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Abstract: Background: Aging rate is affected by genetic changes, epigenetic modifications, oxidative stress, 
inflammation, lifestyle and environmental factors. In accelerated aging (AA), biological age exceeds the 
chronological one. Objective: To undertake a critical reappraisal of the AA concept and to reveal its 
weaknesses and limitations. Methods: We reviewed over 300 recent articles dealing with physiology of brain 
aging and pathophysiology of neurodegeneration. Results: (1) Organ systems age at different rates, which 
interferes with application of the AA concept to individual organs. (2) Aging rate can be decelerated due to 
individual structure–functional reserves built with cognitive, physical training or pharmacological 
interventions. (3) The AA concept lacks standardised terminology and methodology. (4) Specific molecular 
biomarkers (MBM) reflect aging. To consolidate the AA theory, researchers should validate numerous MBM 
candidates. (5) Aging factors, mechanisms and the exact nature of their biological outcomes are not well 
understood. Conclusion: Although considered as a perspective theory, the AA concept has serious 
limitations and it requires an update. 

Keywords: aging; accelerated aging; brain aging; neurodegeneration; epigenetics; biological clocks; 
molecular biomarkers; rejuvenation; structural reserves; functional reserves 

 

1. Introduction 

Aging is associated with structural and functional changes that increase risks of dis- eases 
and death [1–3]. Multiple factors contribute to aging. Accumulation of damage and dysfunction 
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may happen due to genetic mutations, epigenetic modifications, oxida- tive stress and 
inflammation [4,5]. Physiological or biological age (BA) is defined as the current state of the 
individual as a biological system. A combination of detectable lifetime- dependent biological 
parameters characterizes the system state. These parameters include the current profile of genomic 
DNA methylation, age-associated structural changes in the brain, brain functional reserve, etc. 

In normal aging, BA is equal to chronological age. If the process of getting older is 
accelerated, BA exceeds the chronological age. In decelerated aging, BA becomes lower than the 
official age [6–8]. Accelerated aging (AA) shares common features with the normal one, but protein 
aggregation and excitotoxicity are specific to AA [9–11]. Understanding mechanisms of aging 
opens opportunities for targeted treatment of the diseases that occur late in life [9]. 

AA is the area of research with unresolved issues such as non-standardized terminol- ogy [12] 
and understudied mechanisms [13]. Researchers have not reached an agreement on whether 
neurodegeneration (ND) is a type of AA [14,15] or its outcome [14,16–18]. The latter view argues 
that certain biomarkers (BMs) are ND-specific and they do not detect AA [17]. 

Different theories were proposed to explain AA pathogenesis [19–21]. The genetic theory 
assumes that accumulation of DNA mutations and/or gene dysregulation are the major causes of AA 
[19,22]. The theory considers random DNA changes but ignores chro- mosomal, multifactorial and 
monogenic alterations [13,23,24]. The multi-proteinopathies theory describes aggregation of 
misfolded proteins as a leading cause of cell dysfunction in age-related diseases [20,25]. The free 
radical theory postulates that the primary accelerator of aging is oxidative damage of DNA and 
proteins [15,26–28]. But the concept fails to explain difference between normal and abnormal levels 
of reactive oxygen species [21,29]. In practice, no diagnostic BMs can identify and prognosticate 
AA reliably [20,30]. 

2. Biomolecular Aspects of Aging 

Neurocentric and neurovascular hypotheses describe aetiology of ND at sub-, cellular, and 
supra-cellular levels. Initially, research efforts were focused mainly on neurons. Then, investigators 
recognized the importance of non-neural cells in higher brain functions. Neu- rovascular (NV) view 
refers to a neurovascular unit (NVU) which is a dynamic multicellular structure mediating functional 
interactions between brain tissues per se and blood vessels. The NVU includes astrocytes, microglia, 
oligodendrocytes, precursor cells, endothelial cells, pericytes, excitatory and inhibitory neurons [31]. 
The NV hypothesis proposes that neural cells in the NVU and circulating immune cells secrete 
proinflammatory mediators contributing to age-related neuroinflammation [32], cell degeneration 
[33,34] and endothe- lial impairment [34,35]. These changes disrupt molecular networks, induce 
damage to the blood–brain barrier [36,37] and lead to NVU dysfunction which is a major cause of ND 
[38]. But the exact role of an NVU in ND remains unclear [39]. A research for ND-associated BMs is 
difficult due to high complexity and molecular heterogeneity of the NVU network. It requires whole 
genome studies, e.g., global transcriptome analysis followed by hierarchical data clustering [40] or 
single-cell/single-nucleus transcriptomics [41,42]. 

Molecular biomarkers (MBMs) are biomolecules, their components, fragments or 
modifications with the associated measurable parameters that serve as a tool to diagnose 
pathologies and monitor biological processes. MBMs can be used to evaluate aging, partic- ularly 
to estimate the rate of its progression [43]. Aging MBMs include mRNA transcripts, proteins [44], 
telomere length, serum markers of DNA damage [45], DNA methylation profiles [46,47], histone 
modifications [48–59], differentially expressed genes [42,60], non- coding RNAs [61–64] and other 
biomolecules (Figure 1). 
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Figure 1. Examples of epigenetic changes and factors affected by accelerated aging at different levels 
that could serve as potential biomarkers of aging. (I) DNA nucleotide modification level: 
cytosine. (C) can be converted to 5-methylcytosine (5-mC) and oxidised further to 5-
hydroxymethylcytosine (5-hmC). (II) Histone modification level: Three examples of histone 3 (H3) 
lysine methylation marks are indicated. Lysine 4 (K4) H3K4me3 mark is associated with active genes, 
lysine 9 (K9) H3K9me3 is an established mark of transcriptionally repressed heterochromatin and 
lysine 27 (K27) H3K27me3 mark is linked to both transcriptional activation and repression. (III) 
Regulatory RNAs level: several types of ncRNAs, long non-coding RNA (lncRNA), microRNA 
(miRNA), small interfering RNA (siRNA), circular RNA (circRNA), shown schematically. 

Despite a large number of suggested MBMs of ND, only few of them are validated. In most 
studies, sample sizes were too small to justify the accuracy and reproducibility of MBM data. For 
example, a recent study aimed at determining whether age affects different cell types in the NVU. 
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The study resulted in a model discriminating patients with Alzheimer’s disease (AD) from healthy 
controls (HCs). The model revealed 15 genes related to AA (AAG): IGF1R, MXI1, RB1, PPARA, 
NFE2L2, STAT5B, FOS, PRKCD, YWHAZ, HTT, MAPK9, 

HSPA9, SDHC, PRKDC and PDPK1 [42]. Differential expression of IGF1R, MXI1, PPARA, 
YWHAZ and MAPK9 correlated with ND progression. Therefore, they may function as facilitators or 
inhibitors of AD. But the research neither demonstrated cell-specific roles of the discovered AAGs 
nor identified their contribution to AD pathogenesis and interactions in the NVU. Moreover, the 
study failed to justify the AAGs as MBMs since it had an insufficient sample size of only 11 AD 
patients and 7 HCs [42]. ND results from multiple structural changes at different genetic loci over a 
period of time [65,66]. AD accounts for 90% of ND cases. High risk of developing AD is associated 
with alterations in 15 genes that predispose to ND (NDG): GBA1, APP, PSEN1, MAPT, GRN, SETX, 
SPAST, CSF1R, C9orf72 [67], TET2 [68], TBK1 [69], TOMM40, APOC1 [70], APOE [70,71] and TREM2 [72–
78]. Surprisingly, the gene sets do not overlap across the studies on AAGs and NDGs. Researchers 
found that the APOE e4 allele and mutation spectrum for TREM2 gene are risk factors for developing 
dementia with Lewy bodies, multi-cognitive decline and corticobasal degeneration [78–87]. DNA 
methylation level reflects rate of aging. Approximately 1.5% of genomic DNA contains 5-
methylcytosine (5-mC), and the level decreases during ontogenesis [88]. The level of 5-mC is the 
highest in embryos, and then it reduces gradually across life [89,90]. In aging, global genomic DNA 
hypomethylation proceeds along with hypermethylation of CpG islands. These changes in DNA 
methylation patterns are called “epigenetic drift” [91,92]. In the mammalian genome, 60% of the 
CpG islands are associated with gene promoters and regulate gene transcription [91]. 

In normal aging, age-predictive models demonstrate gradual linear changes in the DNA 
methylation profile, but environmental or genetic risk factors can accelerate the process of 
getting older [93]. In monozygotic twins, the divergence of the methylome increases at different 
rates [94]. Change of the DNA methylation profile was proposed as a mechanism of an 
epigenetic clock [95–97] by analogy with a biological clock [98,99]. Monitoring deviation between 
biological and chronological age helps to study development and aging across the lifespan [100]. 
Horvath [101], Hannum [93] and PhenoAge [102] epigenetic clocks serve as markers of ND [102–
106], with the first of these showing the strongest correlation between epigenetic and 
chronological age [107]. 

Histone modifications can serve as potential MBMs of aging, however, heterogeneity of 
animal models used to develop the biomarkers limits their applicability. For example, a drop in 
highly abundant transcription activation mark H3K4me3 [48] correlated with an extended lifespan 
in Caenorhabditis elegans [49]. Contrarily, an increase in the H3K4me3 level was linked with AA in 
Drosophila melanogaster [50]. The level of heterochromatin- associated histone transcription repression 
mark H3K9me3 gradually decreases during aging in haematopoietic stem cells of humans and mice 
[51]. In C. elegans and other models of senescance, the most significant loss of H3K9me3 occurs in 
repressive regions [52,53]. H3K27me3 is associated with transcriptional silencing in aging [54]. The 
role of H3K27me3 is controversial, as studies showed its bidirectional lifelong changes [55–59]. 

Increased levels of H4K20me3 and H3K4me3 and decreased levels of H3K9me1 and 
H3K27me3 are common age-associated epigenetic marks [108–110]. Research showed an increase 
in H3K4me3 promoter methylation in a CK-p25 tauopathy mouse model and hippocampus of 
AD patients [111,112]. The following histone methylation marks can also be found in an 
Alzheimer brain: H4K20me2, H3K4me2, H3K27me3, H3K79me1, H3K79me2, H3K36me2, 
H4K20me3, H3K27me1 and H3K56me1 [113,114]. Besides, histone acetylation marks H3K9ac, 
H3K14ac and H4K16ac are associated with normal and accelerated aging [110,111,113–115]. Histone 
phosphorylation marks H4S47p and H3S10p and histone ubiquitination mark H2BK120ub are 
observed in AD [114,116,117]. Further systematic research should elucidate regulatory 
mechanisms of histone modifications, their interaction, and interplay between histone marks and 
other factors. 

Non-coding RNAs (ncRNAs) are used as aging MBMs [118–121]. 
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Long non-coding RNAs (lncRNAs) are presented with the growth-arrest-specific transcript 5 
(GAS5) which plays a significant role in cell proliferation and apoptosis [122–124]. Its down-
regulation leads to phosphorylation of the tau protein in ND [125,126]. Long intergenic brain 
cytoplasmic RNA 1 (BCYRN1) expressed in the dendritic domains of neurons is down-regulated 
in aging [127]. 

MicroRNAs (miRNAs) impact neuronal plasticity, influence tau protein metabolism and 
mediate brain aging through regulation of gene expression [128–137]. Regulation of miR-145a 
and miR-375 depends on age in mouse brains [138–140]. The MIR29 family, MIR339-5p, MIR195 and 
MIR107 modulate expression of beta-secretase 1 involved in cleaving the amyloid precursor protein 
[141–146]. Interestingly, miR-34 plays a protective role in Drosophila [147] and MIR144/MIR451 
regulates ADAM metallopeptidase domain 10 in AD [148]. Hypothalamic stem cells secret over 20 
miRNAs into the cerebrospinal fluid. These miRNAs control aging rate in mice [149], which should 
also be relevant to human brain [150]. Future studies should verify miRNA MBMs in humans 
[151]. 

Circular RNAs (circRNAs) are abundant in the brain, and their expression changes with age 
in skeletal muscles [152,153]. CircRNAs contribute to ND through interaction with miRNAs. For 
example, ciRS-7 potentially functions as a sponge for MIR7-1 [154] and its level is reduced 
dramatically in an AD brain [155]. Cerebral circRNAs are linked with neurotransmitter function, 
synaptic activities and neuronal maturation. They target the expression and availability of specific 
age-related mRNAs in the brain. At least four circRNAs are involved in postoperative neurocognitive 
disorders [156]. Another study revealed nearly 1200 cerebral circRNAs in a rat model of aging [157]. 
Various biomarker candidates including circRNAs await validation in the clinical arena. 

3. Aging of Organs and Systems beyond Neurodegeneration 

Aging affects organs and systems with different rates of change; therefore, the AA concept 
needs to be adjusted when applied to individual organs. For example, ovarian aging implies 
a loss of follicle numbers and decreased oocyte viability. Typically, an accelerated decline in 
fertility begins around the age of 38 years and continues until the climacteric [158]; however, a 
non-uniform decrease in follicle numbers results in a large variation in menopause onset. BA of 
the male reproduction system can also be assessed by fertility, but the arrest of reproductive 
capacity is reversible in older men, with lifestyle and disease factors prevailing over other 
determinants of aging [159]. In mice, oxidative stress, inflammation, DNA damage and de novo 
mutations accelerate testicular aging [160–163], while growth differentiation factor 11 enhances 
antioxidant enzyme activity and protects the testes [164]. A progressive age-related drop in 
Leydig and Sertoli cell function [165], testicular size [166] or testosterone level was demonstrated 
in older men [167]; but no decrease in testicle size or the levels of testosterone was observed in a 
cohort of older men with healthy lifestyle and affordable healthcare service [168,169]. 

The cumulative effect of a disease rather than age may account for changes in male fertility 
throughout life. Chronological age inaccurately reflects reproductive BA. Therefore, the AA concept 
cannot be adopted to the reproductive system. This illustrates a challenge in assessing BA at the 
organ and system levels. 

Sex hormones that affect fertility are a part of the endocrine system. Susceptibility to aging 
differ among endocrine glands. In men, hypothalamic–pituitary–testicular axis does not 
undergo dramatic chronobiological changes: only 35–50% of men over 80 have reduced 
testosterone levels [170,171]. Diabetes mellitus and obesity predispose to accelerated adipose tissue 
dysfunction affecting telomere length [172,173]. Adrenal and thyroid functions undergo less 
prominent age-related transformations than their hypothalamic regulation [174]; therefore, BA 
assessment from hormonal findings is challenging. With aging, hormone activity decreases and 
endocrine alterations are established [175]. BA is affected by the level of glycosylated 
haemoglobin, glucose, triglycerides, low-density lipoproteins and total cholesterol [176–178]. The 
modulation of these parameters, lifestyle and environmental factors can prevent or contribute to AA 
[179]. Effectiveness of hormone replacement therapy for aging reversal is questionable though [180]. 
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Environmental and endocrinological factors affect BA of connective tissue. Status of the 
skeletal system reflects an individual endocrine profile and micronutrient balance [181–183] as well 
as environmental and occupational attainments [184]. For example, bone resorption in 
astronauts prevails over its formation due to microgravity; however, bone density normalises 
after the flight [185,186]. Skin elasticity serves as a marker of aging which rate can be modified 
due to estrogen deficiency, metabolic alterations and exogenous factors (burns) [187–191]. 
Fibroblasts constitute a natural cell stock that allows skin rejuvenation, repair and decelerated aging 
[192]. In connective tissue, a combinatory effect of internal and external factors determines BA 
more accurately than the chronological one [193,194]. Therefore, an inability to account for the 
decreased aging rate reveals a weakness of the AA concept. 

Studies in other systems have also reported reversibility of age-related changes in them. For 
example, physical training can rejuvenate the respiratory system by expanding the alveolar space. 
However, studies on these issues did not comprehensively evaluate BA of the lung since the impact 
of muscle atrophy on results in the spirometry test was not considered [195–197]. Lifestyle changes 
(e.g., calorie restriction and physical activity) could also reverse aging in patients with early stages of 
chronic kidney disease [198]. Another example is shown by the discovered potential to rejuvenate 
kidneys with up-regulation of the Klotho gene [199]. These evidences speak for a limited 
generalisation of the AA concept. AA affects various systems and cross-organ communication. The 
interaction between systems can impede the atrophy of an organ through compensatory mechanisms 
in other organs. Several studies have demonstrated the role of the central nervous system in 
reversing the aging of other systems and organs [200–202]. Endocrine and cardiovascular diseases 
promote renal aging [203]. Conversely, kidney transplantation can revive other parts of the body 
[204,205]. The characterisation of organ- and system-specific aging processes is challenging and it 
will require combinatory approaches that are largely missing in the AA concept. 

4. Limitations of the AA Concept 

The AA concept should be considered within the context of individual capacities and 
personalised structure–functional reserve mechanisms (Figure 2). A generalized term “structure-
functional reserves” is introduced to denote an observed variability in multiple structural and 
functional parameters at different levels in a population: expression of genetically and epigenetically 
regulated genes, number, viability and functionality of cells, amount of synapses and intercellular 
contacts, secretion of cytokines, potency of physiological responses, etc. The term definition could 
be further developed and linked to statistical distributions of measurable biological parameters in 
the population and to a norm of reaction. 

Physiological reserves reflect the remaining capacity of an organ to perform its function. 
Aging and diseases lead to atrophy due to a reduction in the number of cells and supracellular 
structures [206,207]. In the context of brain aging, physiological cognitive reserve reflects the 
level of education, occupational and environmental attainments and performance in cognitive 
tests [206]. Reversible forms of mild cognitive impairment (MCI) and dementia represent clinical 
examples of restoring individual reserve potential. The examples are not aligned with AA theory 
[208,209]. Neural compensation in the elderly leads to formation of secondary brain networks 
[210], which decelerate the aging of the brain [206,211]. In elderly patients, reversion of MCI results 
from specific lifestyle activities and cognitive stimulation throughout life [212,213]. 
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Figure 2. Factors influencing the rate of aging. Factors accelerating aging include: genetic mutations, 
epigenetic changes, protein aggregation, oxidative stress, inflammation and excitotoxity. Factors 
decelerating aging include: a healthy lifestyle, favourable environment, hygiene and immunisation, 
stem cell regenerative capacities, internal resources of cell stocks and drug therapy. 

Age assessment requires an accurate estimation of individual reserves that account for 
biological and chronological age differences. In neuroscience, machine learning models 
predicted total years lived in good health from brain-imaging data with error of 2.1–4.9 years 
[214,215]. Individual brain age can also be calculated as a difference between chronological age and 
the predicted BA [216]. In obstetrics, the evaluation of gynecological status takes into account both 
reproductive health and potential fertility. Overall BA depends on reserve capacities of individual 
systems and organs [217,218]. 

Variance in reserve capacities complicates precise BA assessment. Criteria of AA of the brain 
are unclear since indicators of normal aging are still missing [219]. Methods for BA assessment 
are not standardized, they do not take into account individual reserve potential, and reference 
curves for brain changes have not yet been created. Methodological discrepancies lead to 
contradictory findings in different studies. For example, AD adds 1.5 years to brain age, MCI 
adds 1 year, multiple sclerosis—0.41 years, Parkinson’s disease (PD)—3 years and schizophrenia—
5.5 years. The last two pathologies impact cognition in a milder and slower way than AD [220–222]. 
Another research on AD revealed the added brain age between 6 and 9 years [223]. 

Several methodologic limitations demonstrate the need for caution when assessing research 
findings. For example, studies on age-related brain atrophy commonly have a cross-sectional design 
that is less accurate compared to the longitudinal one [224]. Many studies are based on small non-
representative cohorts [225–227]; therefore, applicability of the designed mathematical models is 
low. Certain studies of brain aging focus on the middle-aged and elderly population and they fail to 
report individual prenatal pathologies and childhood trauma affecting brain health and BA of study 
participants [228]. Application of the concept of AA to localised degeneration presents a challenge 
since different brain parts become older unevenly [229]. For example, in localised ND, BA assessment 
reflects the level of damage to the most vulnerable brain parts (e.g., substancia nigra and ruber nuclei 
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in PD) [230–232]; however, one should also consider the brain resources that can minimise the 
atrophy effects [233]. In systemic ND, the brain ages faster than in localised ND [234,235], and the 
difference in the speed of atrophic changes is apparent [236]. 

ND has polyetiological nature, and contemporary neuroscience lacks a clear explanation of 
cooperation between different causal factors. It is still unclear whether chronic diseases lead to or 
result from ND [237,238] since the genetic, environmental and lifestyle factors interact in an 
undefined way [18,239,240]. Several articles have revealed a misalignment between dementia risk, 
cognitive performance and MBM levels [241,242]. Another disadvantage of AA studies is an 
inability to report an impact of medications on study results [243]. Last but not least, AA 
represents a diagnostic but not pathognomonic signature in ND and in psychiatric diseases such 
as schizophrenia, bipolar disorder and major depressive disorder [222,244,245]. The entire range of 
symptoms observed in these patients cannot be explained by brain aging only [222,246,247]. 

Drug therapy could extend reserves. For instance, antidepressants can help to re- verse MCI 
[248]. Certain cognitive disorders demonstrated a reversible pattern in cognitive performance 
upon treatment [248,249]. Sex hormone replacement in ND reduces risk of cognitive impairment, 
delays symptom onset and slows the progression [250]. Antioxidant-based therapy also 
alleviates severity of the disease [251,252]. Recent ND studies described a number of novel 
therapeutic options targeting mitophagy, protein aggregation and cellular senescence. These 
options include specific antibodies, inducers of cell proliferation and NAD+ supplementations 
[9,18,253]. The observed treatment effects contradict the idea of irreversibility of changes claimed 
by the AA concept. 

5. Recommendations for Further Development and Improvement of AA Concept 

5.1. Statistical Models 

Building highly accurate machine learning models is the most common solution for 
distinguishing AA from normal aging. Recent articles suggested ways to improve the models. These 
are identification of potential gaps or inconsistencies in study methodology, search for additional 
data sources, rigorous statistical analysis. Following the suggestions, scientists will reveal the trends 
or correlations that have been overlooked. Below, we list a set of model parameters that should be 
controlled: 

o Sample size. The number of individuals in the study can affect the statistical power of the 

analysis, and larger sample sizes generally provide more robust results. 

o Biomarker types. The choice of biomarkers can impact the diagnostic model used, as different 

types of biomarkers may require different statistical analyses. 

o Age range. The age range of the study population can influence the types of biomarkers 

identified, as some biomarkers may be more prevalent in certain age groups. 

o Data normalization. Normalization of the data is critical to ensure that data collection or 

processing differences do not affect the analysis. 

o Statistical methods. The choice of statistical methods can impact accuracy of analysis, and 

different methods may be more appropriate for different data types. 
Careful consideration of these parameters will advance diagnostic models based on specific 

MBMs of AA. Recommendations also include functional characterisation of all types of 
molecular clocks: organ-tissue-specific, single-cell-specific and disease-specific. Studies can 
benefit from integration of epigenetics, exploration of additional epigenomic markers of aging, 
and generation of data in robust non-human aging models. 

5.2. Molecular Clocks 

Molecular clocks could help to study aging in specific organs and tissues. Organ- and tissue-
specific clocks will unravel the complexity of aging in multicellular biological system. Animal 
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studies reported a number of useful techniques that use the mutation rate of biomolecules to 
deduce the time [254]. These include organ-specific clocks for liver [255–257], lungs [255,256], 
blood [256,258], heart and cortex [255], adipose, kidney, muscle tissues [256], and multiple tissue 
[259]. 

5.3. Single-Cell Epigenomics 

Analysis of gene expression at a single cell level provides a deep insight into aging 
[260,261]. For instance, lifetime-dependent cell-to-cell variability in methylation, or so called 
“epigenomic noise”, occurs in human immune cells in blood and in mouse muscle stem cells 
[262,263]. Epigenomic noise results in increased transcriptional heterogeneity, especially in stem 
cell niche genes [262]. A recent trend is construction of epigenetic clocks at a single-cell level by 
applying novel methods [264,265] and deep-learning computer algorithms [266–268]. 

5.4. New Epigenetic Biomarkers 

Search for new epigenetic marks of aging represents another challenge and opens exciting 
opportunities. Connections between aging and DNA modifications other than methylation are 
puzzling. Evidently, such connections exist. In the mouse, senescence of hippocampus cells 
deregulated histone H4 acetylation (H4K12) [269] and accumulated histone variant H2A.Z [270]. 
In the brain of AD patients, researchers found acetylated histones H3 (H3K9ac) and H4 
(H4K16ac) [113,271]. Longevity in mammals is linked to histone acetylation by SIRT6 HDAC, 
and this discovery unlocks potential for development of pharmacological agents targeting AA 
[272–274]. 

5.5. Consideration of Ageotypes 

Recently, longitudinal, deep multiomic profiling enabled identification of distinct aging 
phenotypes, termed ‘ageotypes’. These personalised physiological subsets of aging reflect impact 
of various individual factors on aging rate which depends on genetics, epigenetic changes, 
lifestyle habits and environmental exposure. Models reflecting age will improve diagnostic 
accuracy as new information is added [44]. Potential biomarkers of aging and health metrics can 
be incorporated into the model with ageotypes, and this approach will allow us to monitor the 
intervention effectiveness in each subset [44,275,276]. 

5.6. Genetic Predisposition to AA 

Human mutations in prototypical progeroid syndromes deepen our knowledge on mechanisms 
underlying aging. Some autosomal recessive mutations are associated with in- effective genome 
maintenance systems, deficient DNA helicase activity or aberrant nuclear architecture. Genome 
instability disorders caused by these mutations are classified into groups three of which include 
sunlight hypersensitivity disorders: (i) Xeroderma pigmentosum, Cockayne syndrome and 
trichothiodystrophy; (ii) ionizing radiation hypersensitivity disorders such as Ataxia telangiectasia, 
Nijmegen breakage syndrome; (iii) progeroid disorders such as Werner syndrome, Hutchinson–
Gilford progeria syndrome, Bloom syndrome, Rothmund–Thompson syndrome and Fanconi anemia 
[277–279]. Studies on the aforelisted disorders can also lead to the discovery of anti-aging treatment. 

5.7. Application of Animal Models 

Future studies will benefit from emergence of new animal models exhibiting age- related 
features – accelerated senescence, damage of nuclear envelope, increased accumulation of 
genomic lesions [280]. Interventions and modulators are commonly tested with well-developed 
mouse aging models [254]. Mouse models demonstrated epigenetic clock acceleration by a high-
fat diet, effects of rapamycin and caloric restriction [255,257]. Killifish(Nothobranchius furzeri) is a 
vertebrate with the shortest captive lifespan, which makes the species suitable for modeling 
senescence [281–287]. The following animals can also mimic aspects of human aging in longevity 
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models: naked mole rats (Heterocephalus glaber, Fukomys mechowii) [288–290], Brandt’s bat (Myotis 
brandtii) [291–293], olm (Proteus anguinus) [294–296], bivalve (Arctica islandica) [297,298], Hydra (Hydra 
vulgaris/Hydra mag- nipapillata) [299–302] and Planaria (Schmidtea mediterranea) [303–305]. These animal 
models can provide robust data on aging. 

6. Conclusions 

i. The review revealed certain weaknesses and limitations of AA concept. In particular, no 

unified methodology and terminology has been established in the field. The studies that justify 

the AA concept have too low sample sizes. Under certain conditions, some changes reverse 

with age. 

ii. Age-related diseases and exhaustion of individual reserves can indicate accelerated 

senescence. Specific molecular biomarkers reflect aging in individual organs, especially in 

the brain. Still, validation of a biomarker candidate remains a challenge. Scientists struggle 

to provide clinical interpretation and apply biomarkers to dis- ease subtyping. 

Mechanisms of getting older and their exact nature are not well understood. 

iii. Activation of regenerative mechanisms is a potential way to decelerate brain aging. 

Another opportunity for rejuvenation is to restore metabolic homeostasis and energy reserves 

at a molecular level with novel therapeutic options. For example, neurodegeneration can be 

delayed with sex hormone replacement, antioxidants, targeted therapy, lifestyle 

improvement and safe environment. Future longitudinal studies could pro- vide clinics 

and society with novel therapeutic options on preventing accelerated aging and slowing 

aging rate. 

7. Afterword: Aging Science History and Theories 

Several theories have been postulated to explain a possible biological meaning or evolutionary 
role of aging: evolutionary advantage of species (1890s, Weisman), accumulated mutations (1952, 
Medawar), antagonistic pleiotropy (1957, Williams), replicative senescence (1965, Hayflick), and 
the disposable soma theory (1972, Kirkwood) [306]. Theories about what causes aging commonly 
fall into either of two categories: genetic or stochastic. The genetic, or programmed, group refers 
to endocrine, immunological and programmed longevity theories. They suggest that aging is 
predetermined through genetics and that organisms have a built-in clock which dictates life 
expectancy. Stochastic, or damage, theories propose that random errors and damage accumulate 
over time and limit longevity. This group includes wear-and-tear, rate of living, cross-linking, free 
radical and somatic DNA damage hypotheses [307]. 

Theories of aging can also be classified by biological level. Gene regulation, codon restriction, 
error catastrophe, somatic mutation and dysdifferentiation theories describe molecular-level 
processes. Cellular senescence–telomere, free radical, wear-and-tear and apoptosis theories focus on 
the cellular level. Neuroendocrine, immunologic and rate of living theories conceptualise changes at 
the system level [308]. 

In 1920s, Laboratories of the Rockefeller Institute for Medical Research conducted 
experiments on AA and published findings. The author applied the terms “normal aging” and 
“aging rate” to effects of light on Drosophila inbred in the dark [309,310]. Since then, the numbers 
of references on “aging”, “aging rate” and “AA” has reached 614,132; 56,088 and 21,401, 
respectively [311]. 

In 1928, a Professor of Neurology of the Columbia University, Frederick Tilney, published 
the work “The aging of the human brain”, where an AD patient brain was compared to the 
normally aged one in the diagnostic context of the number of plaques. In this work, he also 
claimed an abundance of senile plaques in all human brains after the age of 90 years, influence of 
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unfavourable factors and diseases on the brain. Recorded a century ago, his words are worth 
repeating today: “It is amazing how little general or particular interest man has shown in the 
most important organ of his body and life. Up to the present time he has devoted relatively little 
attention and much less capital to the understanding of that part of his machinery which is the 
secret of his success and the only hope for his future progress, if not his actual salvation. . . The 
ridiculous stupidity of annually consecrating appalling sums of money to the savage purposes 
of destruction should in time shock human intelligence out of patronizing such futilities and into 
wiser realizations. Certainly, one liberally supported and effective brain institute would prove 
an incomparably more profitable investment for civilization than the most powerful battle fleet that 
ever sailed the seas.” (Tilney, 1928 [312]). 
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