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Abstract: Alzheimer’s disease (AD) is a slow-growing neurological disorder that destroys human
thought and consciousness. This disease directly affects the development of mental ability and
neurocognitive function. The number of Alzheimer’s patients is increasing day by day, especially in
the elderly over 60 years of age, and it gradually becomes a cause of their death. Machine learning (ML)
and deep learning (DL) approaches have been developed in the literature to improve the diagnosis
and classification of AD. Machine learning approaches have cumbersome feature selection. Deep
learning has been used in recent research because it automatically selects features. This research
aims to present a Swin Transformer wavelet for Alzheimer’s classification based on FMRI images in
two-class, three-class and four-class modes. The proposed approach uses wavelet fusion in the Swin
Transformer network to extract features. The outputs of the modified capsule are fed into a wavelet
as feature vectors. The wavelet is a relevant feature selector in the proposed model. The Gray Wolf
Optimization (GWO) method was used to find the model’s hyperparameters. The proposed approach
achieved an accuracy of 0.9812 in 4-class classification, 0.9980 in 3-class classification, and 1.0 in 2-class
classification. In the studies conducted in this research, the Swin Transformer wavelet+GWO model is
the heaviest model in terms of the evaluation criteria Parameters(10e6), GFlops, and Memory (GB).
This is while the EfficientNet model is the lightest in these criteria.

Keywords: Alzheimer’s disease (AD); swin transformer; wavelet; gray wolf optimization (GWO);
modified capsule

1. Introduction
According to the World Health Organization, more than 286 million people worldwide suffer

from brain disease [1]. According to reports [2], 246 million people are mentally ill, and 39 million
are in critical condition. As one of the largest and most complex parts of the body, the brain plays an
important role in numerous functions, such as generating ideas, problem-solving, reasoning, decision-
making, imagination and memory [1]. Alzheimer’s disease (AD), which affects millions of people,
is the most common type of dementia. As people age, their anxiety about developing Alzheimer’s
increases. Alzheimer’s disease slowly destroys brain cells and leaves patients unable to recognize
family members. As a result, they become confused and lose the ability to recognize their surroundings.
In advanced stages, they also lose the ability to eat, cough, and breathe [3].

The number of Alzheimer’s patients is expected to increase exponentially by 2050, with 152
million new cases of AD and dementia being diagnosed annually, or one every three seconds. AD
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symptoms, such as memory impairment, language and communication difficulties, and behavioral
and psychological symptoms, overlap with vascular dementia (VD), making the diagnosis of AD
challenging[4] [5]. Early and accurate diagnosis of AD is crucial for patient care, treatment, and
prevention by monitoring its progression. Brain tumors are another severe condition that can be life-
threatening to the brain. Since the blood vessels and nerves of the brain are at risk, tumors often develop
there. Depending on the stage and malignancy of the tumor, it can cause partial or complete blindness
[6]. Family history, ethnicity, and severe myopia are other contributing factors [7]. As a result, today’s
most advanced societies increasingly need to discover rapid and automated early detection techniques.
Medical imaging has also become a powerful tool for understanding brain activity. Magnetic resonance
imaging (MRI) is a type of brain imaging that allows visualization of the structure and function of the
brain. Medical professionals evaluate patients for signs and symptoms of AD and brain tumors. MRI
can identify brain abnormalities associated with mild cognitive impairment (MCI) and predict which
MCI patients will develop AD and brain tumors. MRI images are examined for abnormalities, such as
reductions in the size of various brain regions that primarily affect memory[8].

Functional magnetic resonance imaging (fMRI) is yet another addition to the existing brain
imaging techniques and methods for AD classification. It measures brain function by imaging blood
flow alterations over time. This mechanism works based on blood flow’s coupling to neuronal activity.
When a particular brain area is engaged, the blood flow to this specific area is also increased. Added
to these imaging methods, resting-state functional MRI (rs-fMRI) has found several applications in
research and has proven very high sensitivity for AD [9]. Using rs-fMRI, Greider et al. [10] found
that reduced complexity of neural connectivity is directly associated with AD. Furthermore, rs-fMRI
has been reported to reveal functional connectivity associated with cognitive impairments in elderly
populations with health problems, MCI, and AD. Using traditional machine learning is challenging
due to manual feature selection. Deep learning, as a multi-layered learning approach, attempts to
learn using automatic feature selection. Deep learning has achieved remarkable results in medical
applications [11–13], language models [14,15], and natural language processing[16,17]. In the field
of neuroscience, various deep learning models have been employed to analyze fMRI data. Typically,
analysis to distinguish between AD and CN states is performed using CNN models [18–20]. However,
fMRI data have been used for binary classification in most studies. Further research needs to be done
on multi-class classification of fMRI data.

In [21], the authors examined a case study of traditional machine learning approaches to predict
Alzheimer’s Disease. Four standard machine learning models, including SVM, Logistic Regression,
Decision Tree, and Random Forest, were used for the classification. The OASIS dataset was also used
to evaluate these approaches. SVM obtained the best result in this study, and Logistic Regression
obtained the worst result. SVM on OASIS data was able to achieve accuracy=0.92. The use of different
features in classification is one of the advantages of this study, and the lack of comparison with deep
learning approaches is one of its disadvantages. In [22], using SVM as a classification technique and
improving feature selection in diagnosing AD is presented as a structured traditional ML approach.
The accuracy of the method is reported to be 92.48%. The sensitivity and specificity were reported to
be 86.92% and 90.76%, respectively.

The authors in [23] presented a method for diagnosing Alzheimer’s disease using image process-
ing techniques and genetic algorithms for classification and prediction. The present study involves
transforming Alzheimer’s disease into a cognitive disorder that serves as the initial feature of the input
MRI images. This research used a genetic algorithm to predict and diagnose Alzheimer’s disease, and
a support vector machine was used as a classification technique. The method reported a precision of
93.01%, a recall rate of 89.13%, and a feature recognition rate of 96.80%. The present study focuses on
methods that use the ADNI dataset as the initial input data. Also, [24] reviewed traditional machine
learning approaches for AD Diagnosis. [25] compared the performance of the machine learning models
for Alzheimer’s Disease Early Detection. Logistic Regression, Decision Tree, Support Vector Machine,
K-nearest Neighbors, Random Forest, Naïve Bayes, and Linear Discriminant Analysis models were
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used for classification. Also, the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and the Open
Access Series of Imaging Studies (OASIS) brain datasets were considered to evaluate these approaches.
The Logistic Regression approach achieved the highest accuracy in both datasets. Selecting the correct
features to provide a classifier is one of the advantages of this research. [26? ,27] other examples of
studies that used traditional machine learning to classify Alzheimer’s.

[28] employed powerful deep learning models, such as VGG16, along with machine learning
classifiers to thoroughly analyze MRI and PET scans for the detection of Alzheimer’s disease. Longer
computation times accompanied the Support Vector Machine’s achievement of the highest accuracy
(84%). Faster processing and strong predictive capabilities shown Random Forest’s potential. A hybrid
deep learning approach for early detection was shown by several multimodal imaging studies using
Convolutional Neural Networks along with LSTM algorithms. We explored several techniques to
improve detection efficiency, including transfer learning, the selection of images based on entropy, as
well as K-Means Clustering along with the Watershed method. Feature fusion importantly improved
visual data representation, along with its analysis. RF’s robustness along with speed suits it for further
Alzheimer’s research, despite SVM’s superior performance.

OViTAD [29] an optimized vision transformer. OViTAD uses AWS SageMaker infrastructure to
predict healthy brains along with mild cognitive impairment MCI brains as well as Alzheimer’s disease
AD brains using rs-fMRI and structural MRI data. OViTAD, through precise parameter optimization
along with perceptive visualization of its attention mechanisms, importantly exceeded other deep
learning models, as well as CNN-based ones, in multi-class classification; achieving outstandingly
high average performances of 97% ± 0.0 and 99.55% ± 0.39 across three repetitions. [30] presented an
effective segmentation approach (SAS) and a new classification model (HBOA-MLP) for Alzheimer’s
disease early diagnosis based on fMRI images. It aimed at improving the accuracy of classification
and shortening the computational time. Following preprocessing, SAS segmented the brain regions
effectively, and feature vectors were extracted by Gabor and GLCM techniques. The vectors were
optimized by the Honey Badger Optimization Algorithm (HBOA) and then used in a Multi-Layer
Perceptron (MLP) model for classification. The HBOA-MLP model achieved a high accuracy of 99.44%;
still, it faced a problem in dealing with large datasets due to the fully connected structure of the MLP
network and its high number of parameters.

[31] proposes an automatic Alzheimer’s diagnosis system based on different frequency bands
of rs-fMRI data and deep learning models. The system uses a high-order neuro-dynamic functional
network taking slow4, slow5, and full-band ranges. Customized Alexnet and Inception blocks were
utilized with SVM and KNN approaches for development. The presented deep ensemble networks
demonstrated better performance without external feature selection. Slow5 features trained with cus-
tomized networks attained better AD/MCI classifications. The results suggest that the characteristics
of multiband rs-fMRI may serve as biomarkers for Alzheimer’s disease, facilitating a more efficient
diagnostic framework.

Authors in [32] fused (sMRI) and (rs-fMRI) features to classify MCInc and AD from MCIc
based on graph theory and machine learning. The model utilized cortical thickness, structural brain
network, and sub-frequency functional brain network features. Feature selection techniques of RSFS,
mRMR, and SS-LR were utilized, and SVM classifier and nested cross-validation were performed for
classification. RSFS demonstrated the best accuracies in the classification between MCIc vs. MCInc
and MCIc vs. AD. Combining several features enhanced classifying MCIc subjects from MCInc/AD.
The framework that combined sMRI and fMRI data predicted MCI conversion, suggesting its potential
to offer AD diagnostic markers [33] puts forward a new framework with rs-fMRI, PSI, and 2D-
CNN for the abnormal brain functional connectivity detection in AD. This framework achieved the
classification accuracy of 98.869% by fusing the brain topological and deep features. The framework
using SVM classifier and 5-fold cross-validation classifies the AD and non-AD samples by extracting
eight topological and deep features. The PSI network analysis reveals weaker connection strength and
reduced small-world property in the brains of AD patients. The 2D-CNN model identifies deep features
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that represent abnormal connectivity patterns in AD patients, which contributes to understanding
the pathogenesis of AD. This framework shows great potential for AD classification and elucidating
the pathogenesis. [34] employs ResNet-18 architecture and rs-fMRI data to classify the stages of
Alzheimer’s disease (AD). Three ResNet-18-based networks are trained and tested: 1CR, OTS, and FT.
The FT network achieved the highest accuracy, which demonstrates the benefits of residual learning,
pre-training, and transfer learning. The OTS network obtained the best average testing accuracy, which
further proves the potential of deep learning approaches for AD classification.

Authors in [35] puts forward a deep learning framework for early Alzheimer’s disease detection
with the use of resting-state fMRI data and clinical data. The framework involves specialized autoen-
coders in disentangling natural aging and disorder progression. It facilitates classification performance,
reduces standard deviation over traditional classifiers, and avoids overfitting in a three-layer architec-
ture for improved diagnostic accuracy by 25% over conventional approaches. This approach has the
potential to merge brain network analysis with deep learning techniques for neurological disorder
diagnosis in the earliest stages. [36] proposes a 3D-CNN-LSTM model for Alzheimer’s and other
health diagnosis with 4D fMRI data. This model can extract spatial and temporal features effectively,
with an accuracy of 96.4% using five-fold cross-validation. It outperforms the 3D-CNN model by
utilizing both spatial and temporal information and has great potential to determine Alzheimer’s
progression using analysis of 4D fMRI data.

The primary focus of this study is on the recent literature on automated classification and assess-
ment of Alzheimer’s disease. We propose an integrated deep-learning architecture for Alzheimer’s
disease classification with image data to achieve accurate and reliable classification in various clinical
settings. The advanced techniques investigated have the potential to improve automated analysis and
support clinical decision-making, thereby enabling early detection of the disease.

2. Methodology Overview
The proposed method for two-class and multi-class Alzheimer’s classification is shown in Figure

1. This method consists of three main parts: Swin Transformer, wavelet transform (WT), and Gray
Wolf Optimization(GWO), and the details of each of these parts are discussed in more detail below.
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Figure 1. An overview of proposed Swin Transformer based wavelet.

The Swin Transformer (Shifted Window Transformer) is an innovative vision transformer model
that addresses several computational challenges inherent in standard transformer models for image
processing. Below is a breakdown of its methodology, focusing on key architectural details, attention
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mechanisms, and optimizations such as shifted window attention, along with an explanation of the
associated formulas and figures.

2.1. Swin Transformer Overall Architecture

The Swin Transformer is designed to handle the computationally expensive operations typically
associated with transformers, especially for high-resolution images. It is built on a hierarchical struc-
ture, similar to convolutional networks, but leverages transformer-based self-attention mechanisms to
capture long-range dependencies between image patches.

1. Patch Splitting and Embedding: The first step in the model’s pipeline involves dividing an input
image into small, non-overlapping patches (typically 4×4 pixels for this model). Each patch is
treated as a token, and its feature is initialized using the concatenated RGB pixel values. The
feature dimension of each patch is calculated as:

4 ∗ 4 ∗ 3 = 48(feature dimension per-patch) (1)

The features are then passed through a linear embedding layer, which projects them to a higher-
dimensional space (denoted as C, the number of channels).

2. Transformer Blocks: The model consists of several modified Transformer blocks known as Swin
Transformer blocks. These blocks are applied to the tokenized patches. The number of tokens,
denoted as , remains constant in the early stages of the network. These blocks are referred to as
Stage 1.

3. Hierarchical Representation: As the model deepens, a patch merging layer is introduced at
each stage to reduce the number of tokens. This helps produce a more compact, hierarchical
representation. For example, in Stage 2, the first patch merging layer concatenates features of
neighboring 2 ∗ 2 patches and applies a linear transformation to reduce the token count by a
factor of 4 (downsampling by a factor of 2 in both height and width).

outputdimension = 2C(for stage 2) (2)

The model then proceeds through subsequent stages (Stages 3 and 4) with resolutions H
8 ∗ W

8 and
H
16 ∗ W

16 , respectively.
4. Hierarchical Structure: This approach is designed to be similar to conventional convolutional

networks (like VGG and ResNet) in terms of resolution. The hierarchical design allows Swin
Transformer to maintain high performance on vision tasks such as image classification and object
detection, while also benefiting from the flexibility of transformers.

2.2. Shifted Window-Based Self-Attention

A key innovation in the Swin Transformer is the use of shifted window-based self-attention.
Standard transformers compute global self-attention, where relationships between each token and all
other tokens in the image are computed. This results in quadratic complexity, making it inefficient for
tasks requiring high-resolution images or large numbers of tokens.

To address this, the Swin Transformer computes self-attention only within non-overlapping local
windows. This significantly reduces computational complexity. For a given image with h×w patches,
the self-attention complexity for global MSA and window-based MSA is expressed as:

Ω(MSA) = 4hwC2 + 2(hw)2C (3)

Ω(W − MSA) = 4hwC2 + 2M2hwC (4)

The first formula Ω(MSA) represents the complexity of global self-attention, which scales quadratically
with the number of patches hwhwhw. The second formula Ω(W − MSA) represents the complexity
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of window-based self-attention, which is linear with respect to the number of patches, provided the
window size MMM is fixed.

Using window-based attention significantly reduces computational overhead, especially for large
images, as it operates in linear time with respect to the number of patches.

A limitation of the window-based self-attention approach is that it doesn’t account for the
relationships across neighboring windows. To overcome this, the Swin Transformer introduces a
shifted window partitioning technique. In this approach, two consecutive Swin Transformer blocks
alternate between regular window partitioning and shifted window partitioning, ensuring that cross-
window dependencies are captured.

• In regular window partitioning, the image is split into windows of size 4 ∗ 4 (assuming M = 4).
• In shifted window partitioning, the windows from the previous block are shifted by a certain

offset, typically by half the window sizeI(⌊M
2 ⌋).

The formulas for the computation in these blocks are as follows:

ẑl = W − MSA(LN(zl − 1)) + zl−1 (5)

zl = MLP(LN(ẑ)) + ẑl (6)

ẑl+1 = SW − MSA(LN(zl)) + zl (7)

zl+1 = MLP(LN(ẑl+1)) + ẑl+1 (8)

Here ẑl and zl represent the output features of the (SW-MSA) module and the MLP module for the
block, respectively. The shifted window-based multi-head self-attention (SW-MSA) operates on shifted
partitions, and the regular window-based attention (W-MSA) operates on the standard partitioning.

The shifted window partitioning method increases the number of windows when compared to
regular partitioning, as some windows may be smaller than the standard size. A naive approach to
handle this would involve padding smaller windows, but this leads to inefficient computations. The
cyclic shift method solves this issue by shifting windows towards the top-left corner, keeping the
number of windows consistent with the regular partitioning. This results in efficient batch processing
without extra computational overhead.

To improve the self-attention mechanism, the model includes a relative position bias. This bias
captures the positional relationships between tokens in each window, allowing the model to better
understand spatial relationships. The relative position bias B is added to the self-attention computation:

Attention(Q, K, V) = So f tmax(
QKt

√
d + B

)V (9)

Here Q, K, and V are the query, key, and value marrices, respectively and D is the query/key dimension,
and B is the relative position bias mateix. The relative position bias is learned during training and helps
the model capture the relative spatial relationships between image patches. This approach improves
the performance of the model, particularly in tasks like image classification and object detection, as
shown in experimental results.

Modified Capsule Network

The encoded features of the Swin Transformer are fed to the Capsule layer. The Capsule layer
transforms the scalar features extracted by the Swin Transformer layer into vector-valued capsules
to represent the features of the inputs. If the output of the Swin Transformer is hi and w is a weight
matrix, then t̂i|j, which represents the prediction vector, is given by the following equations:

t̂i|j = wijhi (10)
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Zj =
N

∑
i=1

cij.t̂i|j (11)

cij is the coupling coefficient, which is repeatedly adjusted by Dynamic Routing algorithm [37]. The
length of the capsule determines the probability of the entity appearing. By changing the shape of all
the initial capsules and screening the activation value of all the initial capsules, a certain proportion
of the initial capsules with a higher activation value can be selected. This selection was introduced
in [38] as CapsFilter. The general idea of this work is to use the median of the activation. Due to the
significant difference in the activation value of the capsules, the average value of the activation value
is minimal. In a group of data, the median is the value that represents the middle of all the data and
has low sensitivity, meaning that it is not affected by the maximum or minimum value of the data
distribution. Therefore, we sort the activation value of each capsule, take the median of the activation
value as the basis for screening and divide it by the maximum activation value to ensure that it is a
value proportional to (0, 1). The screening ratio increases when the activation value represented by the
median is closer to the maximum activation value.

Here, the ’squash’ is a nonlinear mapping function by which the values produced by the Zj

vectors are converted into [0-1]. This function is carried out on Zj as per the following formula:

vj =
||Zj||2Zj

1 + ||Zj||2||Zj||
(12)

2.3. Wavelet Transform (WT)

Wavelet transform (WT) was used in the Swin Transformer architecture to extract useful data.
The WT consists of four components: one low-frequency and three high-frequency components. The
low-frequency component, also called the low-low (LL) component, produces a sharper image of the
input. The three high-frequency components (low-high (LH), high-low (HL), and high-high (HH))
ultimately produce sharper images. Previous studies and experiments have shown that the LL class of
data is usually known as sharper and smoother images [? ]. For more details on WT, see [? ]. The WT is
applied to the output of the capsule network. When the capsule generates hidden feature maps on the
production of the Swin Transformer, the WT decomposes them into multiple subbands representing
different frequency components. This decomposition enables the pre-conductor model to separate
high-frequency components from low-frequency ones, increasing the model’s ability to recognize
global and local patterns.

2.4. Gray Wolf Optimization(GWO)

GWO is used to optimize the model’s hyperparameters shown in Table 1. The goal of this
optimization is to minimize the training and testing error. GWO is a metaheuristic optimization
method that attempts to simulate the collective behavior of wolves in finding prey [39]. The behavior
of gray wolves is inspiring for studying social behavior because these wolves behave respectfully
towards each other in their social hierarchy. The social hierarchy of this species of wolves is determined
based on the ability and strength of each individual, which leads to an effective hunting mechanism.
Each wolf in the group can achieve a larger prey by cooperating and coordinating. In other words,
cooperation between wolves is one of the main factors in gray wolves’ hunting success and survival.
In these groups, an alpha wolf is chosen as the leader and has the highest social rank. In this social
simulation, wolves are classified into four groups: Alpha, Beta, Delta and Omega, with different social
behavior. The Alpha Wolf, as the leader, represents the best solution available. In a lower hierarchy,
the Beta Wolf is the Alpha Wolf’s assistant and offers solutions similar to the Alpha Wolf. In a lower
hierarchy than the Alpha Wolf is the Delta Wolf, an intermediary between the weaker wolves and the
Beta. Finally, the Omega Wolves, the weakest of the group, act as the group’s protector against external
attacks [39].
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Table 1. Hyperparameters of the Swin transformer Model Optimized by GWO.

Optimizer Lower Bound Upper Bound
Fsize: filters size 64 128
Ksize: kernel size 3 9
lr: learning rate 0.000001 0.001
l2: L2reg 0.0001 0.01
l1: L1reg 0.0001 0.01
Bsize: batchsize 16 256
E: epochs 100 200

In this optimization method, at the beginning of the optimization, several wolves are randomly
placed in the problem space and generate initial random solutions. The cost function calculates the
proximity distance of each wolf to the prey, and the position of each wolf is updated according to this
function. This update leads to the movement of Omega wolves towards Alpha, Beta and Delta wolves
using a combination of distance and randomness of the parameters ζ and β. The following relations
show the relationship between prey and predators mathematically[39]:

ζ⃗ = |β⃗ ∗ W⃗p(t)− W⃗(t)| (13)

Where t represents the current number of iterations. W⃗p(t) represents the current locations of the prey
and W⃗(t) represents the current locations of the predator.

β⃗ = 2 ∗ a⃗ ∗ e⃗1 − a⃗ (14)

W⃗(t + 1) = |W⃗p(t)− A⃗ ∗ ζ⃗| (15)

Where A⃗ = 2 ∗ e⃗2 and a⃗ = 2 − t ∗ ( 2
T ), the coefficients are given by A⃗ and C⃗, and η⃗ represents the

distance between the prey and the wolf. a⃗ has a linear decrease with iterations, and e⃗1 and e⃗2 are
randomly generated values in the interval [0, 1]. Hence, for the three wolves, W⃗1, W⃗2, and W⃗3, that are
traversing around the three leading wolves, α, β, and δ, equations 16 to 22 are valid [40].

η⃗α = |β⃗1 ∗ W⃗α − W⃗(t)| (16)

η⃗β = |β⃗2 ∗ W⃗β − W⃗(t)| (17)

η⃗δ = |β⃗3 ∗ W⃗δ − W⃗(t)| (18)

W⃗1 = W⃗α − A⃗1 ∗ η⃗α (19)

W⃗2 = W⃗β − A⃗2 ∗ η⃗β (20)

W⃗3 = W⃗δ − A⃗3 ∗ η⃗δ (21)

W⃗(t + 1) =
W⃗1 + W⃗2 + W⃗3

3
(22)

The cost function is re-evaluated after these steps. In fact, the goal is that the wolf that finds a better
solution than the others will move to higher ranks. This process is actually an optimization that
continues as many times as the number of iterations or coverage of the problem. The best solution
found is finally presented by Alpha Wolf as the final answer.
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3. Material
3.1. Dataset

The Alzheimer’s disease dataset was collected from the open-source platform Kaggle. This dataset
is available via the link1. This dataset contains 6400 MR images from four classes: Mild Demented
(MID), Moderate Demented (MOD), Non-Demented (ND), and Very Mild Demented (VMD). The
image size of this dataset is 176 × 208, which was resized to 176 × 176 for use in this study. Sample
images of the four classes are shown in Figure 2.

(a) Mild Demented (MID) (b) Very Mild Demented
(VMD)

(c) Non-Demented (ND) (d) Moderate Demented
(MOD)

Figure 2. A sample of data from each class.

Table 2 shows the distribution of the dataset with several images in the resulting dataset, which
clearly states that the dataset has an unbalanced class. For this purpose, data augmentation was used,
which took the help of 5 data augmentation techniques. Five images were created for each image.
Table 3 shows the results of data augmentation on this data.

Table 2. The frequency of images in each class of the dataset before data augmentation.

Class Number of Images
MID: MildDemented 896
MOD: ModerateDemented 3200
ND: NonDemented 2240
VMD: VeryMildDemented 64

1 https://www.kaggle.com/tourist55/alzheimers-dataset-4-class-of-images
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Table 3. The frequency of images in each class of the dataset after data augmentation.

Class Number of Images
MID: MildDemented 4180
MOD: ModerateDemented 1600
ND: NonDemented 11200
VMD: VeryMildDemented 320

3.2. Deep Learning Library

In this research, Keras was used to implement neural networks. Keras2 is one of Python’s best
open-source deep learning and neural network libraries. It can be run on top of TensorFlow or Theano.
Keras is developed with a focus on rapid testing, allowing for easy and rapid prototyping of neural
network models. In general, this framework is known as a high-level user interface. Table 4 shows the
hardware and software specifications of this research.

Table 4. Hardware and software requirements for this research.

Software specifications
Application version Description
Ubuntu 18.04.2 Operating System
CUDA 9.0.176 Cuda version
cuDNN 7.4.1 GPU-accelerated library
Python 3.6.7 Used for coding
Keras 2.2.4 Neural Network library
TensorFlow 2.12.0 backend

Hardware
Hardware specifications Version
CPU Intel Core i7-12700KF
GPU NVIDIA geforce gtx 1090 ti
Memory 16 GB

4. Results
The results obtained by the proposed approach and the comparative approaches are given in

Table 6. To evaluate the proposed model and comparative approaches, the following four evaluation
criteria were used in classification task:

1. Accuracy: Accuracy = TP+TN
Total Observations

2. Precision: Precision = TP
TP+FP

3. Recall: Recall = TP
TP+FN

4. F1-Score: F1 = 2 · Precision·Recall
Precision+Recall

Four transfer approaches were used to compare the proposed approach. Transfer learning is an
advanced technique in machine learning that allows a model trained on one task to be repurposed for
a different yet related task. This approach capitalizes on the knowledge embedded in a pre-trained
model, typically developed on a large-scale dataset, to improve the performance of a new model,
especially when the available data for the new task is limited. The pre-trained model layers, which
have already learned to recognize general features such as edges, textures, and shapes, provide a solid
foundation that can be fine-tuned to identify more specific patterns relevant to the new task. In doing

2 https://keras.io/
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so, transfer learning reduces the time required for training and increases the model’s effectiveness,
making it a valuable tool in scenarios where data is scarce. In the context of medical image analysis,
transfer learning is particularly beneficial[41]. Medical imaging tasks often involve complex patterns
and subtle changes that are challenging to identify, especially with limited annotation data. By using
models pre-trained on large datasets, transfer learning enables the application of these models to
medical images, which can be tuned to focus on specific disease features. This improves the accuracy
and robustness of the model and ensures that high-quality results can be achieved even with smaller
datasets. As a result, transfer learning has become a critical component in developing advanced
medical imaging solutions, contributing to diagnostic accuracy and computational efficiency advances.
These approaches are as follows:

• EfficientNet: EfficientNet is a family of convolutional neural networks that optimizes accuracy
and efficiency by increasing the model dimensions (depth, width, and resolution) in a balanced
manner. This approach results in improved performance with much fewer parameters compared
to traditional models, making it an excellent choice for high-accuracy tasks in medical image
classification [42].

• Xception: A perception-based architecture that replaces perceptual modules with deep separable
convolutions (deep convolutions followed by point convolutions). It does this by first obtaining
correlations between features and then spatial correlations. This allows for more efficient use of
model parameters[43].

• Inception: The Inception model, also known as GoogLeNet, is a deep convolutional neural
network known for its distinctive architecture that combines multiple convolutional filters of
different sizes in each layer. This innovative design allows the model to capture complex details
and larger patterns simultaneously, resulting in highly efficient image processing. By employing
1x1 convolutions to reduce dimensionality before applying larger filters, Inception achieves high
accuracy with fewer parameters and reduced computational complexity. When used in transfer
learning, the pre-trained Inception model is a strong foundation, providing a robust base of multi-
scale features that can be fine-tuned for specialized tasks such as medical image classification and
localization. Its ability to efficiently process complex visual information makes it an ideal choice
for applications that require precise image analysis, improving performance even with limited
new data [44].

• DenseNet: DenseNet connects each layer to every other layer in a feedforward fashion, ensuring
maximum information flow between layers. This densely connected architecture reduces the
number of parameters while improving feature reuse, making DenseNet efficient and effective for
the accurate analysis of medical images. DenseNet121 was used in this study. All of these models
use ImageNet weights for training [45].

To test the models, 0.8 of the data was considered as training data and 0.20 of the data was
considered as testing data. Also, the following 5 data augmentation techniques were used in the
preprocessing process:

• Scaling(S):
−−→
xS(l) = S[x(i)] = [xS

1 (i, s1), ..., xS
1 (i, sn)]

• Rotation(R):
−−→
xR(l(i, θ1), ..., xR

1 (i, θn)

• Noise(N):
−−−→
xN(1) = N[x(i)] = [xN

1 (i, m1, n1), . . . , xN
1 (i, m30, n30)]

• Random translation(Rt):
−−−→
xRt(l) = Rt[x(i)] = [xRt

1 (i, t1), . . . , xRt
1 (i, t30)]

• Gamma correction(Gc):
−−−→
xGc(l) = Gc[x(i)] = [xGc

1 (i, t1), . . . , xGc
1 (i, t30)]

The data sets are split into two sets: training and testing . The specifications of the model and its
hyper-parameters are summarized in Table 5, respectively.
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Table 5. Hyperparameter setting of the tested models.

Hyperparameter Values
Bsize: Batch size 64
LR: Learningrate 0.0001
D: Dropoutsize 0.7
E: Epochs 100
O: Optimizer Adam

Loss f unction
CrossEntropyLoss: Multi class

BCELoss: Binary class

The EfficientNetB3 approach was able to achieve Accuracy=0.9703, Precision=0.9711, Re-
call=0.9703, and F1=0.9706 on the 4-class classification (see Table 6). The Xception approach was
able to achieve better results than EfficientNetB3 and achieved Accuracy=0.9727, Precision=0.9726,
Recall=0.9719, and F1=0.9722. The worst result in the 4-class classification was achieved by the In-
ception V3 approach, which also achieved Accuracy=0.8953, Precision=0.8958, Recall=0.8938, and
F1=0.8947. The approach achieved better results than InceptionV3 and worse than EfficientNetB3.
This approach was able to achieve Accuracy=0.9578, Precision=0.9578, Recall=0.9570, and F1=0.9573.
The two proposed Swin Transformer-based approaches were able to achieve results above 0.97. The
results obtained show the highest competition among the four classes. The Swin Transformer wavelet
approach was able to achieve Accuracy=0.9753, Precision=0.9751, Recall=0.9763, and F1=0.9756, and
the Swin Transformer wavelet+ GWO approach was able to achieve Accuracy=0.9812, Precision=0.9812,
Recall=0.9822, and F1=0.9816.

Table 6. Four class classification on Alzheimer dataset. The bold represents the highest results/accuracy achieved
for each experiment.

Model Accuracy Precision Recall F1
EfficientNetB3[42] 0.9703 0.9711 0.9703 0.9706
Xception[43] 0.9727 0.9726 0.9719 0.9722
InceptionV3[44] 0.8953 0.8958 0.8938 0.8947
DenseNet121[45] 0.9578 0.9578 0.9570 0.9573
Swin Transformer wavelet 0.9753 0.9751 0.9763 0.9756
Swin Transformer wavelet+ GWO 0.9812 0.9812 0.9822 0.9816

The results of the three-class classification are given in Table 7. In the three-class classification
on the Mild, Moderate, and Non-classes, the best result was obtained by the Swin Transformer
wavelet+ GWO approach. The Swin Transformer wavelet approach also achieved an accuracy of
0.9970. Regarding the Mild, Moderate, and Very mild classifications, the best result was obtained
using the Swin Transformer wavelet+ GWO approach. The two EfficientNetB3 and Swin Transformer
wavelet approaches achieved almost equal results. The worst result on this classification was obtained
by InceptionV3. In the three-class classification of Mild, Non, Very Mild, the Swin Transformer
wavelet+ GWO approach achieved an accuracy of 0.9843. The worst result in the Mild, Non, Very
Mild classification was obtained by the DenseNet121 approach. In the Moderate, Non, and Very Mild
classifications, the best results were obtained by the Swin Transformer wavelet and Swin Transformer
wavelet+ GWO approaches. The worst result was obtained by InceptionV3.
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Table 7. Three-class classification on Alzheimer dataset. The bold represents the highest results/accuracy achieved
for each experiment.

Model Mild,Moderate, Non Mild,Moderate, Very_Mild Mild , Non, Very_Mild Moderate, Non, Very_Mild
EfficientNetB3[42] 0.9688 0.9812 0.9716 0.9764
Xception[43] 0.9447 0.9734 0.9732 0.9573
InceptionV3[44] 0.9760 0.8750 0.9732 0.9591
DenseNet121[45] 0.9976 0.9625 0.9409 0.9809
Swin Transformer wavelet 0.9970 0.9813 0.9831 0.9900
Swin Transformer wavelet+ GWO 0.9980 0.9881 0.9843 0.9912

The results of a two-class classification in 6 different combinations of classes are given in Table 8.
The Swin Transformer wavelet and Swin Transformer wavelet+ GWO models on Mild and Moderate
were able to achieve an accuracy of 0.99. The two approaches, EfficientNetB3 and InceptionV3,
achieved the weakest result in this classification. In Mild and Very Mild classification, the Swin
Transformer wavelet+ GWO approach was able to achieve an accuracy of 0.9907, which is the highest
accuracy in the tested models. The two models, EfficientNetB3 and InceptionV3, achieved an accuracy
of 0.9204, which is the worst result in the tested models. The three approaches, DenseNet121, Swin
Transformer wavelet, and Swin Transformer wavelet+ GWO, were able to achieve an accuracy of
1 on the binary classification of Mild and Non-classes. The other models in this class achieved an
accuracy of 0.96. In the two classes Moderate and Non, the Xception, DenseNet121, Swin Transformer
wavelet, and Swin Transformer wavelet+ GWO models were able to achieve an accuracy of 1. The
other models achieved a high accuracy of 0.99. In the Moderate and Very Mild binary classification,
the three approaches EfficientNetB3. Swin Transformer wavelet and Swin Transformer wavelet+ GWO
were able to achieve an accuracy of 1. The Non and Very Mild binary classification is relatively the
most difficult classification in the tested models, and the proposed Swin Transformer wavelet+ GWO
model was able to achieve an accuracy of 0.9798.

Table 8. Accuracy of six binary classifications on Alzheimer dataset. The bold represents the highest results/
accuracy achieved for each experiment.

Model Mild ,Moderate Mild , Very_Mild Mild, Non Moderate, Non Moderate, Very_Mild Non, Very_Mild
EfficientNetB3[42] 0.9375 0.9204 0.9793 0.9993 1.0000 0.9375
Xception[43] 0.9531 0.9745 0.9646 1.0000 0.9957 0.9678
InceptionV3[44] 0.9323 0.9204 0.9756 0.9908 0.9740 0.9513
DenseNet121[45] 0.9896 0.9857 1.0000 1.0000 0.9740 0.9642
Swin Transformer wavelet 0.9916 0.9852 1.0000 1.0000 1.0000 0.9781
Swin Transformer wavelet+ GWO 0.9978 0.9907 1.0000 1.0000 1.0000 0.9798

The results of 5-fold cross-validation in four-class classification are shown in Table 9. The Effi-
cientNetB3, Xception, InceptionV3, and DenseNet121 models achieved the highest results in Fold5,
Fold1, Fold2, and Fold4. Adding Wavelet in Swin Transformer improved the model and achieved a
maximum accuracy of 0.9816, which was in Fold1. Adding GWO to the Swin Transformer wavelet also
improved the model slightly. The model achieved a maximum accuracy of 0.9875 in Fold1. According
to Table 10, adding a wavelet after the network improves the model performance, which can be seen
with a small p-value (less than 0.05). However, adding GWO after the wavelet does not have much
effect on the model accuracy because the p-values are very significant, indicating that the statistical
difference is small if optimization is used after the wavelet transform.

Table 9. Results for 5-fold cross-validation on 4-class classifications.

Model Fold1 Fold2 Fold3 Fold4 Fold5
EfficientNetB3[42] 0.9512 0.9426 0.9235 0.9543 0.9545
Xception[43] 0.9715 0.9694 0.9658 0.9707 0.9713
InceptionV3[44] 0.9714 0.9753 0.9669 0.9628 0.9628
DenseNet121[45] 0.9632 0.9632 0.9618 0.9747 0.9699
Swin Transformer wavelet 0.9816 0.9614 0.9708 0.9829 0.9747
Swin Transformer wavelet + GWO 0.9875 0.9606 0.9809 0.9797 0.9826
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Table 10. Statistic and pvalue for four class calssification.

Model EfficientNetB3[42] Xception[43] InceptionV3[44] DenseNet121[45] Swin Transformer wavelet Swin Transformer wavelet+ GWO
EfficientNetB3[42] 0.0,1.0 -4.1328, 0.0033 -3.5556, 0.0074 -1.3860, 0.2032 -3.3544, 0.01002 -4.8815, 0.00123
Xception[43] 4.1328, 0.0032 0.0, 1.0 0.6890, 0.5102 2.8305, 0.0221 1.2190, 0.2575 -2.7184, 0.0263
InceptionV3[44] 3.5555, 0.0074 -0.6890, 0.5102 0.0, 1.0 2.2199, 0.0571 0.3892, 0.7072 -2.3053, 0.0500
DenseNet121[45] 1.3860, 0.2031 -2.8305, 0.0221 -2.2199, 0.0571 0.0, 1.0 -1.9801, 0.0830 -3.7336, 0.0057
Swin Transformer wavelet 3.3544, 0.0100 -1.2190, 0.2575 -0.3892, 0.7072 1.9801, 0.0830 0.0, 1.0 -2.8421, 0.0217
Swin Transformer wavelet+ GWO 4.8814, 0.0012 2.7184, 0.0263 2.3053, 0.0500 3.7336, 0.0057 2.8421, 0.0217 0.0, 1.0

The bar plot of different approaches in 2, 3, and 4-class classification is shown in Figure 3. Figure
3-a shows the comparison of the models’ performance in two-class Alzheimer’s classification. Also
shown in Figure 3-b and Figure 3-c are three and four-class classifications. According to the bar graphs,
the proposed approach has the highest efficiency among the evaluated approaches.

Mild Vs. Moderate Mild VS. Very Mild Mild Vs. Non Moderate Vs. Non Moderate Vs. Very Mild Non Vs. Very Mild
Metrics

0.850

0.875

0.900

0.925

0.950

0.975

1.000

1.025

1.050

Sc
ore

s

Comparison of methods on 2-calss classifications
fficientNetB3
Xception
InceptionV3
DenseNet121
SwinTransformer+Wavelet+IGWO

(a) 2-class

Mild Vs. Moderate Vs. Non Mild Vs. Moderate Vs. Very Mild Mild Vs. Non Vs. Very Mild Moderate Vs. Non Vs. Very Mild
Metrics

0.850

0.875

0.900

0.925

0.950

0.975

1.000

1.025

1.050

Sc
ore

s

Comparison of methods on 2-calss classifications
fficientNetB3
Xception
InceptionV3
DenseNet121
SwinTransformer+Wavelet+IGWO

(b) 3-calss

Accuracy F-measure Recall Precision
Metrics

0.850

0.875

0.900

0.925

0.950

0.975

1.000

1.025

1.050

Sc
ore

s

Comparison of methods on 4-calss classifications
fficientNetB3
Xception
InceptionV3
DenseNet121
SwinTransformer+Wavelet+IGWO

(c) 4-class

Figure 3. Bar plot for all classification models on Alzheimer dataset.

In the following, Figures 4–14 show the confusion matrix results for different approaches and
different classifications.
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Mi
ld

_D
em

en
te

d

Mo
de

ra
te

_D
em

en
te

d

No
n_

De
m

en
te

d

Ve
ry

_M
ild

_D
em

en
te

d

Predicted label

Mild_Demented

Moderate_Demented

Non_Demented

Very_Mild_Demented

Tru
e 

lab
el

0.96 0 0 0.025

0.018 1 0.0019 0.0017

0.018 0 1 0.21

0 0 0 0.76

0.0

0.2

0.4

0.6

0.8

1.0

(d) DenseNet121
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(e) Swin Transformer base wavelet
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Figure 4. confusion matrix for four class classification on Alzheimer dataset.
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M
ild

_D
em

en
te

d

M
od

er
at

e_
D

em
en

te
d

No
n_

D
em

en
te

d
Predicted label

Mild_Demented

Moderate_Demented

Non_Demented

Tr
ue

 la
be

l

1 0 0.0031

0 1 0

0 0 1

0.0

0.2

0.4

0.6

0.8

1.0

(d) DenseNet121

M
ild

_D
em

en
te

d

M
od

er
at

e_
D

em
en

te
d

No
n_

D
em

en
te

d

Predicted label

Mild_Demented

Moderate_Demented

Non_Demented

Tr
ue

 la
be

l

1 0 0.039

0 1 0

0 0 0.96

0.0

0.2

0.4

0.6

0.8

1.0

(e) Swin Transformer
base wavelet + GWO

Figure 5. Confusion matrix for three class (Mild Vs. Moderate Vs. Non) classification on Alzheimer dataset.
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Figure 6. Confusion matrix for three class (Mild Vs. Moderate Vs. Very_Mild) classification on Alzheimer dataset.
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Figure 7. Confusion matrix for three class (Mild Vs. Non Vs. Very_Mild) classification on Alzheimer dataset.
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Figure 8. Confusion matrix for three class (Moderate Vs. Non Vs. Very_Mild) classification on Alzheimer dataset.
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Figure 9. Confusion matrix for binary classifications (Mild Vs. Moderate) on Alzheimer dataset.
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Figure 10. Confusion matrix for binary classifications (Mild Vs. Very_Mild) on Alzheimer dataset.
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Figure 11. Confusion matrix for binary classifications ( Mild Vs. Non ) on Alzheimer dataset.
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Figure 12. Confusion matrix for binary classifications (Moderate Vs. Non) on Alzheimer dataset.
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Figure 13. Confusion matrix for binary classifications (Moderate Vs. Very_Mild) on Alzheimer dataset.
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Figure 14. Confusion matrix for binary classifications (Non Vs. Very_Mild ) on Alzheimer dataset.

4.1. Result on OASIS

To assess the comprehensiveness of the model, the OASIS dataset was also evaluated. The
frequency of classes in this dataset is shown in Figure 15. The frequency of the number of patients in
each category is also shown in Figure 16.

Figure 15. Number of MRI scans in each class..
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Figure 16. Number of patients in each class.

In the OASIS dataset, all models recorded very high performance. Table 11 shows the results
obtained in this dataset. The EfficientNetB3 model achieved Accuracy=0.9898 and F1=0.9897 on this
dataset. The Exception and InceptionV3 models recorded close accuracy, achieving an accuracy of
0.9983 and 0.9981, respectively. The DenseNet121 model had the highest model performance among
the tested baseline methods. It achieved an accuracy of 0.9991 and F1 of 0.9999. The proposed models
based on Swin Transformer achieved an accuracy of 1.0 on this dataset. These models also achieved an
accuracy of 1.0 in the non-use mode and using GWO in other evaluation criteria.

Table 11. Obtained result on OASIS.

Model Accuracy Precision Recall F1
EfficientNetB3 0.9898 0.9896 0.9898 0.9897
Xception 0.9983 0.9988 0.9988 0.9988
InceptionV3 0.9981 0.9989 0.9989 0.9989
DenseNet121 0.9991 0.9999 0.9999 0.9999
Swin Transformer base wavelet 1.0 1.0 1.0 1.0
Swin Transformer base wavelet + GWO 1.0 1.0 1.0 1.0

4.2. Models Complexity

In this context, three indicators were used for evaluating the complexity of the models studied:
Parameters(10e6) the number of learnable and unlearnable parameters of the model, GFlops showing
floating-point operations (additions, subtractions, multiplications, and divisions), and Memory (in GB)
the amount of RAM used in training the model on the data (see Table 12). The EfficientNet model has
the lowest Parameters(10e6), GFlops, and Memory (GB) among the tested models. The Xception model
is the second least parameterized model with 105.1 parameters. In terms of GFlops, this model is more
than DenseNet121. Also, IncetionV3 has Parameters(10e6)= 144.1, GFlops=501.22, and Memory (GB)=
5.39, which is a costly model compared to the EfficientNet, Xception, and DenseNet121 models. Swin
models are computationally and memory-intensive. This model, combined with GWO, can occupy a
maximum of 8.2 GB of RAM.
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Table 12. Memory usage, top accuracy, number of parameters, flops of all studied models.

Architecture Parameters(10e6) GFlops Memory (GB)
EfficientNet 79.8 199.29 4.7
Xception 105.1 240.98 5.6
IncetionV3 144.1 321.22 5.39
DenseNet121 121.7 231.1 5.35
Swin Transformer wavelet 155.9 401.32 5.8
Swin Transformer wavelet+ GWO 155.9 401.32 8.2

5. Conclusion
Our study evaluated the performance of EfficientNetB3, Xception, InceptionV3, Swin Transformer

wavelet, and Swin Transformer wavelet+ GWO algorithms in Alzheimer’s disease classification. These
models basically use transfer learning and initial weights from ImageNet. In this study, classification
was investigated in terms of two, three, and four classes. Five data augmentation methods were
applied in preprocessing on the data. The results showed that Swin Transformer wavelet+ GWO
achieved the highest accuracy among the tested models. The combination of Swin Transformer and
wavelet was effective in all three categories of classification. On the other hand, choosing GWO to
optimize the parameters led to better results. This improvement in 2-class classification ended with
an accuracy of 1. However, using GWO to find the optimal values is very time-consuming. Using
approaches based on recurrent networks such as [46–48] can lead to better results in combination with
Swin Transformer. Furthermore, expanding the dataset size and incorporating more diverse features
could improve model generalization and performance across different groups. Overall, these research
directions offer promising avenues for advancing the diagnosis and management of Alzheimer’s
disease.

Author Contributions: All authors contribute the writing the manuscript, concepts, methodology, design of the
proposed models, experimental results analysis, the software of the proposed models, dataset collection, resources,
visualization, implementation of the models, similarity reduction, and the editing of the manuscript, the review of
the writing and grammatical errors for the manuscript, validation of the results, and supervision of the proposed
work.

Funding: No funding.

Institutional Review Board Statement: INot applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets used and analysed during the current study are available from the
corresponding author on reasonable request.

Conflicts of Interest: The authors declare no competing interests.

References
1. Anton, A.; Fallon, M.; Cots, F.; Sebastian, M.A.; Morilla-Grasa, A.; Mojal, S.; Castells, X. Cost and detection

rate of glaucoma screening with imaging devices in a primary care center. Clinical Ophthalmology 2017, pp.
337–346.

2. Ibrahim, R.; Ghnemat, R.; Abu Al-Haija, Q. Improving Alzheimer’s disease and brain tumor detection using
deep learning with particle swarm optimization. AI 2023, 4, 551–573.

3. Ibrahim, R.; Ghnemat, R.; Abu, A.H. Q. Improving Alzheimer’s Disease and Brain Tumor Detection Using
Deep Learning with Particle Swarm Optimization. AI 2023, 4, 551–573, 2023.

4. Castellazzi, G.; Cuzzoni, M.G.; Cotta Ramusino, M.; Martinelli, D.; Denaro, F.; Ricciardi, A.; Vitali, P.;
Anzalone, N.; Bernini, S.; Palesi, F.; et al. A machine learning approach for the differential diagnosis of
Alzheimer and vascular dementia fed by MRI selected features. Frontiers in neuroinformatics 2020, 14, 25.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 April 2025 doi:10.20944/preprints202504.2251.v1

https://doi.org/10.20944/preprints202504.2251.v1


22 of 23

5. Huang, J.; van Zijl, P.C.; Han, X.; Dong, C.M.; Cheng, G.W.; Tse, K.H.; Knutsson, L.; Chen, L.; Lai, J.H.; Wu,
E.X.; et al. Altered d-glucose in brain parenchyma and cerebrospinal fluid of early Alzheimer’s disease
detected by dynamic glucose-enhanced MRI. Science advances 2020, 6, eaba3884.

6. Zaw, H.T.; Maneerat, N.; Win, K.Y. Brain tumor detection based on Naïve Bayes Classification. In Proceedings
of the 2019 5th International Conference on engineering, applied sciences and technology (ICEAST). IEEE,
2019, pp. 1–4.

7. Ghnemat, R.; Khalil, A.; Abu Al-Haija, Q. Ischemic stroke lesion segmentation using mutation model and
generative adversarial network. Electronics 2023, 12, 590.

8. Korolev, S.; Safiullin, A.; Belyaev, M.; Dodonova, Y. Residual and plain convolutional neural networks for
3D brain MRI classification. In Proceedings of the 2017 IEEE 14th international symposium on biomedical
imaging (ISBI 2017). IEEE, 2017, pp. 835–838.

9. Gauthier, S.; Reisberg, B.; Zaudig, M.; Petersen, R.C.; Ritchie, K.; Broich, K.; Belleville, S.; Brodaty, H.; Bennett,
D.; Chertkow, H.; et al. Mild cognitive impairment. The lancet 2006, 367, 1262–1270.

10. Grieder, M.; Wang, D.J.; Dierks, T.; Wahlund, L.O.; Jann, K. Default mode network complexity and cognitive
decline in mild Alzheimer’s disease. Frontiers in neuroscience 2018, 12, 770.

11. Ahmadi, M.; Nia, M.F.; Asgarian, S.; Danesh, K.; Irankhah, E.; Lonbar, A.G.; Sharifi, A. Comparative analysis
of segment anything model and u-net for breast tumor detection in ultrasound and mammography images.
arXiv preprint arXiv:2306.12510 2023.

12. Wang, J.; Wang, S.; Zhang, Y. Deep learning on medical image analysis. CAAI Transactions on Intelligence
Technology 2025, 10, 1–35.

13. Javed, H.; El-Sappagh, S.; Abuhmed, T. Robustness in deep learning models for medical diagnostics: security
and adversarial challenges towards robust AI applications. Artificial Intelligence Review 2025, 58, 1–107.

14. Farhadi Nia, M.; Ahmadi, M.; Irankhah, E. Transforming dental diagnostics with artificial intelligence:
advanced integration of ChatGPT and large language models for patient care. Frontiers in Dental Medicine
2025, 5, 1456208.

15. Shool, S.; Adimi, S.; Saboori Amleshi, R.; Bitaraf, E.; Golpira, R.; Tara, M. A systematic review of large
language model (LLM) evaluations in clinical medicine. BMC Medical Informatics and Decision Making 2025,
25, 117.

16. Nargesi, A.A.; Adejumo, P.; Dhingra, L.S.; Rosand, B.; Hengartner, A.; Coppi, A.; Benigeri, S.; Sen, S.; Ahmad,
T.; Nadkarni, G.N.; et al. Automated identification of heart failure with reduced ejection fraction using deep
learning-based natural language processing. Heart Failure 2025, 13, 75–87.

17. Barde, A.; Kaimal, V.; Barde, S.; Sharma, S. Detection and Prevention of Fake News and Hate Speech through
Machine Learning and Natural Language Processing. In Text and Social Media Analytics for Fake News and
Hate Speech Detection; Chapman and Hall/CRC, 2025; pp. 262–279.

18. Eskildsen, S.F.; Coupé, P.; García-Lorenzo, D.; Fonov, V.; Pruessner, J.C.; Collins, D.L.; Initiative, A.D.N.; et al.
Prediction of Alzheimer’s disease in subjects with mild cognitive impairment from the ADNI cohort using
patterns of cortical thinning. Neuroimage 2013, 65, 511–521.

19. Vemuri, P.; Jones, D.T.; Jack, C.R. Resting state functional MRI in Alzheimer’s Disease. Alzheimer’s research &
therapy 2012, 4, 1–9.

20. Khazaee, A.; Ebrahimzadeh, A.; Babajani-Feremi, A.; Initiative, A.D.N.; et al. Classification of patients with
MCI and AD from healthy controls using directed graph measures of resting-state fMRI. Behavioural brain
research 2017, 322, 339–350.

21. Bari Antor, M.; Jamil, A.S.; Mamtaz, M.; Monirujjaman Khan, M.; Aljahdali, S.; Kaur, M.; Singh, P.; Masud, M.
A comparative analysis of machine learning algorithms to predict alzheimer’s disease. Journal of Healthcare
Engineering 2021, 2021, 9917919.

22. Beheshti, I.; Demirel, H.; Farokhian, F.; Yang, C.; Matsuda, H.; Initiative, A.D.N.; et al. Structural MRI-based
detection of Alzheimer’s disease using feature ranking and classification error. Computer methods and
programs in biomedicine 2016, 137, 177–193.

23. Beheshti, I.; Demirel, H.; Matsuda, H.; Initiative, A.D.N.; et al. Classification of Alzheimer’s disease and
prediction of mild cognitive impairment-to-Alzheimer’s conversion from structural magnetic resource
imaging using feature ranking and a genetic algorithm. Computers in biology and medicine 2017, 83, 109–119.

24. Dara, O.A.; Lopez-Guede, J.M.; Raheem, H.I.; Rahebi, J.; Zulueta, E.; Fernandez-Gamiz, U. Alzheimer’s
disease diagnosis using machine learning: a survey. Applied Sciences 2023, 13, 8298.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 April 2025 doi:10.20944/preprints202504.2251.v1

https://doi.org/10.20944/preprints202504.2251.v1


23 of 23

25. Alroobaea, R.; Mechti, S.; Haoues, M.; Rubaiee, S.; Ahmed, A.; Andejany, M.; Bragazzi, N.L.; Sharma, D.K.;
Kolla, B.P.; Sengan, S. Alzheimer’s Disease Early Detection Using Machine Learning Techniques. Applied
Sciences 2021.

26. Khan, A.; Zubair, S. An improved multi-modal based machine learning approach for the prognosis of
Alzheimer’s disease. Journal of King Saud University-Computer and Information Sciences 2022, 34, 2688–2706.

27. Tang, X.; Liu, J. Comparing different algorithms for the course of Alzheimer’s disease using machine
learning. Annals of Palliative Medicine 2021, 10, 9715724–9719724.

28. Hassan, A.; Imran, A.; Yasin, A.U.; Waqas, M.A.; Fazal, R. A Multimodal Approach for Alzheimer’s Disease
Detection and Classification Using Deep Learning. Journal of Computing & Biomedical Informatics 2024,
6, 441–450.

29. Sarraf, S.; Sarraf, A.; DeSouza, D.D.; Anderson, J.A.; Kabia, M.; Initiative, A.D.N. OViTAD: Optimized vision
transformer to predict various stages of Alzheimer’s disease using resting-state fMRI and structural MRI
data. Brain Sciences 2023, 13, 260.

30. Chelladurai, A.; Narayan, D.L.; Divakarachari, P.B.; Loganathan, U. fMRI-Based Alzheimer’s Disease
Detection Using the SAS Method with Multi-Layer Perceptron Network. Brain Sciences 2023, 13, 893.

31. Sethuraman, S.K.; Malaiyappan, N.; Ramalingam, R.; Basheer, S.; Rashid, M.; Ahmad, N. Predicting
Alzheimer’s disease using deep neuro-functional networks with resting-state fMRI. Electronics 2023, 12, 1031.

32. Zhang, T.; Liao, Q.; Zhang, D.; Zhang, C.; Yan, J.; Ngetich, R.; Zhang, J.; Jin, Z.; Li, L. Predicting MCI to AD
conversation using integrated sMRI and rs-fMRI: machine learning and graph theory approach. Frontiers in
Aging Neuroscience 2021, 13, 688926.

33. Wang, R.; He, Q.; Han, C.; Wang, H.; Shi, L.; Che, Y. A deep learning framework for identifying Alzheimer’s
disease using fMRI-based brain network. Frontiers in Neuroscience 2023, 17, 1177424.

34. Ramzan, F.; Khan, M.U.G.; Rehmat, A.; Iqbal, S.; Saba, T.; Rehman, A.; Mehmood, Z. A deep learning
approach for automated diagnosis and multi-class classification of Alzheimer’s disease stages using resting-
state fMRI and residual neural networks. Journal of medical systems 2020, 44, 1–16.

35. Guo, H.; Zhang, Y. Resting state fMRI and improved deep learning algorithm for earlier detection of
Alzheimer’s disease. IEEE Access 2020, 8, 115383–115392.

36. Noh, J.H.; Kim, J.H.; Yang, H.D. Classification of alzheimer’s progression using fMRI data. Sensors 2023,
23, 6330.

37. Sabour, S.; Frosst, N.; Hinton, G.E. Dynamic routing between capsules. Advances in neural information
processing systems 2017, 30.

38. Wang, W.; Lee, F.; Yang, S.; Chen, Q. An improved capsule network based on capsule filter routing. IEEE
Access 2021, 9, 109374–109383.

39. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Advances in engineering software 2014, 69, 46–61.
40. Abesi, A.; Bengari, A.A.; Abdiyeva, K.; Mousa, R. Skin Cancer Diagnosis (SCD) Using EfficientNet-Wavelet

and Gray Wolf Optimization (GWO). Available at SSRN 5210869 2025.
41. Yan, P.; Abdulkadir, A.; Luley, P.P.; Rosenthal, M.; Schatte, G.A.; Grewe, B.F.; Stadelmann, T. A comprehensive

survey of deep transfer learning for anomaly detection in industrial time series: Methods, applications, and
directions. IEEE Access 2024.

42. Koonce, B.; Koonce, B. EfficientNet. Convolutional neural networks with swift for Tensorflow: image recognition
and dataset categorization 2021, pp. 109–123.

43. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the
Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 1251–1258.

44. Si, C.; Yu, W.; Zhou, P.; Zhou, Y.; Wang, X.; Yan, S. Inception transformer. Advances in Neural Information
Processing Systems 2022, 35, 23495–23509.

45. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In
Proceedings of the Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp.
4700–4708.

46. Merikhipour, M.; Khanmohammadidoustani, S.; Abbasi, M. Transportation mode detection through spatial
attention-based transductive long short-term memory and off-policy feature selection. Expert Systems with
Applications 2025, 267, 126196.

47. Sahoo, A.R.; Chakraborty, P. Hybrid CNN Bi-LSTM neural network for Hyperspectral image classification.
arXiv preprint arXiv:2402.10026 2024.

48. Su, J.; Liang, J.; Zhu, J.; Li, Y. HCAM-CL: A Novel Method Integrating a Hierarchical Cross-Attention
Mechanism with CNN-LSTM for Hierarchical Image Classification. Symmetry 2024, 16, 1231.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 April 2025 doi:10.20944/preprints202504.2251.v1

https://doi.org/10.20944/preprints202504.2251.v1

	Introduction
	Methodology Overview
	Swin Transformer Overall Architecture
	Shifted Window-Based Self-Attention
	Wavelet Transform (WT)
	Gray Wolf Optimization(GWO)

	Material
	Dataset
	Deep Learning Library

	Results
	Result on OASIS 
	Models Complexity

	Conclusion
	References

