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Abstract: Membrane fouling caused by many direct and indirect triggering factors has become an 

obstacle to the application of membrane bioreactor (MBR). The nonlinear relationship between those 

factors is subject to complex causality or affiliation, which is difficult to clarify for the diagnosis of 

membrane fouling. To solve this problem, this paper proposes a compressible diagnosis model 

(CDM) based on transfer entropy to facilitate the fault diagnosis of the root cause for membrane 

fouling. Firstly, a framework of CDM between membrane fouling and causal variables is built based 

on a feature extraction algorithm and mechanism analysis. The framework can identify fault transfer 

scenarios following the changes in operating conditions. Secondly, the fault transfer topology of 

CDM based on transfer entropy is constructed to describe the causal relationship between variables 

dynamically. Thirdly, an information compressible strategy is designed to simplify the fault transfer 

topology. This strategy can eliminate the repetitious affiliation relationship, which contributes to 

the root causal variables speedily and accurately. Finally, the effectiveness of the proposed CDM is 

verified by the measured data from an actual MBR. 
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1. Introduction 

Membrane fouling is an important factor affecting wastewater treatment processes with 

membrane bioreactor (MBR), which can lead to the loss of membrane flux, deterioration of effluent 

quality, etc. [1–3]. To prevent this phenomenon, it is necessary to accurately diagnose the future case 

of membrane fouling before implementing efficient strategies [4,5]. However, in MBR, the 

biochemical process that triggers membrane fouling is complicated and involves amounts of causal 

variables, such as aeration, reflux, and dosing. The relationship between these variables is time-

varying and nonlinear [6,7]. Therefore, it is challenging to establish an accurate diagnosis model for 

membrane fouling.  

To establish the causal relationship between the variables and membrane fouling, some scholars 

have studied the mechanism of membrane fouling to diagnose its occurrence directly [8–11]. Lewis 

et al. analyzed the growth of filter cake in the process of low-pressure cross-flow microfiltration in 

MBR with fluid dynamics gauging [12]. Then, the diagnosis of membrane fouling was realized by 

quantifying the significance of membrane pore-level fouling phenomena at the early stage of 

filtration. In [13], a mechanism model was built for diagnosing membrane fouling by combining 

adenosine triphosphate and total cell count. The results displayed that this model was suitable for 

biological fouling diagnosis. In addition, MBR is affected by the flow distribution and hydraulic 

conditions in the reactor. A residence time distribution technique was developed to determine the 

impact of membrane geometry, orientation, and mixing efficiency on MBR performance [14]. 

Azizighannad et al. employed the Raman chemical image to identify the morphology of the 

membrane fouling [15]. This strategy could diagnose different types of membrane fouling with its 

observed appearance under specific static conditions. However, the above mechanism methods are 
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difficult to adapt to different working conditions. Since the correction of a large number of parameters 

is complicated, they are time-consuming for maintaining model accuracy. To dissolve this problem, 

some data-driven diagnosis models, based on support vector regression (SVR), kernel function (KF) 

and artificial neural network (ANN) with strong adaptability, were established for membrane fouling 

[16–19]. For example, Liu et al. designed an SVR model with a LibSVM package to diagnose the case 

of membrane fouling in MBR by mapping the relationship between extracellular polymer substances, 

organic loading rate, transmembrane pressure difference and total membrane resistance [17]. The 

results showed that the relevant influencing factors of membrane fouling could be uncovered 

effectively. Han et al. proposed a multi-category diagnosis method based on KF for the detection and 

early warning of membrane fouling [18]. This method combined multiple binary classifiers to identify 

the causal variables of membrane fouling. Mittal et al. employed ANN to identify membrane fouling 

to minimize the risk of its occurrence [19]. The parameters of this model were updated based on the 

genetic algorithm, which was able to adapt to different operating conditions. The data-driven 

diagnosis models have the capability of sharpening the nonlinear relationship between input 

variables and output variables so that causal variables of membrane fouling can be distinguished. 

However, the existing models lack interpretability and struggle to straighten up interaction among 

different variables. Then, abundant variables with overlap and collinearity will increase the 

complexity and confusion of diagnosis. 

To achieve a diagnosis process with interpretability, Chen et al. simplified the causality diagram 

through Granger causality and maximum spanning tree to diagnose the root causal variables of 

process abnormalities [20]. However, Granger causality analysis is only applicable to the causality 

analysis of linear processes, which cannot explain the nonlinearity in the membrane fouling. To 

conquer this challenge, Waghen et al. proposed a multi-level interpretable logic tree to clarify the 

nonlinear relationship between root causes, intermediate causes, and faults [21]. In addition, several 

intelligent tools are also introduced to explain the nonlinear process of membrane fouling. For 

example, Duan et al. developed an accident-relevance tree based on the analysis of the formation 

mechanism of quality accidents [22]. The method located the root causes of quality accidents utilizing 

the fuzzy mechanism and the vague nature of datasets. Velásquez et al. combined the decision tree 

learner and ANN to diagnose power transformer faults of membrane fouling, which reduced the 

calculation cost and improved the accuracy of fault classification simultaneously [23]. Other similar 

nonlinear methods can be observed in [24,25]. However, the methods mentioned in [21–25] only focus 

on the causality between local variables by constructing a tree causality diagram, rather than the 

interaction between all relevant variables. To provide the causal variables of faults comprehensively, 

Amin et al. synthesized principal component analysis (PCA) and Bayesian network to capture the 

nonlinear dependence of high-dimensional process data [26]. Then, the root causal variables of faults 

were diagnosed with the discretization of continuous data. In [27], a Bayesian network was 

developed to describe the relationship between alarm variables and root causal variables in thermal 

power plants. The parameters of the network were updated in a recursive way, which promoted to 

accurate detection of the root causal variables. Furthermore, Han et al. proposed recursive kernel 

PCA and Bayesian network to diagnose sludge bulking in the wastewater treatment process [28]. 

This method effectively captured the nonlinear and time-varying characteristics of sludge bulking to 

diagnose the root causal variables with high accuracy. However, once the diagnosis models in [26–

28] are constructed with given datasets, they always hold the invariant information transfer path due 

to their complexity. When the operating conditions of MBR are changed frequently or drastically, it 

may be difficult to maintain acceptable accuracy for those models. Additionally, the relationship 

between those variables of membrane fouling exhibits both time-varying and nonlinear 

characteristics primarily because membrane fouling is a dynamic and complex process that is 

influenced by multiple, interacting factors. These characteristics can make it challenging to diagnose 

membrane fouling effectively. 

Based on the above analysis, this paper proposes a compressible diagnosis model (CDM) based 

on transfer entropy. This model is used to depict the fault transfer topology (FTT) of membrane 
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fouling and further explore the root cause following the operating conditions. The novelties of this 

work are as follows. 

1) Based on the mechanism analysis associated with membrane fouling, the relationship between 

causal variables and membrane fouling is clarified with the feature extraction algorithm. Then, the 

related variables of membrane fouling are obtained under different operating conditions. Different 

from the data-driven diagnosis models in [15–19] with given causal variables, the feature extraction 

algorithm will enable the proposed CDM to transform raw data into informative representations that 

can be utilized for diagnosis.  

2) Instead of using a mapping relationship with simple input-output representation such as the 

decision tree [21,22] and the Bayesian network [24,25], a topology based on transfer entropy is 

constructed. This approach not only provides a qualitative evaluation of the causal relationships 

between variables by observing the dynamic transfer path, but it also offers a quantitative description 

of those variables. It helps uncover the path of fault occurrence and further obtain the fault cause 

priority that may change over time as the operating conditions change. 

3) The information compressible strategy (ICS) is designed to delete the redundant or repetitious 

affiliation relationship between the causal variables. With this strategy, the simplified FTT is obtained 

with low complexity during the update of fault transfer topology, which can maintain the diagnosis 

of membrane fouling speedily and accurately. 

The rest of this paper is organized as follows. Section II introduces the background of membrane 

fouling. Section III introduces the diagnosis methods of membrane fouling in detail. Then, the 

experimental results of diagnosing membrane fouling are introduced in Section IV. Finally, Section 

V concludes this paper. 

2. Background of Membrane Fouling 

A. Membrane Fouling 

Membrane fouling refers to the increase of water resistance and the decrease of permeation flux 

caused by the deposition of pollutants on the membrane surface or in its pores. The mechanisms of 

membrane fouling mainly include: (1) plugging of membrane pores by colloidal and SMP, fouling 

adhesion and gel layer formation; (2) formation and consolidation of the cake layer; (3) variation in 

pollutants due to long-term functioning of the reactor; (4) osmotic pressure effect. The membrane 

fouling has different characteristics, which can be divided into three types: (1) removable fouling, 

which usually generates in the filter cake layer and can be removed by physical means; (2) 

irremovable fouling, which usually requires chemical cleaning to remove the pore blockage; (3) 

irreversible fouling, which cannot be removed by any cleaning operation. In addition, there are 

various methods for studying membrane fouling, with the Hermia model being the most widely 

used. This semiempirical parametric model assigns physical significance to its parameters, which is 

effectively described by this model. The generalized Hermia model is a form of a nonlinear 

differential equation. It displays the dynamic of membrane fouling and its complex relationships 

between factors of membrane fouling. According to these characteristics, it is difficult to design a 

diagnosis method to diagnose the root cause of membrane fouling accurately. 

B. Membrane Fouling Diagnosis System 

The membrane fouling diagnosis system used for online locating root causal variables in the 

actual MBR wastewater treatment process is shown in Figure 1. The system consists of four modules: 

data acquisition module, feature extraction module, online prediction module, and online diagnosis 

module. The data acquisition module retrieves the value of process variables from sensors and 

transfers the acquired variables to the database via a programmable logic controller. The feature 

extraction module is designed to filter the collected process data. In this module, multiple related 

variables are selected as the preselected variables. Then, the partial least squares (PLS) method is 

used to reduce the dimension of the preselected variables to obtain the feature variables with a high 

correlation with the predicted variables. The online prediction module predicts the indicators for 
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identifying membrane states. Finally, the online diagnosis module constructs an FTT to locate root 

causal variables. It is crucial to take corresponding measures to control membrane fouling. 

MBR wastewater treatment process

Compressible diagnosis of membrane fouling Membrane fouling detection based on Autoencoder

 Information compressible strategy

Fault transfer topology

Feature extractionData acquisition
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Figure 1. Membrane fouling diagnosis system. 

3. Diagnostic Method of Membrane Fouling 

In this section, the CDM based on transfer entropy is proposed to diagnose membrane fouling. 

First, this method extracts relevant features, which preliminary simplifies the complexity of the 

system and focuses on key factors influencing membrane fouling. Second, the transfer entropy 

qualitative is calculated to quantify the causal transfer between different variables, and dynamically 

analyze the transfer path to form FFT. Finally, the root causal variable is found through the topology. 

With the design of the information compressible strategy, the causal relationship is further simplified 

between variables by deleting redundant or repetitive dependencies between causal variables. 

A. Feature Variable Selection 

In this part, the advantages of the linear regression algorithm and the typical PLS are integrated. 

Hence, the characteristic variables that have a great impact on membrane fouling detection can be 

selected. To be specific, the PLS algorithm is adopted in this study and the steps are as follows: 

① the data of the independent variable is given as P=[p1,p2,…,pj], pj = (p1j, p2j,…, pij)T, i = 1,2,…,m, j = 

1,2,…,n, and the dependent variable Q=[q1, q2,…, qi]T. The standard treatment is as follows:  
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where the standardized P and Q are recorded as E0 and F0. pʹij and qʹi represent the elements in E0 and 
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column j of P, respectively. q̅ and s represent the average value and standard deviation of all elements 
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where h is the number of extracted principal components. Eh is the standardized independent variable 

matrix when h components are extracted. Fh is the standardized dependent variable matrix when h 

components are extracted. vh is the component extracted from Eh-1. ah, bh and rh represent the 

intermediate vectors. 

③ The cross-validity Q
2 

h  is used to determine the number of final extracted components with 

2 1 ( ) ( 1),hQ L h LL h−= -  (4) 
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where q’d is the dth (0<d≤h+1) element in F0, q̂’ represents the fitting quantity. Sample point d is deleted 

when modeling with the linear regression model, and h components are taken for regression 

modeling to obtain the coefficients αi. Then, the fitting value of the dth sample point is calculated and 

recorded as q̂‘h(-d). Besides, all sample points are used, and h components are taken for regression 

modeling to obtain coefficients ςi. Finally, the fitting value of the dth sample point is calculated and 

recorded as q̂‘h(d). 

In the process of extracting components, when Q
2 

k+1<0.0975 and the model accuracy reaches the 

expected requirements, the process of extracting components stops. The number of extracted 

principal components is m. And the feature variables are represented as X=[x1,x2,…,xm]. 

B. Membrane Fouling Detection Model 

Autoencoder (AE) is a multi-layer neural network of unsupervised learning in deep learning 

technique, which includes an encoder and a decoder (as shown in Figure 2). The encoder compresses 

the input data X=[x1,x2,…,xm] to obtain the outputs of the hidden layer H=[h1, h2,…, hs]. And the 

decoder takes the outputs of the hidden layer as the input and gets the output X̂= [x̂1, x̂2,…, x̂m]. H can 

be expressed as 

( ),xf=Η W X  (6) 
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where f(x)=1/(1+e-x) is the activation function. Wx represents the weight between the input layer and 

the hidden layer, and s<m. The output value X̂ can be expressed as 

( ),f


= hX W H  (7) 

where Wh is the weight between the hidden layer and the output layer. 

The back-propagation algorithm is used to adjust the parameters of AE in the training process. 

For the input variable X=[x1, x2,…, xm], the objective function is defined as 

2

1

1
.

2

m

i i

i

J x x
m =

= −  (8) 

To judge the existence of membrane fouling, the collected data samples for the autoencoder are 

tested after training. If the reconstruction error is greater than the threshold, it means the membrane 

fouling exists in the wastewater treatment process. 
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Figure 2. Autoencoder structure. 

C. Construction of Fault Transfer Topology 

Since transfer entropy can represent the direction of information transfer between variables, it 

can represent the relationship between fault variables. The transfer entropy is given as follows: 

1
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( | )
i i j

k l

i i jk l

i i i j k
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p x x y
T X X Y p x x y

p x x
+

+

+ +

+

=  (9) 

where p(·|·) is the conditional probability. xi and yj represent the measured values of X and Y at time 

i and time j, respectively. Xi+1 represents the measured value of X at the next time. k and l are the 

implantation dimensions of X and Y, respectively. The transfer entropy represents the influence of 

the existence of yj on the state of xi+1.  

By calculating the transfer entropy between preselected variables, the information transfer 

relationship between all variables can be obtained. The transfer entropy of Y to X is different from X 

to Y, which shows that there are differences in the amount of information transferred in two 

directions. It reflects the difference in the degree of interaction between variables. The direction of 

causality between variables can be determined by the difference of two transfer entropy: 

1 1( | , ) ( | , ).Y X i iT T X X Y T Y Y X→ + += −  (10) 

If TY→X is positive, it means that Y has a greater impact on the information entropy of X than the 

impact X has on the information entropy of Y. At this time, Y is the causal variable of X. On the 

contrary, if TY→X is negative, it means that X is the causal variable of Y.  

The transfer entropy between all selected variables is calculated to determine the causality, 

which can build an adjacency matrix A∊Rk×k. Then, the position in the adjacency matrix A is 
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determined according to the direction of causality between variables. If TY→X is positive, it means Y 

is the causal variable of X. The value of TY→X is placed in row Y and column X of A: 
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where the diagonal value of A is 0. Ta→1 means that the ath variable is the causal variable of the first 

variable. In turn, the value of T1→a is 0.  

Thus, the adjacency matrix between variables can be obtained, and the related variables can be 

connected by lines according to the values in the matrix to obtain the fault transfer topology. After 

determining the causal relationship between all variables, FTT can be obtained as shown in Figure 3. 
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Figure 3. Fault transfer topology. 

D. Simplification of Fault Propagation Topology 

FTT expresses the complex relationship between the variables, which will affect the search for 

the root causal variables of membrane fouling. Therefore, it is necessary to simplify this topology to 

identify the main impact relationships.  

When X and Y are disrupted, a new sequence is constructed as follows: 

1 1

1 1

[ , ,..., ]
,

[ , ,..., ]

s

i i i M

s

j j j M

X X X X

Y Y Y Y

+ + −

+ + −

 =


=

 (12) 

where M is the number of samples of the new sequence, and N is the total number of samples of the 

original sequence. The value range of i and j is [1, N-M+1].  

The new sequence is a subset of the original sequence. The statistical characteristics in the 

stationary sequence are the same as those in the original sequence. To ensure no correlation between 

the two sequences, i and j need to meet ||i-j||≥e, where e is a sufficiently large integer. Then the new 

sequence formula has two variables with a large time interval. It can be considered that the 

correlation between the two variables is eliminated by a large time interval. Thus, two variable 

sequences without causality are obtained. The transfer entropy tes of the multiple sets of such new 

sequences are calculated and stored in NET with NET = [te1, te2 ,…, tes]. Then, the significance 

threshold is calculated by 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 August 2024                   doi:10.20944/preprints202408.0707.v1

https://doi.org/10.20944/preprints202408.0707.v1


 8 

 

3 ,Y X NET NETS  → = +  (13) 

where µNET is the mean value of NET and σNET is the standard deviation of NET. The greater difference 

in transfer entropy than the threshold value represents that there is a causal relationship between 

variables.  

To further simplify the fault transfer topology, an ICS based on a BIC score function is proposed. 

The designed ICS mainly includes two parts. First, the fitting degree is considered. Then, the 

complexity of the structure is reduced to avoid the decline in diagnosis accuracy caused by complex 

models and many other parameters. 

For the dataset D = {D1, D2, D3,…, Dm}, m represents the size of the sample dataset. The 

logarithmic likelihood function of the parameter θ can be expressed as: 

1 1 1 1
( | ) log ( | ) log ,

i im n q r

l ijk ijkl i j k
I D P D m  

= = = =
= =     (14) 

where θ ={θijk|i=1,2,…,n, j=1,2,…,qi, k=1,2,…,ri}. θijk represents the probability that the value of node 

Xi is k when the parent node value of node Xi is j. qi represents the total number of parent node set 

values of node Xi, and qi = 1 when node Xi has no parent node. ri represents the number of possible 

value types of node Xi, and mijk represents the number of samples that meet Xi = k and the parent node 

is j in D. 

The ICS based on the BIC score function can be expressed as 

1

( 1)
( | ) ( | ) log ,

2

n i i

i

q r
BIC G D I D m

=

−
= −  (15) 

where BIC(G|D) represents the score for structure G. Through ICS, the indirect connection of 

variables is scored to determine whether to delete. The presentation of the indirect connection is 

shown in Figure 4. Then, the simplified FTT is obtained after using ICS. 

Graph 

Structure

xa xb  

Graph 

Structure

xa xb  

Figure 4. Indirect connection. 

The information relevance strategy is proposed to find the root causal variables. The main idea 

of information relevance is to select a node as the starting node arbitrarily, and calculate the sum of 

transfer entropy of the remaining paths. When the sum of transfer entropy has the maximum value, 

the variable represented by this node is the root causal variable. The sum of transfer entropy can be 

expressed as 

11
( | , ),

N

i v iv
K T X X Y+=

=  (16) 

where Ki represents the sum of the transfer entropy of all paths when the ith node is the starting node. 

N is the number of paths of the current structure, and Tv represents the transfer entropy 

corresponding to the vth path. Therefore, the corresponding node variable is selected as the root 

causal variable when Ki takes the maximum value. The specific steps of membrane fouling diagnosis 

are shown in Table 1. Additionally, the change in operating conditions will lead to changes in the 

input distribution of CDM. This means that the potential relationship between process variables will 

change, the insignificant variables that previously led to membrane fouling may become the root 

cause and effect variables of the fault. The proposed CDM has two mechanisms to perceive this kind 

of scenario: 1) The least square method in the process of feature extraction will produce new principal 

components, which may lead to changes in the composition and number of filtered variables. 2) After 

recalculating the transfer entropy of the fault variable, FFT will obtain a completely different causal 
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relationship. When these scenarios happen, the steps of membrane fouling diagnosis will be 

refreshed. 

Table 1. Specific steps of membrane fouling diagnosis. 

%Characteristic variable selection 

1 Standardize the data to obtain E0 and F0                                                         % Equations (1) and (2) 

2 Get the principal component of the variable                                                              % Equation (3) 

3 Determine the number of final extracted components                                        % Equations (4) and (5) 

Obtain K variables that have a great influence on membrane fouling  

%Membrane fouling detection model 

1 Acquire normal data and train an autoencoder 

2 Obtain the threshold of reconstruction error J0 of normal samples 

3 Use the autoencoder to detect the data collected in real time, and the reconstruction error J is obtained 

4 If J > J0, the membrane fouling exists 

% Calculate the transfer entropy between variables 

Get the influence relationship between variables TY→X                                            % Equations (9) and (10) 

% Generate adjacency matrix Akk 

for j=1: k do 

for i=j+1: k do 

if Tj→i >0  

Aji = Tj→i 

else 

Aij = Tj→i 

end for 

end for 

FTT is obtained because the relationship between variables is connected by lines according to the adjacency matrix Akk. 

% Simplify fault transfer topology 

Set threshold 

1 Select two data segments with a long time distance from historical data of the two variables 

2 Calculate of entropy transfer tei between the above two data segments                                   % Equation (10) 

3 Repeat steps 1 and 2, calculate multiple sets of such transfer entropy NET = [te1, te2 ,…, tes] 

4 Calculate the average value and standard deviation of NET to get the threshold                          % Equation (13) 

Information compressible strategy  

1 Filter all direct and indirect transfer relationships between variables 

2 Calculate the score of the structure for each transfer relationship                         % Equations (14) and (15) 

3 Choose the transfer relationship corresponding to the highest score 

The root causal variables are determined according to the simplified fault transfer topology 

4. Experimental Studies 

The effectiveness of CDM is verified in an actual WWTP. The performance of this method is 

evaluated by diagnosis accuracy (DA). All the simulation experiments were programmed with 

MATLAB version 2018 and run on a PC with one clock speed of 3.0 GHz and 8 GB of RAM under a 
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Microsoft Windows 10 environment. All data were acquired in real WWTPs from January 1, 2016, to 

February 27, 2016. 2000 groups of data were selected as samples. 

A. Feature Variable Selection 

In this experiment, 5000 normal data samples, collected in the actual WWTP, are used to select 

the feature variables. Chemical oxygen demand (COD), influent NH3-N, influent flow volume, NO3-

N in the anoxic zone, influent total phosphorus (TP), oxidation-reduction potential (ORP) in the 

anaerobic zone, mixed dissolved oxygen (DO) in the aerobic zone, sludge concentration in the aerobic 

zone, effluent flow volume, liquor suspended solid of the aerobic zone, aeration, effluent turbidity, 

water temperature, pH, F/M of aerobic zone, transmembrane pressure (TMP) are replaced by 

numbers 1 to 16, which are selected as pre-selected fault variables in this experiment. The regression 

coefficient in the obtained regression equation was expressed as the correlation between independent 

and dependent variables. The coefficients corresponding to all independent variables are shown in 

Figure 5.  

 

Figure 5. Characteristic variable selection. 

By sorting the coefficients, 12 variables with large regression coefficients are selected as the 

inputs of the membrane fouling detection model and membrane fouling diagnosis model, which are 

COD, influent NH3-N, influent TP, ORP in the anaerobic zone, DO in the aerobic zone, sludge 

concentration in the aerobic zone, effluent flow, aeration, effluent turbidity, water temperature, pH 

and TMP. 

B. Membrane Fouling Detection Model 

In this part, 2000 samples of selected variables are used in the training dataset. 800 samples of 

selected variables are used in the test dataset. The number of nodes in the input layer and output 

layer of the Autoencoder is 12, and the number of nodes in the hidden layer is 5. The threshold can 

be determined by the maximum root mean square error in the training process of normal data 

samples.  

The experimental results are shown in Figures 6 and 7. The maximum RMSE of the normal 

training samples in Figure 6 is used as the threshold, which is shown as the red line in Figure 7. It can 

be found from Figure 7 that the data samples from 0 to 650 are under normal conditions, while 

membrane fouling happens in the data samples from 650 to 800. Therefore, it can prove the 

effectiveness of this method. 
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Figure 6. The RMSE during the training process. 

 

Figure 7. The RMSE during the detection process. 

0 0 0 0.810403 0.464642 0.057451 0.942594 1.247714 0.192291 0.11872 0.094991 1.058295
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=
1

A
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0 0 0 0.810403 0 0 0.942594 1.247714 0 0 0 1.058295

0 0 0 0.730733 0 0 1.000398 1.228595 0 0 0 1.100775

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0.822288 1.030058 0 0 0 0.958113

0 0 0 0.756785 0 0 0.90815 1.065932 0 0 0 1.030733

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

=
2

A

0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0.852613 0 0 1.032178 1.267596 0 0 0 1.146267

0 0 0 0.846681 0 0 1.018529 1.201856 0 0 0 1.119884

0 0 0 0 0 0 0 0 0 0 0 0
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 
 
 
 
 
 
 
 
 

 (18) 

C. Membrane Fouling Diagnosis Model 

According to the experimental results in Figure 5, for simplicity, COD, influent NH3-N, influent 

TP, ORP in the anaerobic zone, DO in the aerobic zone, sludge concentration in the aerobic zone, 

effluent flow, aeration, effluent turbidity, water temperature, pH and TMP are replaced by numbers 

1 to 12, respectively. The above 12 variables are used as the input of the diagnostic model. 2000 groups 

of data are selected as samples to construct the initial FTTas shown in Figure 8. The adjacency matrix 

between variables is shown in A1. It can be found from Figure 8 that the FTT has high complexity, so 

it is necessary to extract stronger causality. The FTT can be simplified by setting a threshold value. 

The adjacency matrix between variables is shown in A2. As shown in Figure 9, the simplified FTT is 

obtained, which can represent the relationship between fault variables. 

 

Figure 8. Initial fault transfer topology. 
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Figure 9. Fault transfer topology after setting the threshold. 

As shown in Figure 10, the information compressible strategy is used to further simplify the fault 

transfer topology. The adjacency matrix between the variables is shown in A3. In this experiment, the 

root causal variables of membrane fouling are diagnosed according to the simplified fault transfer 

topology, and the effectiveness of CDM is compared with other diagnosis methods. 
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 (19) 

 

Figure 10. Fault transfer topology based on information compressible strategy. 
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To evaluate the diagnostic efficiency of fault transfer topology (FTT) with an information 

compressible strategy (ICS) and a threshold, the results were compared with some other methods: 

FTT with threshold, initial FTT, Bayesian network (BN), ANN, and fuzzy logic (FL). The comparison 

results of FTT with ICS and a threshold to other methods are involved with diagnosis time, number 

of connections, and accuracy. In Table 2, it can be seen that the proposed FTT with ICS and a threshold 

achieves the least number of connections compared to FTT without ICS or a threshold. It means that 

the designed ICS and threshold can simplify the failover topology which also contributes to speeding 

the diagnosis of membrane fouling. In addition, the accuracy of FTT with ICS and a threshold is also 

best compared to other methods, which indicates that the proposed FFT in CDM is in favor of 

exploring the root causal variables of membrane fouling. 

Table 2. Performance of different methods. 

Methods Time(s) Number of connections Accuracy(%) 

FTT with ICS and threshold 8.3 18 93.4% 

FTT with threshold 9.5 23 91.0% 

Initial FTT 14.9 66 86.7% 

BN 12.1 -- 85.1% 

ANN 13.3 -- 82.3% 

FL 19.8 -- 82.1% 

D. Analysis of Experimental Results 

Based on the above experimental results and analysis, the performance of CDM is significantly 

superior to other existing methods. The main merits of CDM are summarized as follows. 

1) Good detection. It is essential for CDM to identify incidents of membrane fouling with specific 

causal variables. The proposed autoencoder can summarize thresholds by RMSE for any membrane 

fouling, assuming it covers the entire normal conditions of MBR. These thresholds can serve as a 

reference for operators to monitor the occurrence of membrane fouling without the need of a physical 

or mathematical model. The results in Figs 6-7 also illustrate the efficacy of this method. 

2) Intuitive diagnosis. By constructing fault transfer topology with CDM in Figure 8, the dynamic 

observation of causal relationships between variables facilitates the determination of causal factors 

leading to membrane fouling. Additionally, to eliminate repetitive affiliation relationships, the fault 

transfer topology is simplified using an information compressible strategy, as shown in Figs. 9-10. 

Table 2 also demonstrates that the proposed CDM significantly enhances the speed and accuracy of 

diagnosis.  

5. Conclusions 

Membrane fouling is a bottleneck problem to the wide application of MBR. A CDM is proposed, 

which can diagnose the root causal variables of membrane fouling and improve the diagnosis 

accuracy. Firstly, the causal relationship between variables is judged based on the transfer entropy to 

obtain the initial fault transfer topology. Then, the typical causal relationship of variables is extracted 

based on the significance threshold to obtain the simplified fault transfer topology. For each feasible 

structure, the fitting degree between data structures and the complexity of the structure are 

comprehensively considered through the information compressible strategy. The fault transfer 

topology can be simplified to improve the diagnosis accuracy. The experimental results show that 

this compressible diagnosis model can accurately diagnose membrane fouling, which is significant 

for decision-making of membrane fouling. Future research will focus on investigating its 

generalizability to different MBR systems and other membrane-based processes. 
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