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Abstract 

The global burden of diabetes mellitus (DM) continues to escalate, posing significant challenges to 
healthcare systems worldwide. This study compares machine learning (ML) and deep learning (DL) 
methods, their hybrids, and ensemble strategies for predicting the health outcomes of diabetic 
patients. This work aims to find the best solutions that balance computational efficiency and accurate 
prediction. The study systematically assessed a range of predictive models, including sophisticated 
DL techniques and conventional ML algorithms, based on computational efficiency and performance 
indicators. The study assessed prediction accuracy, processing speed, scalability, resource 
consumption, and interpretability using publicly accessible diabetes datasets. It methodically 
evaluates the selected models using key performance indicators (KPIs), training times, and memory 
usage. AdaBoost achieved the highest F1-score (0.74) on PIMA-768, while RF excelled on PIMA-2000 
(~0.73). An RNN led the 3-class BRFSS survey (0.44), and a feed-forward DNN excelled in the binary 
BRFSS subset (0.45). RF also achieved perfect accuracy on the EMR dataset (1.00) showing that model 
performance depends on each dataset’s scale, feature mix and label structure. The results highlight 
how lightweight, interpretable ML and DL models work in resource-constrained environments and 
for real-time health analytics. The study also compares its results with existing prediction models, 
confirming the benefits of selected ML approaches in enhancing diabetes-related medical outcomes, 
substantial for practical implementation, providing a reliable and efficient framework for automated 
diabetes prediction to support initiative-taking disease management techniques and tailored 
treatment. The study concludes the essentiality of conducting a thorough assessment and validation 
of the model using current institutional datasets as this enhances accuracy, security, and confidence 
in AI-assisted healthcare decision-making. 
 

Keywords: deep learning; diabetes mellitus; diabetes prediction; healthcare management outcomes; 
machine learning; performance indicators 
 

1. Introduction 

The hallmark of diabetes mellitus (DM), a chronic metabolic disease, is persistent hyperglycemia 
brought on by either decreased insulin action, insulin secretion, or both. Diabetes mellitus has become 
a pandemic in prevalence, impacting millions of people globally and dramatically raising morbidity, 
mortality, and medical costs of patients. To effectively manage diabetes mellitus, it is essential to 
avoid major complications such as retinopathy, neuropathy, and cardiovascular diseases, while also 
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significantly reducing healthcare costs. Accurate prediction and early diagnosis of diabetes and its 
related health outcomes are crucial [1, 2]. Machine learning (ML) and deep learning (DL) techniques 
are now essential for delivering predictive insights, facilitating individualized patient care, and 
supporting clinical decision-making processes with high precision due to improvements in 
processing power and data availability [3-5]. Obesity, lifestyle changes, and genetic factors have all 
contributed to the significant increase in diabetes incidence. Diabetes can cause serious consequences, 
such as renal failure, neuropathy, and CVD, if it is not treated or is not adequately controlled [6, 7]. 

The International Diabetes Foundation (IDF) has reported the rapid rise of people with diabetes 
aged 18 to 79 years from 4.7% to 8.5% within three decades from 1980 to 2015. The prevalence in 2019 
increased to an estimated percentage of 9.3% (463 million) and is projected to rise to 10.2% (578 
million) by 2030 and 10.9% (700 million) by 2045, respectively [2, 8].  This indicates a serious problem 
for both developed and developing countries. China, India, and the United States of America are the 
most impacted nations, although this rise is unevenly spread, with estimates of 143% in Africa 
(undiagnosed cases) and 15% in Europe [8]. 

Early identification and precise diabetes prediction are essential for prompt management and 
better patient outcomes, given the disease's increasing cost on healthcare systems [9-11]. Wearable 
technology combined with powerful ML and DL algorithms has enabled real-time glucose 
monitoring and insulin adjustment, significantly enhancing patients' freedom and lifestyle [12]. 
Recent research has proven that ML and DL techniques have evolved in this area. These case studies 
demonstrate industry improvements while laying the groundwork for future advancements [13]. DL-
based prediction models have also revealed remarkable accuracy in detecting early signs and 
progressions of DM-related issues, such as retinopathy, neuropathy, and nephropathy.  

On the other hand, healthcare systems are designed to improve sickness detection and diagnosis 
while simultaneously providing patients with the essentials for optimum health [13, 14]. Concerns 
over the quality of care offered by the healthcare system and the availability of treatment resources 
are common among patients [15]. Most people who would immediately benefit from better healthcare 
systems are those who have serious illnesses, including diabetes, hypertension, and irregular blood 
sugar levels [16]. A healthy society must prioritize health and healthcare. Hence, it is imperative to 
use state-of-the-art techniques to track the development of diabetes. Encouraging a healthy 
population and reducing the risk of illnesses like diabetes in future generations enables the 
development of novel techniques or hybrids that may be used in healthcare systems to improve the 
quality of life [17-20]. 

With their automated, data-driven insights that can improve clinical decision-making, ML and 
DL models have become potent medical diagnosis and prediction technologies [21, 22]. While DL 
models like convolutional neural networks (CNNs) and recurrent neural networks (RNNs) offer 
sophisticated feature extraction capabilities, a variety of ML models, such as decision trees (DT), 
random forest (RF), logistic regression (LR), and support vector machines (SVM), have been 
extensively utilized for diabetes prediction. Research is ongoing to determine how well these models 
perform in comparison regarding accuracy, dependability, and computing economy.  

This study focuses on two main research topics. The first centres around the differences in 
accuracy and reliability of ML and DL models and their hybrids in predicting diabetic patient 
outcomes across various healthcare settings. The second one compares ML, DL, their hybrid models, 
and ensemble strategies regarding processing time and computational efficiency when applied to 
selected datasets for DM personalized medicine. This demonstrates the effectiveness of various ML, 
DL models and ensemble strategies in diagnosing diabetes, tracking its progression, and evaluating 
performance indicators by analyzing multiple datasets and comparing different predictive models. 
This is true because the architectural complexity and internal mechanisms of ML and DL models 
significantly influence differences in processing speed, RAM usage, and overall computing efficiency. 

The rest of the paper is organized into sections as follows: Section 2 presents the review of 
previous related literature addressing diabetes prediction, Section 3 provides an overview of the 
methodology, a report on the datasets used, including data preprocessing performance metrics and 
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the models employed in this study; Section 4 presents the methodology flow diagram of the study; 
Section 5 presents the results of each model, highlighting their respective metrics and time efficiency; 
Section 6 presents a detailed discussion of the results and the comparative analysis; Section 7 provides 
the conclusion to the study and future direction.  

2. Related Works 

2.1. Synopsis of Diabetes Mellitus 

“Diabetes” refers to a group of metabolic disorders that are characterised by elevated blood 
glucose levels resulting from insufficient insulin production, impaired insulin utilisation, or a 
combination of both [23]. Chronic hyperglycemia is linked to long-term damage and dysfunction of 
organs such as the heart, blood vessels, kidneys, eyes, and nerves [23, 24]. Individuals with diabetes 
have varying effects based on their age, income, race, and ethnicity. Environmental and genetic 
factors are catalysts for diabetes, resulting in insulin resistance and beta-cell death [25-27].  

To prevent comorbidities such as CVD, neuropathy, and retinopathy, diabetes care entails initial 
identification and aggressive control. Diabetes is a complicated condition with a tendency to develop 
silently due to lifestyle, environmental, and hereditary factors [9]. Early indicators of prediabetic 
diseases are often misrepresented by traditional diagnostic and treatment techniques, which can 
increase healthcare expenses and delay interventions. Thus, new methods for controlling diabetes are 
crucial for reducing its impact on people and enhancing positive world health outcomes [24, 28]. Type 
1 diabetes mellitus (T1DM), type 2 diabetes mellitus (T2DM), and gestational diabetes mellitus 
(GDM) are the three general forms of diabetes mellitus [29]. The characteristic feature of T1DM, also 
referred to as insulin-dependent diabetes, is the autoimmune destruction of pancreatic beta cells, 
resulting in insufficient insulin production. T1DM affects 5–10% of people with diabetes. 
Ketoacidosis, or high blood acidity due to ketones, is often the initial sign of T1DM, which can 
develop slowly in adults or swiftly in children. It is one of the irreversible types. T1DM is becoming 
more common worldwide at a rate of 3% every year, affecting both sexes equally and leading to a 
sharp decline in life expectancy [29, 30]. 

Non-insulin-dependent diabetes is another name for T2DM. It is characterized by beta-cell 
malfunction and insulin resistance [29, 30]. T2DM accounts for 90 to 95 percent of all diabetes cases. 
The body creates more insulin to compensate for the deficiency; nevertheless, beta-cell activity 
progressively decreases, leading to insulin insufficiency [31]. T2DM is associated with aging, obesity, 
sedentary lifestyles, high blood pressure, impaired lipid metabolism, and genetic factors. Ethnicity, 
which is more prevalent in some racial groups, is another aspect of T2DM prevalence [31-33]. 

Pregnancy-related hyperglycemia is a common side effect of gestational diabetes mellitus 
(GDM) [30, 34]. Despite impacting the mother and the foetus, it is frequently controllable with 
medicine, food, and exercise. GDM risk factors include obesity, advanced maternal age, and a history 
of glucose intolerance. Women with GDM have a greater lifetime risk of developing T2DM diabetes. 
Although there are differences in international diagnostic methods for GDM, early detection is crucial 
for therapy and issue prevention [35, 36]. 

 

2.2. Existing Comparative Analysis of ML, DL, and ensemble models for DM prediction 

Recent studies have investigated various ML and DL techniques for predicting chronic illnesses, 
offering valuable insights into the effectiveness and application of these models. Mahajan et al. [37] 
assessed 15 ensemble ML models across 16 datasets, concluding that stacking methods yielded the 
best performance in chronic illness prediction. Similarly, Flores et al. [38] employed feature selection 
techniques to evaluate SVM, RF, and neural networks (NN), revealing that RF achieved the highest 
accuracy of 98.5% for early-stage diabetes prediction. 

In another study, Gupta et al. [39] compared DL and quantum machine learning (QML) using 
the PIMA dataset, finding that a DL-based Multi-Layer Perceptron (MLP) outperformed QML 
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approaches. Aggarwal et al. [40] investigated eight classifiers, identifying Naïve Bayes (NB) as the 
most accurate model, while Refat et al. [3] established that XGBoost surpassed both DL and 
traditional ML models, achieving an impressive 99% accuracy. 

Swathy and Saruladha [41] reviewed CVD prediction models, advocating for hybrid approaches 
to enhance predictive accuracy. Fregoso-Aparicio et al. [42] and Butt et al. [5] highlighted the 
effectiveness of tree-based models combined with Internet of Things (IoT) integration for real-time 
glucose monitoring. Additionally, Uddin et al. [43] identified RF and SVM as consistently high-
performing ML algorithms in disease prediction tasks. Zarkogianni et al. [9] validated the benefits of 
ensemble learning in assessing CVD risk associated with T2DM, showing that hybrid models like 
HWNN and Self-Organizing Maps (SOM) improved predictive capabilities. 

Further notable contributions include Hasan et al., [44] who achieved a 95% area under the curve 
(AUC) using an ensemble framework; Ayon and Islam [4], as well as Naz and Ahuja [45], whose DL 
models reached accuracy levels exceeding 98%; Lai et al. [46], who optimized Gradient Boosting 
Machine (GBM) techniques for Canadian demographics; Dagliati et al. [25], who predicted diabetic 
complications with an accuracy of 83.8% using LR; and Sahoo et al. [47], who emphasized the 
superiority of CNN in managing high-dimensional healthcare data. 

Building upon these findings, the current research utilizes five publicly available datasets and 
implements essential preprocessing steps such as outlier removal and imputation. A comparative 
analysis of various models, including LR, NB, Decision Trees (DT), RF, SVM, K-Nearest Neighbours 
(KNN), XGBoost, AdaBoost, as well as several neural networks like CNN, Deep Neural Networks 
(DNN), Recurrent Neural Networks (RNN), Long Short-Term Memory networks (LSTM), 
Autoencoders, and Gated Recurrent Units (GRU), is conducted. Furthermore, hybrids of these 
models and ensemble strategies, such as systematic bagging and stacking, are evaluated. The 
performance of these models is measured using a comprehensive set of metrics, including accuracy, 
precision, recall, F1-score, area under the receiver operating characteristic curve (AU-ROC), 
coefficient of determination (R²), mean squared error (MSE), mean absolute error (MAE), root mean 
square deviation (RMSD), number of parameters, optimal parameters, memory usage, and 
computation time. 

. 

3. Materials and Methods 

This section provides a summary of the techniques and algorithms used in the study, outlining 
the methods and how they work. It is organized into different sections: (i.) sampling techniques for 
dataset imbalance, (ii.) ML and DL techniques used, where each model offers an overview of the 
fundamental concepts behind the techniques, ensuring their role in the research is understood, (iii) 
Performance metrics used (iv.) Datasets, and finally (v.) Preprocessing.  

3.1. Sampling Techniques for Datasets Imbalance 

3.1.1. Oversampling Techniques 

a) Synthetic Minority Oversampling Techniques (SMOTE): SMOTE balances class distribution 
by creating artificial samples for the minority class. Instead of duplicating existing samples, it 
generates new instances by interpolating between them, selecting k nearest neighbours, and 
using a random interpolation factor to promote diversity. [48]. SMOTE is represented as: 

   𝑆 =  {𝑥௜ | 𝑥௜ ∈ ℝ௡, 𝑖 = 1, 2, … , 𝑁}             
 (1) 

where 𝑥௜  = ith minority instances, n = No. of features (dimensions) and N = number of 
minority class instances.  

The k nearest neighbours of 𝑥௜  based on a distance metric (usually Euclidean distance), 
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denoting the set of these neighbours as: 

   𝑁𝑁(𝑥௜) =  ൛𝑥௝  | 𝑥௝ ∈ 𝑆, 𝑗 ≠ 𝑖, ൟ     
 (2) 

where 𝑥௝  = k-nearest neighbours of 𝑥௜ . Finally, it creates a new synthetic sample 𝑥௡௘௪  by 
randomly choosing a neighbour 𝑥௝ ∈ 𝑁𝑁(𝑥௜)  and then generate the 𝑥௡௘௪  through 
interpolation between 𝑥௜ and 𝑥௝ 

   𝑥௡௘௪ =  𝑥௜ +  𝛼 .  ൫𝑥௝ −  𝑥௜൯          
 (3) 

where 𝛼 is the random scalar randomly drawn from the uniform distribution between 0 and 
1 i.e. U(0,1). These steps continue until the desired number of synthetic minority samples has 
been created. 

b) Adaptive Synthetic Sampling (ADASYN): ADASYN, an adaptive extension of SMOTE, 
emphasizes complex minority class samples by assigning greater weights to those 
near the decision boundary or surrounded by majority class samples. It generates 
synthetic data in these difficult areas, improving model robustness and refining the 
decision boundary in imbalanced datasets. Mathematically, it is represented in this 
regard: 
 𝑀𝑖𝑛𝑜𝑟𝑖𝑡𝑦 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 =  𝑆௠௜௡ =  {𝑥௜  | 𝑥௜ ∈ ℝ௡ , 𝑖 =

1, 2, … , 𝑁௠௜௡}   (4) 

and 

 𝑀𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 =  𝑆௠௔௝ =  ൛𝑦௜  | 𝑦 ∈ ℝ௡, 𝑗 =

1, 2, … , 𝑁௠௔௝ൟ    (5) 

𝐾  nearest neighbours’ computation for the majority class for each minority sample 𝑥௜  is 
given as: 

 𝑟̂௜ =  
ே௨௠௕௘௥ ௢௙ ெ௔௝௢௥௜௧௬ ௖௟௔௦௦ ே௘௜௚௛௕௢௨௥௦ ௢௙ ௫೔ 

 ௄
 , 𝑖 =

1, 2, … , 𝑁௠௜௡  (6) 

where if  𝑟̂  ≈ 0 , 𝑥௜  is easy to classify, but if 𝑟̂  ≈ 1 , 𝑥௜  is difficult to classify and hence 
requires more synthetic samples. Normalized density distribution for each minority sample 
(difficult scores) 

   𝑟̂௜ =  
௥೔

 ∑ ௥ೕ
ಿ೘೔೙
ೕసభ

 , 𝑖 = 1, 2, … , 𝑁௠௜௡          

 (7) 

where the distribution 𝑟̂௜  represents the importance of each minority sample in 
oversampling. The method then computes how many synthetics to generate from each 
minority sample as: 

   𝑔௜ =   𝑟̂௜  × 𝐺, 𝑖 = 1, 2, … , 𝑁௠௜௡         
 (8) 

where 𝑔௜ can be rounded to the nearest integer. Therefore, for each minority sample 𝑥௜, it 
then generates 𝑔௜ synthetic samples by randomly selecting a minority-class neighbour 𝑥௭௜ 
from the K-nearest neighbours of 𝑥௜  belonging to the minority class and then generates the 
synthetic samples 𝑥௡௘௪  
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   𝑥௡௘௪ =  𝑥௜ +  𝛼 . (𝑥௭௜ − 𝑥௜), 𝛼 ~ 𝑈(0,1)      
 (9) 

This process continues 𝑔௜  times for each minority sample 𝑥௜ 

c) SMOTE-ENN and Random Oversampling are other techniques used to address class 
imbalance in datasets. SMOTE-ENN enhances decision boundaries by generating synthetic 
samples for the minority class and removing ambiguous instances using Edited Nearest 
Neighbours [49, 50]. Random Oversampling, on the contrary, increases the minority class size 
by duplicating existing samples, which is simple and efficient but carries a risk of overfitting. 
This risk can be mitigated by resampling with replacement to maintain a more diverse and 
balanced dataset [51]. 

3.1.2. Undersampling Techniques 

Several undersampling techniques have been developed to address class imbalance in datasets. 
Among these, clustering-based undersampling methods are specifically utilized to manage such 
imbalances effectively. One effective method involves using clustering centroids, particularly 
through the K-means algorithm. This method consolidates clusters of majority class instances into 
singular representative points, effectively diminishing data volume while maintaining critical 
patterns [52]. In contrast, random undersampling, although straightforward and computationally 
efficient, may discard valuable samples and increase variance. To improve upon this, random 
undersampling can be enhanced with Tomek Links, which removes borderline samples that blur the 
class boundaries, ultimately improving clarity and classifier performance [53]. NearMiss-3 selects the 
majority class instances that are farthest from minority samples. This strategy enhances separability 
and reduces class overlap. One-Sided Selection (OSS), an alternative approach, refines the dataset 
further by combining Tomek Link removal with the Condensed Nearest Neighbour algorithm, 
retaining only a compact and representative subset of the majority class. Additionally, 
Neighbourhood Cleaning (NCR) employs k-NN classification to identify and eliminate noisy or 
misclassified samples from the majority class. This process helps maintain the integrity of the dataset 
while minimizing overlapping [52, 54]. Among these techniques, clustering is highlighted as a 
structured, data-preserving method for our study. It offers a strategic advantage by retaining 
meaningful patterns while significantly reducing the majority class, ultimately improving the 
model’s efficiency and classification performance [52, 54]. 

3.2. Machine Learning and Deep Learning Techniques employed. 

3.2.1. Machine learning (ML)  

ML is a subfield of artificial intelligence (AI) that allows computers to recognize patterns in data 
and learn from them with minimal human intervention. ML techniques fall into three main 
categories: supervised learning (classification and regression with labelled datasets), unsupervised 
learning (clustering and dimensionality reduction with unlabelled datasets), and reinforcement 
learning. 
a) Logistic Regression (LR): A binary classification algorithm that uses the sigmoid function 

to map inputs to a 0-1 range, indicating class likelihood. It optimizes the log-likelihood 
function through Gradient Descent, assuming a linear relationship between variables [55, 
56]. 

b) Naïve Bayes (NB): A probabilistic classifier that applies Bayes' theorem, relying on the 
assumption of conditional independence among features. It's effective in spam filtering 
and text categorization by calculating posterior probabilities [56-58]. 

c) Decision Trees (DT): This supervised learning method splits data into subsets based on 
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features to make predictions. It consists of nodes (decisions), branches (outcomes), and 
leaves (predictions), using criteria like MSE or Gini Index to determine splits [58]. 

d) Random Forest (RF): An ensemble method that trains multiple decision trees and 
combines their outputs. It reduces overfitting by bagging (training on random data 
samples) and selecting random feature subsets. Predictions are made through majority 
voting or averaging [10, 16, 56, 59]. 

e) Support Vector Machine (SVM): A technique that identifies the optimal hyperplane to 
separate classes by maximizing the margin between them, utilizing support vectors. 
Kernel functions transform non-linearly separable data into higher dimensions for 
separation [10, 16, 56, 60]. 

f) K-Nearest Neighbours (KNN): A classification method that assigns data points based on 
the majority class of their k-nearest neighbors using distance metrics like Euclidean. It has 
a low training cost but high inference cost, with performance influenced by the choice of 
k [16, 61-63]. 

g) Extreme Gradient Boosting (XGBoost): An efficient gradient boosting method for 
accuracy, using a second-order Taylor expansion for loss function approximation. It 
enhances performance with cache-aware access and regularization techniques to mitigate 
overfitting [10, 16, 59, 60]. 

h) Adaptive Boosting (AdaBoost): An ensemble method that combines weak learners, 
usually decision stumps, into a strong classifier. It dynamically adjusts sample weights to 
focus on misclassified instances, improving performance [16, 56]. 

3.2.2. Deep Learning models  

DL models, built on complex artificial neural networks (ANN), excel at extracting nonlinear 
patterns from large datasets. They develop hierarchical feature representations automatically, 
reducing the need for manual engineering. This enhances their effectiveness in image recognition, 
natural language processing (NLP), speech recognition, and healthcare diagnostics. However, they 
require significant data and processing power to perform optimally. 

a) Convolutional Neural Networks (CNN): CNNs are deep learning models for grid-like data (e.g., 
images). They utilize convolutional layers for spatial feature extraction, pooling layers for 
dimensionality reduction, and fully connected layers for classification or regression, leveraging 
weight sharing and local connectivity [16, 64, 65]. 

b) Deep Neural Networks (DNN): DNNs consist of hidden layers between input and output, 
enabling the learning of complex patterns through interconnected neurons and nonlinear 
activation functions [5, 14, 66]. 

c) Recurrent Neural Networks (RNN): RNNs retain memory of previous inputs using hidden states, 
making them suitable for interpreting sequential data and capturing temporal dependencies [16]. 

d) Long Short-Term Memory (LSTM): LSTMs enhance RNNs by addressing the vanishing gradient 
problem with gates that manage information flow. This allows them to effectively capture long-
term relationships in data, useful in tasks like time-series forecasting and speech recognition [14, 
16, 68]. 

e) Gated Recurrent Unit (GRU): GRUs are a type of RNN that uses gating techniques to manage 
information flow, helping retain important historical data while discarding irrelevant details [16]. 
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3.2.3. Hybrids and Ensemble strategies 

These ML and DL models combine predictions from individual models to enhance overall 
generalization, accuracy, and resilience. By leveraging the diversity among individual classifiers or 
regressors, these techniques reduce variance, bias, and sensitivity to noisy data [67, 68]. General 
ensemble methods, including stacking and bagging, were routinely implemented using the best-
performing base learners discovered for each dataset. By integrating the advantages of several 
separate models, these ensemble approaches seek to improve generalization, mitigate overfitting, and 
reduce variation, to improve prediction performance. Using bootstrap sampling, several instances of 
the same learning algorithm were trained on various data subsets in the bagging technique. The 
predictions of these instances would then be combined, usually by majority vote or averaging. This 
approach was particularly effective for stabilizing models such as decision trees, which often 
experience significant variation. 

In contrast, stacking involves training a meta-learner to aggregate the results of multiple base 
models. The complementary strengths of heterogeneous models enhance the effectiveness of stacked 
ensembles. The effectiveness of these ensemble approaches compared to their base models, that is, 
the un-stacked and un-bagged counterparts, was consistently observed across all datasets examined. 
This improvement in performance highlights the advantage of ensemble learning in leveraging 
several hypotheses to create a more reliable and accurate predictive model, particularly in varied 
healthcare data contexts like diabetes progression prediction and categorization 

3.3. Performance Metrics Tools 

3.3.1. Hyperparameter Tuning 

Through methodical adjustment of configuration parameters that govern the learning process, 
hyperparameter tuning is crucial for optimizing model performance. While more sophisticated 
approaches like Bayesian optimization provide more effective substitutes, conventional methods like 
grid search and random search are frequently computationally costly. To intelligently explore the 
hyperparameter space, this study uses Optuna, a sophisticated optimization system that uses Tree-
structured Parzen Estimators (TPE). Optuna is especially well-suited for intricate ML and DL models 
because of its adaptive sampling and early pruning features, drastically lowering computing 
expenses while guaranteeing ideal parameter selection [69, 70]. Utilizing Optuna leads to faster 
convergence on high-performing configurations, seamless interaction with various ML frameworks, 
and enhanced reproducibility through detailed logging and visualization. Optuna is more efficient 
than traditional methods since it dynamically prioritizes promising trials and discards 
underperforming ones. This makes it the perfect option for creating reliable models with enhanced 
generalization powers, especially when computing resources are limited. The framework has shown 
itself to be a helpful tool for contemporary ML pipelines due to its efficacy in various applications. 

  

3.3.2. Evaluation Metrics 

To guarantee a thorough model evaluation, performance metrics were used.  True positive (TP) 
indicated that the model predicted diabetes I present or has progressed; true negative (TN) signifies 
that the model predicts the absence of diabetes and its progression; false positive (FP) indicated that 
the model predicted incorrectly the presence of diabetes; and false negative (FN) signifies the failure 
of the model predicting the presence of diabetes while it exists.  

Accuracy measures the proportion of correct predictions, both positive and negative, against the 
total number of predictions made, resulting in the overall percentage of accurate predictions. While 
accuracy appears simple, it may be misleading for imbalanced datasets as it does not account for 
different types of errors. 

    𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
்௉ା்

்௉ା்ேାி௉ାிே
        (10) 
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Precision calculates the percentage of accuracy by which diabetes is correctly identified by the 
model. This measure is critical when FP can lead to high costs, such as unnecessary medical 
procedures or false fraud alerts. 

    𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
்௉

்௉ାி௉
            (11) 

Recall (Sensitivity): calculates the percentage of TP that are successfully detected, which 
indicates how well the model detects positive cases.  

    𝑅𝑒𝑐𝑎𝑙𝑙 =  
்௉

்௉ାிே
            (12) 

F1-score combines precision and recall using their harmonic means to assess model performance 
fairly. This is our primary assessment statistic since it evenly weights FP and FN, effectively 
managing class imbalance. 

    𝐹ଵ =  
௉௥௘௖௜௦௜௢௡ × ோ௘௖௔௟௟

௉௥௘௖௜௦௜௢௡ ା ோ௘௖௔௟௟
           (13) 

AUC-ROC justifies the model's capacity to differentiate between classes across all potential 
classification thresholds. A perfect classifier obtains an AUC of 1, whereas 0.5 is obtained by random 
guessing. 

    𝐴𝑈𝐶 =  ∫ 𝑅𝑂𝐶
ଵ

଴
(𝝉)𝑑𝜏          (14) 

where 𝝉 represents the decision threshold 
Mean Squared Error (MSE) measures the average squared difference between predicted and 

actual values penalizing large errors more heavily. 
    𝑀𝑆𝐸 =  

ଵ

௡
∑ ( 𝑦௜ − 𝑦ො௜)ଶ௡

௜ୀଵ       (15) 
Mean Absolute Error (MAE) measures the average of absolute difference between predicted and 

actual values treating all errors equally. 
    𝑀𝐴𝐸 =  

ଵ

௡
∑ | 𝑦௜ − 𝑦ො௜|௡

௜ୀଵ       (16) 
Root Mean Square Deviation or Error (RMSD/RMSE) performs the square root of MSE keeping 

the same units as the predicted value and more interpretable than MSE. 

     𝑅𝑀𝑆𝐸 =  ට
ଵ

௡
∑ ( 𝑦௜ − 𝑦ො௜)

ଶ௡
௜ୀଵ       (17) 

Number of Parameters (NoP) signifies the total number of learnable elements (such as weights 
and biases) with respect to the selected model. It is evident that more parameters signify higher 
complexity and capacity, but higher risks of overfitting. 

Inference Time, or Time taken (TT) as noted in the results tables, logs the time needed to produce 
predictions to assess the model's computational efficiency. Although it has no bearing on the 
statistical performance of the model, this parameter is essential for real-time applications and 
deployment in contexts with limited resources. 

Since the F1-score provides the most balanced evaluation for medical diagnostics by equally 
weighing false positives and false negatives, the results in Section 4 are organized according to F1-
score.  

3.4. Datasets 

This study analyzes five diabetes-related datasets from the UCI Machine Learning Repository, 
CDC, and Kaggle, summarized in Table 1, which outlines their sources, characteristics, total 
instances, and positive/negative counts. Data preprocessing included normalization to ensure 
consistency and enhance result precision. Recursive Feature Elimination (RFE) was applied for 
feature selection, and hyperparameter tuning using Optuna was conducted for each classifier during 
model construction.  

Table 1. Datasets Statistics. 

Description Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 
Source UCL Machine Learning Repository, Kaggle and CDC websites 

Samples 768 2000 253,680 70692 520 
Features 9 9 21 21 17 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 June 2025 doi:10.20944/preprints202505.0135.v2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at  Electronics 2025, 14, 2583; doi:https://doi.org/10.3390/electronics14132583

https://doi.org/10.20944/preprints202505.0135.v2
http://creativecommons.org/licenses/by/4.0/
https://doi.org/https://doi.org/10.3390/electronics14132583


 10 of 39 

 

Positive instances 268 684 35346 35346 320 
Negative instances 500 1316 218334 35346 200 

 

3.4.1. Dataset 1 

This is the PIMA Indian Diabetes dataset called Dataset 1. It has 768 samples and nine features, 
including clinical measures and patient characteristics as visualized in Figure 1. The dataset features 
are Pregnancy, Glucose, Blood Pressure, Insulin, Skin Thickness, BMI, Diabetes Pedigree-Function, 
Age, and Outcome. The dataset contains no duplicate entries or missing values (NaNs); all 
characteristics are numerical. However, several features, especially those related to blood pressure, 
skin thickness, insulin, glucose, and BMI, contain sundry zero values, which is biologically 
impossible. Section 3.3 will discuss these discrepancies and their ramifications [71-75]. 

3.4.2. Dataset 2 

This is also PIMA Indian Diabetes dataset, henceforth referred to as Dataset 2. It also has numerical 
characteristics about clinical measures and patient demographics and is structured similarly to 
Dataset 1. However, it is much larger with 2000 samples rather than 768, but 9 features. 

3.4.3. Dataset 3 

This is an annual Behavioral Risk Factor Surveillance System (BRFSS) dataset captured by the 
Centre for Disease Control (CDC). This dataset is for the year 2015. Henceforth, the dataset would be 
known as Dataset 3. The target variable has three classes (0, 1, 2). 0 is for no diabetes or only during 
pregnancy, 1 is for prediabetes, and 2 is for diabetes, as depicted as feature Diabeter_012 in Figure 2. 
There is a class imbalance in the dataset, but it has 21 features and 253,680 samples [76]  

 

Figure 1. Feature Distribution for Datasets 1 and 2 (PIMA dataset). 
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Figure 2. Feature Distribution for Datasets 3 (BRFSS_2015 dataset). . 

3.4.4. Dataset 4 

This variant of Dataset 3 consists of 70,692 samples and 21 features of the BRFSS dataset captured 
by CDC for 2015. Here, the target consists of two classes (0, 1). 0 is for no diabetes, and 1 is for 
prediabetes or diabetes. It also contains class imbalance and would be known as Dataset 4 in this 
study. 

3.4.5. Dataset 5 

The early-stage diabetes risk prediction of patients from Sylhet Diabetes Hospital, Bangladesh, 
were captured in this dataset. Direct surveys from the patients were used in the study [77]. This 
dataset report includes 520 people with diabetes-related symptoms and information on people who 
may have diabetes-related symptoms. The dataset has 520 cases and 17 features, including the target 
class. The dataset, collected in 2020, was verified by a certified physician from Sylhet Diabetes 
Hospital. The dataset, which includes several categorical (Yes/No) variables associated with diabetes 
diagnosis, is displayed in Table 1. The "Class" property indicates the patient's diabetes status as either 
positive (1) or negative (2). The values of 1 (yes) or 2 (no) for each feature indicate whether the 
associated symptom or condition is present. However, there are four categories for the "Age" 
attribute: 1 for those aged 20–35, 2 for those aged 36–45, 3 for those aged 46–55, 4 for those aged 56–
65 and 5 for those aged above 65 as visualized in Figure 3. These characteristics and values serve as 
the foundation for developing a classification algorithm that uses patient data to forecast the 
diagnosis of diabetes [78, 79]. 
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Figure 3. Feature Distribution for Dataset 5 (BRFSS_2015 dataset). 

3.5. Preprocessing 

Improving model accuracy and reliability through preprocessing datasets is essential for 
preparing raw data for ML procedures. This process often includes cleaning the data to address 
outliers and missing values, transforming the data through standardization or normalization, and 
converting categorical features using one-hot encoding. Various dimensionality reduction techniques 
help manage large sets of features. Additionally, sampling techniques like ADASYN and Clustering 
was employed to correct class imbalances. 

To effectively evaluate the performance of the study's model, the five datasets are divided into 
subsets with an 80:20 ratio for training and testing/validation. Proper preprocessing not only reduces 
computational complexity, but also enhances the predictive ability of ML models, ensuring high 
dataset quality. 

Performing the exploratory data analysis (EDA) of each dataset, it was observed that zero values 
exist in columns where they are not physiologically conceivable, which is a significant problem in 
both Datasets 1 and 2. Missing data may be entered as zeros instead of NaNs, resulting in inaccurate 
numbers. Table 2 shows zero values concerning affected features under Datasets 1 and 2. 

Table 2. Number of dataset features labelled as zero values. 

 Feature Dataset 1 Dataset 2 
Pregnancies 111 301 

Glucose 5 13 
BloodPressure 35 90 
SkinThickness 227 573 

Insulin 374 956 
BMI 11 28 

DiabetesPedigreeFunction 0 0 
Age 0 0 
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Two imputation techniques are employed to deal with the problem of zero values in columns 
such as BMI, Insulin, Glucose, Blood Pressure, and Skin Thickness) is biologically impossible: 
1. Median Imputation: In each column, the median of non-zero values for zeros is substituted. 
2. Minimum Imputation: Instead of actual measurement, the zeros may mean data was not collected. 

This might indicate that the physiological levels of the patients with missing results were normal. 
Consequently, we used each column's smallest non-zero value to impute missing data.  
Remarkably, models trained using minimum imputation on the datasets consistently performed 

better than those trained with median imputation. This validates our prediction that missing data 
were likely connected with patients having normal measures rather than abnormal or severe results. 
Given that various imputation techniques can substantially influence model performance, this 
conclusion implies that comprehending the nature of missing data is essential in medical datasets.  

The target variable exhibited class imbalance, complicating the study’s analysis. In Dataset 1, 
there were 400 entries for 0 (No) and 214 for 1 (Yes), while Dataset 2 had 1053 for 0 and 547 for 1. We 
focused on oversampling techniques, as undersampling was unfeasible due to the limited data. 
Various methods were tested, including ADASYN, SMOTE-ENN, random oversampling, and 
SMOTE, with ADASYN yielding the best results. This method generates synthetic samples near the 
decision boundary, highlighting the importance of selecting the right data balancing strategy for 
model performance. 

Table 3. Imbalanced values in the Outcome (Target) variable. 

Outcome (Target class) Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 
0 400 1053  213,703 218,334 200 
1 214 547 4631 35,346 320 
2 -  - 35,346 - - 

Datasets 3 and 4 had considerable data points and were unbalanced, but Datasets 1 and 2 had 
fewer data points, as shown in Table 3. We thus used undersampling techniques on the datasets to 
lessen this problem. Instead of random undersampling, we employed clustering-based 
undersampling on datasets 3 and 4, which maintains the underlying data distribution. Clustering-
based undersampling chooses representative samples from each cluster, guaranteeing that important 
patterns and class features are preserved, in contrast to conventional techniques that randomly 
exclude data points. It keeps crucial information from being lost despite its high computational cost. 

Simple binary encoding was used to transform (encode) categorical characteristics into 
numerical representations to guarantee consistency across all datasets. To normalize the data and 
guarantee that each feature had a similar range, feature scaling was also used. This step is essential 
for optimising ML models because it keeps characteristics with bigger magnitudes from 
overpowering those with smaller values.  

Due to the considerable class imbalance, where the dominant class significantly outnumbered 
the minority class, the experimental assessment revealed that modelling datasets 3 and 4 presented 
significant obstacles. The models' total incapacity to detect any occurrences of the minority class 
demonstrates that this extreme imbalance ratio made it difficult to create useful prediction models 
on the original datasets. However, applying hyperparameter tuning, the model was able to present 
reasonable results. This is essentially based on the size of the datasets and the corresponding features. 

4. Methodology Flow Diagram 

The flow diagram in Figure 4 illustrates a comprehensive pipeline for predicting diabetes 
outcomes using ML and DL models. It begins with data selection, which incorporates diverse features 
and lifestyle factors. The next step involves dividing the data into training and testing sets. During 
model training, several preprocessing steps were conducted, including imputation, normalization, 
feature selection, and hyperparameter tuning. Different ML, DL, and ensemble strategies models are 
then applied to the data. Finally, the performance of the models is evaluated using metrics such as 
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accuracy, precision, recall, F1-score, ROC-AUC, MSE, MAE, R2, RMSE, and computation time, 
ensuring both predictive accuracy and efficiency. 

The 80:20 train-test split ratio employed in this study is a commonly accepted standard in ML 
applications, as it strikes a balance between model training and evaluation. By allocating 80% of the 
data for training, the model has access to a large and representative subset of the dataset, enabling it 
to effectively learn the underlying patterns, relationships, and distributions. The remaining 20% is 
set aside for testing, serving as an independent evaluation set. This allows this study to assess the 
model's ability to generalize to new, unseen data, which is essential for understanding how well the 
model may perform in real-world scenarios. 

Choosing lower split ratios, such as 70:30 or 60:40, can lead to a smaller training set. This 
limitation can significantly hinder the model’s ability to learn, especially when the overall size of the 
dataset is limited. This issue is particularly evident in Datasets 1, 2, and 5, which have few samples. 
Reducing the training data in these cases can worsen problems like underfitting, unstable model 
behavior, and poor predictive performance. Therefore, maintaining an 80:20 split in this study is not 
only methodologically sound but also strategically important, especially for small or sensitive 
healthcare datasets where maximizing training information is crucial for the model's success. 
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Figure 4. Methodology Flow Diagram . 

5. Results Analysis 

The results demonstrate the outcomes of a comprehensive investigation, utilizing comparison 
tables, confusion matrices, density graphs, and informative bar charts across all models employed. 
The Python programming language platform, version 3.11.5 packaged by Anaconda3, was used to 
implement all these processes. The model training procedure was systematically conducted for each 
model, following an encoded sequence of features. The datasets were split into training and testing 
groups. The training process was managed using the X_train and y_train values. The performance of 
the models was recorded by generating the predictions on the test datasets (X_test). In contrast, the 
efficiency of the models was assessed by evaluating their performance through metrics such as 
accuracy, precision, recall, F1-score, AUC-ROC, among others. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 June 2025 doi:10.20944/preprints202505.0135.v2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at  Electronics 2025, 14, 2583; doi:https://doi.org/10.3390/electronics14132583

https://doi.org/10.20944/preprints202505.0135.v2
http://creativecommons.org/licenses/by/4.0/
https://doi.org/https://doi.org/10.3390/electronics14132583


 15 of 39 

 

Confusion matrix and AUC-ROC visualization were also used in this study to gain detailed 
information on the performance of each model. This allowed for TP, TN, FP, and FN identification, 
while heatmap visualization was presented to enhance the perception of performance complexities 
in these matrices. Graphs were used to visualize the outputs and comparisons, while the tables 
illustrate the values assigned to each model’s performance. 

The study also employs Principal Component Analysis (PCA), t-distributed Stochastic Neighbor 
Embedding (t-SNE), and Linear Discriminant Analysis (LDA) to facilitate feature extraction, noise 
filtering, and the visualization of high-dimensional data. These methods are particularly useful for 
handling multi-class outputs, such as in Dataset 3, by transforming high-dimensional data into a 
lower-dimensional space. 

5.1. Result Analysis on Dataset 1 

After conducting a series of analyses on Dataset 1 (PIMA—768/9), results are presented as 
illustrated in Table 4, Figures 5, 6, 7, and 8. These figures show the analysis outcomes, including the 
corresponding confusion matrix, precision and recall metrics, the AUC-ROC representation, 
heatmaps, and the PCA projections of the results. The AdaBoost model performed the best on this 
dataset, achieving an F1-score of 0.74. 

 

 

Figure 5. Confusion matrix for the AdaBoost model. 

 

 

Figure 6. PCA Projection for Dataset 1 class outcomes. . 
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Figure 7. AUC Curves for the AdaBoost model. 

Table 4. Model Performance Comparison for Dataset 1 using F1-score as reference. 
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All values are rounded to four decimal places. R2—coefficient of determination, MSE—Mean Square Error, 
MAE—Mean Absolute Error, RMSE—Root Mean Square Error, TT—Time Taken, MU—Memory Usage. NoP—
Number of Parameters. 
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Figure 8. Heatmaps for Datasets 1 and 2. 

 

5.2. Result Analysis on Dataset 2 

The performance analysis of Dataset 2 (PIMA – 2000/9), presented in Table 5 and Figures 9, 10, 
and 11, illustrates the results of the analysis, including the confusion matrix, Precision/Recall metrics, 
AUC-ROC, and PCA projection of the class outcome representation. The RF model demonstrated the 
highest performance on this dataset, achieving an F1-score of ~0.73. 
      

       

Figure 9. Confusion matrix for the Random Forest model. 

 

Figure 10. AUC and Precision-Recall Curves for the Random Forest model. 

  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 June 2025 doi:10.20944/preprints202505.0135.v2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at  Electronics 2025, 14, 2583; doi:https://doi.org/10.3390/electronics14132583

https://doi.org/10.20944/preprints202505.0135.v2
http://creativecommons.org/licenses/by/4.0/
https://doi.org/https://doi.org/10.3390/electronics14132583


 19 of 39 

 

Table 5. Model Performance Comparison for Dataset 2 using F1-score as reference. 

Model 
Accu
racy 

Preci
sion 

Rec
all 

F1 
Scor

e 
AUC-
ROC R2 

MS
E 

M
AE 
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SE TT MU 

NO
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RF 
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0.05
89 

0.2
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All values are rounded to four decimal places. R2—coefficient of determination, MSE—Mean Square Error, 
MAE—Mean Absolute Error, RMSE—Root Mean Square Error, TT—Time Taken, MU—Memory Usage. NoP—
Number of Parameters.. 

 

Figure 11. PCA Projection for Dataset 2 class outcomes. 

5.3. Result Analysis on Dataset 3 

The performance analysis of Dataset 3 (BRFSS), which includes 253,680 samples and 21 features 
across three outcome classes, is presented in Table 6 and Figures 12, 13, 14, 15, and 16. These 
illustrations demonstrate the results of the analysis, including the corresponding confusion matrix, 
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Precision/Recall metrics, AUC-ROC representation, and projections using LDA, PCA, and t-SNE. The 
RNN model performed better than other models on this dataset, achieving an F1-score of 0.44. 

 

      

Figure 12. Confusion matrix for the RNN model. 

 

Figure 13. AUC and Precision-Recall curves of the RNN model demonstrate better performance, as indicated by 
the ROC curve being above the 45-degree dotted line. The blue line (Class 0) and green line (Class 2) above the 
dotted line show good performance, while the orange line (Class 1) shows moderate performance. 

 

Figure 14. LDA Projection for Dataset 3 class outcomes. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 June 2025 doi:10.20944/preprints202505.0135.v2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at  Electronics 2025, 14, 2583; doi:https://doi.org/10.3390/electronics14132583

https://doi.org/10.20944/preprints202505.0135.v2
http://creativecommons.org/licenses/by/4.0/
https://doi.org/https://doi.org/10.3390/electronics14132583


 22 of 39 

 

 

Figure 15. PCA Projection for Dataset 3 class outcomes . 

 

Figure 16. t-SNE Projection for Dataset 3 class outcomes . 

The analysis of Dataset 3 provides several crucial insights into the structure and complexity of 
the data, particularly in predicting diabetes status with multiclass outcomes: class 0 (no diabetes or 
diabetes only during pregnancy), class 1 (pre-diabetes), and class 2 (diabetes).   

 

Table 6. Model Performance Comparison for Dataset 3 using F1-score as reference. 

Model Accuracy Precision Recall 
F1 

Score 
AUC-
ROC R2 MSE MAE RMSE TT MU NOP 

RNN 0.7144 0.4387 0.4982 0.4414 0.7008 -0.7099 0.8334 0.4682 0.9129 141.7094 600.0 kB 14277 
CNN 0.6984 0.4403 0.5171 0.4411 0.7064 -0.8212 0.8877 0.4970 0.9422 77.7925 216.0 kB 31823 

DNN 0.6975 0.4397 0.5149 0.4401 0.7055 -0.8398 0.8967 0.5006 0.9470 959.0492 
10316.0 

kB 
19371 

AdaBoost 0.6898 0.4337 0.5155 0.4330 0.7128 -1.0948 1.0210 0.5471 1.0105 38.0504 0.0 B 11696 
XGBoost 0.6834 0.4301 0.5109 0.4270 0.7143 -1.1936 1.0692 0.5674 1.0340 1.4653 4.0 kB 1244 

XGBoost-LSTM 0.7004 0.4301 0.5079 0.4252 0.7184 -1.2789 1.1108 0.5700 1.0539 385.1103 272.0 kB 34830 
RF 0.6755 0.4296 0.5119 0.4251 0.7091 -1.2227 1.0834 0.5775 1.0408 11.1173 68.0 kB 738710 

RF-CNN 0.6734 0.4302 0.5104 0.4245 0.7107 -1.1799 1.0625 0.5719 1.0308 44.9699 2220.0 kB 281808 
RF-GRU 0.6639 0.4307 0.5115 0.4229 0.7097 -1.1512 1.0485 0.5736 1.0240 136.2781 1240.0 kB 269827 
DT-CNN 0.6890 0.4227 0.4783 0.4218 0.6566 -0.9623 0.9564 0.5261 0.9780 22.8690 0.0 B 15 

LR 0.6260 0.4499 0.5147 0.4194 0.7077 -0.6358 0.7973 0.5151 0.8929 2.9852 336.0 kB 64 
LR-MLP 0.5930 0.4561 0.5197 0.4116 0.7118 -0.6116 0.7855 0.5332 0.8863 23.3801 20.0 kB 67 

DT 0.6384 0.4235 0.4935 0.4085 0.6876 -1.2310 1.0874 0.6036 1.0428 0.3724 0.0 B 233 
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NB 0.6245 0.4364 0.4892 0.4083 0.6803 -0.7259 0.8412 0.5307 0.9172 0.2969 0.0 B 129 
SVM 0.5759 0.4591 0.5116 0.4044 0.7084 -0.5697 0.7651 0.5378 0.8747 277.1082 136.0 kB 63 
KNN 0.5626 0.4238 0.4778 0.3794 0.6617 -0.9820 0.9660 0.6136 0.9829 114.0517 0.0 B 547344 
KNN-

Autoencoders 
0.5279 0.4251 0.4760 0.3651 0.6665 -0.9109 0.9314 0.6252 0.9651 69.0643 1208.0 kB 1537776 

Bagging 
XGBoost 0.6899 0.4298 0.5098 0.4290 0.7029 -1.1983 1.0715 0.5639 1.0351 9.1290 72.0 kB 15380 

Stacking 
Classifier 

0.6632 0.4266 0.5095 0.4169 0.7101 -1.3910 1.1654 0.6130 1.0795 552.4895 252.0 kB 73996 

All values are rounded to four decimal places. R2—coefficient of determination, MSE—Mean Square Error, 
MAE—Mean Absolute Error, RMSE—Root Mean Square Error, TT—Time Taken, MU—Memory Usage. NoP—
Number of Parameters.  . 

Although the dataset includes medically relevant features such as BMI, blood pressure, 
cholesterol levels, physical activity, and age, the boundaries between diabetes stages are unclear. This 
is evident from the projections of LDA and PCA (Figures 14 and 15), which show significant overlap, 
especially between the pre-diabetic and diabetic categories. This suggests that while the features are 
informative, they may not be sufficient in their linear form to fully distinguish between the classes. 

The t-SNE projection reveals more distinct clustering patterns (Figure 16) compared to linear 
dimensionality reduction techniques such as PCA or LDA. This suggests the presence of non-linear 
relationships within the data that linear methods fail to capture. Consequently, this supports the use 
of more sophisticated ML or DL models capable of modelling such non-linearities. The RNN model 
achieved an impressive F1-score of 0.44 and accuracy of 0.71, highlighting its ability to effectively 
utilize complex patterns. Initial insights from the confusion matrix and class distribution analysis 
confirmed a significant class imbalance, with class 0 (no diabetes) being overrepresented. This 
imbalance underscores the necessity of employing resampling techniques such as Clustering 
undersampling to synthetically balance the dataset. Additionally, it highlights the importance of 
using evaluation metrics like the F1-score, which provide a more balanced assessment of model 
performance in the presence of skewed class distributions. 

Furthermore, all models produced negative R² scores, indicating that none outperformed a naive 
mean predictor in explaining the variance of the target variable. This suggests a fundamental 
misalignment between the models' assumptions and the underlying data complexity or target 
structure. Despite this, evaluation using error-based metrics (MSE, MAE, and RMSE) revealed that 
RNN and Logistic Regression models achieved the lowest error values (MSE: ~0.79–0.83, MAE: ~0.46–
0.51, RMSE: ~0.89–0.91), suggesting relatively better performance in minimizing prediction errors. In 
contrast, models such as XGBoost-LSTM, Stacking Classifier, and kNN variants exhibited higher error 
rates and greater variability, indicating less stable predictive behavior. The consistently high error 
metrics and negative R² values across models highlight challenges in generalization, likely due to 
overlapping class structures and persistent data imbalance. 

5.4. Result Analysis on Dataset 4 

Performance analysis on Dataset 4 (BRFSS – 253,680 samples/21 features with two classes 
outcomes) shown in Table 7, Figures 17, 18, and 19 demonstrate the results of the analysis, its 
corresponding confusion matrix, Precision/Recall, and the AUC-ROC representation. The DNN 
model performed better than other models on this dataset, achieving an F1-score of 0.45. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 June 2025 doi:10.20944/preprints202505.0135.v2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at  Electronics 2025, 14, 2583; doi:https://doi.org/10.3390/electronics14132583

https://doi.org/10.20944/preprints202505.0135.v2
http://creativecommons.org/licenses/by/4.0/
https://doi.org/https://doi.org/10.3390/electronics14132583


 24 of 39 

 

 

Figure 17. Confusion matrix for the DNN model. 

 

Figure 18. AUC Curves of DNN Model. 

 

 

Figure 19. Threshold-dependent metrics for DNN. The vertical line denotes the chosen threshold. 

 
Dataset 4, a binary variant of Dataset 3 (0: no diabetes or pre-diabetes; 1: diabetes), with a 50:50 

split (i.e., Table 1), also yielded negative R² values across all models, ranging from approximately -
1.04 (DNN, GRU) to -1.87 (RNN). These results indicate that none of the models outperformed a naive 
mean predictor, reinforcing the notion that regression framing may be ill-suited for this classification-
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oriented task. The persistent data imbalance contributes to the models' inability to capture variance 
effectively. Despite this, models such as DNN, GRU, and CNN achieved the lowest error rates (MSE 
and MAE in the range of 0.245–0.265, and RMSE around 0.49–0.51), suggesting better error 
minimization. These models also demonstrated stronger classification performance, with accuracies 
around 75% and notably high recall scores. Dataset 4, a binary variant of Dataset 3 (0: no diabetes or 
pre-diabetes; 1: diabetes), with a 50:50 split (i.e., Table 1), also yielded negative R² values across all 
models, ranging from approximately -1.04 (DNN, GRU) to -1.87 (RNN). These results indicate that 
none of the models outperformed a naive mean predictor, reinforcing the notion that regression 
framing may be ill-suited for this classification-oriented task. The persistent data imbalance 
contributes to the models' inability to capture variance effectively. Despite this, models such as DNN, 
GRU, and CNN achieved the lowest error rates (MSE and MAE in the range of 0.245–0.265, and RMSE 
around 0.49–0.51), suggesting better error minimization. These models also demonstrated stronger 
classification performance, with accuracies around 75% and notably high recall scores. 

Table 7. Model Performance Comparison for Dataset 4 using F1-score as reference. 

Model 
Accur

acy 
Precis

ion 
Rec
all 

F1 
Score 

AUC-
ROC R2 

MS
E 

MA
E 

RM
SD TT MU NOP 

DNN 0.7548 0.3286 
0.72
80 

0.452
8 0.8233 

-
1.04
45 

0.24
52 

0.24
52 

0.495
1 

153.62
47 

464.0 
kB 22892 

GRU 0.7542 0.3243 
0.70
53 

0.444
3 0.8141 

-
1.04
96 

0.24
58 

0.24
58 

0.495
8 

1005.0
657 

1292.0 
kB 21498 

CNN 0.7364 0.3145 
0.75
64 

0.444
3 0.8218 

-
1.19
85 

0.26
36 

0.26
36 

0.513
5 

89.382
3 

1096.0 
kB 55909 

Bagging 
AdaBoost 0.7249 0.3080 

0.78
16 

0.441
9 0.8250 

-
1.29
42 

0.27
51 

0.27
51 

0.524
5 

172.37
06 

12.0 
kB 44017 

Bagging 
XGBoost 0.7184 0.3050 

0.79
86 

0.441
4 0.8265 

-
1.34
83 

0.28
16 

0.28
16 

0.530
7 

13.892
9 

204.0 
kB 59953 

AdaBoost 0.7206 0.3057 
0.79
08 

0.440
9 0.8250 

-
1.33
00 

0.27
94 

0.27
94 

0.528
6 

55.073
2 0.0 B 68311 

XGBoost 0.7177 0.3044 
0.79
87 

0.440
8 0.8259 

-
1.35
45 

0.28
23 

0.28
23 

0.531
4 2.1093 0.0 B 851 

LR-MLP 0.7259 0.3077 
0.77
39 

0.440
3 0.8206 

-
1.28
58 

0.27
41 

0.27
41 

0.523
6 

34.674
0 0.0 B 23 

LR 0.7250 0.3069 
0.77
41 

0.439
6 0.8196 

-
1.29
35 

0.27
50 

0.27
50 

0.524
4 1.5440 0.0 B 22 

Stacking 
Classifier 0.7168 0.3032 

0.79
53 

0.439
0 0.8248 

-
1.36
12 

0.28
32 

0.28
32 

0.532
1 

3029.2
078 

1148.0 
kB 

17354
6 

XGBoost-
LSTM 0.7140 0.3016 

0.80
07 

0.438
2 0.8240 

-
1.38
54 

0.28
60 

0.28
60 

0.534
8 

227.65
99 

364.0 
kB 3377 

RF-CNN 0.7097 0.2997 
0.81
09 

0.437
7 0.8252 

-
1.42
07 

0.29
03 

0.29
03 

0.538
8 

93.711
2 

1596.0 
kB 

65821
8 

RF 0.7124 0.3002 
0.79
94 

0.436
5 0.8226 

-
1.39
86 

0.28
76 

0.28
76 

0.536
3 

15.593
4 

28.0 
kB 

15547
50 

XGBoost-
CNN 0.7076 0.2983 

0.81
24 

0.436
3 0.8261 

-
1.43
87 

0.29
24 

0.29
24 

0.540
8 

70.994
4 0.0 B 11896 

RF-GRU 0.7067 0.2974 
0.81
07 

0.435
1 0.8247 

-
1.44
56 

0.29
33 

0.29
33 

0.541
5 

553.48
71 

272.0 
kB 

49883
1 
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DT-CNN 0.7121 0.2990 
0.79
28 

0.434
2 0.8178 

-
1.40
05 

0.28
79 

0.28
79 

0.536
5 

66.358
9 

24.0 
kB 31 

Bagging DNN 0.7060 0.2960 
0.80
53 

0.432
9 0.8222 

-
1.45
18 

0.29
40 

0.29
40 

0.542
2 

447.25
53 

352.0 
kB 56725 

SVM 0.7089 0.2967 
0.79
46 

0.432
1 0.8189 

-
1.42
72 

0.29
11 

0.29
11 

0.539
5 

882.20
86 

232.0 
kB 21 

Bagging GRU 0.7206 0.3013 
0.76
22 

0.431
9 0.8120 

-
1.32
97 

0.27
94 

0.27
94 

0.528
6 

2105.2
017 

3892.0 
kB 

13907
6 

SVM-RNN 0.7023 0.2930 
0.80
46 

0.429
6 0.8183 

-
1.48
27 

0.29
77 

0.29
77 

0.545
6 

788.89
83 

28.0 
kB 

67456
4 

LSTM 0.7334 0.3049 
0.71
42 

0.427
4 0.8016 

-
1.22
35 

0.26
66 

0.26
66 

0.516
4 

1245.5
357 

404.0 
kB 61624 

AdaBoost-
DBN 0.7089 0.2942 

0.77
85 

0.427
0 0.8129 

-
1.42
76 

0.29
11 

0.29
11 

0.539
6 

592.03
42 

188.0 
kB 1317 

DT 0.7124 0.2954 
0.76
87 

0.426
8 0.8077 

-
1.39
87 

0.28
76 

0.28
76 

0.536
3 0.3540 0.0 B 127 

Bagging CNN 0.6939 0.2880 
0.81
27 

0.425
2 0.8191 

-
1.55
26 

0.30
61 

0.30
61 

0.553
3 

528.41
52 

992.0 
kB 87108 

NB 0.7235 0.2941 
0.70
29 

0.414
7 0.7799 

-
1.30
55 

0.27
65 

0.27
65 

0.525
8 0.2801 0.0 B 86 

KNN-
Autoencoders 0.7156 0.2892 

0.71
41 

0.411
7 0.7808 

-
1.37
13 

0.28
44 

0.28
44 

0.533
2 

295.88
79 

16.0 
kB 

16966
20 

KNN 0.7058 0.2848 
0.73
56 

0.410
7 0.7857 

-
1.45
31 

0.29
42 

0.29
42 

0.542
4 

66.834
0 0.0 B 

11876
34 

RNN 0.6555 0.2602 
0.79
86 

0.392
5 0.7866 

-
1.87
26 

0.34
45 

0.34
45 

0.586
9 

98.323
7 

496.0 
kB 12431 

All values are rounded to four decimal places. R2—coefficient of determination, MSE—Mean Square Error, 
MAE—Mean Absolute Error, RMSE—Root Mean Square Error, TT—Time Taken, MU—Memory Usage. NoP—
Number of Parameters. 

5.5. Result Analysis on Dataset 5 

Performance analysis on Dataset 5 (early-stage diabetes risk prediction of patients of 520 samples 
and 17 features from Sylhet Diabetes Hospital, Bangladesh, shown in Table 8, Figures 20 and 
21demonstrates the results of the analysis, its corresponding confusion matrix, Precision/Recall, and 
the AUC-ROC representation. The RF and Stacking Classifier models performed the best on this 
dataset, achieving an F1-score of 1.00 and a reasonable accuracy of 1.0 each. However. The Random 
Forest (RF) is selected as the best due to its lower computation time in predicting diabetes at 0.58s, 
compared to the Stacking classifier, which took 37.05s. 
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Figure 20. Confusion matrix for the Random Forest model. 

 

Figure 21. AUC Curves for the Random Forest model. 

Table 8. Model Performance Comparison for Dataset 5 using F1-score as reference. 

 Model 
Accur

acy 
Precisi

on 
Rec
all 

F1 
Score 

AUC-
ROC R2 

MS
E 

MA
E 

RM
SE TT MU 

NO
P 

RF 1.0000 1.0000 
1.00
00 1.0000 1.0000 

1.00
00 

0.00
00 

0.00
00 

0.00
00 

0.587
40 

24.0 
kB 

1145
5 

Stacking 
Classifier 1.0000 1.0000 

1.00
00 1.0000 1.0000 

1.00
00 

0.00
00 

0.00
00 

0.00
00 

37.05
27 

296.0 
kB N/A 

DT-CNN 0.9904 0.9846 
1.00
00 0.9922 0.9992 

0.95
94 

0.00
96 

0.00
96 

0.09
81 

5.728
8 0.0 B 27 

Bagging SVM 0.9904 0.9846 
1.00
00 0.9922 0.9992 

0.95
94 

0.00
96 

0.00
96 

0.09
81 

0.583
2 0.0 B 4360 

DT 0.9904 1.0000 
0.98
44 0.9921 0.9922 

0.95
94 

0.00
96 

0.00
96 

0.09
81 

0.227
5 0.0 B 67 

AdaBoost 0.9904 1.0000 
0.98
44 0.9921 1.0000 

0.95
94 

0.00
96 

0.00
96 

0.09
81 

0.749
6 0.0 B 9146 

Bagging DT 0.9904 1.0000 
0.98
44 0.9921 1.0000 

0.95
94 

0.00
96 

0.00
96 

0.09
81 

1.082
2 

16.0 
kB 

1069
1 

SVM 0.9808 0.9844 
0.98
44 0.9844 0.9977 

0.91
88 

0.01
92 

0.01
92 

0.13
87 

0.387
1 0.0 B 1312 

DNN 0.9808 0.9844 
0.98
44 0.9844 0.9988 

0.91
88 

0.01
92 

0.01
92 

0.13
87 

7.396
0 

88.0 
kB 

1091
1 

RF-CNN 0.9808 0.9844 
0.98
44 0.9844 0.9980 

0.91
88 

0.01
92 

0.01
92 

0.13
87 

5.228
1 

68.0 
kB 4230 

Bagging RF 0.9808 0.9844 
0.98
44 0.9844 0.9965 

0.91
88 

0.01
92 

0.01
92 

0.13
87 

1.657
5 

128.0 
kB 

1024
5 

XGBoost 0.9808 1.0000 
0.96
88 0.9841 0.9992 

0.91
88 

0.01
92 

0.01
92 

0.13
87 

0.372
5 0.0 B 4488 

AdaBoost-
DBN 0.9808 1.0000 

0.96
88 0.9841 0.9984 

0.91
88 

0.01
92 

0.01
92 

0.13
87 

15.29
99 0.0 B 1275 

RF-GRU 0.9808 1.0000 
0.96
88 0.9841 1.0000 

0.91
88 

0.01
92 

0.01
92 

0.13
87 

8.400
1 

56.0 
kB 6094 
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CNN 0.9712 0.9841 
0.96
88 0.9764 0.9980 

0.87
81 

0.02
88 

0.02
88 

0.16
98 

6.838
6 

236.0 
kB 

1746
59 

SVM-RNN 0.9712 0.9841 
0.96
88 0.9764 0.9977 

0.87
81 

0.02
88 

0.02
88 

0.16
98 

8.076
1 0.0 B 1394 

XGBoost-
LSTM 0.9712 1.0000 

0.95
31 0.9760 0.9973 

0.87
81 

0.02
88 

0.02
88 

0.16
98 

14.81
26 0.0 B 1489 

Bagging 
AdaBoost 0.9615 0.9688 

0.96
88 0.9688 0.9859 

0.83
75 

0.03
85 

0.03
85 

0.19
61 

5.357
7 0.0 B 2970 

LR-MLP 0.9615 0.9839 
0.95
31 0.9683 0.9984 

0.83
75 

0.03
85 

0.03
85 

0.19
61 

11.75
85 0.0 B 18 

XGBoost-CNN 0.9615 0.9839 
0.95
31 0.9683 0.9947 

0.83
75 

0.03
85 

0.03
85 

0.19
61 

6.565
4 0.0 B 5082 

Bagging CNN-
DT 0.9615 0.9839 

0.95
31 0.9683 0.9969 

0.83
75 

0.03
85 

0.03
85 

0.19
61 

38.04
82 

1072.0 
kB N/A 

KNN 0.9519 0.9836 
0.93
75 0.9600 0.9820 

0.79
69 

0.04
81 

0.04
81 

0.21
93 

0.167
5 0.0 B 6656 

LR 0.9519 1.0000 
0.92
19 0.9593 0.9918 

0.79
69 

0.04
81 

0.04
81 

0.21
93 

0.258
0 0.0 B 17 

KNN-
Autoencoders 0.9519 1.0000 

0.92
19 0.9593 0.9949 

0.79
69 

0.04
81 

0.04
81 

0.21
93 

9.998
1 0.0 B 

1456
0 

NB 0.9423 0.9677 
0.93
75 0.9524 0.9863 

0.75
63 

0.05
77 

0.05
77 

0.24
02 

0.224
1 0.0 B 66 

RNN 0.9327 0.9831 
0.90
63 0.9431 0.9934 

0.71
56 

0.06
73 

0.06
73 

0.25
94 

11.36
73 

408.0 
kB 

1574
9 

LSTM 0.8942 0.9206 
0.90
63 0.9134 0.9711 

0.55
31 

0.10
58 

0.10
58 

0.32
52 

20.49
70 

1220.0 
kB 

6063
5 

GRU 0.8846 0.9643 
0.84
38 0.9000 0.9559 

0.51
25 

0.11
54 

0.11
54 

0.33
97 

14.15
40 

712.0 
kB 

3875
3 

All values are rounded to four decimal places. R2—coefficient of determination, MSE—Mean Square Error, 
MAE—Mean Absolute Error, RMSE—Root Mean Square Error, TT—Time Taken, MU—Memory Usage. NoP—
Number of Parameters. N/A in NoP was not computed due to the complexity or incompatibility in combining 
base models for Stacking and Bagging strategies for this dataset. 6. Discussion. 

Regarding both computational efficiency and predictive effectiveness, this study performs a 
comparative analysis of ML, DL, hybrid models, and ensemble strategies applied to five publicly 
available datasets, highlighting considerable variations in performance, influenced by model 
architecture, complexity, and the inherent characteristics of the data. The evaluation utilized critical 
metrics to identify optimal predictive tools relevant to healthcare settings, with the F1-score serving 
as a baseline measure. 

Ensemble models, particularly Random Forest (RF), AdaBoost, Bagging, and Stacking Classifier, 
consistently achieved high F1-scores and accuracies across most datasets. Among these, RF and its 
variants stood out as top performers. AdaBoost achieved an impressive F1-score of 0.7438, using 
minimal memory (0.0 B) and completing computations in just 1.18 seconds on Dataset 1. This 
performance significantly surpassed that of deeper models such as LSTM and GRU, which, while 
consuming more resources (up to 2052 kB and over 20 seconds of computation time), yielded lower 
F1-scores in the vicinity of 0.56. 

In the analysis summarized in Table 5 on Dataset 2, RF achieved a commendable F1-score of 
0.7273 alongside minimal memory usage (32 kB) and a computation time of 0.65 seconds. Similarly, 
models like Bagging, AdaBoost, and XGBoost demonstrated high precision with reasonable memory 
requirements, indicating the scalability of ensemble strategies. On the other hand, DL models, 
particularly GRU and RNN, although exhibiting moderate accuracy, were identified as 
computationally intensive, with memory usage reaching up to 154790 kB and training times 
exceeding 1000 seconds. 

While Table 6 illustrates some overall degraded performance attributed to Dataset 3 due to 
dataset challenges, neural network variants such as RNN, DNN, and CNN showed strong results, 
with RNN maintaining the highest rank in this context with an F1-score of 0.44.  

Table 7 highlighted the performance of DNN and GRU, with both achieving F1-scores between 
approximately 0.45 and 0.44 on Dataset 4, a variant of Dataset 3., but with two classes (0 and 1). 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 June 2025 doi:10.20944/preprints202505.0135.v2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at  Electronics 2025, 14, 2583; doi:https://doi.org/10.3390/electronics14132583

https://doi.org/10.20944/preprints202505.0135.v2
http://creativecommons.org/licenses/by/4.0/
https://doi.org/https://doi.org/10.3390/electronics14132583


 29 of 39 

 

However, their computational costs were high; DNN outperformed GRU with an F1-score of 0.45 
while also demonstrating lower computation time and memory usage. In addition, Xie et al. [76] also 
proved that NN produces a better accuracy of 0.8240 but a lower recall of 0.3781. This is evident because 
the dataset size is inadequate for DL models. 

Finally, Table 8 showcased exemplary performance by RF and the Stacking Classifier on Dataset 
5, both attaining an F1-score and accuracy of 1.000, which could suggest either overfitting or optimal 
conditions within the dataset. Random Forest remained the preferred choice due to its reasonable 
memory consumption of 24 kB. Xie et al. [78] demonstrated that RF outperformed other classical ML 
models. However, their analysis reported a score of 0.9740 across all metrics. In contrast, our study 
achieved a score of 1.0000 using the same model. Overall, the Random Forest model emerged as the 
most robust and resource-efficient option, delivering consistent high performance while ensuring 
low memory usage and rapid computation time, making it particularly suited for practical 
applications in diabetes prediction systems. 

There are several key insights to be gained from this study. The quantity, complexity, and 
structure of the dataset that ML and DL models are trained on affect their performances. Empirical 
findings from our experiments indicate that conventional ML models are generally most effective on 
small to moderately sized structured datasets, particularly when the patterns exhibit linear or 
significantly non-linear separability. When the feature space is small and well-defined, these models 
benefit from simplicity, reduced computing cost, and strong generalization. DL models like CNNs, 
DNNs, and RNNs, on the other hand, excel with complex, high-dimensional data such as text, 
images, or time-series inputs. They require large datasets to avoid overfitting and ensure 
generalization, but are computationally demanding, frequently requiring large amounts of memory, 
processing power, and extended training periods. This might provide real-world challenges in 
settings with limited resources. Aligning dataset properties with model selection is essential for 
optimal prediction performance, especially in resource-limited environments. 

The quality, applicability, and predictive power of the features found in each dataset are 
primarily responsible for the variation in model performances shown across the various datasets. 
Specifically, the correlation values of 0.47 and 0.46 in Datasets 1 and 2 (Figure 8a and 8b) indicate that 
the characteristic "Glucose" has a comparatively substantial positive link with the diabetic mellitus 
result. This strong correlation suggests that changes in blood sugar levels are significantly linked to 
the existence or non-existence of diabetes, which gives predictive algorithms a reliable signal to work 
with. Therefore, models trained on these datasets perform better because they have high-value 
features related to the target variable. On the contrary, Dataset 3 shows moderate predictive 
performance across all evaluated ML and DL models. This result is mainly due to the quality and 
informativeness of its features, which do not show a strong correlation with the DM outcome. The 
variables lack discriminative power, reducing model efficacy due to limited signals differentiating 
diabetic from non-diabetic cases. This highlights the importance of feature selection and dataset 
quality for achieving accurate predictions in healthcare-related AI applications. 

Additionally, the architectural complexity and internal mechanisms of ML and DL models 
significantly influence differences in processing speed, RAM usage, and overall computing efficiency. 
Deep learning architecture can differ significantly in the number of parameters, layer depth, and 
internal processes, all of which directly affect resource usage. For example, LSTM networks are 
commonly used for sequence modelling due to their strong ability to capture long-range temporal 
relationships. However, this capability comes at a computational cost. LSTMs require increased 
model size, higher memory demands, and longer training times because they incorporate multiple 
gating mechanisms, including input, output, and forget gates, each with its own set of parameters 
[16, 68]. 

GRU is a more lightweight alternative that simplifies the gating process by combining the input 
and forget gates into a single update gate. This results in a more straightforward architecture with 
fewer parameters, which accelerates training and reduces memory usage, often with only minor 
changes in performance. These differences emphasize the importance of aligning model choices with 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 June 2025 doi:10.20944/preprints202505.0135.v2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at  Electronics 2025, 14, 2583; doi:https://doi.org/10.3390/electronics14132583

https://doi.org/10.20944/preprints202505.0135.v2
http://creativecommons.org/licenses/by/4.0/
https://doi.org/https://doi.org/10.3390/electronics14132583


 30 of 39 

 

computational constraints, particularly in scenarios requiring real-time processing or when working 
with limited hardware resources  [16]. 

 

6.1. Top-performing Models and Their Implications 

The analysis of the study examines the complex relationship between the observed F1-scores 
and the inference times (TT) of the highest-performing models within the selected datasets. It 
examines how the unique mechanics of each algorithm align with critical factors such as data size, 
feature topology, and class structure. By doing so, it uncovers the underlying principles that 
contribute to model performance. For instance, larger datasets usually necessitate more sophisticated 
algorithms to manage complexity, while feature topology could influence the model's ability to 
capture relevant patterns. Additionally, understanding class structure is essential, as imbalanced 
classes require specialized techniques to ensure accurate predictions, as demonstrated by the 
ADASYN  and Clustering techniques in our study. This comprehensive examination offers valuable 
insights for selecting and optimizing ML and DL algorithms tailored to specific data characteristics. 

High F1-score arises when a model’s bias–variance profile and feature handling align with the 
dataset’s intrinsic complexity. In contrast, run-time reflects algorithmic depth and feature 
dimensionality; that is, shallow boosted or bagged trees provide quick, accurate results on small 
tabular data, while recurrent or fully connected nets sacrifice speed for the representational power 
needed to model high-dimensional, progression-laden surveys. Table 9, Figure 22, and Figure 23 
depict the extracted top-performing models and their respective computation times. 

 

Table 9. Top-performing models by Datasets. 

Datasets Models Accuracy Precision Recall F1-score TT(s) MU 

D1 AdaBoost 0.798 0.671 0.833 0.743 1.181 0 B 

D2 RF 0.785 0.656 0.814 0.727 0.648 32 kB 

D3 RNN 0.714 0.438 0.498 0.441 141.709 600 kB 

D4 DNN 0.754 0.328 0.728 0.452 153.624 464 kB 

D5 RF 1.000 1.000 1.000 1.000 0.587 24 kB 
 

 

Figure 22. F1-score distribution by Dataset. 
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Figure 23. Inference Time by Dataset. 

The first variant of the PIMA dataset (Dataset 1/D1) is small by today’s ML standards, with only 
614 training samples after the 80:20 train-test split, and 9 mostly straightforward numeric features, 
making it a manageable challenge for analysis. Simple models like decision stumps can capture some 
patterns, but they often struggle with hard-to-classify cases, especially around borderline 
pregnancies and rare insulin levels. AdaBoost works well in this situation by focusing on the 
misclassified data points for improvement. The algorithm changes the weight of these difficult cases, 
creating a series of weak classifiers that better identify and understand these minority areas, while 
keeping the model simple. Given the low-dimensional nature of the data, AdaBoost demonstrates a 
reduced likelihood of overfitting. It reduces bias effectively while only slightly increasing variance. 
Using oversampling techniques like ADASYN boosts AdaBoost’s performance even more. This 
method creates a denser group of hard-to-classify cases, giving AdaBoost an edge over other methods 
like bagged DTs and NNs. This combination leads to a stronger model for classifying challenging 
data 

With 2,000 observations, the second version of the PIMA dataset (Dataset 2/D2) provides 
sufficient samples for high-capacity models, while still maintaining the same features. In this context, 
the RF algorithm performs best because the dominant source of error is variance rather than bias, as 
in Dataset 1. The additional data points help reduce bias naturally, but the dataset still includes noisy 
measurements, such as imputed zeros, which can mislead individual trees or boosted models. Using 
bagging to create hundreds of decorrelated trees stabilizes predictions and captures non-linear 
interactions, such as the thresholds between glucose and BMI. Additionally, RF incorporates built-in 
resilience to class imbalance through balanced subsampling at each split. Inference remains fast (less 
than 0.7 seconds) because only a few dozen features are evaluated per tree, giving RF the best speed-
to-accuracy ratio in this scenario. 

Dataset 3 (D3) presents the full BRFSS survey categorizes diabetes status on an ordinal scale: 0 = 
No diabetes, 1 = prediabetes, and 2 = diabetes, emphasizing progression in conditions. Many of the 
21 features in the survey represent behavioural patterns, such as weekly exercise, daily sugar intake, 
and smoking frequency, which are often autocorrelated and recorded as ordered categorical bands. 
After applying Clustering-based undersampling balancing, a RNN model can interpret each 
respondent’s feature vector as a short "time-axis," where neighbouring fields demonstrate 
interdependence (e.g., age band à blood pressure band à medication usage). The gated recurrent 
mechanism of the RNN integrates these conditional patterns more effectively than feed-forward 
networks or tree ensembles, leading to the highest macro-F1 score despite longer inference times. In 
summary, the RNN effectively utilizes the quasi-sequential, progression-based structure that tabular 
models treat as independent columns 
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Dataset 4 (D4) presents the multi-class labels being collapsed into a binary outcome, although it 
still contains over 56,000 training rows and a heterogeneous mix of ordinal, binary, and scaled 
numeric features. The class boundary now resides in a densely populated area where subtle high-
order interactions, such as age × BMI × physical activity or diet score × sex, become crucial. A deep, 
fully connected network with multiple hidden layers can automatically learn these hierarchical 
combinations, especially after applying feature scaling and clustering-based undersampling to 
improve the representation of minority classes. Compared to tree ensembles, DNNs benefit from 
weight sharing and batch optimization, making them less sensitive to redundant variables and more 
tolerant of noise. Thus, their slightly superior F1-score reflects an architecture that is adequately 
expressive for the high-dimensional, highly non-linear boundary while remaining computationally 
efficient. 

Dataset 5 (D5) presents an EMR dataset from the early-stage Sylhet survey, containing 520 
records with 17 binary symptoms and a 5-band age code, validated by a physician. This clean, 
categorical data is ideal for decision-tree splits, and with RF emerging as the top-performing model, 
offers three advantages: (1) Low variance via bootstrapping prevents overfitting common in single 
trees with limited data. (2) It efficiently processes binary inputs, resulting in clear leaf nodes without 
complicated weighting. (3) It discovers non-linear symptom interactions (e.g., polyuria ^ polydipsia 
^ age > 45) that linear models miss while achieving perfect class separation. The result is an F1 score 
of 1.00 in under 0.6 seconds, outperforming stacking classifiers and NNs. 

6.2. Comparative Analysis of Results with already developed diabetes prediction models. 

The analysis presented evaluates various approaches, including ML, DL, hybrid models, and 
ensemble strategies, in predicting health outcomes for diabetic patients. The outcomes generated 
from these methods were compared against other existing predictive models utilizing multiple 
datasets (specifically Datasets 1 – 5). The Random Forest (RF) model demonstrated exceptional 
performance, achieving high F1-scores, accuracy, and efficient computation times.. In contrast, other 
ML models also delivered commendable results in terms of accuracy, speed, F1-scores, and AUC-
ROC, all within a reasonable timeframe for computation. Additionally, some DL models and 
ensemble strategies showed promising results based on the same dataset samples and features. A 
comprehensive comparative analysis of the performance of the models in this study, relative to 
existing predictive model research, can be found in Table 10. 

Table 10. Comparative analysis of models used and existing diabetes prediction models using F1-score [39]. 

Datasets Authors Outliers Missing Values Model Precision Accuracy Recall F1-score 
 [44] IQR Attribute Mean AB + XB – – 0.7900 – 
 [46] – – GBM – – 0.8700 – 
 [80] – – DA – 0.7400 0.7200 – 
 [81] – – ANN – 0.7600 0.5300 – 

Dataset 1 [82] ESD k-NN HM-BagMoov – 0.8600 0.8500 0.7900 
Dataset 2 [39] IQR CWM QML 0.7400 0.8600 0.8500 0.7900 

 [83] – NB RF 0.8100 0.8700 0.8500 0.8300 
 [84] – – k-NN 0.8700 0.8800 0.9000 0.8800 
 [56] GM Median RF – 0.9300 0.7970 – 
 [85] – – RF 0.9400 0.9400 0.8800 0.9100 
 [39] IQR CWM DL 0.9000 0.9500 0.9500 0.9300 
 Our Study IQR ADASYN AdaBoost 0.6716 0.7987 0.8333 0.7438 
 Our Study IQR ADASYN RF 0.6567 0.7857 0.8148 0.7273 
         

Dataset 3 [76] – Excluded NN – 0.8240 0.3781 – 
Dataset 4 Our Study IQR Clustering RNN 0.4387 0.7144 0.4982 0.4414 

 Our Study IQR Clustering DNN 0.3286 0.7548 0.7280 0.4526 
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Dataset 5 [77] – Ignoring Tuple RF 0.9740 0.9740 0.9740 0.9740 

 Our Study IQR – RF 1.0000 1.0000 1.0000 1.0000 
CWM – Class Wise Median, GM – Group Median, IQR – Interquartile Range, GBM – gradient boosting machine, 
DA – discriminant analysis, ESD – extreme studentized deviate, QML – Quantum ML, HM-BagMoov – 
hierarchical multi-level classifiers bagging with multi-objective optimized voting. 

7. Conclusions 

People of all ages are becoming more susceptible to diabetes. The current study showed that 
early diabetes identification might be crucial for treatment and enhanced health outcomes for 
individuals with the disease. Obesity may be prevented by taking easy awareness-raising steps like 
eating a low-sugar diet, exercising frequently, and leading a healthy lifestyle. Its relevance in 
healthcare is apparent since models and ensemble strategies show increasing promise in predicting 
diabetes and eventually lowering treatment costs and increasing computing efficiency. Finding the 
optimal model for predicting datasets created for diabetes progression and risk prediction is the 
primary contribution of this work.  

Choosing the best ML or DL model to predict clinical outcomes in diabetes patients relies heavily 
on the characteristics of the dataset used; there is no universally optimal model. Key factors that can 
significantly influence model performance include sample size, feature richness (the variety and 
significance of input variables), and data distribution across classes. A model may perform poorly on 
a smaller or more diverse dataset that has missing values or imbalanced classes, even if it excels on a 
larger, balanced, and feature-rich dataset. Furthermore, how well models generalize can be affected 
by slight variations in clinical recording procedures, population characteristics, and measurement 
standards across different institutions. 

In this study, traditional ML models, including Random Forest (RF) and AdaBoost 
demonstrated superior predictive performance on Datasets 1, 2, and 5. These datasets were 
characterized by relatively small sample sizes and structured data formats. The ML models are less 
data-intensive by nature and perform effectively in low-data environments, particularly when the 
datasets contain high-quality and well-engineered features. Their ensemble-based architecture helps 
reduce variance and improve robustness, making them well-suited for medical datasets where data 
may be limited but well-defined. 

Deep learning models, especially RNNs and DNNs, demonstrated superior performance 
compared to traditional ML models on Datasets 3 and 4. These datasets were significantly larger and 
more complex, featuring high-dimensional feature spaces and potentially nonlinear patterns, 
conditions where deep learning models excel. DL architectures are designed to learn hierarchical and 
abstract representations of features, enabling them to capture intricate, non-linear relationships that 
traditional ML algorithms might struggle to detect. However, the enhanced performance of DL 
models relies heavily on the availability of large, diverse datasets and adequate computational 
resources for training. These results underscore the established differences in the suitability of ML 
versus DL models across various data scenarios. Nonetheless, our prediction algorithms could be 
more effective in forecasting the health outcomes of diabetes patients now that clinical data and 
biomarkers are available. 

We strongly recommend clinical researchers, data scientists, and healthcare practitioners against 
relying solely on benchmark performances reported in the literature. It is advised that before 
implementing any prediction tool for practical use, it is essential to conduct a thorough assessment 
and validation of the model using their institution's datasets. This approach enhances accuracy, 
security, and confidence in AI-assisted healthcare decision-making while also improving alignment 
with regional patient characteristics and clinical workflows. 
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Abbreviations 

DM  Diabetes Mellitus 
ML  Machine Learning 
DL  Deep Learning 
AU-ROC Area under the ROC 
KPI  Key Performance Indicators 
IDF  International Diabetes Federation 
T1DM Type 1 DM 
T2DM Type 2 DM 
GDM Gestational DM 
RF  Random Forest 
LR  Logistic Regression 
XGBoost Extreme Gradient Boosting 
NB  Naive Bayes 
SVM  Support Vector Machine 
NN  Neural Networks 
RNN  Recurrent NN 
CNN  Convolutional NN 
DNN  Deep NN 
QML  Quantum ML 
KNN  k-Nearest Neighbour 
CVD  Cardiovascular diseases 
DT  Decision Trees 
LSTM Long Short-Term Memory 
AdaBoost Adaptive Boosting 
GRU  Gated Recurrent Unit 
ANN  Artificial Neural Networks 
MU  Memory Usage 
TT  Inference time 
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