Limit (LTL). For Base Demands, outliers are those below
the 10th percentile or above the 95th percentile. For Promoted Demands, the LTL is the 25th
percentile, and the UTL is the 99th percentile. Any detected outliers are corrected to the average value
for the same timeslot and station, excluding outliers from the calculation.

Machine learning forecast

Given that various contextual factors—such as temporal patterns, weather, local events, and
urban dynamics—affect bike-share demand, predicting it is a complex function of these inputs,
making machine learning approaches like RNN ideal.

A crucial design decision in the RNN architecture is determining the type of inputs passed to
the Dense output layer. The last recurrent layer can either return sequences, passing outputs across
all timesteps or return only the final timestep’s output as a vector [39]. As we will explore later, this
proved a significant leverage point for improving forecast accuracy in the bike-share case study.

Implementation details. The outlier-corrected base demands for rentals and returns served as
the primary inputs for training the RNN on the bike-share data. We also downloaded historical
weather data for August 2023 from OpenWeather (https://openweather.co.uk/about) using location
details around the nodal station (E17 St & Broadway).

Besides weather, we also experimented with other correlates such as lagged demands
(supplying demands with an n-period lag as additional features in the current timestep), demands of
nearby stations with symmetric demands and temporal signals. Table A1 in the Appendix A details
the data inputs, model architecture, parameters, and features we tested and used for the final
evaluation.

Weather data had a marginal impact on forecast accuracy, likely due to training on a single
month’s data. Similarly, nearby station demands and lagged demands showed no significant
contribution. After several trials, we settled on using temporal signals and rental demands (to forecast
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returns and vice versa) as key features. By applying sine and cosine transformations on the time of
day and day of the week, we created six features per prediction type (rental or return).

Traditional RNNs suffer from memory loss over long sequences due to repeated
transformations, which leads to information degradation ([40], pp. 297—300). Given the granular
nature of bike-share data (144 periods per day), we used Long Short-Term Memory (LSTM), a type
of RNN, for the model architecture, which mitigates this by carrying information across timesteps.
Acting like a “conveyor belt” ([40], pp. 297—300) that selectively retains or discards memory, LSTM
improves accuracy by focusing on relevant data. Another key improvement came from training the
network on every timestep (sequence-to-sequence) rather than only the final timestep.

A sequence-to-vector approach would output a tensor shaped as (samples, forecast horizon). In
a sequence-to-sequence setup, in contrast, each timestep generates a tensor shaped as
(samples, timesteps, forecast horizon). This structure enhances performance, as omitting sequences
can reduce accuracy by 40%. With predictions and losses at each timestep, more error gradients flow
back, and shorter gradient travel distances (via Backpropagation Through Time) reduce information
loss, further improving performance.

Table 1. Comparison of Model Performance for Bike-Share Rentals.

Station MSE LSTM Improvement (%)
Naive EXS LSTM vs Naive vs EXS

Broadway & E 19 St 1.00 1.02 0.79 21 22
Broadway & E 21 St 1.50 1.50 1.15 23 24
E 16 St & 5 Ave 1.02 1.05 0.75 27 29

E 16 St & Irving P1 1.44 1.42 1.13 22 20
E 17 St & Broadway 1.54 1.54 1.08 30 30
E 20 St & Park Ave 1.04 1.03 0.74 29 28
W 205t &5 Ave 1.30 1.29 0.95 27 26

Table 2. Comparison of Model Performance for Bike-Share Returns.

Station MSE LSTM Improvement (%)
Naive EXS LSTM vs Naive vs EXS

Broadway & E 19 St 1.39 1.47 1.01 28 31
Broadway & E 21 St 1.32 1.34 1.08 18 19
E 16 St & 5 Ave 1.24 1.24 1.02 18 18

E 16 St & Irving P1 1.07 1.09 0.76 29 30
E 17 St & Broadway 2.24 2.26 1.70 24 25
E 20 St & Park Ave 0.94 0.94 0.74 22 22
W20 St &5 Ave 1.16 1.16 0.82 30 29

Note: (i) MSE = Mean Squared Error; EXS = Exponential Smoothing; LSTM = Long Short-Term Memory.
Improvement percentages are calculated as (Alternative - LSTM) / Alternative * 100%. Positive values in the
Improvement columns indicate superior LSTM performance. (ii) Why are there only seven stations in the
evaluation table? An exploratory analysis of the source data revealed that two of the nine stations initially
identified in the cluster were missing data for several days in the August trip data file. Therefore, we decided to
proceed with the seven remaining stations.

3.5.2. Causal Inference

We apply a causal inference model proposed by Brodersen et al. using a Bayesian framework
[41] to infer the impact of incentives on rental and return flows.

The model predicts the impact of an intervention (e.g., bike angel incentives) on the response
metric (e.g., demand uplift) by regressing its pre-intervention time series on covariates unaffected by
the intervention. It then generates a counterfactual response for the post-intervention period based
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on these “untreated” covariates. The impact is the difference between the observed and predicted
counterfactual values.

To identify suitable contemporaneous correlates, we first compute similarity scores for station
pairs in the demand cluster using the bike utilisation metric (as outlined below). For each station, we
then select the time series of one or more of the closest stations.

Stage 1: Clustering by Demand Symmetry

Data: Hourly bike utilisation for each station.

Bike utilisation = Dock availability / Capacity (percentage of bikes rented)

Steps:

e Load and preprocess the data:

o Pivot the dataset to create a 24-hour utilisation vector for each station and day.
¢  Normalise the utilisation vectors for each station using MinMax scaling.
e  For each pair of stations (21 pairs for 7 stations):

o Extract the 24-hour utilisation vectors for corresponding days for both stations.

o Calculate the L2 distance between the normalised vectors for each day.

o Compute the average L2 distance across all days as the final similarity metric for the station

pair.
e  Store the average L2 distances for all station pairs in a table, sorted by similarity (lowest to
highest distance).

A typical week for the two stations identified as most similar by normalised bike utilisation
during the analysis period is shown in Figure 8 below.

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

0 AJ\’/\/\ f/\\ JV\A ﬂ\ \_/’[‘A \/\/\/‘ \/f,\
L] 10 20 o] 10 20 0 10 20 0 10 20 L] 10 20 L] 10 20 0 10 20

Hour of Datetime Hour of Datetime Hour of Datetime Hour of Datetime Hour of Datetime Hour of Datetime Hour of Datetime

=
&

Week 35
Base Demands (Rental)
I
8

Station
M Broadway & E21 5t

W205t &5 Ave

Figure 8. Demands in a typical week at the two most symmetrical stations of the cluster.

In the second stage, we use the causal impact model to estimate the effects of incentives. The
demand censoring step provides two continuous time streams for the unincentivised and
incentivised demands. For the target station, we pass the incentivised demands for the post-
intervention period to the model to infer what would have happened without the intervention. The
inputs include the unincentivised demands from correlates, which are stations with similar demand
patterns (identified in stage one).

Stage 2: Causal Impact Model for Estimating Incentive Effects

Data: Base (unincentivised) and incentivised rental/return demands for each station.

Steps:

e  Prepare the Data:
o Filter and rename the columns to distinguish between base and incentivised demands (e.g.,
“Rentals Normal” for base demands, “Rentals Uplift” for incentivised).

o Pivot the data to create a time series of rentals and returns for each station, with pre-
intervention values using base demand and post-intervention values using incentivised
demand.

o Define the pre and post-intervention periods based on the intervention days.

¢  Run the Causal Impact Model:

o Use the base demands from correlated stations (identified in Stage 1) as covariates and the
incentivised demand for the target station as the response series.

o The model infers the base demand for the target station during the post-intervention period
(had no incentives been applied).
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e Collate and Average Results:
o Collect the inferred rental/return uplift (i.e., the difference between the incentivised and
predicted base demand) for the target station across all intervention days.
o Average the results to create a typical week, showing hourly estimated percentage uplifts
for rentals and returns.

The charts in Figure 9 compare the (counterfactual or inferred) base and incentivised rental
demands for the test period.

Daily Intervention Analysis

Day: 21-8-2023 Day: 22-8-2023
10 10 — Rentals Uplift
u‘l’\ predictions (without incentives)
¥
5 i LHJ‘ 5 W Deviation
j \ | § 1 i
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Day: 25-8-2023
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Figure 9. Analysis of the causal impact of incentives on rental demands.

3.5.3. Stocks and Flows Modelling

A common way to summarise systems thinking is by stating that a system’s behaviour stems
from its structure. When we unpack “structure,” it consists of stocks, flows, and feedback. However,
in our causal mapping of problematic behaviour in the bike-share case and potential interventions,
we did not explicitly distinguish between stocks and flows; instead, we focused on the interconnected
feedback loops to offer plausible explanations. While identifying key variables and their relationships
suffices to hypothesise behaviour patterns, precise quantification for simulation requires clearly
distinguishing between stocks and flows.

The stocks and flows schematic in Figure 10 illustrates the kind of causal map elaboration
needed to advance in the simulation process. It highlights the decision-making role of feedback
structures and emphasises the importance of stock and flow variables.

The feedback or decision structures process cues from stock variables across different system
sectors to make decisions that alter flow rates, which, in turn, feed back into the stocks. For example,
the inflow rate (I1) into stock S1 depends on S1 and stock S4. Endogenous variables (V [1-3]),
exogenous variables (U1), constants (C1), and time constants (T [1-3]) simplify the specification and
maintenance of algebraic equations in simulation tools like Vensim. Essentially, net inflows are
functions of stocks (with constants acting as slow-changing stocks) and exogenous variables; the
intermediaries help break complex formulations into manageable parts.
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Figure 10. Stocks and flows structure.

This formulation provides the precision to quantify the interrelationships and determine the
differential equations for net inflows. Once defined, the system’s behaviour over time is simulated
by numerically integrating these equations to evolve the stocks.

In the bike-share model, focusing on a single station, the bike stock represents the physical
inventory that generates information cues for decision-making, influencing future flows. This stock
reflects the real-world availability of bikes. A parallel structure also projects the future stock based
on machine learning-predicted return and rental flows. The inventory management policy
synthesises these two streams to assess outage risks, accounting for reporting and information delays.
A set of rules translates this perception into decisions to incentivise returns or rentals.

A further algorithmic component that plays a crucial role in the feedback is the expected impact
of incentives. During scenario simulations where various plausible rental and return flows operate
on the real-world stock (our focus in the last two steps of the evaluation phase), the quality of
predictions about incentive effectiveness influences our assessment of the effectiveness of policy
variables. For example, if the accuracy of the causal impact of crowdsourcing inventory balancing
through incentives is poor, the simulated real-world stocks will deviate from reality, skewing our
assessment.

If we remove the single-station constraint, additional complexity arises from coordinating
incentive actions by leveraging the complementarity between stations or clusters. Specifically, the
inventory status of a partner station or cluster with asymmetric demands informs whether to apply
incentives. The future-state inventory policy also incorporates a target range for bike availability or
station utilisation. The distance between current perceived availability and the upper or lower
threshold determines perceived risk, guiding stock levels within these limits. Figure 11 illustrates
how these two streams converge to orchestrate feedback loops influencing the system’s stock
evolution.
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Figure 11. Bike-share model, inventory management.

We now review the two main components (in the corresponding stocks and flows formulation),
synthesising information cues about the current and anticipated system states. For clarity, in Figure
12, we focus on the returns flow, noting that the dynamics are similar for rental flows. We also limit
our review to a single-station model to simplify how the formulation of stocks and flows enables the
mathematical representation needed for simulations. (Figure A1 in the Appendix A provides the full
structure, and the GitHub repository contains the equations for the two-station/cluster model.)
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Figure 12. Stocks and flows (single station, zoomed in on returns).
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The first component is the formation of perception about availability, represented by the variable
Perceived bike availability factor (PeBAF). This stock variable is shown in the diagram, which zooms in
on the stocks, flows, and feedback structure used to simulate the real-time behaviour of the system'’s
return flows.

Since the decision-maker anchors their perception on forecasted availability, the real-time
simulation connects to this critical information through the Projected Bike Availability Factor (PrBAF).
To initialise PrBAF before the actual simulation, we run a model using forecasted demand flows (all
done programmatically in a Python test workbench). Additionally, as the provider may update
projections multiple times daily, a decision parameter controls the refresh frequency, which
determines the look-ahead horizon.

Figure 13 shows how, in the look-ahead model, a rolling forecast of returns and rentals updates
the projected stock. The process begins by aligning the initial projected stock with the actual stock at
the start of the look-ahead horizon. The projected factors feeding into the real-time model are the
ratio of projected stock to the station or cluster’s maximum capacity.

L Rolling forecast of ! A |
odei [:> rental and return 4 /f.
demands A ‘ / /

Synchronisation | /.

with actual stock at !
horizon start /4 |

2

Projected Stock T 0o | 1
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v
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Figure 13. Online planning approach.

With these definitions, we present the algebraic equations defining the variables involved in the
decision-making process, ultimately shaping the perception of the station or cluster’s inventory
status.

1. Perceived bike availability factor = Perceived bike availability factor(t - dt) + Update perception
*dt

Initial Perceived bike availability factor = Projected bike availability factor

Update perception = Adjustment towards actual + Adjustment towards projected

Adjustment towards actual = Adaptive smoothing factor * Discrepancy to actual

Adaptive smoothing factor = f(time, Responsiveness to actual)

Discrepancy to actual = Bike availability factor - Perceived bike availability factor

Adjustment towards projected = (1 - Adaptive smoothing factor) * Discrepancy to projected
Discrepancy to projected = Projected bike availability factor - Perceived bike availability factor
Projected bike availability factor g(rental and return demands, other factors)

0PN LN

In the structural equations, the delay variable Responsiveness to Actual determines how quickly
the decision-maker integrates the actual Bike Availability Factor (BAF) into their perception. The
Adaptive Smoothing Factor (ASF), a non-linear logistic function f of the current look-ahead step and
responsiveness, weighs the perception update. This update combines the deviations from actual
(BAF) and projected availability (PrBAF), with ASF applied to the actual deviation and (1 - ASF) to
the projected deviation. The function g represents the generation of projections based on the
machine learning forecast, which utilises historical demands and other features.

The second component is the risk perception, which gradually updates based on the Perception
delay to reflect the current availability perception; this follows the classic anchor-and-adjust heuristic.
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In the case of risk, the stock variable retains some memory of prior risk, with the delay variable
modelling the inertia.

Figures 14 and 15 below show the simulation result where the projected stock starts at 20 units
(about 31% of the station’s maximum capacity). In contrast, the initial stock in the real-time model is
set to zero, creating a significant discrepancy between BAF and PrBAF. The graphs display the
availability and risk curves for high and low responsiveness levels. With a look-ahead horizon of 48
timesteps, we see the projection align with the actual around 8 AM (six timesteps each hour) after the
first refresh. A consequence of low responsiveness is that the risk perception curve is much narrower
earlier in the day, as perception aligns more closely with the artificially inflated projected availability
values.

The impact of low and high availability delay values on perceived bike
availability
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Figure 14. Comparing the impact of responsiveness on availability factor curves.

The impact of low and high availability delay values on outage risk perception
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Figure 15. Comparing the impact of responsiveness on risk perception.

3.6. Evaluation - Partial Model Testing

The objective of partial model testing, as suggested by Morecroft, is to broaden the perspective
from the task level —typically the initial focus of the intervention—to encompass its immediate
process context before fully integrating it into the holistic model. For more traditional policy changes
that do not involve machine-learning agents, Morecroft advocated for partial testing to prevent what
he called the “leap of logic” from equations to consequences [42].

This approach assumes that, under bounded rationality, policy interventions are generally
reasonable at the local or subsystem level before accounting for the dynamic complexity of the entire
system. Partial testing, therefore, helps confirm that an intervention is rational in intention before
expanding its scope. Since machine learning introduces new dynamics, particularly in navigating
decision-making alongside humans, partial testing becomes even more critical.
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In the bike-share experiment, we apply this approach to test the reasonableness of using a deep
learning method for demand forecasting instead of the traditional exponential smoothing
technique—a well-established statistical procedure [43]. While the forecast accuracy metric showed
substantial improvement with the RNN model, which intuitively makes sense given its ability to
leverage correlates of demand that a univariate method like exponential smoothing cannot, we
broaden the testing scope and use a process-oriented metric to determine if these improvements hold
at this level.

The following steps outline the procedure for executing the partial tests.

Inputs:

ML (LSTM) and exponential smoothing (STAT) predictions for a given bike station/day.

Maximum capacity of a station.

Procedure:

e  Calculation of Just-in-Time Inventory Balancing (Receipts and Issues):
o Run the ML and STAT predictions through a simplified stocks-and-flows structure to
compute projected stocks.
o  Whenever an outage occurs (either lack of bikes or docks), record the volume as a planned
balancing receipt or issue.
e  Calculation of the Process Metric: Total Outages with Just-in-Time Balancing (ML vs. STAT
Predictions):
o  Run actual or simulated rental and return demands through a structure that models actual
stock (aligned with the projected stock structure).
o  Use planned receipts and issues (from the previous step) as lookups to adjust rentals and
returns.
o  Record the bikes and docks outages.

Figure 16 depicts the stocks-and-flows structure used to compute the process metric. Despite its
simplicity, the partial test helps determine whether individual rationality —in this case, the superior
forecast accuracy of the RNN’s rental and return predictions—translates to collective rationality. The
latter refers to whether the combined use of these predictions in a more realistic setting continues to
outperform the simpler alternative.

LOOKUP retums\ /" LOOKUP rentals

Customer return Customer rental
rate rate

7a
Ad{'usted
returns

/
nventory balancing ‘+\Capacity

receipts

Inventory
balancing issues

LOOKUP inventory
balancing receipts

LOOKUP inventory

" e balancing issues
Inventory Station utilisation

balancing
Figure 16. Partial testing model.

In our first iteration, the performance of several stations under ML was unexpectedly worse. The
charts in Figure 17 illustrate a typical outcome. The blue and red lines in the stock outages chart
represent the process metric for the station Broadway & E 21 St from August 22 to 25, 2023, for STAT
and ML, respectively. Despite ML’s forecast accuracy (measured by Mean Squared Error) being about
28% better for rentals and 19% for returns, its process metric is 95% worse, with 72 units versus 37
units of combined bike and dock outages. A closer inspection, tracing the red and blue arrows, reveals
the reason by comparing the projected and actual utilisation over time.
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Figure 17. Partial testing bias correction.

The projected utilisation, defined as the ratio of projected stock to maximum capacity, is
consistently and significantly lower for ML than the actual utilisation, indicating a systematic bias in
the predictions. Specifically, this involves either under-forecasting returns or over-forecasting rentals
or both.

In this case, returns were severely under-forecasted, leading to just-in-time receipts that caused
dock outages (as receipts exceeded maximum capacity). The partial test generally revealed complex
temporal interdependencies between rentals and returns. These dependencies became markedly
pronounced after running partial tests with zero initial stock. For instance, the station’s performance
is susceptible to bias and accuracy early in the simulation. Around 9 AM, returns briefly outstrip
rentals, allowing a short-term build-up of inventory that reduces sensitivity to accuracy later on. This
temporal pattern appeared similarly across other stations in our demand cluster. To address the issue
of bias, we adapted the LSTM model by adding a bias correction layer and incorporating a hybrid
loss function that combines MSE (sensitive to large errors) and Mean Absolute Error (MAE, which
measures the overall magnitude of errors). Table 3 outlines the adjustments.

Table 3. Overview of Adjustments to the LSTM Model for Bias Correction.

Procedure Description

Bias Correction Layer

1. Initialize the Layer Create a trainable bias term initialized to zero.

2. Forward Pass (Call For each prediction, adjust it by adding the bias term.
Method)

3. Configuration Retrieval = Return the layer configuration.

Asymmetric Hybrid Loss
Function
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1. Initialize the Loss Parameters:
Function alpha: Weight for combining MSE and MAE.
lambda_bias: Penalty for bias correction.
lambda_over: Penalty for over-predictions.
lambda_under: Penalty for under-predictions.
local_corr: Whether to compute bias correction locally (per sample)
or globally (batch-wise).
2. Compute the Loss Calculate prediction errors: Y, eq — Yirye-
Separate errors into over-predictions (positive) and under-
predictions (negative).
Calculate MAE with different penalties for over- and under-
predictions.
Calculate MSE for all errors.
Combine MSE and MAE using the weighting parameter a.

3. Bias Correction Calculate the bias correction term, either locally (sample-wise) or
globally (batch-wise).
Add a penalty for bias to the loss, scaled by 4 bias.

4. Return Final Loss Final loss is the weighted sum of MSE, MAE, and the bias

correction penalty.
5. Configuration Retrieval = Return the loss function configuration, including all
hyperparameters.

Table 4 below compares the MSE and bias across three scenarios: exponential smoothing (STAT),
ML without bias correction (ML HI-B), and ML with bias correction (ML LO-B).

Table 4. Accuracy and Bias Metrics for the Three Scenarios in Partial Model Testing.

Model MSE Rentals MSE Returns Bias Rentals Bias Returns
STAT 1.46 1.27 0 59
ML HI-B 1.05 1.03 18 -59
ML LO-B 1.05 1.02 17 29

The green line in the outage and utilisation charts in Figure 17 represents the ML LO-B scenario.
Among all scenarios, this shows the closest match between projected and actual stock. While the MSE,
in this case, is nearly the same as without bias correction (showing about a 28% improvement for
rentals and 19% for returns), the improvement in the outage metric is 22%, compared to a 95% worse
performance without the bias correction.

3.7. Evaluation - Integration and What-If Analysis

In contrast to partial testing, which emphasises the rationality of one or more subsystems (i.e.,
procedural rationality), whole-model testing incorporates all problem-relevant interactions between
subsystems. These inter-subsystem interactions are crucial for assessing whether the simplifying
assumptions driving the design of decision rules remain valid in light of the system’s emergent
dynamic complexity.

A common artefact of dynamic complexity is policy resistance, which occurs when subsystem
goals pull in different directions, leading to behaviours contradicting overarching system goals.
Policy resistance is one example of an archetype in systems literature, defined as “common patterns
of problematic behaviour” ([24], p.111).

While there are many archetypes, policy resistance is the most relevant for assessing the impact
of ML interventions on whole-system behaviour, particularly when algorithms and human judgment
interact. Since ML is less likely to be influenced by existing organisational beliefs [22], it is more open
to exploration, potentially placing the organisation in an unexplored decision space. However, this
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novelty —seen as beneficial within the limited scope of the ML model —might induce resistance
elsewhere in the system. Moreover, nonlinearities and delays, typical of complex systems, mean that
resistance may not manifest immediately, often producing a “better before worse” effect ([25], p.59).
Our approach in this final step of the bike-share case builds on this insight.

Based on assumptions about the future state mental model, we vary control variables that inform
the judgmental component to map the fitness or performance landscape. Although constrained by
structural assumptions, this landscape allows us to survey interdependencies between decision
variables, providing insights into the system’s “ruggedness.” Ruggedness refers to the extent to
which decision performance, influenced by a parameter’s value, depends on other parameters. More
importantly, this overview highlights leverage points in the system —policy variables that have an
outsized influence on performance.

In real-life scenarios where the focal organisation knows the decision variables of routines
complementing the intervention, this approach enables an evaluation of performance for both the
current configuration and neighbouring parameter values. Instead of producing a single-point
estimate, the organisation gains insights into the performance gradient—the direction and rate of
change in performance as decision variables shift—enabling more informed decisions about what
else needs to change alongside the intervention to maximise system performance.

3.7.1. Starting Inventory Policy

A natural candidate for a high-leverage control variable is the station’s starting inventory for the
day. Since overnight balancing actions are standard practice, setting an optimal starting inventory
can significantly reduce the need for extraordinary measures, such as offering incentives or deploying
the provider’s fleet for additional balancing.

The performance comparison between LSTM and the statistical method showed that LSTM
significantly reduces residual errors by detecting patterns from past demand and, crucially, other
demand correlates. Therefore, when setting the starting inventory, LSTM’s superior pattern
recognition must be considered, in addition to the uncertainty introduced by randomness and
unaccounted-for demand factors.

This dual requirement leads to a straightforward approach for setting the starting inventory.
Forecast errors are assumed to follow a normal distribution with zero mean (indicating no systematic
bias) and a standard deviation equal to the Root Mean Squared Error (RMSE). Based on a confidence
interval, random errors are generated and scaled by the RMSE to reflect forecast uncertainty. Adding
these errors to the forecast creates multiple demand scenarios for rentals and returns. These scenarios
are then applied in a simplified simulation model (single station, without feedback loops for user
incentives) to determine the most robust inventory value. Along with the confidence interval and the
number of scenarios, the relative weighting of bike and dock outages is an essential parameter in
evaluating performance.

Figure 18 below shows demand scenarios for the station “E 16 St & 5 Ave,” generated for August
24th, with a confidence interval of 80% and 300 scenarios. Since the provider must determine the
target inventory for overnight balancing before the day begins, the forecasts are generated on a rolling
basis (see Figure A2 in the Appendix A for an illustration of how this logic works). As much as
possible, actual historical demands are used (adjusted to account for the time needed to execute
physical balancing actions). However, when forecasting into the future—where actual demand data
is unavailable—the previously generated forecasts are used instead. This approach enables the
creation of a continuous forecast time series covering the entire day.
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Rental and Return Demand Scenarios with Actual Demands
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Figure 18. Demand variability scenarios.

3.7.2. Simulation of Performance Across the Fitness Landscape

The dimensions of the fitness landscape—shaped by the parameters of heuristics that
complement algorithmic decisions—include several decision variables beyond starting inventory.
These variables include delays that influence the PeBAF and the perception of out-of-stock (OOS)
risk (due to bike or dock unavailability); the aggregation logic and horizon for the PrBAF, which,
along with the actual bike availability factor (BAF), affects availability perception; the refresh
frequency for updating forecasts and PrBAF throughout the day; and the desired bandwidth for bike
availability (where, if the PeBAF remains within the “utilisation sweet spot,” inventory balancing
actions are unnecessary). Each parameter set consists of specific values for these decision variables.
After defining reasonable domains for the decision variables, parameter sets are generated to
correspond to different policy scenarios. The simulation runs on each scenario; the results are collated
and visualised in Tableau.

Given the limited incentives data (available only for August 23), only two stations—"E 16 St &
5 Ave” and “E 16 St & Irving P1” —qualified as candidates. These stations had incentive data and
exhibited asymmetric demand patterns, as the causal inference analysis identified. We ran the policy
scenarios on these stations, designated as yin and yang, respectively. The focus was on scenarios with
zero starting inventory because, during the test period (22nd to 25th August), the proposed target
starting inventory was sufficient to prevent most stockouts. The natural buffer that builds up when
returns exceed rentals further reduces the likelihood of stockouts. This buffer, however, obscured
performance differences that could arise from varying parameter values. By focusing on zero-
starting-inventory scenarios, we could better observe the impact of different parameters on
performance, as any existing buffer would have masked these effects.

Figure 19 below presents the results of the simulation runs for parameter sets that include the
decision variables mentioned earlier. The risk and availability perception delays each take three
values (roughly corresponding to low, medium, and high delays); the look-ahead horizon has two
values (short and long); the replan frequency is set to 2, 5, or 11 (indicating how many times the plan
is refreshed throughout the day); and the utilisation sweet spot is either 20%-80% (0.2) or 30%-70%
(0.3).
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Figure 19. Results of simulation runs with decision variables taking values from their respective
domains.

Each cell represents a policy variant, with the overview displaying 432 scenarios in total. The
cell value, formatted as x% (y), shows the improvement over the scenario without crowdsourced
incentives (x), along with the total number of stockouts (bikes and docks combined, y). Parameter
combinations that perform better than the corresponding scenario without incentives are highlighted
in blue.

3.8. Insights and Implications

A notable insight from the overview —evident in Figure 19, where the block of scenarios with
the highest risk perception delay (risk delay for short) value has few highlighted cells—is the sharp
decline in scenarios where crowdsourced inventory balancing through incentives outperforms the
baseline (scenarios without incentives). When the risk perception delay is set to 3 and 6, 89 and 81
scenarios outperform the baseline, respectively, but this number drops significantly to 19 when the
delay reaches 12.

This delay parameter is part of the anchor-and-adjust heuristic that updates risk perception. A
longer delay implies a slower assimilation of the current PeBAF. The steep drop at the highest delay
value suggests that the wait-and-see approach, which anchors the decision maker’s risk perception
to prior beliefs, results in missed intervention opportunities when availability shifts away from the
desired bandwidth.

A closer inspection of scenarios with a utilisation sweet spot between 30% and 70% (risk buffer
= (0.3) reveals a surprising behaviour: the number of scenarios showing improvement over the
baseline slightly increases as the delay rises from 3 to 6. We analyse the underlying stocks and flows
driving this behaviour to understand this. The following graphs in Figure 20 illustrate two specific
scenarios on a chosen day, comparing key stock and flow variables while holding all parameters
constant except for the risk delay, set at 3 and 6, respectively.
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Figure 20. Analysis of key stock and flow variables influencing performance at two different risk
perception delay values (orange for the yin cluster, grey for the yang cluster).

When the risk delay is set to 6 timesteps (or 60 minutes), this medium delay causes lower
responsiveness to PeBAF, allowing the memory of historical risk to persist longer than with a low
delay of 3 timesteps. Early in the day, this results in the risk of bike outages at yang remaining above
the incentive threshold (indicated by the horizontal dotted line) for an extended period, prompting
incentives that encourage users to return bikes to yang over yin. Later in the day, this rerouting causes
yin to reach a critical stock level sooner, triggering incentives that bring in additional returns just in
time to prevent most stockouts —an advantage not achieved in the low-delay scenario.

The analysis highlights how endogenous decision variables mediate the impact of exogenous
temporal demand dynamics at the stations (which influence projected stock) on performance.
Specifically, the inventory buffer at yin builds up faster than at yang earlier in the day. The longer
delay creates a broader window for incentivisation at yang, setting off the downstream behaviours
described earlier and ultimately leading to better performance under a longer delay in perceiving
risk changes. While faster responsiveness to risk is generally beneficial, this example shows that
uncertainty can simultaneously cause both clusters to experience high risk. In such cases, the system
may defy typical assumptions about how decision variables affect performance, as recovery depends
on exogenous factors.

After risk delay, the delay in assimilating real-time availability information into perception
(availability delay) has the next most significant impact on performance. While this generally holds,
performance varies considerably across different availability delay values between days. For
instance, the coefficient of variation in improvement over baseline (defined as the standard deviation
over the mean of the improvement metric) is lowest on the 24th, at 0.85, and highest on the 23rd, at
2.92. Analysing the lowest and highest availability delays for a given set of parameters further
clarifies the underlying dynamics (see Figure 21).


https://doi.org/10.20944/preprints202410.1907.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 October 2024 d0i:10.20944/preprints202410.1907.v1

24

Availability perception delay

00S bikes

0.8

BAF *

0.4
0.0

0.8

PrBAF %

0.4
0.0

0.8

PeBAF %

0.4

Returns uplift 0O0S-B risk

i éﬂ:so I I i47:50

01:3004:0006:3009:00 11:30 14:00 16:30 19:00 21:30 00:00 01:3004:0006:3009:0011:30 14:00 16:30 19:00 21:30 00:00
Date [24 August 2023] Date [24 August 2023]

Figure 21. Analysis of key stock and flow variables influencing performance at two different
availability perception delay values (orange for the yin cluster, grey for the yang cluster).

While poor forecast accuracy emphasises the need for better responsiveness to improve
performance, a less obvious consequence is that it also introduces stronger interdependencies
between decision variables and performance. This is illustrated on the 23rd with the decision variable
aggregation horizon, which controls how many periods into the future are considered when
computing PrBAF. The domain includes two values: 3 and 12 (short and long horizons).

On this day, among the scenarios that perform better than the baseline (8 in total), only one does
so with a short look-ahead horizon. Due to poor forecast accuracy, averaging over a longer horizon,
combined with asymmetrical demand profiles (distinct ramp-up and ramp-down patterns at the two
clusters), enables initial inventory balancing via crowdsourced incentives that target the more
inventory-starved cluster. As in an earlier example, this causes the source of the initial rerouting to
reach a critical stock situation earlier (if at all) than in the shorter-horizon scenario. The longer horizon
exacerbates this by presenting a more pessimistic view of inventory during the later ramp-down
phase. In the example shown, yin is the source of the initial transfer. By intervening early enough
(additional returns due to incentives starting after 17:10), yin benefits from inflows rerouted from
yang, avoiding most of the stockouts it would have faced with a shorter horizon.

However, the longer look-ahead horizon is beneficial only when paired with a short availability
delay (seven of the eight scenarios outperforming the baseline have a short delay). With a longer
delay, PeBAF fails to assimilate inventory updates quickly enough when balancing actions occur,
leading to prolonged incentivisation at yin and causing yang’s risk to exceed the threshold. Once
yin’s improved availability registers in PeBAF, the flow reverses direction. If the second transfer
window opens early, this flipping may happen multiple times, resulting in poor stability and worse
performance overall.

The increased interdependency between decision variables under poor forecast accuracy leads
to greater variability in performance across scenarios, as demonstrated by the analysis of the 23rd. In
contrast, on the 24th, when forecast accuracy is highest among the test days, the variability across
scenarios is lowest. Since understanding these interdependencies is crucial in devising better policies,
even when forecast accuracy is generally high, introducing variability by perturbing demands can
provide valuable insights into their impact.
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The test workbench includes an option to create demand scenarios by manipulating original
demands in predefined ways. For example, Figure 22 below shows scenarios where 80% of rental
demands on yin and yang until 10:00 are redistributed across the remaining periods in proportion to
the demands during those periods. Simulations for these scenarios resulted in a coefficient of variance
in performance improvement (considering low and medium risk delays) of 0.62 with perturbations,
compared to 0.36 without. This variability-inducing approach is an additional tool for studying
performance sensitivity to different combinations of decision variables. While test data may naturally
contain high variability, this option proves helpful when variability is low or needs amplification,
offering a way to explore system dynamics more thoroughly.

Demands: Original vs Scenarios at E16

Rentals

Legend

- Original Rentals
..... Scenario Rentals
—— Original Returns
..... Scenario Returns
—— Scenario > Original
—— Scenario < Original

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00
Aug 24, 2023

Returns

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00
Aug 24, 2023

Figure 22. Perturbing demands on the 24th by lifting rental demands until 10:00 and distributing it to
the remaining periods.

4. Conclusions

Successive innovations in Al, particularly transformer-based models, along with increased
investments in data and computing, continue to drive rapid growth in the field. These advancements
create new opportunities for automation but also introduce novel risks, highlighting the need for
human oversight. Recognising these risks and the potential for new tasks through human-Al
collaboration has shifted the focus towards augmentation rather than pure automation in decision-
making. Although frameworks for augmentation offer guidelines —often drawing on decision theory,
systems theory, and empirical data—they remain only a starting point, as each organisation’s
approach is shaped by its unique decision-making routines and resources. To bridge the gap between
theory and practice, organisations need to evaluate their specific blend of human judgment, Al, and,
more broadly, algorithmic decision-making. The system dynamics-based simulative modelling
framework proposed in this paper addresses the “last mile” challenge of moving from a hypothesised
teaming of human and Al agents to practical implementation, enabling quantification that accounts
for firm-specific decision complements.

We applied the model to the inventory balancing problem in docked bike-share systems, where
incentivising users to perform balancing, although eco-friendly, poses a coordination challenge. The
model leverages the complementarity between stations or station clusters with asymmetrical demand
patterns to optimise inventory management. Our experiments support recent research suggesting
that introducing ML as a novel learning agent creates a decision-making landscape that is likely to
be rugged. The flexibility of ML, unconstrained by the prior beliefs that shape human decision-
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making, allows it to explore a broader decision space. This flexibility creates opportunities for
substantial improvement over traditional approaches but also introduces risks. For instance, our
simulations of multiple policy variants for inventory balancing, combining judgmental heuristics
with data science approaches (including deep learning), showed that while ML’s superior ability to
anticipate future flows often leads to significant improvements, there are also scenarios where
performance declines compared to using no incentives.

Furthermore, by simulating not only the assumed future-state policy variant but also
neighbouring scenarios, our approach reveals that ruggedness can result in significant variability: a
variant performing well above the baseline may have nearby scenarios performing much worse.
Given irreducible uncertainty, prioritising robust scenarios over elusive optimal ones is essential. Our
approach enables the mapping of the performance landscape, offering the opportunity to develop
robust policies through parameter fine-tuning and structural adjustments that deliver synergistic
human-AI teaming.

Due to the limited incentive data available from NY Citi Bike, the provider used in our case
example, we focused our experiments on just two bike stations. However, the simulation workbench
supports complementary clusters of multiple stations, allowing for broader analysis. A real-world
application could involve clustering the entire network of stations and running parallel simulations
for multiple demand clusters using selected policy variants. The data could consist of recent demand
patterns, incentives, and forecasts representative of future planning scenarios. The resulting incentive
schedule could then inform decisions on fine-tuning policies or supplementing schedules with
additional balancing measures. Additionally, while we used a fixed desired bandwidth for available
bike inventory in our study, the temporal dynamics observed suggest that a time-dependent
bandwidth may be more appropriate for a larger dataset. For instance, employing a tighter
bandwidth earlier in the day and a broader one later on could better align with standard nightly
balancing practices.
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Appendix A
Table A1. Bike-share forecast model characteristics.

Aspect Description

Model Architecture - Sequential model
- Input layer
- Two LSTM layers (64 units each, ReLU activation)
- Custom Bias Correction layer (corrects bias in predictions)
- Dense output layer

Features Used - Rentals

- Returns

- Returns as correlate for rentals forecast

- Rentals as correlate for returns forecast

- Time signals (sin/cos of time of day and week)
Optional Features - Weather data (actual or forecast)

- Lagged correlates

- Contemporaneous correlates
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Reproducibility
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- Sequence length: 288 (2 days * 24 hours * 6 records per hour)

- Forecast horizon: 12 (2 hours * 6 records per hour)

- Batch size: 24

- LSTM units: 64 per layer

- L1 regularization: le-04

- L2 regularization: 1e-05

- Learning rate: 0.002 (with ReduceLROnPlateau)

-Asymmetric Hybrid Loss with parameters: «a, A_bias, A_over, and
A_under (custom loss function designed to penalise different types of
errors differently)

- Adam optimiser

- ReduceLROnPlateau (factor: 0.8, patience: 5 epochs, min_Ir: 0.0003)
- MinMax scaling (feature range: -1 to 1)

- Sequence generation using Keras utilities

- Optional differencing (24 * 6 periods)

- Early stopping (monitoring validation loss, patience: 10 epochs)

- ReduceLROnPlateau (learning rate reduction on plateau)

- Maximum 50 epochs

-MSE, MAE

-TensorFlow/Keras

-10-minute intervals (applies to both input data and output predictions)
-Separate models for rentals and returns

- Custom Bias Correction layer (for improved prediction accuracy)
- Asymmetric Hybrid Loss function (penalises under- and over-
estimations differently)

- Flexibility to include/exclude various features

- Sequence-to-sequence option

- TensorFlow version: 2.17.0

- Keras version: 3.4.1

- Python version: 3.10.12

- GPU: Tesla T4 with CUDA 12.2

- Fixed random seed (511) for TensorFlow and NumPy operations

doi:10.20944/preprints202410.1907.v1
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Figure Al. CLD of the bike-share two-stock model.
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