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Abstract: Sugarcane is the primary crop in the global sugar industry, yet it remains highly susceptible to a wide
range of diseases that significantly impact its yield and quality. An effective solution is required to solve the
issues given by manual identification of plant diseases, which is time-consuming and wasteful, as well as low
detection accuracy. This paper proposes the development of a robust deep ensemble convolutional neural network
(DECNN) model for the accurate detection of sugarcane leaf diseases. Initially, several transfer learning (TL)
models, including EfficientNetB0, MobileNetV2, DenseNet121, NASNetMobile, and EfficientNetV2B0, were
enhanced through the addition of specific layers. A comparative study was then conducted on the improved
dataset. The application of data augmentation, along with the addition of dense layers, batchnormalization layers,
and dropout layers, led to improved detection accuracy, precision, recall, and F1 score for each model. Among the
five enhanced transfer learning models, the modified EfficientNetB0 model demonstrated the highest detection
accuracy, ranging from 97.08% to 98.54%. In conclusion, the DECNN model was developed by integrating the
modified EfficientNetB0, MobileNetV2, and DenseNet121 models using a distinctive performance-based custom
weighted ensemble method, with weight optimization carried out using the Tree-structured Parzen Estimator
(TPE) technique. This resulted in a model that achieved a detection accuracy of 99.17%, outperforming the
individual performances of the modified EfficientNetB0, MobileNetV2, and DenseNet121 models in detecting

sugarcane leaf diseases.

Keywords: CNN; transfer learning; deep learning; ensemble learning; sugarcane leaf diseases

1. Introduction

Sugarcane (Saccharum spp.) is a perennial graminaceous plant belonging to the C4 class, known
for its ability to accumulate substantial quantities of sucrose in specialized parenchyma storage cells [1].
As one of the most economically significant crops worldwide, sugarcane contributes approximately
80% of global sugar production, with an estimated annual market value of around US $150 billion
[2]. Besides sucrose, other by-products of sugarcane are bagasse, molasses, fiberboard, and different
components that are utilized in the manufacturing of butanol, ethanol, and citric acid [3]. China,
Thailand, Brazil, and India are the top producers of sugarcane [4]. When the average incidence of
sugarcane disease reaches 51.4%, sugarcane stem yield declines by 24.9%, and sugar content decreases
by 0.56%. If not detected and treated early, sugarcane diseases can lead to severe economic losses,
particularly for smallholder farmers [5].

These diseases often become discernible to the unaided eye only after the plant has already
sustained significant damage. Therefore, it is crucial to develop technological advancements that
enable early detection, assisting both farmers and agricultural experts in mitigating the impact of
these diseases. In response to this challenge, several innovative technological approaches have been
introduced. Traditional methods for plant disease detection involve the use of chemical agents and
plant maceration, but these processes require expert evaluation in specialized laboratories, making
them time-consuming and resource-intensive. Non-invasive methods for tracking and identifying
plant diseases have been developed in order to get around these restrictions, including computer-aided
detection, remote sensing, spectral imaging, and image processing [6,7]. A variety of techniques
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have been used, including digital cameras, satellites, and unmanned aerial vehicles (UAVs), to obtain
pictures of plant leaf diseases. However, satellite data often lacks the resolution and detail necessary
for analyzing individual plants, and the cost of acquiring satellite data is substantial. UAVs, while
offering more flexibility, are limited by weather conditions, flight direction constraints, and the risk
of crashes, which can degrade image quality. This field has made good use of image processing
techniques, which include picture acquisition, pre-processing, segmentation, feature extraction, and
classification. Nevertheless, the experimental setups required for optical sensors and spectral imaging
are costly, posing challenges for farmers [8,9].

As computational power continues to increase, advanced deep learning (DL) techniques are
increasingly employed to enhance the performance of predictive models. Nevertheless, a significant
amount of data is needed to train convolutional neural networks (CNNs), and this kind of data is
frequently lacking in agricultural research, especially when it comes to the investigation of illnesses
that affect sugarcane leaves. A potential solution to this data scarcity is the combination of transfer
learning (TL) and data augmentation. Data augmentation techniques help mitigate overfitting during
the training phase of deep neural networks [10]. As noted by [11], the main benefits of transfer learning
include decreased training times, enhanced neural network functionality, and data consumption.
Numerous studies have explored the use of CNNs, CNN-based deep learning techniques, and TL
methods. However, the application of ensembles of modified TL models in this field remains relatively
unexplored. The ensemble of such models has the potential to significantly improve the performance
of crop disease identification systems. This serves as the motivation for this paper, which applies a
weighted ensemble technique to various modified transfer learning models.

The main contributions of this paper are as follows:

¢ This study aims to enhance transfer learning (TL) models to improve the detection of sugarcane
leaf diseases. To achieve this, the TL models have been augmented with the incorporation
of dense layers for regularization, batchnormalization layers, and dropout layers to prevent

overfitting.
¢ A public dataset of sugarcane leaf diseases was used to compare five enhanced transfer learning

(TL) models. The results showed a considerable improvement in each model’s test accuracy.
* A novel deep ensemble convolutional neural network (DECNN) model for the detection of

sugarcane leaf diseases is proposed, utilizing a distinctive performance-based custom weighted
ensemble method. The model achieves an accuracy of 99.17%, outperforming individual models
in detection accuracy.

This is how the rest of the paper is structured. Section 2 gives a summary of the relevant literature.
The proposed methodology and dataset are described in Section 3. The conclusions and debates are
included in Sections 4 and 5. A consideration of future views wraps out Section 6.

2. Related Work

In agricultural research, artificial intelligence (Al) is a fast developing field within the larger
framework of the Fourth Industrial Revolution. It is frequently used in many different applications,
such as yield prediction, pest detection, and disease categorization. In previous years, image classi-
fication was primarily conducted using traditional machine learning methods. In machine learning,
the Support Vector Machine (SVM) is a traditional binary classification model. An SVM classifier was
proposed by Yigit et al. [12] for the binary classification of healthy and damaged sugarcane leaves
on a plain background. Through examination of the photos’ color and texture characteristics, the
researchers were able to obtain 92.91% accuracy. Additionally, algorithms such as Random Forest (RF)
[13], Back Propagation Neural Network (BPNN) [14], and K Nearest Neighbors (KNN) [15] have been
extensively utilized for leaf disease classification in various crops.

The application of machine learning in image classification is becoming less prevalent with the
rise of artificial neural networks (ANNs) and convolutional neural networks (CNNs), as deep learning
has become the dominant approach in this area. With an astounding accuracy of 95.48%, Wu et
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al. [16] developed a fine-grained disease classification approach based on a CNN to predict and
categorize over 20,000 peach and tomato leaf illnesses taken from the Plant Village website. Similarly,
Patil et al. [17] introduced "Rice-Fusion," a novel multimodal data fusion framework combining
a CNN and a multilayer perceptron (MLP) to diagnose rice diseases. The model was trained and
tested on 3,200 manually collected rice samples from four categories, ultimately demonstrating robust
performance with a test accuracy of 95.31%. One enduring obstacle in agricultural research is the
dearth of extensive databases. This problem has a hopeful remedy in transfer learning. Elfatimi et
al. [18] identified the optimal configuration of MobileNetV2 for bean leaf disease classification using
parameter tuning and transfer learning techniques. The model was trained on a public dataset of 1,296
bean leaf images across three categories, achieving an average classification accuracy exceeding 92%.
In another study by Rahaman Yead et al. [19], five well-known deep learning architectures, including
ResNet-50, VGG-16, DenseNet-201, VGG-19, and Inception V3, were utilized to build a dataset of 2,511
images across five sugarcane leaf disease categories. After applying transfer learning and parameter
tuning, the ResNet-50 model demonstrated the highest accuracy at 95.69%.In Reference [20], the
authors compared state-of-the-art deep learning benchmark models to create a new hybrid model
combining EfficientNetB0, a custom-designed neural network, and CSPDarknet53. This hybrid model
was tailored to capture the distinctive characteristics of sugarcane diseases, achieving an accuracy of
96.80% on a dataset of 2,522 sugarcane leaf disease images across five categories from Mendeley.The
integration of ANNs and feature selection has been a focus for many researchers. Pham et al. [21]
developed an ANN-based hybrid meta-heuristic approach for feature selection to detect early-stage
diseases in mango leaves. The ANN was trained on a manually collected dataset of 450 mango leaf
images from four categories (three diseased and one healthy), achieving superior results (89.41%)
compared to prevalent CNN models such as AlexNet, VGG16, and ResNet-50 (78.64%, 79.92%, and
84.88%, respectively). Another method for improving deep learning precision is the incorporation of
attention mechanisms. A hybrid SE-ViT model was suggested by Sun et al. [22], which achieved a
97.26% accuracy rate on the PlantVillage dataset for the diagnosis of sugarcane leaf diseases. On a
private dataset named SLD, comprising five categories (healthy, red-stripe, ring-spot, brown-stripe,
and bacterial diseases), SE-ViT outperformed four classical neural network models, with an accuracy
of 89.57%. Ensemble learning is a widely used approach for enhancing model accuracy. A real-time
dataset of five sugarcane leaf types—red rot, foliar, yellow leaf, healthy, and rust—was created by
Daphal et al. [23]. They conducted a comparative study using transfer learning and ensemble methods
to classify the dataset for sugarcane leaf diseases. An accuracy of 86.53% was attained by the ensemble
model, which was composed of a sequential CNN and a deep CNN with spatial attention. Table 1
offers a thorough summary of the most recent state-of-the-art research findings in the field of plant leaf
disease identification, emphasizing different architectural strategies in particular.

d0i:10.20944/preprints202410.1134.v1
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Table 1. Comparison of various architectural approaches taken on various plants.
References Model Used Dataset Number of Number of Transfer Ensemble Data Accuracy
Images Classes learning Learning augmentation
[12] SVM Multi-plant 637 32 No No No 92.91%
(Folio)

[16] CNN(FGIA)  Peach,Tomato 2657,18162 2,10 No No No 95.48%
(PlantVillage)

[17] CNN, MLP Rice(own) 3200 4 No Yes No 95.31%

[18] MobileNetV2 Bean(ibean) 1296 3 Yes No No 92.97%

[19] ResNet50, Sugarcane 2511 5 Yes No No 95.69%

VGG16,VGG19  (Mendeley)
DenseNet201,
InceptionV3
[20] EfficientNetB0, Sugarcane 2522 5 Yes Yes Yes 96.80%
CSPDarknet53 (Mendeley)

[21] ANN Mango(own) 450 4 No No No 89.41%

[22] SE-VIT Multi-plant 60343,1877 38,5 Yes No Yes 89.57%
(PlantVillage),
Sugarcane(own)

[23] CNN,VGG19, Sugarcane(own) 2569 5 Yes Yes No 86.53%

ResNet50,
Xception,
MobileNetV2,

EfficientNetB7
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A review of the literature reveals five key machine learning approaches that have been employed
for the classification of sugarcane leaf diseases. Initially, traditional machine learning methods were
used, but their performance limitations led to the rise in popularity of convolutional neural network
(CNN) models. Subsequently, hybrid models combining CNN and multilayer perceptron (MLP) were
developed. The third phase involved the implementation of CNN models that incorporated transfer
learning. Finally, Daphal et al. [23] successfully classified sugarcane leaf disease using an average
ensemble of transfer learning models in a recent study, however their accuracy was only 86.53%.

3. Materials and Methods

In this paper, we propose an ensemble model (DECNN) consisting of three modified transfer
learning (TL) models for the high-precision classification of sugarcane leaf diseases. The tests were
carried out with an openly accessible dataset; the experimental setup and technique are explained in
detail in the next section.

3.1. Dataset

The validity of results from data science research is strongly reliant on the availability of correct
and trustworthy data. The more precise and relevant the data in a model’s dataset, the more accurate
and useful the model becomes. In this study, a dataset related to sugarcane leaf diseases was obtained
from Kaggle [24,25]. The dataset comprises six categories (illustrated in Figure 1), including healthy;,
foliar, red rot, rust, yellow leaf, and bacterial wilt, with a total of 2,646 images across all categories.
To ensure the dataset was both representative and diverse, the images were captured using various
smartphones. The number of images per category varied significantly, as did their size and dimensions.

Healthy Rust Yellow

=
3

An existing dataset can be enhanced with new data points using a variety of methods known
as data augmentation, which essentially increases the amount of data that is available artificially.
Conventional data augmentation methods help mitigate the issue of overfitting, facilitating smoother
classifier training [26]. In the present study, the sugarcane leaf disease dataset was augmented
exclusively through the use of the ImageDataGenerator module, a component of Python software [27].
The number of samples in each category was increased to achieve a more balanced dataset. Table 2
outlines the specific augmentation techniques applied. As shown in Table 3, the augmented dataset
now comprises 4,800 images, with approximately 800 images per category.Accurate data preprocessing
forms the basis of precise data analysis [28]. Using the image processing capabilities of the OpenCV
and Pandas libraries, all of the photos in the expanded sugarcane leaf disease dataset were shrunk to
224 x 224 pixels in order to decrease computing costs and fulfill the input criteria of the network model
utilized in this study. After then, the dataset was divided in an 80-10-10 ratio into training, validation,
and test sets.

Figure 1. Some examples of diseases of sugarcane.

3.2. Data Augmentation and Pre-Processing
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Table 2. Specifications of the augmentation methods used in this study.
Serial No. Augmentation Technique Parameter with Value
1 Rotation rotation_range=20
2 Width shift width_shift_range=0.2
3 Height shift height_shift_range=0.2
4 Shear shear_range=0.2
5 Zoom zoom_range=0.2
6 Horizontal flip horizontal_flip=True
7 Brightness brightness_range=[0.5, 1.5]

Table 3. Sample size before and after augmentation of the sugarcane leaf disease dataset.

Classes Original dataset Data augmentation
Total Training Validation Testing Total Training Validation Testing

Healthy 522 420 54 48 800 631 75 94
Mosaic 462 366 49 47 800 658 68 74
RedRot 518 413 49 56 800 653 77 70

Rust 514 416 45 53 800 644 83 73
Yellow 505 400 56 49 800 618 96 86
BacterialBlighi 25 101 12 12 800 636 81 83

Total 2646 2116 265 265 4800 3840 480 480

3.3. Proposed DECNN Model

Figure 2 illustrates the customized weighted ensemble of the enhanced transfer learning (TL)
model proposed in this study for the detection of sugarcane leaf diseases. Initially, the dataset of
sugarcane leaf diseases was obtained from Kaggle, as described earlier. The OpenCV and Pandas
libraries were utilized to perform a comprehensive statistical analysis of the dataset. After that, the
dataset was increased, as explained in Section 3.2, and every image was adjusted to have a uniform
size of 224 by 224 pixels. After that, the dataset was split up into three subsets: testing, validation, and
training. Subsequently, five TL models were enhanced by incorporating dense layers with ELN-Reg
regularization, batchnormalization layers, and dropout layers, respectively. These models were trained
using the RMSprop optimizer and the categorical cross-entropy loss function. Finally, the three most
effective modified TL models were combined using a uniquely customized weighted ensemble method
to form the DECNN model.
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Figure 2. Flow diagram of the proposed DECNN model.

3.3.1. ELN-Reg Regularization

ELN-Reg regularization is a novel technique introduced in this paper that integrates the principles
of Elastic Net [29] and DL-Reg regularization [30]. The primary objective of this approach is to
enhance the model’s generalization capabilities, particularly in high-dimensional datasets. This method
incorporates L1 and L2 penalty terms into the loss function, effectively balancing the advantages of
feature selection with model stability. Furthermore, by defining the linear mapping error from input to
output as a linear constraint, ELN-Reg improves the model’s linearity to a certain extent. This technique
not only facilitates feature selection but also mitigates overfitting, thereby enhancing the predictive
performance of the model in complex, high-dimensional environments. ELN-Reg regularization can
be expressed mathematically as shown in Equation (1).

RG) = (o [+ 152 513 + 7 MSE(x, 9 )

In this context, R(x) represents the total regularization term applied to the parameter x. The
value of « determines the strength of the L1 and L2 regularization terms. The term p represents the
relative weight of the L1 regularization term and the L2 regularization term. The variable ||x||; can be
understood as the L1 paradigm, which is defined as the sum of the absolute values of the elements of
x. Similarly, the variable ||x||3 represents the square of the L2 paradigm. The sum of the squares of the
elements of x. The parameter <y controls the strength of the DL-Reg regularization term. MSE(x, £) is
the mean square error between the input x and its estimate £.


https://doi.org/10.20944/preprints202410.1134.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 October 2024 d0i:10.20944/preprints202410.1134.v1

8 0of 20

The regularization coefficients &, p, and <y are pivotal parameters in ELN-Reg, influencing the
efficacy of the network. An increase in the regularization coefficients &, p, and -y results in a reduction
in the learning capacity of the network. Conversely, as the regularization/generalization coefficients
approach zero, the impact of these processes on the learning process is reduced [30]. It is therefore
essential to select an appropriate value for &, p, and 7 in order to achieve optimal performance. This
allows the model to benefit from the feature selection power of L1 regularization, the ability of L2
regularization to enhance model stability, and the capacity of DL-Reg regularization to enforce linearity
to enhance generalization. In this paper, we employ the hyperparameter tuning tool Optuna [31] to
efficiently search for optimal parameter values within a given search space. This paper presents a
comparative analysis of ELN-Reg regularization with other common regularization methods and with-
out regularization on a data-augmented sugarcane leaf disease dataset using the EfficientNetB0 base
model. Table 4 illustrates the outcomes, demonstrating that ELN-Reg exhibits superior performance
on the sugarcane leaf disease dataset. Furthermore, the combination of ELN-Reg and Dropout attained
a final test accuracy of 98.54%. Accordingly, the combination of ELN-Reg and Dropout was selected as
the regularization method for the present experiment.

Table 4. Comparison of common regularization methods with and without regularization in sugarcane
leaf disease classification accuracy using EfficientNetBO as a base model.

Method Test Classification Accuracy
NULL 96.39
L1 97.92
L1+Dropout 98.12
L2 97.50
L2+Dropout 98.12
ELN-Reg 98.12
ELN-Reg+Dropout 98.54

3.3.2. Modified Transfer Learning Models

Transfer learning refers to the technique of modifying or reusing a model that has been trained for
one task to be used for a similar task (see Figure 3). The objective of transfer learning is to improve the
efficiency of target learners by leveraging knowledge from related source domains. It is a commonly
used methodology for developing machine learning models without requiring large datasets [32].
The key advantages of transfer learning include reduced training time, improved neural network
performance, and the need for only a modest amount of data [33-35].

'Source Task

1000

ImageNet classes

i
>

Knowledge

abpajmouy
ay) Buusysuel]

5 1.Healthy
2.Mosaic
3.RedRot

Target Task

4.Rust

5.Yellow
: " 6.Bacterial
Transfer Learning Model Blight

i
v

Figure 3. The concept of transfer learning.
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As illustrated in the second section of Figure 2, this research enhances five state-of-the-art transfer
learning (TL) models: EfficientNetBO, MobileNetV2, DenseNet121, NASNetMobile, and Efficient-
NetV2B0 [36-40]. These models were imported directly from the Keras library (Keras applications).
Table 5 lists the TL models employed for further enhancement.

Table 5. TL architectures applied in the study.

Model Total Parameter Trainable Parameters Non-Trainable
Parameters
EfficientNetB0 5,330,571 5,288,548 42,023
MobileNetV2 3,538,984 3,504,872 34,112
DenseNet121 8,062,504 7,978,856 83,648
NASNetMobile 5,326,716 5,289,978 36,738
EfficientNetV2B0 7,200,312 7,139,704 60,608

Three dropout layers, three batchnormalization layers, and four dense layers were used in place
of the classification layers in each of the five models shown in Table 5. After ELN-Reg regularization,
the first three dense layers were applied. Additionally, these layers utilized the Rectified Linear Unit
(ReLU) activation function to enhance nonlinearity and facilitate feature extraction. The models were
trained over 50 epochs, with early stopping techniques applied to obtain optimal weights. To mitigate
overfitting, a dropout rate of 0.3 was used. All models were tested and validated using a fixed seed
of 42, with a learning rate of 0.0001, RMSprop optimizer, categorical cross-entropy loss function,
and a batch size of 32. An exhaustive list of all the layers and learning parameters in the modified
EfficientNetBO model can be found in Table 6.

Table 6. The Modified EfficientNetB0’s layers and learning settings.

Layer (Type) Output Shape Parameters
Input Layer [(None,224,224,3)] 0
efficientnet-b0 (None, 1280) 4049564
Dense (None, 128) 163968
BatchNormalization (None, 128) 896
Dropout (None, 128) 0
Dense (None, 64) 8256
BatchNormalization (None, 64) 448
Dropout (None, 64) 0
Dense (None, 32) 2080
BatchNormalization (None, 32) 224
Dropout (None, 32) 0
Dense (None, 6) 198

3.3.3. Ensemble Modified TL Model

It is commonly acknowledged that ensemble learning techniques are a novel way to address
many machine learning problems. Individual model predictive performance can be greatly enhanced
by ensemble approaches [41] by training numerous models and aggregating their predictions. Two
primary strategies are typically employed in the design of ensemble algorithms: the average ensemble
and the weighted ensemble [42]. The average ensemble assumes that all models contribute equally and
have similar accuracy, while the weighted ensemble acknowledges that some models may outperform
others, allowing those with superior performance to have greater influence in the final prediction. In
this study, a weighted ensemble was constructed using the modified, high-performing EfficientNetB0,
MobileNetV2, and DenseNet121 models.

d0i:10.20944/preprints202410.1134.v1
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In this paper, a customized weight search space is developed for each model based on its per-
formance on the validation set (see Figure 4). The initial base weights and the corresponding weight
search space are determined using the formulas presented in Equations (2) and (3).

P.
bw; = : 2)
i Z]l\il P
WS; = [max (0.1, bw; x 0.5), min(2.0, bw; x 2.0)] 3

In this context, the term bw; represents the base weight of the ith model, i denotes the performance
metric of the ith model, N signifies the total number of models, and WS; stands for the weighted
search space of the ith model. Algorithm 1 presents the algorithm for learning a weighted ensemble.

wi [ w2 [ ws

max(0.1,base-weight*0.5)
min(2.0,base-weight*2.0)

Weights Space

Modified

EfficientNetB0 mmm

TPE Search of the Weights

w1 Target: Highest

accuracy,precision,recall,F1 score

Modified

MobileNetV2 w2

JPrediction*Weights

|
Sugarcane w3

Leaf Dataset ARGMAX(summed)

Modified ALONG AIX=1

DenseNet121
Healthy/RedRot/Yellow/Rust/
Mosaic/Bacterial Blight

Figure 4. Proposed deep ensemble CNN (DECNN) model.

Algorithm 1: Weighted ensemble

Input: Test_set T, Models M; and Weight_set Wy (k = 1 to n) where k is the number of models
Output: F,
Ensemble_model E = [My, My, ..., My]
Fori=1tokdo
Predict, P = generate (T)
S = add (P * W, along y axis)
F, = index_max (S, along x axis)
Confusion_matrix (F,, T)
Classification_matrices (F,, T)
End

In this paper, the ensemble of models to be ensembled, designated as E, is composed of the
Modified EfficientNetB0, MobileNetV2, and DenseNet121, with optimal weights W;, wherei =1, 2, 3,
obtained in the search space through the application of the TPE [43] algorithm.

3.4. Model Performance Metrics

Model evaluation is a critical phase in the machine learning pipeline, serving to determine the
model’s ability to generalize to unseen data. As mentioned below, a confusion matrix, a receiver
operating characteristic (ROC) curve, and a number of performance measures are used in this work to
assess the suggested model. These metrics include accuracy, precision, recall, and F1 score.
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® Accuracy: the evaluation of a model heavily depends on the parameter of accuracy. The formula
computes this ratio, which is the proportion of accurately anticipated data to all data:

Accuracy = LTP+)Y. TN
Y T Y TPYYIN Y FP+YEN

x 100% (4)

* Precision: the proportion of correct predictions among the samples with positive predictions, as
judged by the prediction results, calculated by the formula:

Y TP

Precision = m

x 100% )

¢ Recall: the proportion of correctly predicted positive cases out of the total number of actual
positive cases in the sample of actual positive cases, based on the judgment of the actual samples,
which is calculated by the formula:

Y TP

Recall = — ="
ATy TPIYEN

x 100% (6)

The terms TP, TN, FP, and EN stand for true positive, true negative, and false negative, respectively.

* F1 score: precision and recall are averaged together to get the F1 score. When comparing several
models, it is computed as follows:

Precision x Recall
Precision + Recall

F1 score =2 x ( ) X 100% (7)

* Macro average: the arithmetic mean of every category linked to F1 score, precision, and recall is
known as the macro average. It is determined by the following formula and is used to assess the
multi-class classification’s overall effectiveness:

1 N
Macro Avg Measure = N Z Measure in class; (8)
i=1
* Weighted average: a multi-category classification’s overall effectiveness can also be assessed
using the weighted average. Using the following formula, it is determined as a weighted average
for every category:

YN | (Measure x weight) in class;

Weighted Avg Measure = Total number of samples

©)

4. Results

The modified transfer learning (TL) models and the proposed DECNN model were trained
and validated on Google Colaboratory using Google Compute Engine with an NVIDIA Tesla T4
GPU, which provides 16GB of GDDR6 memory. TensorFlow-Keras version 2.0 served as the deep
learning framework for this study. Hyperparameter selection details and other relevant configuration
information are available in Section 3.3.2. Table 7 summarizes the accuracy of the modified TL models
on the augmented sugarcane leaf disease dataset, indicating the extent of modifications applied.
Additionally, Table 8 presents key evaluation metrics, including precision, recall, F1 scores, along with
macro and weighted means for each model, assessed on the test set.
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Table 7. Comparison of test results of the modified TL model on the augmented dataset.
Model Original Modified Improvement
NASNetMobile 85.00 92.71 +%7.71
EfficientNetV2B0 90.21 94.17 +%3.96
MobileNetV2 92.50 96.67 +%4.17
DenseNet121 95.83 98.12 +%2.29
EfficientNetB0 97.08 98.54 +%1.46
Table 8. Comprehensive analysis of the models” performance.
Model (Modified) Macro Average Weighted Average Accuracy
Precision  Recall F1score Precision Recall F1 score
NASNetMobile 93.24 92.78 92.80 93.31 92.71 92.78 92.71
EfficientNetV2B0 94.47 94.40 94.27 94.57 94.17 94.20 94.17
MobileNetV2 96.60 96.76 96.64 96.75 96.67 96.67 96.67
DenseNet121 98.22 98.11 98.16 98.14 98.12 98.12 98.12
EfficientNetB0 98.59 98.50 98.53 98.58 98.54 98.54 98.54
Proposed 99.23 99.13 99.18 99.17 99.17 99.17 99.17
DECNN

4.1. Results of Modified Transfer Learning models

Five modified transfer learning (TL) models, specifically EfficientNetB0, MobileNetV2, DenseNet121,
NASNetMobile, and EfficientNetV2B0, were trained on the expanded sugarcane leaf disease dataset.
Figure 5 illustrates the accuracy of these modified TL models over time. The accuracy across these
models on the dataset ranges from 92.71% to 98.54%. Notably, the modified EfficientNetB0 model ex-
hibits the most linear trajectory, with substantial overlap between the training and validation accuracy
curves, indicating superior generalization capability.
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Figure 5. Accuracy of the modified model versus number of epochs.

The receiver operating characteristic (ROC) curves for each improved transfer learning (TL) model
are shown in Figure 6. This study’s examination of the micro-averaged ROC curve sheds light on how
well the model can differentiate between cases that fall into each category, both positive and negative.
A thorough assessment of the model’s performance is attained through a close inspection of the ROC
curve’s form, its distance from the upper left corner, and the area under the curve (AUC). Perfect
discrimination is shown by an AUC value of 1, which is a crucial sign of model performance. With
the exception of NASNetMobile and EfficientNetV2BO0, all modified TL models achieved AUC values
closer to 1 across each category, suggesting a high degree of accuracy in correctly classifying all forms
of sugarcane leaf disease.
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Figure 6. ROC curve of modified TL model.

Presented in Figure 7 is the confusion matrix that was produced from 480 test cases. The modified
transfer learning (TL) models for sugarcane leaf diseases are shown in this figure along with their
classification result. The matrix includes true positives, false positives, true negatives, and false
negatives for each model. As depicted in Figure 7, the modified NASNetMobile and EfficientNetV2B0
models displayed relatively low classification accuracy, correctly identifying only 446 and 452 out
of the 480 sugarcane leaf disease cases, respectively. In contrast, the remaining models—such as the
modified MobileNetV2, DenseNet121, and EfficientNetB0—demonstrated progressive improvements
in performance. Among these, the modified EfficientNetBO model achieved the highest accuracy,
correctly identifying 453 out of 480 cases, thereby showcasing the best overall classification performance
among the five models.
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Figure 7. Confusion matrix of modified TL model.

As shown in Table 7, the specific accuracies of the modified TL models—namely NASNetMo-
bile, EfficientNetV2B0, MobileNetV2, DenseNet121, and EfficientNetBO—are 92.71%, 94.17%, 96.67%,
98.12%, and 98.54%, respectively. These results indicate varying degrees of performance improvement
across the five modified TL models, with the modified EfficientNetB0 model demonstrating a clear
superiority over the others. The adjusted EfficientNetBO model outperforms the other five modified
TL models in terms of precision, recall, F1 score, and prediction accuracy in the thorough performance
evaluation that is presented in Table 8.

4.2. Results of Ensemble Modified TL Model DECNN

The DECNN model is composed of the three most accurate modified versions of EfficientNetB0,
MobileNetV2, and DenseNet121, utilizing a custom weighted ensemble strategy. As shown in Table 8,
the DECNN model achieves an accuracy of 99.17%, precision of 99.23%, recall of 99.13%, and an F1
score of 99.18%. These results surpass the performance of all modified TL models, representing the
most remarkable outcome in this study. Figures 8 illustrate the receiver operating characteristic (ROC)
curves and confusion matrix of the DECNN model, which exhibited the highest performance overall.
The ROC curves for the DECNN model indicate four categories with an area under the curve (AUC) of
1, while the remaining two categories have an AUC approaching 1. The model correctly classified 476
out of 480 images of sugarcane leaf diseases, resulting in only four misclassifications. The efficiency of
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the DECNN model presented in this research in detecting and classifying sugarcane leaf diseases is

well demonstrated by a thorough analysis of performance indicators.
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Figure 8. ROC curve and Confusion matrix of proposed DECNN model.

5. Discussion

The Kaggle dataset comprises six categories and a total of 2,646 images, which this study utilizes
to develop a computer vision-based technique for classifying sugarcane leaf diseases.

Developing learning models on relatively small datasets presents significant challenges. To
mitigate the limitations associated with the availability of extensive datasets, this paper introduces a
series of data augmentation techniques, including scaling, rotation, cropping, width shifting, height
shifting, brightness adjustment, and horizontal flipping. These augmentation techniques expand
the dataset while concurrently reducing the likelihood of overfitting [27]. Additionally, this study
employs transfer learning, which enhances model performance despite limited data availability. As
an illustration, Bagchi et al. [20] created a novel hybrid model with excellent accuracy, although the
authors did not use data augmentation approaches. Had they done so, they might have achieved even
higher accuracy.In this study, five modified transfer learning (TL) models were utilized, incorporating
dense layers and batchnormalization layers at the base of each model to minimize overfitting and
improve accuracy. Regularization techniques, such as ELN-Reg and Dropout, were also employed to
prevent overfitting due to the limited training data. Furthermore, Rahman Yead et al. [30] utilized
several classical deep learning architectures, including ResNet50, VGG16, DenseNet201, VGG19, and
Inception V3, without modifications to the TL model. While designing their models, Daphal et al.
[23] used average ensemble techniques instead of weighted ensemble learning. To further enhance
performance, this paper adopts a bespoke weighted ensemble strategy for the top three modified
models—EfficientNetB0, MobileNetV2, and DenseNet121—based on accuracy.

Table 9 presents the optimal weights obtained from the Tree-structured Parzen Estimator (TPE)
search. The proposed weighted ensemble model (DECNN) achieves the most significant performance
when utilizing these weights, demonstrating the highest accuracy in various experiments and in the
context of previous studies. As illustrated in Figure 9, the model achieved an accuracy of 476 out of
480 test data points, with only four misclassifications. Table 8 shows the highest precision (99.23%),
recall (99.13%), F1 score (99.18%), and accuracy (99.17%) recorded in this study. As depicted in Figure 9,
the model demonstrates a high degree of accuracy in classifying the test data. Table 10 compares the
proposed model with recently published models [20,23,30]. It is clear that the model put forward in
this work greatly improves the classification accuracy of sugarcane leaf diseases.
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Table 9. Tuned weight values.

Model (Modified) Weight Values
EfficientNetB0 0.58
MobileNetV2 0.17
DenseNet121 0.21

Table 10. Comparison of the performance of the model proposed in this paper with previous work.

No. Method Accuracy
1 Rahaman Yead et al.[32] 95.69
2 Bagchi et al.[34] 96.80
3 Daphal et al.[40] 86.53
4 Proposed method 99.17
True: Mosaic True: RedRot True: Healthy True: Healthy True: Mosaic True: Healthy

Pred: Mosaic

Al

Pred: Healthy

Pred: Mosaic

Pred: Healthy

Pred: Healthy

Figure 9. Final predicted outputs.

Recognizing the study’s shortcomings is essential. Firstly, it is important to note that traditional
machine learning models were not utilized, as the majority of existing literature indicates that deep
learning techniques tend to outperform traditional machine learning approaches. However, the
potential efficacy of hybrid machine learning techniques on the current dataset warrants further
investigation.Secondly, this study focused exclusively on five common sugarcane leaf diseases. For the
model to be applicable in real-world scenarios, it is essential to address a broader range of sugarcane
leaf diseases. Additionally, only five principal modified transfer learning models were considered,
some of which were combined in the ensemble. While these modified TL models effectively fulfilled the
experimental objectives of this research, incorporating additional modified TL models could enhance
the robustness and applicability of future studies.

6. Conclusions

This paper proposes a robust and highly accurate deep ensemble convolutional neural network
(DECNN) model for the early detection of sugarcane leaf diseases. The proposed model incorporates
dense and batchnormalization layers, applies regularization methods such as ELN-Reg and Dropout
to mitigate overfitting, and employs early stopping optimization techniques for five transfer learning
models: EfficientNetB0, MobileNetV2, DenseNet121, NASNetMobile, and EfficientNetV2B0. Addition-
ally, various data augmentation techniques were utilized to expand the dataset and further reduce
the risk of overfitting. A comprehensive comparative analysis of the modified transfer learning (TL)
models was conducted. Ultimately, the three most effective models for disease classification were
selected, and their predictions were integrated through a customized weighted strategy. The ensem-
ble DECNN model exhibited significant improvements in performance metrics, achieving accuracy,
precision, recall, and F1 score of 99.17%, 99.23%, 99.13%, and 99.18%, respectively. In the end, this
high-precision model may help growers identify and cure leaf illnesses in sugarcane crops early on,
which could increase sugarcane yields.
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While this research focused on the detection of five distinct categories of sugarcane diseases,
there is substantial scope for future research to modify and expand this model. Incorporating a more
comprehensive set of sugarcane diseases and implementing the DECNN model in real agricultural
settings could enhance and validate its performance. Furthermore, deploying the DECNN model in
field trials and agricultural operations will provide invaluable insights into its viability and efficacy in
authentic contexts. Researchers will be able to assess the model’s performance and provide guidance for
future changes by working with farmers and agricultural groups to gather data on disease prevalence,
treatment effectiveness, and general crop health.
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