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Abstract: Second messengers, cyclic adenosine 3'-5'-monophosphate (cAMP) and cyclic guanosine
3'-5'-monophosphate (cGMP) are playing important roles in many animal cells by regulating
intracellular signaling pathways and modulating cell physiology. Environmental cues like
temperature, light and chemical compounds can stimulate cell surface receptors and trigger the
generation of second messengers and the following regulations. Spread of cAMP and cGMP is
further shaped by cyclic nucleotide phosphodiesterases (PDEs) for orchestration of intracellular
microdomain signaling. However, localized intracellular cAMP and c¢cGMP signaling requires
further investigation. Optogenetic manipulation of cAMP and cGMP offers new opportunities of
spatio-temporally precise study of their signaling mechanism. Light-gated nucleotide cyclases are
well developed and applied for cAMP/cGMP manipulation. Recently discovered rhodopsin
phosphodiesterase gene from protists established new and direct biological connection between
light and PDEs. Light-regulated PDEs are under development and of demand to complete the
toolkit of cAMP/cGMP manipulation. In this review, we summarize the state of the art, pros and
cons of artificial and natural light-regulated PDEs and discuss potential new strategies of
developing light-gated PDEs for optogenetic manipulation.
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1. Introduction to Cyclic Nucleotides and Signal Transduction

In mammalian cells, first messengers such as light, nitric oxide (NO), hormones can regulate
second messenger cyclic nucleotides (cCAMP and c¢cGMP) levels, which further affect the vision
signaling, muscle contraction, cardiovascular, memory and many other functions [1-4]. cCAMP is
produced by adenylyl cyclase (AC), with different isoforms mainly expressed in the plasma
membrane among cell types. Some of the AC activities are partially dependent on Ca?" concentrations
[5, 6]. Soluble adenylyl cyclase (sAC) can be activated by bicarbonate and plays an important role in
sperm motility and fertilization capacity [7, 8]. cGMP is also produced by guanylyl cyclases (GC) of
both soluble and membrane-anchored isoforms [9]. Seven transmembrane guanylyl cyclases (pGC
A-G) exist in mammals and pGC-G was proved as a thermosensory protein [10, 11]. Nitric oxide (NO)
synthesized by NO synthase (NOS) can diffuse through cell membranes and activate soluble guanylyl
cyclase (sGC) [12].

The production of cAMP or cGMP can thereafter regulate versatile cellular physiologies (Figure
1). Notably, cNMP (e.g. cAMP or cGMP) can participate in several regulatory processes by activating
other components like Epac [13], protein kinase A or G (PKA or PKG) and cyclic nucleotide-gated
(CNG) channels [14]. For example, the PKA can be released after the binding of cAMP to the
regulatory domain and phosphorylate downstream target proteins or can be transported into the
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43 nucleus to activate cAMP-response element binding protein (CREB) and initiate gene expression [15,
44 16]. PKA plays further roles in activating other cytosolic components like phosphorylase kinase (PhK)
45  to regulate glycogenolysis by phosphorylation processes [17]. As one of the intracellular cGMP
46  targets, PKG is highly expressed in different tissues or cell types, such as smooth muscle,
47  cardiomyocytes, platelets, endothelial and neuronal cells [18]. PKG can trigger the gene expression
48  related with the cardiovascular system as well as cytosolic vasodilator-stimulated phosphoprotein
49  (VASP) for the induction of apoptosis [19]. Furthermore, PKA and PKG can phosphorylate the N-
50  terminal NHR or UCR modules and regulate PDE3, 4 catalytic activity. cNMP-dependent
51  phosphodiesterases such as PDE2, 5, 6, 10 and 11 have two ¢cGMP PDE/adenylyl cyclase/FhlA (GAF)
52 domains in the N-terminal, which can bind cGMP or cAMP to trigger PDE activity [20]. Diversity of
53 GAF domains offers possibilities to design potential drugs for specific targeting.
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55 Figure 1. Cyclic nucleotides (cCAMP and cGMP) and their typical signal transductions in animal cells. Membrane-
56 integrated adenylyl cyclase (AC) and soluble AC are depicted to produce cAMP. sGC can be activated by NO
57 produced by NO synthase (NOS). Membrane bound guanylate cyclases respond to external signaling molecules.
58 Four main effectors mediated by cAMP and cGMP were depicted. The CNG channels with Ca?’/Na* permeability
59 in plasma membrane can be activated by cAMP or cGMP. In the cytoplasm, various PDEs include GAF-A and
60 GAF-B domains in the N-terminal, which can either bind cGMP (for PDE2, 5, 6 and 11) or cAMP (for PDE10),
61 thus regulating C-terminal catalytical activity.PKA and PKG can further regulate targeted protein
62 phosphorylation and CREB transcription factors for certain gene expression. PKA related gene expression has
63 effects on circadian rhythms, neuroplasticity or learning and memory etc. PKG related gene expression mainly
64 plays roles in the cardiovascular system, such as vascular tone, cardiac hypertrophy, cell proliferation etc. PKA
65 and PKG can also regulate the activity of PDE1, 3-5 and 10 by phosphorylation of the N-terminal modules. Note
66 that PDEs with other different N-terminal modules are not listed in the figure.

67 In subcellular levels, cAMP or cGMP can be hydrolyzed rapidly due to robust localized PDE
68  activities[21]. The rapid turnover was required to enable physiological consequences. To study the
69  rapid processes that regulate cGMP or cAMP levels in subcellular compartments, spatio-
70  temporally precise methods are needed. It was expected that light-induced PDEs could be designed
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and applied in addition to light-gated nucleotide cyclases to regulate cGMP or cAMP levels and
dissect the related physiological processes.

2. Therapeutic Regulation of PDEs

In mammalian cells, 11 primary PDE members (PDE1-11) were identified as a superfamily, with
over 100 different isoforms due to multiple transcription start sites and alternative splicing. Some of
them hydrolyze both cAMP and ¢cGMP (including PDE1-3, 10-11), while others are cAMP (PDE4, 7-
8) or cGMP (PDE5A, 6, 9A) specific[22]. They share relatively conserved C-terminal catalytic PDE
domains but vary much in N-terminal regulatory modules. This has effects on their individual
signaling roles, such as intracellular localization and cell- or tissue-specific expression [23].

Some diseases like pulmonary hypertension and chronic heart failure are caused by the
upregulated PDES activity and the breakdown of second messenger homeostasis[9]. Therefore, to
cure these diseases, the main therapeutic goals focus on PDES5 inhibitors, which mostly bind to the
PDE catalytic domain and reduce its substrate affinity [24, 25]. Inhibitors of the cGMP-specific PDE9
were selected for the treatment of diseases such as diabetes or Alzheimer's disease [26, 27]. The highly
specific inhibitor for PDE9A was referred to an active Tyr424 site instead of a Phe in all other isoforms
[28, 29].

The other therapeutic direction would be to uncover and leverage the regulating mechanisms of
the variable N-terminal regions. The N-terminal modules of certain mammalian PDEs have different
effects such as heterologous protein-protein interactions, the interactions within PDEs and cyclic
nucleotide binding [30, 31]. For instance, PDE2, 5, 6, 10 and 11 have N-terminal GAF domains. The
cyclic nucleotides binding to the GAF domains can change the overall conformation and regulate the
PDE activities [20]. Whereas the phosphorylation in the N-terminal regulatory regions of PDE3 and
PDE4 can dramatically impact their activity and cooperation with other proteins in signalosomes [22].
Notably, some diseases are caused by abnormal cAMP increase. For example, the autosomal
dominant polycystic kidney disease (ADPKD) with elevated cAMP levels promotes cyst formation
leads to renal failure. One allosteric activator compound of PDE4 can lower the cAMP levels and limit
the cAMP-mediated signaling pathways. This dramatically inhibits the cyst formation [32].
Manipulating the N-terminal regulatory modules or upstream interventions could give new insights
into regulating mechanism of PDE catalytic activity.

The inhibitors, activators and modulators of PDEs have been successfully applied in both basic
researches and clinical trials. However, chemical drugs may encounter non-selective and crosstalk
problems, especially when targeting against the conserved catalytic domains. Due to the free
diffusion effect, it is challenging to restrict the chemicals to specific subcellular regions or to certain
cells in a tissue. In addition, chemical approaches also suffer poor temporal resolution and lack
reversibility. On the contrary, optogenetic manipulation of cNMP provides reversible control with
unprecedented spatio-temporal precision. Light-gated production of cNMP has been well
established. However, light-regulated PDEs are under development to complete the toolkit for
optogenetic cNMP manipulation.

3. Light-regulated PDEs
3.1. Indirect light regulation of PDE activity in visual phototransduction

In the retina of vertebrate eyes, rod and cone cells can respond to different light wavelengths
and intensities and transfer visual information to neural signals. Type II vertebrate rhodopsins, as a
member of G protein-coupled receptor (GPCR) superfamily A, play key roles in regulating visual
systems in the disc membrane of rod and cone cells. Photon absorption by rhodopsin initiates the
visual signaling cascade (Figure 2). The active form of rhodopsin binds to G protein, causing it to
dissociate from the bound GDP and bind GTP. The GTP-bound Ga subunit dissociates from Gy
subunits and becomes active [33]. PDE6 is anchored in the photoreceptor outer segment membranes.
It will be activated by the GTP-bound Ga protein, thus decrease the cGMP concentration and down-
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119  regulate CNG channel activities in the plasma membrane. The following hyperpolarization of the
120 membrane potential in photoreceptor cells enables neurotransmitters to release to different cells in
121 downstream and trigger neuronal signaling in the brain [34-36]. In the dark, the inactive form of
122 rhodopsin leaves the GDP-bound Ga protein in an inhibited form, which inhibits the PDE6 and
123 reduces its cGMP hydrolysis activity. Furthermore, GC is activated by guanylate cyclase activating
124 proteins (GCAP) at low concentrations of Ca?". This will restore cGMP levels in the cytoplasm and
125  re-open CNG channels in the dark.
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127 Figure 2. PDE6is involved in phototransduction of vertebrate visual system. The disc membrane and plasma
128 membrane depicted here are localized in photoreceptor cells of retina. Key proteins related to phototransduction
129 cascades were shown in the membranes. The photosensor rhodopsin is integrated in the disc membrane, where
130 G proteins (Ga, {3, v) and PDES6 are attached. In plasma membrane, CNG channels are permeable to Ca?" and
131 Na* and stay in an open or close state depending on dark or light conditions. GC and GCAP are shown in plasma
132 membrane to maintain cGMP levels in the cytoplasm.

133 Among the 11 PDE family members in mammals, only PDE6 is indirectly regulated by light

134 through G-protein coupled receptor in the disc membrane of rod and cone cells [34-36], and no direct
135  light regulation has been reported in animal PDE superfamily. Rather, the N-terminal chemosensor
136 domains act as direct regulator to manage the catalytic activity of the effector domain. Due to the
137  complicated signaling cascade from light to PDE activity, the GPCR-G protein-PDE pathway can not
138  be used as an universal tool for light manipulation of cGMP in different cells.

139 3.2. Artificial Light-activated PDE (LAPD)

140 The signal transduction from the sensor domain to the effector domain shares similar
141  conformation-changing mechanism across different signaling receptors. Therefore, replacing the N-
142 terminal chemosensor of PDE by a photosensor module may endow the photosensitivity. Based on
143 this strategy, LAPD was firstly engineered via combining a bacteria photosensor module with the
144 catalytic domain of human PDE2A [37] (Figure 3A). Crystallography and biochemical study revealed
145 that the linker region between GAF-A, B and catalytic domain plays a key role in regulating the
146  activity of PDE2A. The binding of cGMP to GAF-B induces significant movement of the coiled-coil
147  linker between GAF-B and catalytic domain and activates PDE2A allosterically [38].
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149 Figure 3. Engineered and natural light-gated PDEs. (A) The schematic model of generating the artificial light-
150 gated PDE, LAPD. The LAPD comprises the light sensor modules from DrBPhy labeled by red dashed box and
151 PDE catalytic domain from HsPDE2A labeled by gray dashed box. The encircled cG indicates cGMP. The
152 chromophore is shown with encircled Bilin (biliverdin). The red triangle indicates the linker connection point.
153 (B) The schematic model of natural light-gated PDE. The chromophore is shown with encircled ATR (all-trans-
154 retinal). In a new discovered protist Choanoeca flexa sp.nov, the RhoPDE can be activated by light to hydrolyze
155 c¢GMP and trigger the inversion to flagella-in orientation. In the dark cGMP levels will be maintained and
156 flagella-out orientation was kept. The lower cartoon in B was modified from [39].

157 Interestingly, the photosensor module of a bacterial phytochrome from Pseudomonas aeruginosa
158  BPhy (PaBPhy) displays remarkable similarities in both overall architecture and coiled-coil linker
159  region with the chemosensor domain of PDE2A [40-42]. Two stable phytochrome intermediates,
160  absorbing red light (Pr) and far red light (Pfr), regulate the activity of the effector domain differently.
161  First trial of fusing PaBPhy light-sensing domain and the HsSPDE2A catalytic domain unfortunately
162 fails to yield soluble protein. Substitution of the PaBPhy photosensor module by that from Deinococcus
163 radiodurans (DrBPhy) and slightly modulation of the coiled-coil linker region generated the first light-
164  regulated PDE: LAPD (Figure 3A). Upon red-light illumination, LAPD exhibits up to 4-fold and 6-
165  fold catalytic activity increase towards cAMP and cGMP, respectively. Preliminary applications
166  showed that LAPD allowed optical control of cAMP and ¢cGMP levels in CHO cells and zebrafish
167  embryos. In addition, red-light elevated catalytic activity of LAPD can be reverted by far-red light
168  irradiance. However, this photoconversion is not complete [37]. To engineer new LAPDs with
169  improved properties, Stabel et al systematically conducted substitution of either the N-terminal
170 photosensor module or the C terminal PDE effector module and modification of the linker regions.
171 A suite of LAPD variants was engineered. Among the variants, Dr-BfPDE2A exhibits enhanced
172 reversibility of photoactivation as well as highest photodynamic range [43]. Expressing LAPD, Dr-
173 BtPDE2A and several other variants in HEK cells enables regulating cNMP dependent physiological
174 processes such as the gating of CNG channels.

175 Phytochromes can be regulated by red and far-red light colors which can penetrate deeper into
176  tissues and the bacterial phytochromes (BPhys) use the chromophore biliverdin, which is a natural
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product of heme and universally available among cell types. This makes it applicable without
exogenous chromophores.

3.3. Direct Light-gated PDEs (RhoPDEs) from Nature

In fact, a thodopsisn-phosphodiesterases gene fusion was already found in the genome of a
choanoflagellate, Salpingoeca rosetta [44]. The protein, named Rh-PDE or RhoPDE (Figure 3B), was
expressed in HEK293 cells, and its cGMP and cAMP hydrolysis ability was found to increase 1.4-fold
and 1.6-fold respectively with light illumination [45]. The hydrolysis activity of RhoPDE is maximally
activated by 492 nm and it is ~10-fold more active towards cGMP than cAMP. However, a following
study using purified proteins suggested that light regulation is absent in RhoPDE [46]. Later found
that RhoPDE is clearly activated by light with an unusual mechanism: light illumination primarily
increased its substrate affinity rather than the maximal turnover [47]. Additionally, we found that the
hydrolysis activity for cGMP is ~100 times higher than for cAMP. Both cGMP and cAMP hydrolysis
activities can be increased to ~ 5- fold under light illumination at low substrate concentrations [47].
Different from the classical rhodopsins with seven transmembrane helices (TMS), RhoPDE shows 8
TMs topology with cytosolic localization of both N- and C-terminal proved by immunofluorescence
microscopy experiments, bimolecular fluorescence complementation (BiFC) experiments [46, 47] and
a very recent structure study [48].

Brunet et al. found more new RhoPDEs from different species of choanoflagellates. Four
RhoPDE homologs were discovered from Choanoeca flexa sp. nov.. In C. flexa, they found that the
choanoflagellate forms cup-shaped colonies that invert their curvature in response to changing
illumination conditions through a rhodopsin-cGMP signaling pathway [39] (Figure 3B). Moreover,
from sequenced transcriptomes database, other choanoflagellates species also encode RhoPDEs [49].
Collectively, eight new RhoPDE homologs were identified separately in Choanoeca flexa (C. flexal-4),
Microstomoeca roanoka (M. roanokal), Acanthoeca spectabilis (A. spectabilis1) and Choanoeca perplexa (C.
perplexal-2) [39]. All these RhoPDEs are predicted to have similar 8-TM topology like SrRhoPDE.
After expression of these RhoPDEs in HEK293 cell, CfRh-PDE1, CfRh-PDE4, and MrRh-PDE
exhibited light-enhanced cGMP hydrolysis activity, while AsRh-PDE, the one lacking the conserved
retinal binding lysine residue, shows constant cAMP-specific PDE activity without light regulation
[50].

4. Strategies for Engineering New Light-regulated PDEs

Studies of natural cGMP-related microbial rhodopsin will help to understand deep into the
evolution of animal visions. Furthermore, such studies can also provide potential optogenetic tools
for precise cNMP manipulation. Optogenetic manipulation of cNMP offers reversible control with
unprecedented spatio-temporal precision. Light-regulated cAMP/cGMP-producing cyclases
abundantly exist in nature and outperform the conventional chemical cyclase activators in various
applications [51-56]. However, current available light-activated PDEs, artificial LAPD and natural
RhoPDE, showed similar drawback of relative high dark activity and low light activity to dark
activity ratio. Here we provide possible strategies for future engineering new light-gated PDEs.

4.1 Allosteric Light Regulation

The Light-oxygen-voltage (LOV) domains are found in various protein sensors which response
to environmental change in plants and bacteria. The most widely used and best-studied LOV domain
comes from the second LOV domain of Avena sativa phototropin 1 (AsLOV2) [57]. It comprises ~125
amino acids with a chromophore-binding pocket for the covalent adduct flavin. Two a helices are
flanking in the N- and C-terminal of AsLOV2, named A’a and Ja helices, respectively [58, 59]. In the
dark stage, the C-terminal Ja helix is caged in the LOV core motif, while it can be exposed under blue
light illumination [60]. This light-triggered conformational change makes the AsLOV2 domain
suitable for designing light controllable protein in an allosteric manner. For example, Wu et al. fused
a GTPase Racl with the LOV2 domain, obtaining a photoactivatable Racl (PA-Racl). PA-Racl was
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225  sterically blocked from interacting with its effectors in the dark. Light illumination induces the
226  movement of Ja and subsequently unbinding of Racl from LOV2, allowing Racl to bind with its
227  effector [61]. Similarly, it is feasible to engineer a light-regulated PDEs by combining PDEs and LOV2
228  with systematical screening of the proper fusion strategies (Figure 4A). Moreover, in red/far-red
229  range, linking the allosteric transition of the phytochrome to PDE activity regulation has been proved
230  to be very effective in LAPDs engineering [37, 43].
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232 Figure 4. Potential strategies to design new light-regulated PDEs. (A) LOV2 based allosteric activation: tight
233 linkage to the LOV domain can block the function of PDE, while light-induced conformational change in the
234 LOV domain recover its function. (B) LOV2 based allosteric inhibition: LOV2 domain fused at the loop area of
235 anti-PDE single domain antibody (a-PDE nanobody), blue light illumination triggers conformational changes in
236 the nanobody, leading to binding of nanobody to PDE and inhibiting or regulating endogenous PDEs. (C-F)
237 Four light-induced translocation systems: blue light mediated dimerization of iLID (LOV2-SsrA/SspB) and
238 Cry2/CIB1, red light triggered dimerization of Phy/PIF3 and far-red light induced dimerization of BphP1/Q-
239 PAS1. One component (LOV2-SsrA, Cry2, Phy or BphP1) can be tethered to membrane fractions in certain
240 organelles. Targeted PDEs could be fused to the corresponding dimeric partners. This could potentially achieve
241 the recruitment of PDEs to certain subcellular compartment by light illumination. (G) Reconstitution of Split
242 PDE fragments. Two split fragments N-PDE and C-PDE are fused with Cry2 and CIB1 respectively. Blue light
243 can induce the dimerization of Cry2/CIB1 and recover the full PDE hydrolysis activity. (H) pdDronpa system:

231

244 The catalytic domain of PDE are fused with two pdDronpa proteins in N- and C-terminus or other proper
245 positions. Cyan light induced dissociation free the active site of PDE while violet light triggered association block
246 the active site. (I) Z-lock system: Zdk and LOV2 are fused at the N- and C-terminus or other proper positions of
247 PDE, blocking PDE active site in dark. After blue light illumination, Zdk and LOV unlinked, uncaging the active
248 site.

249 Light-induced allosteric regulation could also be applied to target endogenous PDEs. Pioneering
250  work by Dagliyan et al demonstrated that insertion of LOV2 domain to solvent-exposed loops on
251  proteins of interest enables switching the proteins between active and inactive states by light [62].
252  Inspired by this, Gil et at. engineered a class of opto-nanobodies (OptoNBs) via inserting a modified
253 LOV domain into the selected loop sites of the camelid single domain antibodies (aka. nanobodies)
254  with similar scaffold. The binding of OptoNBs to target proteins can be enhanced or inhibited upon
255  blue light illumination. Expressing these OptoNBs in cell allows reversibly binding to endogenous
256  intracellular targets, modulating signaling pathway activity [63]. Accordingly, inserting the modified
257  LOV variant into proper loop sites of nanobodies against specific PDEs could also generate a suit of
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light-switchable Opto-aPDEs (anti-PDEs). When the binding site of these Opto-aPDEs locates near
to the active site of PDEs, Opto-aPDEs could be potentially applied to reversibly inhibit the
endogenous PDEs with light application (Figure 4B). Targeting endogenous PDEs would be of great
value for the studies of subcellular cAMP/cGMP signaling.

4.2 Light-induced Translocations

Besides allosterically regulation, light-induced changes in protein oligomeric states could also be
implemented in engineering light-regulated PDEs. A series of photosensor-derived interaction
domains spanning from UV to far red light range provide multiple choices for engineering light-
regulated PDEs. In the blue range, a TULIPs (tunable light-inducible dimerization tags) system was
developed based on the AsLOV2 domain and an engineered PDZ domain (ePDZ). A peptide epitope
was fused after the Ja helix, which can then interact with the cognate PDZ domain in a light-
dependent manner [64]. An updated iLID (improved light inducible dimer) system was established
with less cross talk to endogenous signaling pathways than TULIPs. A short bacteria SsrA peptide
with only seven residues was embedded in the C-terminal of Ja helix in AsSLOV2 domain. Blue light
illuminations exposes SsrA from LOV2 domain, allowing it to bind its natural interaction partner
SspB. The engineered iLID system shows over 50-fold changes in the binding affinity after light
illumination [65]. Through introducing point mutations in SspB, the binding affinity of iLID system
could be further adjusted [66]. Cryptochrome derived Cry2/CIB1 dimerization system offers an
alternative approach for blue light mediated control of protein interaction. The two components can
dimerize under blue-light illumination at subsecond range while the reversion lasts for minutes [67].
This system can also be activated by two-photon microscopy, enabling in vivo application. In the red
spectral window, the binding of phytochrome B (PhyB from Arabidopsis thaliana) to its natural
interaction partner PIF3 is induced by red-light irradiance and reversed under far-red light exposure
or dark state [68]. On the contrary, the binding and dissociation between bacterial phytochrome
BphP1 and its partner PpsR2 or Q-PASI is stimulated by far-red and red light, respectively [69].
Fusing PDE to one component and specific targeting sequence to its binding partner, it enables
recruiting PDEs at specific subcellular compartment by light illumination (Figure 4C-3F).

4.3 Light-gated Recovery of Split PDEs

In addition, Cry2/CIB1 system has been used to reconstitute split protein fragments and recover
the activity in a light-dependent manner. After fusion of two split Gal4 fragments with Cry2 and CIB1
and co-expression in yeast, the reporter gene expression can be induced by blue light [67]. The
Cry2/CIB1 modules was also able to recover a split Cre recombinase to increase DNA recombination
efficiency by light [67]. We already found that split fragments of HsPDE2A catalytic domain could
recover the cGMP/cAMP hydrolysis activity upon co-expression (unpublished data). Therefore, the
Cry2/CIB1 and other light-induced dimerization system could be fused with the split HsPDE2A
fragments and recover its hydrolysis activity in a light-dependent pattern at desired subcellular
localization when combining with specific targeting strategy (Figure 4G). Other light induced
protein-protein interaction systems like iLID and PhyB/PIF3 can also be applied in similar way.

4.4 Light-gated uncaging of PDEs

Additional to these light-regulated two-component systems, fluorescent protein Dronpa with
light-dependent changes in oligomerization state could also be applied to engineer light regulated
PDE. Zhou et al has shown that fusion of tetrameric Dronpa at both end of Cdc42 or protease caged
their functions in the dark, while light-induced Dronpa dissociation allows uncaging and functioning
[70]. Moreover, the improved dimeric variants pdDronpa dimerized in violet light and dissociated
in cyan light [71]. Fusing two pdDronpa copies at rationally selected positions in the kinase domain
generates photo-switchable kinase [71]. Similarly, attaching two pdDronpa at locations flanking the
active site of PDE, a single-chain light-switchable PDE could be engineered. Violet light illumination
induces formation of intramolecular dimer, thereby caging PDE’s activity, whereas cyan light
dissociates the dimer and expose the active site for hydrolyzing cNMP (Figure 4H). A similar Z-lock
system comprising LOV and Zdk domains could also be adapted for generating reversible, light-
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308  controlled steric inhibition of the active sites of PDEs (Figure 4I). Previous work has demonstrated
309 that attaching Zdk and LOV2 to the C and N termini of cofilin respectively could effectively occlude
310  the cofilin active site in dark. Upon irradiation, the dissociation of Zdk and LOV frees the activate
311  site[72].

312 Principally, there are plenty of methods to generate light-gated PDEs for optogenetic
313 applications. However, all these conceptions may require tremendous trials and intensive
314  optimizations to obtain an ideal light-gated PDE for robust applications.

315 5. Applications of Light-gated PDEs

316 In parallel to engineering light-regulated PDEs, fully exploiting the potential of those perspective
317  optogenetic tools is of equal importance. The enzymatic activity and photodynamic range of each
318  specific light-regulated PDE must be carefully considered at the very beginning of applications.
319  Unlike the light-gated ion channels or pumps with no detectable dark activity, existing light-
320  regulated enzymes often show considerable dark activity. These might lead to changes of cNMP level
321  already in the dark, which is often cell type and expression level dependent. Developing tightly light-
322 regulated PDEs is the first step to improve this. Real applications with existing light-gated PDEs can
323 beimproved by selecting the tools with proper photodynamic range and manipulating the expression
324 levelin targeted cells.

325 Increasing evidences suggest that the cNMP regulated events were precisely controlled in
326  distinct subcellular confinement through recruiting isoform-specific PDEs into the specialized
327  ‘signalosomes’ [73-76]. The superior spatio-temporal precision and tunable activity affords researcher
328  to study the cell signaling at unprecedented detail, even at quantitative manner [77]. For example,
329  when regulating the activity of CNG channel or mimic the functions of plasma membrane localized
330  endogenous PDEs, membrane-integral RhoPDEs could be good choices. Employing LAPD enables
331  regulating the cytosol cNMP level. Moreover, light-induced dimerization system allows recruiting
332 PDEs to intended compartment when one part of the dimer is fused with specific targeting module
333 (e.g. mitochondria, Endoplasmic Reticulum or nucleus etc.). Rost et al have detailed summarized a
334 number of general principles and specific motif information for subcellular targeting of
335  photosensitive proteins [78]. It should be noted that simply fusion of the targeting motif may not
336  always successfully bring the actuator into expected subcellular localization. Moreover, fusing the
337  targeting motif may also alter the properties of PDE itself per se. Accordingly, it is crucial to select a
338  proper linker between the targeting motif and the client protein.

339 In addition, a palette of available spectrum separated light-induced dimerization systems allows
340  simultaneous control of discrete cell signaling by different light. The red light regulated BphP1/Q-
341  PASI1 and blue light regulated LOV system has been applied to tridirectionally translocate protein
342 between the cytoplasm, nucleus and plasma membrane [69]. Applying BphP1 and LOV derived light-
343 regulated PDEs would also be possible to achieve dual-color control of cNMP at specific confinement
344 of the cell.

345 More interestingly, co-application of spectrum separable light-regulated cyclase and light-
346  regulated PDEs would enable bi-directional control of the level of cNMP, either at close or discrete
347  locations. In addition, numerous genetically encoded cAMP and c¢cGMP sensors confer optical
348  visualization of the distribution and dynamics of cAMP and ¢cGMP [79, 80]. The combination of
349  spectrum compatible light-gated cyclases, PDEs with fluorescent biosensors [81] holds great promise
350  to simultaneously manipulate and map the dynamics of cNMP signaling in live cells in superior
351  precise and quantitative manner.

352 6. Conclusions

353 cAMP and cGMP play essential roles in cell division, differentiation, growth, and death. Cyclic
354  nucleotide phosphodiesterases are widely distributed in the animal kingdom, hydrolyzing the
355  ubiquitous second messengers cGMP and/or cAMP. Therefore, PDE enzymes are crucial to
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356  manipulate concentrations of both second messengers to maintain normal responses, thus being
357  regarded as important therapeutic targets. Different regulatory modules in the N-termini of most
358  PDEs function diversely to regulate PDE activities through ligand binding, oligomerization and
359  kinase recognition/phosphorylation. Indirect regulation of PDE activities has been well studied in
360  animal vision systems. Direct-coupled light regulation of PDE inside one protein has also been
361  discovered recently in some protists, the ancestor of animals. Further studies into nature rhodopsin
362  phosphodiesterases will help to elucidate the vision evolution.

363 Optogenetic strategies for regulating PDE activities could give new insights to regulate cNMPs
364  accurately in cellular microdomains. Artificial light-gated PDEs has been developed in a deliberate
365 way in addition to the well-established light-gated nucleotide cyclases. However, further
366  developments of more superior Opto-PDEs with tighter light regulations are of demand.
367  Furthermore, optogenetic inhibiting or targeting endogenous PDEs will be of great value to basic
368  researches and have therapeutic importance. Many newly developed optogenetic systems can be
369  applied for light manipulation of PDEs. However, intensive efforts are needed to advance this field.
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