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Abstract

The global burden of diabetes mellitus (DM) continues to escalate, posing significant challenges to
healthcare systems worldwide. This study compares machine learning (ML) and deep learning (DL)
methods, their hybrids, and ensemble strategies for predicting the health outcomes of diabetic
patients. This work aims to find the best solutions that balance computational efficiency and accurate
prediction. The study systematically assessed a range of predictive models, including sophisticated
DL techniques and conventional ML algorithms, based on computational efficiency and performance
indicators. The study assessed prediction accuracy, processing speed, scalability, resource
consumption, and interpretability using publicly accessible diabetes datasets. It methodically
evaluates the selected models using key performance indicators (KPIs), training times, and memory
usage. AdaBoost achieved the highest F1-score (0.74) on PIMA-768, while RF excelled on PIMA-2000
(~0.73). An RNN led the 3-class BRFSS survey (0.44), and a feed-forward DNN excelled in the binary
BRESS subset (0.45). RF also achieved perfect accuracy on the EMR dataset (1.00) showing that model
performance depends on each dataset’s scale, feature mix and label structure. The results highlight
how lightweight, interpretable ML and DL models work in resource-constrained environments and
for real-time health analytics. The study also compares its results with existing prediction models,
confirming the benefits of selected ML approaches in enhancing diabetes-related medical outcomes,
substantial for practical implementation, providing a reliable and efficient framework for automated
diabetes prediction to support initiative-taking disease management techniques and tailored
treatment. The study concludes the essentiality of conducting a thorough assessment and validation
of the model using current institutional datasets as this enhances accuracy, security, and confidence
in Al-assisted healthcare decision-making.

Keywords: deep learning; diabetes mellitus; diabetes prediction; healthcare management outcomes;
machine learning; performance indicators

1. Introduction

The hallmark of diabetes mellitus (DM), a chronic metabolic disease, is persistent hyperglycemia
brought on by either decreased insulin action, insulin secretion, or both. Diabetes mellitus has become
a pandemic in prevalence, impacting millions of people globally and dramatically raising morbidity,
mortality, and medical costs of patients. To effectively manage diabetes mellitus, it is essential to
avoid major complications such as retinopathy, neuropathy, and cardiovascular diseases, while also
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significantly reducing healthcare costs. Accurate prediction and early diagnosis of diabetes and its
related health outcomes are crucial [1, 2]. Machine learning (ML) and deep learning (DL) techniques
are now essential for delivering predictive insights, facilitating individualized patient care, and
supporting clinical decision-making processes with high precision due to improvements in
processing power and data availability [3-5]. Obesity, lifestyle changes, and genetic factors have all
contributed to the significant increase in diabetes incidence. Diabetes can cause serious consequences,
such as renal failure, neuropathy, and CVD, if it is not treated or is not adequately controlled [6, 7].

The International Diabetes Foundation (IDF) has reported the rapid rise of people with diabetes
aged 18 to 79 years from 4.7% to 8.5% within three decades from 1980 to 2015. The prevalence in 2019
increased to an estimated percentage of 9.3% (463 million) and is projected to rise to 10.2% (578
million) by 2030 and 10.9% (700 million) by 2045, respectively [2, 8]. This indicates a serious problem
for both developed and developing countries. China, India, and the United States of America are the
most impacted nations, although this rise is unevenly spread, with estimates of 143% in Africa
(undiagnosed cases) and 15% in Europe [8].

Early identification and precise diabetes prediction are essential for prompt management and
better patient outcomes, given the disease's increasing cost on healthcare systems [9-11]. Wearable
technology combined with powerful ML and DL algorithms has enabled real-time glucose
monitoring and insulin adjustment, significantly enhancing patients' freedom and lifestyle [12].
Recent research has proven that ML and DL techniques have evolved in this area. These case studies
demonstrate industry improvements while laying the groundwork for future advancements [13]. DL-
based prediction models have also revealed remarkable accuracy in detecting early signs and
progressions of DM-related issues, such as retinopathy, neuropathy, and nephropathy.

On the other hand, healthcare systems are designed to improve sickness detection and diagnosis
while simultaneously providing patients with the essentials for optimum health [13, 14]. Concerns
over the quality of care offered by the healthcare system and the availability of treatment resources
are common among patients [15]. Most people who would immediately benefit from better healthcare
systems are those who have serious illnesses, including diabetes, hypertension, and irregular blood
sugar levels [16]. A healthy society must prioritize health and healthcare. Hence, it is imperative to
use state-of-the-art techniques to track the development of diabetes. Encouraging a healthy
population and reducing the risk of illnesses like diabetes in future generations enables the
development of novel techniques or hybrids that may be used in healthcare systems to improve the
quality of life [17-20].

With their automated, data-driven insights that can improve clinical decision-making, ML and
DL models have become potent medical diagnosis and prediction technologies [21, 22]. While DL
models like convolutional neural networks (CNNs) and recurrent neural networks (RNNs) offer
sophisticated feature extraction capabilities, a variety of ML models, such as decision trees (DT),
random forest (RF), logistic regression (LR), and support vector machines (SVM), have been
extensively utilized for diabetes prediction. Research is ongoing to determine how well these models
perform in comparison regarding accuracy, dependability, and computing economy.

This study focuses on two main research topics. The first centres around the differences in
accuracy and reliability of ML and DL models and their hybrids in predicting diabetic patient
outcomes across various healthcare settings. The second one compares ML, DL, their hybrid models,
and ensemble strategies regarding processing time and computational efficiency when applied to
selected datasets for DM personalized medicine. This demonstrates the effectiveness of various ML,
DL models and ensemble strategies in diagnosing diabetes, tracking its progression, and evaluating
performance indicators by analyzing multiple datasets and comparing different predictive models.
This is true because the architectural complexity and internal mechanisms of ML and DL models
significantly influence differences in processing speed, RAM usage, and overall computing efficiency.

The rest of the paper is organized into sections as follows: Section 2 presents the review of
previous related literature addressing diabetes prediction, Section 3 provides an overview of the
methodology, a report on the datasets used, including data preprocessing performance metrics and
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the models employed in this study; Section 4 presents the methodology flow diagram of the study;
Section 5 presents the results of each model, highlighting their respective metrics and time efficiency;
Section 6 presents a detailed discussion of the results and the comparative analysis; Section 7 provides
the conclusion to the study and future direction.

2. Related Works

2.1. Synopsis of Diabetes Mellitus

“Diabetes” refers to a group of metabolic disorders that are characterised by elevated blood
glucose levels resulting from insufficient insulin production, impaired insulin utilisation, or a
combination of both [23]. Chronic hyperglycemia is linked to long-term damage and dysfunction of
organs such as the heart, blood vessels, kidneys, eyes, and nerves [23, 24]. Individuals with diabetes
have varying effects based on their age, income, race, and ethnicity. Environmental and genetic
factors are catalysts for diabetes, resulting in insulin resistance and beta-cell death [25-27].

To prevent comorbidities such as CVD, neuropathy, and retinopathy, diabetes care entails initial
identification and aggressive control. Diabetes is a complicated condition with a tendency to develop
silently due to lifestyle, environmental, and hereditary factors [9]. Early indicators of prediabetic
diseases are often misrepresented by traditional diagnostic and treatment techniques, which can
increase healthcare expenses and delay interventions. Thus, new methods for controlling diabetes are
crucial for reducing its impact on people and enhancing positive world health outcomes [24, 28]. Type
1 diabetes mellitus (T1IDM), type 2 diabetes mellitus (T2DM), and gestational diabetes mellitus
(GDM) are the three general forms of diabetes mellitus [29]. The characteristic feature of T1DM, also
referred to as insulin-dependent diabetes, is the autoimmune destruction of pancreatic beta cells,
resulting in insufficient insulin production. TIDM affects 5-10% of people with diabetes.
Ketoacidosis, or high blood acidity due to ketones, is often the initial sign of TIDM, which can
develop slowly in adults or swiftly in children. It is one of the irreversible types. TIDM is becoming
more common worldwide at a rate of 3% every year, affecting both sexes equally and leading to a
sharp decline in life expectancy [29, 30].

Non-insulin-dependent diabetes is another name for T2DM. It is characterized by beta-cell
malfunction and insulin resistance [29, 30]. T2DM accounts for 90 to 95 percent of all diabetes cases.
The body creates more insulin to compensate for the deficiency; nevertheless, beta-cell activity
progressively decreases, leading to insulin insufficiency [31]. T2DM is associated with aging, obesity,
sedentary lifestyles, high blood pressure, impaired lipid metabolism, and genetic factors. Ethnicity,
which is more prevalent in some racial groups, is another aspect of T2DM prevalence [31-33].

Pregnancy-related hyperglycemia is a common side effect of gestational diabetes mellitus
(GDM) [30, 34]. Despite impacting the mother and the foetus, it is frequently controllable with
medicine, food, and exercise. GDM risk factors include obesity, advanced maternal age, and a history
of glucose intolerance. Women with GDM have a greater lifetime risk of developing T2DM diabetes.
Although there are differences in international diagnostic methods for GDM, early detection is crucial
for therapy and issue prevention [35, 36].

2.2. Existing Comparative Analysis of ML, DL, and ensemble models for DM prediction

Recent studies have investigated various ML and DL techniques for predicting chronic illnesses,
offering valuable insights into the effectiveness and application of these models. Mahajan et al. [37]
assessed 15 ensemble ML models across 16 datasets, concluding that stacking methods yielded the
best performance in chronic illness prediction. Similarly, Flores et al. [38] employed feature selection
techniques to evaluate SVM, RF, and neural networks (NN), revealing that RF achieved the highest
accuracy of 98.5% for early-stage diabetes prediction.

In another study, Gupta et al. [39] compared DL and quantum machine learning (QML) using
the PIMA dataset, finding that a DL-based Multi-Layer Perceptron (MLP) outperformed QML
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approaches. Aggarwal et al. [40] investigated eight classifiers, identifying Naive Bayes (NB) as the
most accurate model, while Refat et al. [3] established that XGBoost surpassed both DL and
traditional ML models, achieving an impressive 99% accuracy.

Swathy and Saruladha [41] reviewed CVD prediction models, advocating for hybrid approaches
to enhance predictive accuracy. Fregoso-Aparicio et al. [42] and Butt et al. [5] highlighted the
effectiveness of tree-based models combined with Internet of Things (IoT) integration for real-time
glucose monitoring. Additionally, Uddin et al. [43] identified RF and SVM as consistently high-
performing ML algorithms in disease prediction tasks. Zarkogianni et al. [9] validated the benefits of
ensemble learning in assessing CVD risk associated with T2DM, showing that hybrid models like
HWNN and Self-Organizing Maps (SOM) improved predictive capabilities.

Further notable contributions include Hasan et al., [44] who achieved a 95% area under the curve
(AUC) using an ensemble framework; Ayon and Islam [4], as well as Naz and Ahuja [45], whose DL
models reached accuracy levels exceeding 98%; Lai et al. [46], who optimized Gradient Boosting
Machine (GBM) techniques for Canadian demographics; Dagliati et al. [25], who predicted diabetic
complications with an accuracy of 83.8% using LR; and Sahoo et al. [47], who emphasized the
superiority of CNN in managing high-dimensional healthcare data.

Building upon these findings, the current research utilizes five publicly available datasets and
implements essential preprocessing steps such as outlier removal and imputation. A comparative
analysis of various models, including LR, NB, Decision Trees (DT), RF, SVM, K-Nearest Neighbours
(KNN), XGBoost, AdaBoost, as well as several neural networks like CNN, Deep Neural Networks
(DNN), Recurrent Neural Networks (RNN), Long Short-Term Memory networks (LSTM),
Autoencoders, and Gated Recurrent Units (GRU), is conducted. Furthermore, hybrids of these
models and ensemble strategies, such as systematic bagging and stacking, are evaluated. The
performance of these models is measured using a comprehensive set of metrics, including accuracy,
precision, recall, Fl-score, area under the receiver operating characteristic curve (AU-ROC),
coefficient of determination (R?), mean squared error (MSE), mean absolute error (MAE), root mean
square deviation (RMSD), number of parameters, optimal parameters, memory usage, and
computation time.

3. Materials and Methods

This section provides a summary of the techniques and algorithms used in the study, outlining
the methods and how they work. It is organized into different sections: (i.) sampling techniques for
dataset imbalance, (ii.) ML and DL techniques used, where each model offers an overview of the
fundamental concepts behind the techniques, ensuring their role in the research is understood, (iii)
Performance metrics used (iv.) Datasets, and finally (v.) Preprocessing.

3.1. Sampling Techniques for Datasets Imbalance

3.1.1. Oversampling Techniques
Synthetic Minority Oversampling Techniques (SMOTE): SMOTE balances class distribution

by creating artificial samples for the minority class. Instead of duplicating existing samples, it
generates new instances by interpolating between them, selecting k nearest neighbours, and
using a random interpolation factor to promote diversity. [48]. SMOTE is represented as:
S={x;|x€R", i=1,2,.. N}
)
where x; = ith minority instances, n = No. of features (dimensions) and N = number of

minority class instances.

The k nearest neighbours of x; based on a distance metric (usually Euclidean distance),
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b)

denoting the set of these neighbours as:
NN(x) = {x; | x5, €S, j #1i,}
)
where x; = k-nearest neighbours of x;. Finally, it creates a new synthetic sample x,,,, by
randomly choosing a neighbour x; € NN(x;) and then generate the x., through
interpolation between x; and x;
Xpew = X+ a. (% — x;)
®)
where a is the random scalar randomly drawn from the uniform distribution between 0 and
1i.e. U(0,1). These steps continue until the desired number of synthetic minority samples has

been created.

Adaptive Synthetic Sampling (ADASYN): ADASYN, an adaptive extension of SMOTE,
emphasizes complex minority class samples by assigning greater weights to those
near the decision boundary or surrounded by majority class samples. It generates
synthetic data in these difficult areas, improving model robustness and refining the
decision boundary in imbalanced datasets. Mathematically, it is represented in this

regard:

Minority Dataset = Sy, = {x; | x; €R", i =
1,2, ., Nypin} 4)
and

Majority Dataset = Spa; = {y; |y €R", j =
1,2, .., Npgj} ©)
K nearest neighbours’ computation for the majority class for each minority sample x; is
given as:

p = Number of Majority class Neighbours of x; =

K

1,2, ..., Npin (6)

where if # =0, x; is easy to classify, but if # =1, x; is difficult to classify and hence
requires more synthetic samples. Normalized density distribution for each minority sample

(difficult scores)

= W , 1= 1,2, '"'Nmin
Dpiiiey

)
where the distribution # represents the importance of each minority sample in
oversampling. The method then computes how many synthetics to generate from each

minority sample as:

8)
where g; can be rounded to the nearest integer. Therefore, for each minority sample x;, it
then generates g; synthetic samples by randomly selecting a minority-class neighbour x,;
from the K-nearest neighbours of x; belonging to the minority class and then generates the

synthetic samples X,
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Xpew = X+ a.(Xz; — x;), a~U(0,1)
©)
This process continues g; times for each minority sample x;

c¢) SMOTE-ENN and Random Oversampling are other techniques used to address class
imbalance in datasets. SMOTE-ENN enhances decision boundaries by generating synthetic
samples for the minority class and removing ambiguous instances using Edited Nearest
Neighbours [49, 50]. Random Oversampling, on the contrary, increases the minority class size
by duplicating existing samples, which is simple and efficient but carries a risk of overfitting.
This risk can be mitigated by resampling with replacement to maintain a more diverse and
balanced dataset [51].

3.1.2. Undersampling Techniques

Several undersampling techniques have been developed to address class imbalance in datasets.
Among these, clustering-based undersampling methods are specifically utilized to manage such
imbalances effectively. One effective method involves using clustering centroids, particularly
through the K-means algorithm. This method consolidates clusters of majority class instances into
singular representative points, effectively diminishing data volume while maintaining critical
patterns [52]. In contrast, random undersampling, although straightforward and computationally
efficient, may discard valuable samples and increase variance. To improve upon this, random
undersampling can be enhanced with Tomek Links, which removes borderline samples that blur the
class boundaries, ultimately improving clarity and classifier performance [53]. NearMiss-3 selects the
majority class instances that are farthest from minority samples. This strategy enhances separability
and reduces class overlap. One-Sided Selection (OSS), an alternative approach, refines the dataset
further by combining Tomek Link removal with the Condensed Nearest Neighbour algorithm,
retaining only a compact and representative subset of the majority class. Additionally,
Neighbourhood Cleaning (NCR) employs k-NN classification to identify and eliminate noisy or
misclassified samples from the majority class. This process helps maintain the integrity of the dataset
while minimizing overlapping [52, 54]. Among these techniques, clustering is highlighted as a
structured, data-preserving method for our study. It offers a strategic advantage by retaining
meaningful patterns while significantly reducing the majority class, ultimately improving the
model’s efficiency and classification performance [52, 54].

3.2. Machine Learning and Deep Learning Techniques employed.

3.2.1. Machine learning (ML)

ML is a subfield of artificial intelligence (AI) that allows computers to recognize patterns in data
and learn from them with minimal human intervention. ML techniques fall into three main
categories: supervised learning (classification and regression with labelled datasets), unsupervised
learning (clustering and dimensionality reduction with unlabelled datasets), and reinforcement
learning.

a) Logistic Regression (LR): A binary classification algorithm that uses the sigmoid function
to map inputs to a 0-1 range, indicating class likelihood. It optimizes the log-likelihood
function through Gradient Descent, assuming a linear relationship between variables [55,
56].

b) Naive Bayes (NB): A probabilistic classifier that applies Bayes' theorem, relying on the
assumption of conditional independence among features. It's effective in spam filtering
and text categorization by calculating posterior probabilities [56-58].

c) Decision Trees (DT): This supervised learning method splits data into subsets based on
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features to make predictions. It consists of nodes (decisions), branches (outcomes), and
leaves (predictions), using criteria like MSE or Gini Index to determine splits [58].

d) Random Forest (RF): An ensemble method that trains multiple decision trees and
combines their outputs. It reduces overfitting by bagging (training on random data
samples) and selecting random feature subsets. Predictions are made through majority
voting or averaging [10, 16, 56, 59].

e) Support Vector Machine (SVM): A technique that identifies the optimal hyperplane to
separate classes by maximizing the margin between them, utilizing support vectors.
Kernel functions transform non-linearly separable data into higher dimensions for
separation [10, 16, 56, 60].

f) K-Nearest Neighbours (KNN): A classification method that assigns data points based on
the majority class of their k-nearest neighbors using distance metrics like Euclidean. It has
a low training cost but high inference cost, with performance influenced by the choice of
k [16, 61-63].

g) Extreme Gradient Boosting (XGBoost): An efficient gradient boosting method for
accuracy, using a second-order Taylor expansion for loss function approximation. It
enhances performance with cache-aware access and regularization techniques to mitigate
overfitting [10, 16, 59, 60].

h) Adaptive Boosting (AdaBoost): An ensemble method that combines weak learners,
usually decision stumps, into a strong classifier. It dynamically adjusts sample weights to

focus on misclassified instances, improving performance [16, 56].

3.2.2. Deep Learning models

DL models, built on complex artificial neural networks (ANN), excel at extracting nonlinear
patterns from large datasets. They develop hierarchical feature representations automatically,
reducing the need for manual engineering. This enhances their effectiveness in image recognition,
natural language processing (NLP), speech recognition, and healthcare diagnostics. However, they
require significant data and processing power to perform optimally.

a) Convolutional Neural Networks (CNN): CNNs are deep learning models for grid-like data (e.g.,
images). They utilize convolutional layers for spatial feature extraction, pooling layers for
dimensionality reduction, and fully connected layers for classification or regression, leveraging
weight sharing and local connectivity [16, 64, 65].

b) Deep Neural Networks (DNN): DNNs consist of hidden layers between input and output,
enabling the learning of complex patterns through interconnected neurons and nonlinear
activation functions [5, 14, 66].

c) Recurrent Neural Networks (RNN): RNNs retain memory of previous inputs using hidden states,
making them suitable for interpreting sequential data and capturing temporal dependencies [16].

d) Long Short-Term Memory (LSTM): LSTMs enhance RNNs by addressing the vanishing gradient
problem with gates that manage information flow. This allows them to effectively capture long-
term relationships in data, useful in tasks like time-series forecasting and speech recognition [14,
16, 68].

e) Gated Recurrent Unit (GRU): GRUs are a type of RNN that uses gating techniques to manage

information flow, helping retain important historical data while discarding irrelevant details [16].
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3.2.3. Hybrids and Ensemble strategies

These ML and DL models combine predictions from individual models to enhance overall
generalization, accuracy, and resilience. By leveraging the diversity among individual classifiers or
regressors, these techniques reduce variance, bias, and sensitivity to noisy data [67, 68]. General
ensemble methods, including stacking and bagging, were routinely implemented using the best-
performing base learners discovered for each dataset. By integrating the advantages of several
separate models, these ensemble approaches seek to improve generalization, mitigate overfitting, and
reduce variation, to improve prediction performance. Using bootstrap sampling, several instances of
the same learning algorithm were trained on various data subsets in the bagging technique. The
predictions of these instances would then be combined, usually by majority vote or averaging. This
approach was particularly effective for stabilizing models such as decision trees, which often
experience significant variation.

In contrast, stacking involves training a meta-learner to aggregate the results of multiple base
models. The complementary strengths of heterogeneous models enhance the effectiveness of stacked
ensembles. The effectiveness of these ensemble approaches compared to their base models, that is,
the un-stacked and un-bagged counterparts, was consistently observed across all datasets examined.
This improvement in performance highlights the advantage of ensemble learning in leveraging
several hypotheses to create a more reliable and accurate predictive model, particularly in varied
healthcare data contexts like diabetes progression prediction and categorization

3.3. Performance Metrics Tools

3.3.1. Hyperparameter Tuning

Through methodical adjustment of configuration parameters that govern the learning process,
hyperparameter tuning is crucial for optimizing model performance. While more sophisticated
approaches like Bayesian optimization provide more effective substitutes, conventional methods like
grid search and random search are frequently computationally costly. To intelligently explore the
hyperparameter space, this study uses Optuna, a sophisticated optimization system that uses Tree-
structured Parzen Estimators (TPE). Optuna is especially well-suited for intricate ML and DL models
because of its adaptive sampling and early pruning features, drastically lowering computing
expenses while guaranteeing ideal parameter selection [69, 70]. Utilizing Optuna leads to faster
convergence on high-performing configurations, seamless interaction with various ML frameworks,
and enhanced reproducibility through detailed logging and visualization. Optuna is more efficient
than traditional methods since it dynamically prioritizes promising trials and discards
underperforming ones. This makes it the perfect option for creating reliable models with enhanced
generalization powers, especially when computing resources are limited. The framework has shown
itself to be a helpful tool for contemporary ML pipelines due to its efficacy in various applications.

3.3.2. Evaluation Metrics

To guarantee a thorough model evaluation, performance metrics were used. True positive (TP)
indicated that the model predicted diabetes I present or has progressed; true negative (TN) signifies
that the model predicts the absence of diabetes and its progression; false positive (FP) indicated that
the model predicted incorrectly the presence of diabetes; and false negative (FN) signifies the failure
of the model predicting the presence of diabetes while it exists.

Accuracy measures the proportion of correct predictions, both positive and negative, against the
total number of predictions made, resulting in the overall percentage of accurate predictions. While
accuracy appears simple, it may be misleading for imbalanced datasets as it does not account for

different types of errors.
TP+T

Accuracy = ————
y TP+TN+FP+FN

(10)
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Precision calculates the percentage of accuracy by which diabetes is correctly identified by the
model. This measure is critical when FP can lead to high costs, such as unnecessary medical

procedures or false fraud alerts.

TP
TP+FP (11)

Recall (Sensitivity): calculates the percentage of TP that are successfully detected, which

indicates how well the model detects positive cases.

TP
TP+FN (12)

F1-score combines precision and recall using their harmonic means to assess model performance
fairly. This is our primary assessment statistic since it evenly weights FP and FN, effectively
managing class imbalance.

F, = (13)

AUC-ROC justifies the model's capacity to differentiate between classes across all potential

Precision =

Recall =

Precision X Recall
Precision + Recall

classification thresholds. A perfect classifier obtains an AUC of 1, whereas 0.5 is obtained by random
guessing.
AUC = [ ROC (¥)dt (14)

where T represents the decision threshold

Mean Squared Error (MSE) measures the average squared difference between predicted and
actual values penalizing large errors more heavily.

MSE = ~31(y; = 91)? (15)

Mean Absolute Error (MAE) measures the average of absolute difference between predicted and
actual values treating all errors equally.

MAE = ~¥, | yi = 9 (16)

Root Mean Square Deviation or Error (RMSD/RMSE) performs the square root of MSE keeping
the same units as the predicted value and more interpretable than MSE.

RMSE = [231,(3 - 5° 17)

Number of Parameters (NoP) signifies the total number of learnable elements (such as weights
and biases) with respect to the selected model. It is evident that more parameters signify higher
complexity and capacity, but higher risks of overfitting.

Inference Time, or Time taken (TT) as noted in the results tables, logs the time needed to produce
predictions to assess the model's computational efficiency. Although it has no bearing on the
statistical performance of the model, this parameter is essential for real-time applications and
deployment in contexts with limited resources.

Since the Fl-score provides the most balanced evaluation for medical diagnostics by equally
weighing false positives and false negatives, the results in Section 4 are organized according to F1-
score.

3.4. Datasets

This study analyzes five diabetes-related datasets from the UCI Machine Learning Repository,
CDC, and Kaggle, summarized in Table 1, which outlines their sources, characteristics, total
instances, and positive/negative counts. Data preprocessing included normalization to ensure
consistency and enhance result precision. Recursive Feature Elimination (RFE) was applied for
feature selection, and hyperparameter tuning using Optuna was conducted for each classifier during
model construction.

Table 1. Datasets Statistics.

Description Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5
Source UCL Machine Learning Repository, Kaggle and CDC websites
Samples 768 2000 253,680 70692 520
Features 9 9 21 21 17
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Positive instances 268 684 35346 35346 320

Negative instances 500 1316 218334 35346 200

3.4.1. Dataset 1

This is the PIMA Indian Diabetes dataset called Dataset 1. It has 768 samples and nine features,
including clinical measures and patient characteristics as visualized in Figure 1. The dataset features
are Pregnancy, Glucose, Blood Pressure, Insulin, Skin Thickness, BMI, Diabetes Pedigree-Function,
Age, and Outcome. The dataset contains no duplicate entries or missing values (NaNs); all
characteristics are numerical. However, several features, especially those related to blood pressure,
skin thickness, insulin, glucose, and BMI, contain sundry zero values, which is biologically
impossible. Section 3.3 will discuss these discrepancies and their ramifications [71-75].

3.4.2. Dataset 2

This is also PIMA Indian Diabetes dataset, henceforth referred to as Dataset 2. It also has numerical
characteristics about clinical measures and patient demographics and is structured similarly to
Dataset 1. However, it is much larger with 2000 samples rather than 768, but 9 features.

3.4.3. Dataset 3

This is an annual Behavioral Risk Factor Surveillance System (BRFSS) dataset captured by the
Centre for Disease Control (CDC). This dataset is for the year 2015. Henceforth, the dataset would be
known as Dataset 3. The target variable has three classes (0, 1, 2). 0 is for no diabetes or only during
pregnancy, 1 is for prediabetes, and 2 is for diabetes, as depicted as feature Diabeter_012 in Figure 2.
There is a class imbalance in the dataset, but it has 21 features and 253,680 samples [76]

Pregnancies Glucose BloodPressure SkinThickness Insulin

250, — "

100 150)

150}

om ]
0 0 200 400 600 800

50 100 150

DiabetesPedigreeFunction

80 o 1

Figure 1. Feature Distribution for Datasets 1 and 2 (PIMA dataset).
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Figure 2. Feature Distribution for Datasets 3 (BRFSS_2015 dataset).

3.4.4. Dataset 4

This variant of Dataset 3 consists of 70,692 samples and 21 features of the BRFSS dataset captured
by CDC for 2015. Here, the target consists of two classes (0, 1). 0 is for no diabetes, and 1 is for
prediabetes or diabetes. It also contains class imbalance and would be known as Dataset 4 in this
study.

3.4.5. Dataset 5

The early-stage diabetes risk prediction of patients from Sylhet Diabetes Hospital, Bangladesh,
were captured in this dataset. Direct surveys from the patients were used in the study [77]. This
dataset report includes 520 people with diabetes-related symptoms and information on people who
may have diabetes-related symptoms. The dataset has 520 cases and 17 features, including the target
class. The dataset, collected in 2020, was verified by a certified physician from Sylhet Diabetes
Hospital. The dataset, which includes several categorical (Yes/No) variables associated with diabetes
diagnosis, is displayed in Table 1. The "Class" property indicates the patient's diabetes status as either
positive (1) or negative (2). The values of 1 (yes) or 2 (no) for each feature indicate whether the
associated symptom or condition is present. However, there are four categories for the "Age"
attribute: 1 for those aged 20-35, 2 for those aged 36—45, 3 for those aged 46-55, 4 for those aged 56—
65 and 5 for those aged above 65 as visualized in Figure 3. These characteristics and values serve as
the foundation for developing a classification algorithm that uses patient data to forecast the
diagnosis of diabetes [78, 79].
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Figure 3. Feature Distribution for Dataset 5 (BRFSS_2015 dataset).

3.5. Preprocessing

Improving model accuracy and reliability through preprocessing datasets is essential for
preparing raw data for ML procedures. This process often includes cleaning the data to address
outliers and missing values, transforming the data through standardization or normalization, and
converting categorical features using one-hot encoding. Various dimensionality reduction techniques
help manage large sets of features. Additionally, sampling techniques like ADASYN and Clustering
was employed to correct class imbalances.

To effectively evaluate the performance of the study's model, the five datasets are divided into
subsets with an 80:20 ratio for training and testing/validation. Proper preprocessing not only reduces
computational complexity, but also enhances the predictive ability of ML models, ensuring high
dataset quality.

Performing the exploratory data analysis (EDA) of each dataset, it was observed that zero values
exist in columns where they are not physiologically conceivable, which is a significant problem in
both Datasets 1 and 2. Missing data may be entered as zeros instead of NaNs, resulting in inaccurate
numbers. Table 2 shows zero values concerning affected features under Datasets 1 and 2.

Table 2. Number of dataset features labelled as zero values.

Feature Dataset 1 Dataset 2

Pregnancies 111 301
Glucose 5 13
BloodPressure 35 20

SkinThickness 227 573

Insulin 374 956

BMI 11 28
DiabetesPedigreeFunction 0 0
Age 0 0

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202505.0135.v2
http://creativecommons.org/licenses/by/4.0/
https://doi.org/https://doi.org/10.3390/electronics14132583

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 June 2025

Two imputation techniques are employed to deal with the problem of zero values in columns
such as BMI, Insulin, Glucose, Blood Pressure, and Skin Thickness) is biologically impossible:

1. Median Imputation: In each column, the median of non-zero values for zeros is substituted.

2.  Minimum Imputation: Instead of actual measurement, the zeros may mean data was not collected.
This might indicate that the physiological levels of the patients with missing results were normal.
Consequently, we used each column's smallest non-zero value to impute missing data.

Remarkably, models trained using minimum imputation on the datasets consistently performed
better than those trained with median imputation. This validates our prediction that missing data
were likely connected with patients having normal measures rather than abnormal or severe results.
Given that various imputation techniques can substantially influence model performance, this
conclusion implies that comprehending the nature of missing data is essential in medical datasets.

The target variable exhibited class imbalance, complicating the study’s analysis. In Dataset 1,
there were 400 entries for 0 (No) and 214 for 1 (Yes), while Dataset 2 had 1053 for 0 and 547 for 1. We
focused on oversampling techniques, as undersampling was unfeasible due to the limited data.
Various methods were tested, including ADASYN, SMOTE-ENN, random oversampling, and
SMOTE, with ADASYN yielding the best results. This method generates synthetic samples near the
decision boundary, highlighting the importance of selecting the right data balancing strategy for
model performance.

Table 3. Imbalanced values in the Outcome (Target) variable.

Outcome (Target class) Dataset 1 Dataset 2 Dataset3  Dataset4  Dataset5
0 400 1053 213,703 218,334 200
1 214 547 4631 35,346 320
2 - - 35,346 - -

Datasets 3 and 4 had considerable data points and were unbalanced, but Datasets 1 and 2 had
fewer data points, as shown in Table 3. We thus used undersampling techniques on the datasets to
lessen this problem. Instead of random undersampling, we employed clustering-based
undersampling on datasets 3 and 4, which maintains the underlying data distribution. Clustering-
based undersampling chooses representative samples from each cluster, guaranteeing that important
patterns and class features are preserved, in contrast to conventional techniques that randomly
exclude data points. It keeps crucial information from being lost despite its high computational cost.

Simple binary encoding was used to transform (encode) categorical characteristics into
numerical representations to guarantee consistency across all datasets. To normalize the data and
guarantee that each feature had a similar range, feature scaling was also used. This step is essential
for optimising ML models because it keeps characteristics with bigger magnitudes from
overpowering those with smaller values.

Due to the considerable class imbalance, where the dominant class significantly outnumbered
the minority class, the experimental assessment revealed that modelling datasets 3 and 4 presented
significant obstacles. The models' total incapacity to detect any occurrences of the minority class
demonstrates that this extreme imbalance ratio made it difficult to create useful prediction models
on the original datasets. However, applying hyperparameter tuning, the model was able to present
reasonable results. This is essentially based on the size of the datasets and the corresponding features.

4. Methodology Flow Diagram

The flow diagram in Figure 4 illustrates a comprehensive pipeline for predicting diabetes
outcomes using ML and DL models. It begins with data selection, which incorporates diverse features
and lifestyle factors. The next step involves dividing the data into training and testing sets. During
model training, several preprocessing steps were conducted, including imputation, normalization,
feature selection, and hyperparameter tuning. Different ML, DL, and ensemble strategies models are
then applied to the data. Finally, the performance of the models is evaluated using metrics such as
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accuracy, precision, recall, Fl-score, ROC-AUC, MSE, MAE, R?, RMSE, and computation time,
ensuring both predictive accuracy and efficiency.

The 80:20 train-test split ratio employed in this study is a commonly accepted standard in ML
applications, as it strikes a balance between model training and evaluation. By allocating 80% of the
data for training, the model has access to a large and representative subset of the dataset, enabling it
to effectively learn the underlying patterns, relationships, and distributions. The remaining 20% is
set aside for testing, serving as an independent evaluation set. This allows this study to assess the
model's ability to generalize to new, unseen data, which is essential for understanding how well the
model may perform in real-world scenarios.

Choosing lower split ratios, such as 70:30 or 60:40, can lead to a smaller training set. This
limitation can significantly hinder the model’s ability to learn, especially when the overall size of the
dataset is limited. This issue is particularly evident in Datasets 1, 2, and 5, which have few samples.
Reducing the training data in these cases can worsen problems like underfitting, unstable model
behavior, and poor predictive performance. Therefore, maintaining an 80:20 split in this study is not
only methodologically sound but also strategically important, especially for small or sensitive
healthcare datasets where maximizing training information is crucial for the model's success.
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Figure 4. Methodology Flow Diagram .

5. Results Analysis

The results demonstrate the outcomes of a comprehensive investigation, utilizing comparison
tables, confusion matrices, density graphs, and informative bar charts across all models employed.
The Python programming language platform, version 3.11.5 packaged by Anaconda3, was used to
implement all these processes. The model training procedure was systematically conducted for each
model, following an encoded sequence of features. The datasets were split into training and testing
groups. The training process was managed using the X_train and y_train values. The performance of
the models was recorded by generating the predictions on the test datasets (X_test). In contrast, the
efficiency of the models was assessed by evaluating their performance through metrics such as
accuracy, precision, recall, F1-score, AUC-ROC, among others.
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Confusion matrix and AUC-ROC visualization were also used in this study to gain detailed
information on the performance of each model. This allowed for TP, TN, FP, and FN identification,
while heatmap visualization was presented to enhance the perception of performance complexities
in these matrices. Graphs were used to visualize the outputs and comparisons, while the tables
illustrate the values assigned to each model’s performance.

The study also employs Principal Component Analysis (PCA), t-distributed Stochastic Neighbor
Embedding (t-SNE), and Linear Discriminant Analysis (LDA) to facilitate feature extraction, noise
filtering, and the visualization of high-dimensional data. These methods are particularly useful for
handling multi-class outputs, such as in Dataset 3, by transforming high-dimensional data into a
lower-dimensional space.

5.1. Result Analysis on Dataset 1

After conducting a series of analyses on Dataset 1 (PIMA —768/9), results are presented as
illustrated in Table 4, Figures 5, 6, 7, and 8. These figures show the analysis outcomes, including the
corresponding confusion matrix, precision and recall metrics, the AUC-ROC representation,
heatmaps, and the PCA projections of the results. The AdaBoost model performed the best on this
dataset, achieving an F1-score of 0.74.

Predicted Label
Predicted 0 Predicted 1

Actual 1 False Negative (FN = 21) True Positive (TP = 33) 7

Tue Label

True Negative (TN = 88) False Positive (FP = 12) 30

Figure 5. Confusion matrix for the AdaBoost model.

PCA Projection

Outcome

-1

Figure 6. PCA Projection for Dataset 1 class outcomes.
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Figure 7. AUC Curves for the AdaBoost model.

Table 4. Model Performance Comparison for Dataset 1 using F1-score as reference.
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0.8

AdaBoost Precision-Recall Curve (AUC = 0.686)

F1
Accu Preci Rec Scor AUC- MS M RM NO
Model racy sion all e ROC R? E AE SE TT MU P
0.798 0.671 0.8 0.743 011 02 02 04 1.18
AdaBoost 7 6 333 8 0.8386 59 013 013 487 12 0.0B 987
Bagging 0.785 0.661 0.7 0.722 005 02 02 04 219 800 139
AdaBoost 7 5 963 7 0.8439 89 143 143 629 76 kB 2
0.779 0.647 0.8 0.721 003 02 02 04 799 76.0 783
RNN 2 1 148 3 0.8202 04 208 208 699 69 kB 1
Bagging 0.772 0.633 0.8 000 02 02 04 604 1228. 110
DNN 7 8 333 0.72 08198 19 273 273 767 006 OkB 652
0.779 0.656 0.7 0.711 003 02 02 04 042 36.0 626
RF 2 3 778 9 0.8304 04 208 208 699 22 kB 9
Bagging 0772 0.641 0.7 0.710 000 02 02 04 142 191
XGBoost 7 8 963 7 0.828 19 273 273 767 11 0.0B 64
0.766 0.628 0.8 0.709 002 02 02 04 039 161
XGBoost 2 6 148 7 0.8381 67 338 338 835 5 0.0B 8
Stacking 0.772 0.646 0.7 0.705 000 02 02 04 608 4280 266
Classifier 7 2 778 9 0.8302 19 273 273 767 967 kB 03
0.766 0.632 0.7 0.704 002 02 02 04 960 240 243
Bagging RF 2 4 963 9 0.832 67 338 338 83 91 kB 870
0.766 0.636 0.7 0.700 002 02 02 04 442
LR-MLP 2 4 778 0 0.8248 67 338 338 83 64 0.0B 10
0.759 0.626 0.7 0.694 005 02 02 04 024
LR 7 9 778 2 0.8244 52 403 403 902 05 0.0B 9
XGBoost- 0.766 0.645 0.7 0.689 002 02 02 04 637 208
CNN 2 2 407 7 0.8126 67 338 338 835 76 0.0B 09
0.759 0.630 0.7 0.689 005 02 02 04 099
SVM 7 8 593 1 0.8271 52 403 403 902 22 0.0B 8
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All values are rounded to four decimal places. R2—coefficient of determination, MSE—Mean Square Error,
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Number of Parameters.
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Figure 8. Heatmaps for Datasets 1 and 2.

5.2. Result Analysis on Dataset 2

The performance analysis of Dataset 2 (PIMA —2000/9), presented in Table 5 and Figures 9, 10,
and 11, illustrates the results of the analysis, including the confusion matrix, Precision/Recall metrics,
AUC-ROC, and PCA projection of the class outcome representation. The RF model demonstrated the
highest performance on this dataset, achieving an F1-score of ~0.73.

Predicted Label
predicted 1

70
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Actual of True Negative (TN = 77) False Positive (FP = 23)
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Actual 1 False Negative (FN = 10)
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Figure 9. Confusion matrix for the Random Forest model.
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Figure 10. AUC and Precision-Recall Curves for the Random Forest model.
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Table 5. Model Performance Comparison for Dataset 2 using F1-score as reference.

F1
Accu Preci Rec Scor AUC- MS M RM NO
Model racy sion all e ROC R? E AE SE TT MU P
0.785 0.656 0.8 0.72 005 02 02 04 064 320 136
RF 7 7 148 73 0.8341 89 143 143 629 86 kB 97
Bagging 0779 0.642 0.8 0.72 003 02 02 04 695 12560 154
DNN 2 9 333 58 0.8283 04 208 208 699 682 kB 790
Bagging 0779 0.642 0.8 0.72 003 02 02 04 563 14520 318
RNN 2 9 333 58 0.8207 04 208 208 699 799 kB 85
Bagging 0779 0.647 0.8 0.72 003 02 02 04 517 303
AdaBoost 2 1 148 13 0.8446 04 208 208 699 11 80kB 6
0772 0.633 0.8 0.72 000 02 02 04 1.88 150
AdaBoost 7 8 333 00 0.8401 19 273 273 767 13 00B 0
0772 0.633 0.8 0.72 000 02 02 04 040 127
XGBoost 7 8 333 00 08376 19 273 273 767 41 00B 2
Stacking 0.766 0.628 0.8 0.70 002 02 02 04 521 3200 573
Classifier 2 6 148 97 0.8344 67 338 338 835 551 kB 76
Bagging 0.785 0.678 0.7 0.70 005 02 02 04 319 118
XGBoost 7 0 407 80 0.8274 89 143 143 629 46 4.0kB 269
0.766 0.632 0.7 0.70 002 02 02 04 774 480 113
DNN 2 4 963 49 08170 67 338 338 835 26 kB 39
0.759 0.619 0.8 0.70 005 02 02 04 839 600 273
RF-GRU 7 7 148 40 0.8161 52 403 403 902 45 kB 02
0.746 0597 0.8 0.70 011 02 02 05 737 40.0 418
RF-CNN 8 4 519 23 08159 22 532 532 032 80 kB 4
0.753 0.614 0.7 0.69 008 02 02 04 143 28.0
LR-MLP 2 3 963 35 0.8222 37 468 468 967 566 kB 10
0.766 0.645 0.7 0.68 002 02 02 04 115 12024. 342
Bagging RF 2 2 407 97 0.8298 67 338 338 835 716 O0kB 125
0.753 0.617 0.7 0.68 008 02 02 04 021
SVM 2 6 778 85 0.8219 37 468 468 967 06 0.0B 8
XGBoost-  0.733 0.584 0.8 0.68 016 02 02 05 935 40.0 321
LSTM 8 4 333 70 0.8228 93 662 662 160 06 kB 4
0.746 0.608 0.7 0.68 011 02 02 05 515
SVM-RNN 8 7 778 29 0.8148 22 532 532 032 16 0.0B 9
0.746 0.611 0.7 0.67 011 02 02 05 041
LR 8 9 593 77 0.8215 22 532 532 032 55 00B 9
0.727 0578 0.8 0.67 019 02 02 05 019 36.0 630
KNN 3 9 148 69 07935 78 727 727 222 15 kB 4
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AdaBoost- 0.727 0.583 0.7 0.66 019 02 02 05 243 131
DBN 3 3 778 67 08135 78 727 727 222 952 0.0B 4
XGBoost-  0.753 0.633 0.7 0.66 008 02 02 04 831 109
CNN 2 3 037 67 0.7983 37 468 468 967 54 00B 00
KNN- -
Autoencod 0.727 0.585 0.7 0.66 019 02 02 05 107 84.0 102
ers 3 7 593 13 07693 78 727 727 222 923 kB 44
0733 0597 0.7 0.66 016 02 02 05 946 4360 353
RNN 8 0 407 12 08087 93 662 662 160 42 kB 9
0759 0.666 0.6 0.64 005 02 02 04 025
DT 7 7 296 76 07770 52 403 403 902 72 00B 129
0720 0.590 0.6 0.62 022 02 02 05 647
DT-CNN 8 2 667 61 07525 63 792 792 284 22 00B 101
0.694 0552 0.6 0.61 034 03 03 05 0.18
NB 8 2 82 16 07676 04 052 052 524 78 00B 34
0.681 0.535 0.7 0.60 039 03 03 05 446 16.0 505
CNN 8 2 037 80 07665 74 182 182 641 49 kB 87
0.668 0.523 0.6 0.57 045 03 03 05 120 2400 964
LSTM 8 1 296 14 07059 44 312 312 755 811 kB 9
0.688 0.551 0.5 0.57 036 03 03 05 139 5640 140
GRU 3 7 926 14 07256 89 117 117 583 710 kB 1

All values are rounded to four decimal places. R2—coefficient of determination, MSE—Mean Square Error,
MAE—Mean Absolute Error, RMSE—Root Mean Square Error, TT —Time Taken, MU —Memory Usage. NoP —

Number of Parameters..

PCA Projection

Outcome
e 0

Za 2 0 2 4 6
Figure 11. PCA Projection for Dataset 2 class outcomes.

5.3. Result Analysis on Dataset 3

The performance analysis of Dataset 3 (BRFSS), which includes 253,680 samples and 21 features
across three outcome classes, is presented in Table 6 and Figures 12, 13, 14, 15, and 16. These
illustrations demonstrate the results of the analysis, including the corresponding confusion matrix,
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Precision/Recall metrics, AUC-ROC representation, and projections using LDA, PCA, and t-SNE. The
RNN model performed better than other models on this dataset, achieving an F1-score of 0.44.

Confusion Matrix

30k

Actual 2 1966 879 4224
25k
20k
Actual 1 395 140 391
15k
10k
Actual 0] 31.882k 3560 7299 5k
predicted 0 Predicted 1 Predicted 2

Figure 12. Confusion matrix for the RNN model.
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Figure 13. AUC and Precision-Recall curves of the RNN model demonstrate better performance, as indicated by
the ROC curve being above the 45-degree dotted line. The blue line (Class 0) and green line (Class 2) above the

dotted line show good performance, while the orange line (Class 1) shows moderate performance.

LDA projection
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Figure 14. LDA Projection for Dataset 3 class outcomes.
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Figure 15.

Figure 16.

The analysis of Dataset 3 provides several crucial insights into the structure and complexity of
the data, particularly in predicting diabetes status with multiclass outcomes: class 0 (no diabetes or
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PCA Projection for Dataset 3 class outcomes
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diabetes only during pregnancy), class 1 (pre-diabetes), and class 2 (diabetes).

Table 6. Model Performance Comparison for Dataset 3 using F1-score as reference.

d0i:10.20944/preprints202505.0135.v2

Model Accuracy Precision Recall F1 AUC- Rz MSE MAE RMSE TT MU NOP
Score ROC
RNN 0.7144  0.4387 0.4982 0.4414 0.7008 -0.7099 0.8334 0.4682 0.9129 141.7094 600.0 kB 14277
CNN 0.6984 0.4403 0.5171 0.4411 0.7064 -0.8212 0.8877 0.4970 0.9422 77.7925 216.0kB 31823
DNN 0.6975 0.4397 0.5149 0.4401 0.7055 -0.8398 0.8967 0.5006 0.9470 959.0492 10:236'0 19371
AdaBoost 0.6898  0.4337 0.5155 0.4330 0.7128 -1.0948 1.0210 0.5471 1.0105 38.0504 0.0B 11696
XGBoost 0.6834 0.4301 0.5109 0.4270 0.7143 -1.1936 1.0692 0.5674 1.0340 1.4653 4.0kB 1244
XGBoost-LSTM 0.7004  0.4301 0.5079 0.4252 0.7184 -1.2789 1.1108 0.5700 1.0539 385.1103 272.0 kB 34830
RF 0.6755 0.4296 0.5119 0.4251 0.7091 -1.2227 1.0834 0.5775 1.0408 11.1173 68.0kB 738710
RF-CNN 0.6734  0.4302 0.5104 0.4245 0.7107 -1.1799 1.0625 0.5719 1.0308 44.9699 2220.0 kB 281808
RF-GRU 0.6639  0.4307 0.5115 0.4229 0.7097 -1.1512 1.0485 0.5736 1.0240 136.2781 1240.0 kB 269827
DT-CNN 0.6890  0.4227 0.4783 0.4218 0.6566 -0.9623 0.9564 0.5261 0.9780 22.8690 0.0 B 15
LR 0.6260  0.4499 0.5147 0.4194 0.7077 -0.6358 0.7973 0.5151 0.8929 2.9852 336.0 kB 64
LR-MLP 0.5930 0.4561 0.5197 0.4116 0.7118 -0.6116 0.7855 0.5332 0.8863 23.3801 20.0 kB 67
DT 0.6384  0.4235 0.4935 0.4085 0.6876 -1.2310 1.0874 0.6036 1.0428 0.3724 0.0B 233
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KNN-
Autoencoders

XGBoost
Stacking
Classifier

NB 0.6245  0.4364 0.4892 0.4083 0.6803 -0.7259 0.8412 0.5307 0.9172 0.2969  0.0B 129
SVM 0.5759  0.4591 0.5116 0.4044 0.7084 -0.5697 0.7651 0.5378 0.8747 277.1082 136.0kB 63
KNN 0.5626  0.4238 0.4778 0.3794 0.6617 -0.9820 0.9660 0.6136 0.9829 114.0517 0.0B 547344

0.5279  0.4251 0.4760 0.3651 0.6665 -0.9109 0.9314 0.6252 0.9651 69.0643 1208.0 kB 1537776
Bagging

0.6899  0.4298 0.5098 0.4290 0.7029 -1.1983 1.0715 0.5639 1.0351 9.1290 72.0kB 15380

0.6632  0.4266 0.5095 0.4169 0.7101 -1.3910 1.1654 0.6130 1.0795 552.4895 252.0kB 73996

All values are rounded to four decimal places. R2—coefficient of determination, MSE—Mean Square Error,
MAE—Mean Absolute Error, RMSE—Root Mean Square Error, TT—Time Taken, MU —Memory Usage. NoP —

Number of Parameters.

Although the dataset includes medically relevant features such as BMI, blood pressure,
cholesterol levels, physical activity, and age, the boundaries between diabetes stages are unclear. This
is evident from the projections of LDA and PCA (Figures 14 and 15), which show significant overlap,
especially between the pre-diabetic and diabetic categories. This suggests that while the features are
informative, they may not be sufficient in their linear form to fully distinguish between the classes.

The t-SNE projection reveals more distinct clustering patterns (Figure 16) compared to linear
dimensionality reduction techniques such as PCA or LDA. This suggests the presence of non-linear
relationships within the data that linear methods fail to capture. Consequently, this supports the use
of more sophisticated ML or DL models capable of modelling such non-linearities. The RNN model
achieved an impressive Fl-score of 0.44 and accuracy of 0.71, highlighting its ability to effectively
utilize complex patterns. Initial insights from the confusion matrix and class distribution analysis
confirmed a significant class imbalance, with class 0 (no diabetes) being overrepresented. This
imbalance underscores the necessity of employing resampling techniques such as Clustering
undersampling to synthetically balance the dataset. Additionally, it highlights the importance of
using evaluation metrics like the Fl-score, which provide a more balanced assessment of model
performance in the presence of skewed class distributions.

Furthermore, all models produced negative R? scores, indicating that none outperformed a naive
mean predictor in explaining the variance of the target variable. This suggests a fundamental
misalignment between the models' assumptions and the underlying data complexity or target
structure. Despite this, evaluation using error-based metrics (MSE, MAE, and RMSE) revealed that
RNN and Logistic Regression models achieved the lowest error values (MSE: ~0.79-0.83, MAE: ~0.46—
0.51, RMSE: ~0.89-0.91), suggesting relatively better performance in minimizing prediction errors. In
contrast, models such as XGBoost-LSTM, Stacking Classifier, and kNN variants exhibited higher error
rates and greater variability, indicating less stable predictive behavior. The consistently high error
metrics and negative R? values across models highlight challenges in generalization, likely due to
overlapping class structures and persistent data imbalance.

5.4. Result Analysis on Dataset 4

Performance analysis on Dataset 4 (BRFSS — 253,680 samples/21 features with two classes
outcomes) shown in Table 7, Figures 17, 18, and 19 demonstrate the results of the analysis, its
corresponding confusion matrix, Precision/Recall, and the AUC-ROC representation. The DNN
model performed better than other models on this dataset, achieving an F1-score of 0.45.
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Figure 17. Confusion matrix for the DNN model.
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Figure 18. AUC Curves of DNN Model.
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Figure 19. Threshold-dependent metrics for DNN. The vertical line denotes the chosen threshold.

Dataset 4, a binary variant of Dataset 3 (0: no diabetes or pre-diabetes; 1: diabetes), with a 50:50
split (i.e., Table 1), also yielded negative R? values across all models, ranging from approximately -
1.04 (DNN, GRU) to -1.87 (RNN). These results indicate that none of the models outperformed a naive
mean predictor, reinforcing the notion that regression framing may be ill-suited for this classification-
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oriented task. The persistent data imbalance contributes to the models' inability to capture variance
effectively. Despite this, models such as DNN, GRU, and CNN achieved the lowest error rates (MSE
and MAE in the range of 0.245-0.265, and RMSE around 0.49-0.51), suggesting better error
minimization. These models also demonstrated stronger classification performance, with accuracies
around 75% and notably high recall scores. Dataset 4, a binary variant of Dataset 3 (0: no diabetes or
pre-diabetes; 1: diabetes), with a 50:50 split (i.e., Table 1), also yielded negative R? values across all
models, ranging from approximately -1.04 (DNN, GRU) to -1.87 (RNN). These results indicate that
none of the models outperformed a naive mean predictor, reinforcing the notion that regression
framing may be ill-suited for this classification-oriented task. The persistent data imbalance
contributes to the models' inability to capture variance effectively. Despite this, models such as DNN,
GRU, and CNN achieved the lowest error rates (MSE and MAE in the range of 0.245-0.265, and RMSE
around 0.49-0.51), suggesting better error minimization. These models also demonstrated stronger
classification performance, with accuracies around 75% and notably high recall scores.

Table 7. Model Performance Comparison for Dataset 4 using F1-score as reference.

Accur  Precis Rec F1 AUC- MS MA RM
Model acy ion all  Score ROC R? E E SD TT MU NOP
0.72  0.452 1.04 024 024 049 153.62 464.0
DNN 0.7548  0.3286 80 8 0.8233 45 52 52 1 47 kB 22892
0.70 0444 1.04 024 024 049 10050 1292.0
GRU 0.7542  0.3243 53 3 0.8141 96 58 58 8 657 kB 21498
075 0444 119 026 026 0513 89382 1096.0
CNN 0.7364  0.3145 64 3 0.8218 85 36 36 5 3 kB 55909
Bagging 0.78 0441 1.29 027 027 0524 17237 12.0
AdaBoost 0.7249 0.3080 16 9 0.8250 42 51 51 5 06 kB 44017
Bagging 079 0441 134 028 028 0530 13.892 2040
XGBoost 0.7184 0.3050 86 4 0.8265 83 16 16 7 9 kB 59953
0.79 0440 133 027 027 0528 55.073
AdaBoost 0.7206  0.3057 08 9 0.8250 00 94 94 6 2 00B 68311
0.79  0.440 135 028 028 0531
XGBoost 0.7177  0.3044 87 8 0.8259 45 23 23 4 2.1093 0.0B 851
0.77  0.440 1.28 027 027 0523 34.674
LR-MLP 0.7259  0.3077 39 3 0.8206 58 41 41 6 0 0.0B 23
0.77 0439 1.29 027 027 0.524
LR 0.7250  0.3069 41 6 0.8196 35 50 50 4 1.5440 0.0B 22
Stacking 0.79  0.439 136 028 028 0532 30292 11480 17354
Classifier 0.7168 0.3032 53 0 0.8248 12 32 32 1 078 kB 6
XGBoost- 0.80  0.438 138 028 028 0534 22765 364.0
LSTM 0.7140 03016 07 2 0.8240 54 60 60 8 99 kB 3377
0.81 0437 142 029 029 0538 93711 1596.0 65821
RF-CNN 0.7097  0.2997 09 7 0.8252 07 03 03 8 2 kB 8
0.79 0436 139 028 028 0536 15593 28.0 15547
RF 0.7124  0.3002 94 5 0.8226 86 76 76 3 4 kB 50
XGBoost- 0.81 0436 143 029 029 0540 70.994
CNN 0.7076  0.2983 24 3 0.8261 87 24 24 8 4 00B 1189
0.81 0435 144 029 029 0541 55348 272.0 49883
RF-GRU 0.7067  0.2974 07 1 0.8247 56 33 33 5 71 kB 1
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079 0434 140 028 0.28 0.536 66.358 24.0
DT-CNN 0.7121  0.2990 28 2 0.8178 05 79 79 5 9 kB 31
0.80 0432 145 029 029 0542 44725 352.0
Bagging DNN  0.7060  0.2960 53 9 0.8222 18 40 40 2 53 kB 56725
079 0432 142 029 029 0539 88220 2320
SVM 0.7089  0.2967 46 1 0.8189 72 11 11 5 86 kB 21
0.76 0431 132 027 027 0528 21052 38920 13907
Bagging GRU  0.7206  0.3013 22 9 0.8120 97 94 94 6 017 kB 6
0.80  0.429 148 029 029 0545 788.89 28.0 67456
SVM-RNN 0.7023  0.2930 46 6 0.8183 27 77 77 6 83 kB 4
071 0427 122 026 026 0516 12455  404.0
LSTM 0.7334  0.3049 42 4 0.8016 35 66 66 4 357 kB 61624
AdaBoost- 0.77 0427 142 029 029 0539 592.03 188.0
DBN 0.7089  0.2942 85 0 0.8129 76 11 11 6 42 kB 1317
0.76 0426 139 028 028 0.536
DT 0.7124  0.2954 87 8 0.8077 87 76 76 3 0.3540 0.0B 127
0.81 0425 155 030 030 0.553 52841 992.0
Bagging CNN  0.6939  0.2880 27 2 0.8191 26 61 61 3 52 kB 87108
0.70 0414 1.30 027 027 0525
NB 0.7235  0.2941 29 7 0.7799 55 65 65 8 0.2801 0.0B 86
KNN- 071 0411 1.37 028 028 0533 29588 16.0 16966
Autoencoders  0.7156  0.2892 41 7 0.7808 13 44 44 2 79 kB 20
0.73 0410 145 029 029 0542 66.834 11876
KNN 0.7058  0.2848 56 7 0.7857 31 42 42 4 0 0.0B 34
0.79  0.392 187 034 034 058 98323  496.0
RNN 0.6555  0.2602 86 5 0.7866 26 45 45 9 7 kB 12431

All values are rounded to four decimal places. R2—coefficient of determination, MSE—Mean Square Error,
MAE—Mean Absolute Error, RMSE—Root Mean Square Error, TT—Time Taken, MU —Memory Usage. NoP —

Number of Parameters.

5.5. Result Analysis on Dataset 5

Performance analysis on Dataset 5 (early-stage diabetes risk prediction of patients of 520 samples
and 17 features from Sylhet Diabetes Hospital, Bangladesh, shown in Table 8, Figures 20 and
21demonstrates the results of the analysis, its corresponding confusion matrix, Precision/Recall, and
the AUC-ROC representation. The RF and Stacking Classifier models performed the best on this
dataset, achieving an F1-score of 1.00 and a reasonable accuracy of 1.0 each. However. The Random
Forest (RF) is selected as the best due to its lower computation time in predicting diabetes at 0.58s,
compared to the Stacking classifier, which took 37.05s.
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Figure 20. Confusion matrix for the Random Forest model.
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Figure 21. AUC Curves for the Random Forest model.

Table 8. Model Performance Comparison for Dataset 5 using F1-score as reference.

Accur  Precisi Rec F1 AUC- MS MA RM NO
Model acy on all  Score ROC R? E E SE T MU P
1.00 1.00 0.00 000 0.00 0587 24.0 1145
RF 1.0000  1.0000 00 1.0000 1.0000 00 00 00 00 40 kB 5
Stacking 1.00 1.00 0.00 0.00 000 37.05 29.0
Classifier 1.0000  1.0000 00 1.0000 1.0000 00 00 00 00 27 kB N/A
1.00 095 0.00 0.00 0.09 5.728
DT-CNN 0.9904  0.9846 00 09922  0.9992 94 96 96 81 8 0.0B 27
1.00 095 0.00 0.00 0.09 0583
Bagging SVM  0.9904  0.9846 00 0.9922 0.9992 94 96 96 81 2 0.0B 4360
0.98 095 0.00 0.00 0.09 0227
DT 0.9904  1.0000 44 09921  0.9922 94 96 96 81 5 0.0B 67
0.98 095 0.00 0.00 0.09 0.749
AdaBoost 0.9904  1.0000 44 0.9921 1.0000 94 96 96 81 6 0.0B 9146
0.98 095 0.00 0.00 0.09 1.082 16.0 1069
Bagging DT 0.9904  1.0000 44 09921  1.0000 94 96 96 81 2 kB 1
0.98 091 0.01 0.01 013 0387
SVM 0.9808  0.9844 44 0.9844 0.9977 88 92 92 87 1 0.0B 1312
0.98 091 001 0.01 013 7.39% 88.0 1091
DNN 0.9808  0.9844 44 09844  0.9988 88 92 92 87 0 kB 1
0.98 091 001 0.01 013 5228 68.0
RF-CNN 0.9808  0.9844 44 0.9844 0.9980 88 92 92 87 1 kB 4230
0.98 091 0.01 001 013 1657 1280 1024
Bagging RF 0.9808  0.9844 44 0.9844 0.9965 88 92 92 87 5 kB 5
0.96 091 001 0.01 013 0372
XGBoost 0.9808  1.0000 88 09841  0.9992 88 92 92 87 5 00B 4488
AdaBoost- 0.96 091 0.01 001 013 1529
DBN 0.9808  1.0000 88 0.9841 0.9984 88 92 92 87 99 0.0B 1275
0.96 091 0.01 0.01 013 8400 56.0
RF-GRU 0.9808  1.0000 88  0.9841  1.0000 88 92 92 87 1 kB 6094
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0.96 087 002 002 016 6838 2360 1746
CNN 09712 09841 88 09764 09980 81 88 88 98 6 kB 59
0.96 087 002 002 016 8076
SVM-RNN 09712 09841 88 09764 09977 8 88 838 98 1 00B 1394
XGBoost- 0.95 087 002 002 016 1481
LSTM 09712 10000 31 09760 09973 81 88 88 98 26  00B 1489
Bagging 0.96 083 003 003 019 5357
AdaBoost 09615 09688 88 09688 09859 75 85 85 61 7 00B 2970
0.95 083 003 003 019 1175
LR-MLP 09615 09839 31 09683 0998 75 85 8 61 8  00B 18
0.95 083 003 003 019 6565
XGBoost-CNN 09615 09839 31 09683 09947 75 85 85 61 4 00B 508
Bagging CNN- 0.95 083 003 003 019 3804 10720
DT 09615 0989 31 09683 0999 75 85 8 61 8 kB N/A
0.93 079 004 004 021 0.167
KNN 09519 098% 75 09600 09820 69 81 81 93 5  00B 6656
0.92 079 004 004 021 0258
LR 09519 10000 19 09593 09918 69 81 81 93 0  00B 17
KNN- 0.92 079 004 004 021 9998 1456
Autoencoders 09519 1.0000 19 09593 09949 69 8 8 93 1 00B 0
0.93 075 005 005 024 0224
NB 09423 09677 75 09524 09863 63 77 77 02 1 00B 66
0.90 071 006 006 025 1136 4080 1574
RNN 09327 09831 63 09431 09934 56 73 73 9% 73 KB 9
0.90 055 010 010 032 2049 12200 6063
LSTM 08942 09206 63 09134 09711 31 58 58 52 70 kB 5
0.84 051 011 011 033 1415 7120 3875
GRU 0.8846 09643 38 09000 09559 25 54 54 97 40 kB 3

All values are rounded to four decimal places. R2—coefficient of determination, MSE—Mean Square Error,
MAE—Mean Absolute Error, RMSE—Root Mean Square Error, TT—Time Taken, MU —Memory Usage. NoP —
Number of Parameters. N/A in NoP was not computed due to the complexity or incompatibility in combining

base models for Stacking and Bagging strategies for this dataset. 6. Discussion.

Regarding both computational efficiency and predictive effectiveness, this study performs a
comparative analysis of ML, DL, hybrid models, and ensemble strategies applied to five publicly
available datasets, highlighting considerable variations in performance, influenced by model
architecture, complexity, and the inherent characteristics of the data. The evaluation utilized critical
metrics to identify optimal predictive tools relevant to healthcare settings, with the F1-score serving
as a baseline measure.

Ensemble models, particularly Random Forest (RF), AdaBoost, Bagging, and Stacking Classifier,
consistently achieved high Fl-scores and accuracies across most datasets. Among these, RF and its
variants stood out as top performers. AdaBoost achieved an impressive F1-score of 0.7438, using
minimal memory (0.0 B) and completing computations in just 1.18 seconds on Dataset 1. This
performance significantly surpassed that of deeper models such as LSTM and GRU, which, while
consuming more resources (up to 2052 kB and over 20 seconds of computation time), yielded lower
F1-scores in the vicinity of 0.56.

In the analysis summarized in Table 5 on Dataset 2, RF achieved a commendable F1-score of
0.7273 alongside minimal memory usage (32 kB) and a computation time of 0.65 seconds. Similarly,
models like Bagging, AdaBoost, and XGBoost demonstrated high precision with reasonable memory
requirements, indicating the scalability of ensemble strategies. On the other hand, DL models,
particularly GRU and RNN, although exhibiting moderate accuracy, were identified as
computationally intensive, with memory usage reaching up to 154790 kB and training times
exceeding 1000 seconds.

While Table 6 illustrates some overall degraded performance attributed to Dataset 3 due to
dataset challenges, neural network variants such as RNN, DNN, and CNN showed strong results,
with RNN maintaining the highest rank in this context with an F1-score of 0.44.

Table 7 highlighted the performance of DNN and GRU, with both achieving F1-scores between
approximately 0.45 and 0.44 on Dataset 4, a variant of Dataset 3., but with two classes (0 and 1).
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However, their computational costs were high; DNN outperformed GRU with an F1-score of 0.45
while also demonstrating lower computation time and memory usage. In addition, Xie et al. [76] also
proved that NN produces a better accuracy of 0.8240 but a lower recall of 0.3781. This is evident because
the dataset size is inadequate for DL models.

Finally, Table 8 showcased exemplary performance by RF and the Stacking Classifier on Dataset
5, both attaining an F1-score and accuracy of 1.000, which could suggest either overfitting or optimal
conditions within the dataset. Random Forest remained the preferred choice due to its reasonable
memory consumption of 24 kB. Xie et al. [78] demonstrated that RF outperformed other classical ML
models. However, their analysis reported a score of 0.9740 across all metrics. In contrast, our study
achieved a score of 1.0000 using the same model. Overall, the Random Forest model emerged as the
most robust and resource-efficient option, delivering consistent high performance while ensuring
low memory usage and rapid computation time, making it particularly suited for practical
applications in diabetes prediction systems.

There are several key insights to be gained from this study. The quantity, complexity, and
structure of the dataset that ML and DL models are trained on affect their performances. Empirical
findings from our experiments indicate that conventional ML models are generally most effective on
small to moderately sized structured datasets, particularly when the patterns exhibit linear or
significantly non-linear separability. When the feature space is small and well-defined, these models
benefit from simplicity, reduced computing cost, and strong generalization. DL models like CNNSs,
DNNs, and RNNs, on the other hand, excel with complex, high-dimensional data such as text,
images, or time-series inputs. They require large datasets to avoid overfitting and ensure
generalization, but are computationally demanding, frequently requiring large amounts of memory,
processing power, and extended training periods. This might provide real-world challenges in
settings with limited resources. Aligning dataset properties with model selection is essential for
optimal prediction performance, especially in resource-limited environments.

The quality, applicability, and predictive power of the features found in each dataset are
primarily responsible for the variation in model performances shown across the various datasets.
Specifically, the correlation values of 0.47 and 0.46 in Datasets 1 and 2 (Figure 8a and 8b) indicate that
the characteristic "Glucose" has a comparatively substantial positive link with the diabetic mellitus
result. This strong correlation suggests that changes in blood sugar levels are significantly linked to
the existence or non-existence of diabetes, which gives predictive algorithms a reliable signal to work
with. Therefore, models trained on these datasets perform better because they have high-value
features related to the target variable. On the contrary, Dataset 3 shows moderate predictive
performance across all evaluated ML and DL models. This result is mainly due to the quality and
informativeness of its features, which do not show a strong correlation with the DM outcome. The
variables lack discriminative power, reducing model efficacy due to limited signals differentiating
diabetic from non-diabetic cases. This highlights the importance of feature selection and dataset
quality for achieving accurate predictions in healthcare-related Al applications.

Additionally, the architectural complexity and internal mechanisms of ML and DL models
significantly influence differences in processing speed, RAM usage, and overall computing efficiency.
Deep learning architecture can differ significantly in the number of parameters, layer depth, and
internal processes, all of which directly affect resource usage. For example, LSTM networks are
commonly used for sequence modelling due to their strong ability to capture long-range temporal
relationships. However, this capability comes at a computational cost. LSTMs require increased
model size, higher memory demands, and longer training times because they incorporate multiple
gating mechanisms, including input, output, and forget gates, each with its own set of parameters
[16, 68].

GRU is a more lightweight alternative that simplifies the gating process by combining the input
and forget gates into a single update gate. This results in a more straightforward architecture with
fewer parameters, which accelerates training and reduces memory usage, often with only minor
changes in performance. These differences emphasize the importance of aligning model choices with
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computational constraints, particularly in scenarios requiring real-time processing or when working
with limited hardware resources [16].

6.1. Top-performing Models and Their Implications

The analysis of the study examines the complex relationship between the observed F1-scores
and the inference times (TT) of the highest-performing models within the selected datasets. It
examines how the unique mechanics of each algorithm align with critical factors such as data size,
feature topology, and class structure. By doing so, it uncovers the underlying principles that
contribute to model performance. For instance, larger datasets usually necessitate more sophisticated
algorithms to manage complexity, while feature topology could influence the model's ability to
capture relevant patterns. Additionally, understanding class structure is essential, as imbalanced
classes require specialized techniques to ensure accurate predictions, as demonstrated by the
ADASYN and Clustering techniques in our study. This comprehensive examination offers valuable
insights for selecting and optimizing ML and DL algorithms tailored to specific data characteristics.

High F1-score arises when a model’s bias—variance profile and feature handling align with the
dataset’s intrinsic complexity. In contrast, run-time reflects algorithmic depth and feature
dimensionality; that is, shallow boosted or bagged trees provide quick, accurate results on small
tabular data, while recurrent or fully connected nets sacrifice speed for the representational power
needed to model high-dimensional, progression-laden surveys. Table 9, Figure 22, and Figure 23
depict the extracted top-performing models and their respective computation times.

Table 9. Top-performing models by Datasets.

Datasets Models Accuracy Precision Recall Fl1-score TT(s) MU
D1 AdaBoost 0.798 0.671 0.833 0.743 1.181 0B
D2 RF 0.785 0.656 0.814 0.727 0.648 32kB
D3 RNN 0.714 0.438 0.498 0.441 141.709 600 kB
D4 DNN 0.754 0.328 0.728 0.452 153.624 464 kB
D5 RF 1.000 1.000 1.000 1.000 0.587 24 kB

F1-score by Dataset
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Figure 22. F1-score distribution by Dataset.
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Figure 23. Inference Time by Dataset.

The first variant of the PIMA dataset (Dataset 1/D1) is small by today’s ML standards, with only
614 training samples after the 80:20 train-test split, and 9 mostly straightforward numeric features,
making it a manageable challenge for analysis. Simple models like decision stumps can capture some
patterns, but they often struggle with hard-to-classify cases, especially around borderline
pregnancies and rare insulin levels. AdaBoost works well in this situation by focusing on the
misclassified data points for improvement. The algorithm changes the weight of these difficult cases,
creating a series of weak classifiers that better identify and understand these minority areas, while
keeping the model simple. Given the low-dimensional nature of the data, AdaBoost demonstrates a
reduced likelihood of overfitting. It reduces bias effectively while only slightly increasing variance.
Using oversampling techniques like ADASYN boosts AdaBoost’s performance even more. This
method creates a denser group of hard-to-classify cases, giving AdaBoost an edge over other methods
like bagged DTs and NNs. This combination leads to a stronger model for classifying challenging
data

With 2,000 observations, the second version of the PIMA dataset (Dataset 2/D2) provides
sufficient samples for high-capacity models, while still maintaining the same features. In this context,
the RF algorithm performs best because the dominant source of error is variance rather than bias, as
in Dataset 1. The additional data points help reduce bias naturally, but the dataset still includes noisy
measurements, such as imputed zeros, which can mislead individual trees or boosted models. Using
bagging to create hundreds of decorrelated trees stabilizes predictions and captures non-linear
interactions, such as the thresholds between glucose and BMI. Additionally, RF incorporates built-in
resilience to class imbalance through balanced subsampling at each split. Inference remains fast (less
than 0.7 seconds) because only a few dozen features are evaluated per tree, giving RF the best speed-
to-accuracy ratio in this scenario.

Dataset 3 (D3) presents the full BRFSS survey categorizes diabetes status on an ordinal scale: 0 =
No diabetes, 1 = prediabetes, and 2 = diabetes, emphasizing progression in conditions. Many of the
21 features in the survey represent behavioural patterns, such as weekly exercise, daily sugar intake,
and smoking frequency, which are often autocorrelated and recorded as ordered categorical bands.
After applying Clustering-based undersampling balancing, a RNN model can interpret each
respondent’s feature vector as a short "time-axis," where neighbouring fields demonstrate
interdependence (e.g., age band a blood pressure band a medication usage). The gated recurrent
mechanism of the RNN integrates these conditional patterns more effectively than feed-forward
networks or tree ensembles, leading to the highest macro-F1 score despite longer inference times. In
summary, the RNN effectively utilizes the quasi-sequential, progression-based structure that tabular
models treat as independent columns
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Dataset 4 (D4) presents the multi-class labels being collapsed into a binary outcome, although it
still contains over 56,000 training rows and a heterogeneous mix of ordinal, binary, and scaled
numeric features. The class boundary now resides in a densely populated area where subtle high-
order interactions, such as age x BMI x physical activity or diet score x sex, become crucial. A deep,
fully connected network with multiple hidden layers can automatically learn these hierarchical
combinations, especially after applying feature scaling and clustering-based undersampling to
improve the representation of minority classes. Compared to tree ensembles, DNNs benefit from
weight sharing and batch optimization, making them less sensitive to redundant variables and more
tolerant of noise. Thus, their slightly superior Fl-score reflects an architecture that is adequately
expressive for the high-dimensional, highly non-linear boundary while remaining computationally
efficient.

Dataset 5 (D5) presents an EMR dataset from the early-stage Sylhet survey, containing 520
records with 17 binary symptoms and a 5-band age code, validated by a physician. This clean,
categorical data is ideal for decision-tree splits, and with RF emerging as the top-performing model,
offers three advantages: (1) Low variance via bootstrapping prevents overfitting common in single
trees with limited data. (2) It efficiently processes binary inputs, resulting in clear leaf nodes without
complicated weighting. (3) It discovers non-linear symptom interactions (e.g., polyuria * polydipsia
" age > 45) that linear models miss while achieving perfect class separation. The result is an F1 score
of 1.00 in under 0.6 seconds, outperforming stacking classifiers and NNs.

6.2. Comparative Analysis of Results with already developed diabetes prediction models.

The analysis presented evaluates various approaches, including ML, DL, hybrid models, and
ensemble strategies, in predicting health outcomes for diabetic patients. The outcomes generated
from these methods were compared against other existing predictive models utilizing multiple
datasets (specifically Datasets 1 — 5). The Random Forest (RF) model demonstrated exceptional
performance, achieving high F1-scores, accuracy, and efficient computation times.. In contrast, other
ML models also delivered commendable results in terms of accuracy, speed, F1-scores, and AUC-
ROC, all within a reasonable timeframe for computation. Additionally, some DL models and
ensemble strategies showed promising results based on the same dataset samples and features. A
comprehensive comparative analysis of the performance of the models in this study, relative to
existing predictive model research, can be found in Table 10.

Table 10. Comparative analysis of models used and existing diabetes prediction models using F1-score [39].

d0i:10.20944/preprints202505.0135.v2

Datasets  Authors Outliers  Missing Values Model Precision Accuracy  Recall F1-score
[44] IOR Attribute Mean AB +XB - - 0.7900 -
[46] - - GBM - - 0.8700 -
[80] - - DA - 0.7400 0.7200 -
[81] - - ANN - 0.7600 0.5300 -
Dataset 1 [82] ESD k-NN HM-BagMoov - 0.8600 0.8500 0.7900
Dataset 2 [39] IOR CWM QML 0.7400 0.8600 0.8500 0.7900
[83] - NB RF 0.8100 0.8700 0.8500 0.8300
[84] - - k-NN 0.8700 0.8800 0.9000 0.8800
[56] GM Median RF - 0.9300 0.7970 -
[85] - - RF 0.9400 0.9400 0.8800 0.9100
[39] IOR CWM DL 0.9000 0.9500 0.9500 0.9300
Our Study IOR ADASYN AdaBoost 0.6716 0.7987 0.8333 0.7438
Our Study IQR ADASYN RF 0.6567 0.7857 0.8148 0.7273
Dataset 3 [76] - Excluded NN - 0.8240 0.3781 -
Dataset4 Our Study IOR Clustering RNN 0.4387 0.7144 0.4982 0.4414
Our Study IQR Clustering DNN 0.3286 0.7548 0.7280 0.4526
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Dataset 5 [77] - Ignoring Tuple RF 0.9740 0.9740 0.9740

Our Study IOR — RF 1.0000 1.0000 1.0000

0.9740
1.0000

CWM - Class Wise Median, GM — Group Median, IQR — Interquartile Range, GBM — gradient boosting machine,
DA - discriminant analysis, ESD — extreme studentized deviate, QML — Quantum ML, HM-BagMoov —

hierarchical multi-level classifiers bagging with multi-objective optimized voting.

7. Conclusions

People of all ages are becoming more susceptible to diabetes. The current study showed that
early diabetes identification might be crucial for treatment and enhanced health outcomes for
individuals with the disease. Obesity may be prevented by taking easy awareness-raising steps like
eating a low-sugar diet, exercising frequently, and leading a healthy lifestyle. Its relevance in
healthcare is apparent since models and ensemble strategies show increasing promise in predicting
diabetes and eventually lowering treatment costs and increasing computing efficiency. Finding the
optimal model for predicting datasets created for diabetes progression and risk prediction is the
primary contribution of this work.

Choosing the best ML or DL model to predict clinical outcomes in diabetes patients relies heavily
on the characteristics of the dataset used; there is no universally optimal model. Key factors that can
significantly influence model performance include sample size, feature richness (the variety and
significance of input variables), and data distribution across classes. A model may perform poorly on
a smaller or more diverse dataset that has missing values or imbalanced classes, even if it excels on a
larger, balanced, and feature-rich dataset. Furthermore, how well models generalize can be affected
by slight variations in clinical recording procedures, population characteristics, and measurement
standards across different institutions.

In this study, traditional ML models, including Random Forest (RF) and AdaBoost
demonstrated superior predictive performance on Datasets 1, 2, and 5. These datasets were
characterized by relatively small sample sizes and structured data formats. The ML models are less
data-intensive by nature and perform effectively in low-data environments, particularly when the
datasets contain high-quality and well-engineered features. Their ensemble-based architecture helps
reduce variance and improve robustness, making them well-suited for medical datasets where data
may be limited but well-defined.

Deep learning models, especially RNNs and DNNs, demonstrated superior performance
compared to traditional ML models on Datasets 3 and 4. These datasets were significantly larger and
more complex, featuring high-dimensional feature spaces and potentially nonlinear patterns,
conditions where deep learning models excel. DL architectures are designed to learn hierarchical and
abstract representations of features, enabling them to capture intricate, non-linear relationships that
traditional ML algorithms might struggle to detect. However, the enhanced performance of DL
models relies heavily on the availability of large, diverse datasets and adequate computational
resources for training. These results underscore the established differences in the suitability of ML
versus DL models across various data scenarios. Nonetheless, our prediction algorithms could be
more effective in forecasting the health outcomes of diabetes patients now that clinical data and
biomarkers are available.

We strongly recommend clinical researchers, data scientists, and healthcare practitioners against
relying solely on benchmark performances reported in the literature. It is advised that before
implementing any prediction tool for practical use, it is essential to conduct a thorough assessment
and validation of the model using their institution's datasets. This approach enhances accuracy,
security, and confidence in Al-assisted healthcare decision-making while also improving alignment
with regional patient characteristics and clinical workflows.
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Abbreviations
DM Diabetes Mellitus
ML Machine Learning
DL Deep Learning
AU-ROC  Area under the ROC
KPI Key Performance Indicators
IDF International Diabetes Federation
TIDMType 1 DM
T2DM Type 2 DM
GDM Gestational DM
RF Random Forest
LR Logistic Regression
XGBoost  Extreme Gradient Boosting
NB Naive Bayes
SVM Support Vector Machine
NN Neural Networks
RNN Recurrent NN
CNN Convolutional NN
DNN Deep NN
QML Quantum ML
KNN k-Nearest Neighbour
CVD Cardiovascular diseases
DT Decision Trees

LSTM Long Short-Term Memory
AdaBoost Adaptive Boosting

GRU Gated Recurrent Unit

ANN Artificial Neural Networks

MU Memory Usage

TT Inference time
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