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Entropy Dissipation and the Origins of Complexity

Pei Zuchang

Retired Scientist, Canada; ppei@telus.net
Abstract

Life emerged from non-living matter through energy-driven, self-organizing processes constrained
by thermodynamics, stabilized by dissipative structures, and coordinated by cybernetic feedback. We
present a staged mathematical framework— Bioevo-Cybernetics [—that formalizes this progression
from protocells to unicellular and multicellular systems. The model integrates entropy dissipation,
free-energy throughput, and hierarchical feedback regulation, showing how organisms sustain order
by channeling metabolic flows into dissipative pathways. Evolution is thus reframed as an active,
self-regulating process in which variation, selection, and feedback interact under entropy—-dissipative
constraints, progressively transforming stochastic mutation into directed pathways of complexity. As
a case study, we apply the framework to the evolutionary transition from heterotrophic flagellates to
photosynthetic dinoflagellates. The model captures key drivers —environmental energy flow, cellular
asymmetry, population processes, and internal integration—while explicitly incorporating
thermodynamic gating functions that determine whether complexity is maintained or lost.
Simulations reproduce major thresholds of evolutionary innovation, including plastid acquisition,
nuclear dualism, and stable flagellar reconfiguration, with results aligning with fossil and
geobiological records. The framework quantifies the trade-off between increasing complexity and
decreasing adaptability, also predicts contingent outcomes such as bistability, hysteresis and
environmental dependence, providing an explanation for both the early origin and later fossil
appearance of dinoflagellates. By uniting entropy dissipation, cybernetic control, and evolutionary
transitions in a single quantitative framework, Bioevo-Cybernetics I offers a predictive approach to
reconstructing the origins and long-term dynamics of biological complexity. This work establishes a
foundation for testing how thermodynamic and regulatory constraints interact to shape major
evolutionary innovations, from the origin of life to the rise of eukaryotic complexity.

Keywords: bioevo-cybernetic model; entropy; dissipative structure; multicellular organisms; proto-
life; single-cellular life; stage-based evolutionary progression

Introduction

The origin of life remains one of science’s most profound and unresolved questions. The leap in
complexity from the primordial ocean to the first cellular organisms challenges both “chemistry-
forward” approaches, which focus on prebiotic synthesis, and “biology-backwards” approaches,
which trace complexity from modern cells to their simplest forms. Bridging this gap requires
understanding the physical, chemical, and informational processes that drove the earliest
evolutionary transitions.

Modeling the origin of life and subsequent evolution has long drawn on a combination of
chemical kinetics, thermodynamics, systems theory, and information theory. Key contributions
include: the hypercycle theory of autocatalytic networks (Eigen & Schuster 1977, 1979; Hordijk 2013,
Huson et al. 2024; Williamson 2024; Despons 2025), self-organization via network dynamics
(Kauffman 1993, Zorc & Roy 2024), the role of alkaline hydrothermal vents and the acetyl-CoA
pathway in early metabolism (Martin & Russell 2007), models linking bioenergetics to genome
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complexity (Lane & Martin 2010), classical quantitative evolutionary models (Fisher 1930), eco-
evolutionary dynamics (Kalambokidis & Travisano 2024), free-energy principle (Ramstead 2018, 2019;
Badcock et al. 2022, Fields 2024), phenomenological thermodynamic and multilevel learning
frameworks (Vanchurin et al. 2022), and model or laboratory-based protocell studies (Szostak et al.
2001, Villani et al. 2024, Zimmermann et al. 2024, Kicsiny et al. 2025, Tang & Gao 2025). These studies
collectively suggest that the abiogenesis-to-biogenesis transition emerged naturally from energy
flows in open thermodynamic systems, coupled to their environments (Moldavanov 2021).

Life’s origin and evolution can be conceptualized as stage-based progressions, where each stage
introduces new forms of sensing, modeling, action, and inheritance —yet all operate under the same
core cybernetic principle: systems evolve by reducing uncertainty and increasing environmental
control through feedback and variation. This process is recursive, with each stage instantiating the
cybernetic equation in a more complex substrate and achieving higher adaptive capacity (Wiener
1948; Miller 1978; Maturana & Varela 1980; Brooks & Wiley 1986; Kauffman 1993; Maynard Smith &
Szathmary 1995; Heylighen & Joslyn 2001; Deacon 2011; Capra 2014; Szathmary 2015; Pei 2025).

Table 1. Stage-Based Evolutionary Progression.

Stage Transition Unit of Evolution Feedback Medium
0 Pre-life chemistry Molecular replicators Chemical autocatalysis
1 Life emerges (protocells) Metabolic gene networks Environmental coupling
2 DNA + natural selection Genes & genotypes Reproductive fitness
3 Multicellularity Cells and cell groups Developmental programs
4 Nervous systems Behaviors / neural circuits Sensorimotor learning
5 Symbolic communication Cognitive strategies Language/memory feedback
6 Culture & institutions Ideas / memes / cultures Social interaction
7 Scientific civilization Knowledge systems Technological & symbolic
8 Post-human intelligence/ Al Self-evolving intelligences Recursive cybernetic loops

Table 2. Layers of Increasing Cybernetic Sophistication.

. . . Info Gain
Stage Trait ¢ Fitness Function W Feedback Type .
Medium
. Membrane Chemical stability + Autocatalysis, Molecular
structure replication rate environment interactions
Genetic Reproductive fitness in ) )
2 ) ) Natural selection DNA mutations
sequences given environment
Cell adhesion, ) o Developmental Epigenetic
3 L Organismal viability . .
division signaling programs
. Neural Behavior success / Neural feedback Synaptic
patterns survival from actions plasticity
Prediction accuracy / Social feedback,
5 Mental models o Memory, culture
communication language
6 Institutions, Collective survival / Governance, media, Cultural
norms cohesion economy inheritance
; Scientific Predictive power, Peer review, data Symbolic
theories problem-solving feedback language + tech
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The evolutionary history of life is closely linked to Earth’s geologic and climatic evolution.
Before the Cambrian explosion, life likely passed through at least three major stages:

1) Transition from non-living microscopic particles to metabolically active, self-renewing
protocells.

2) Transition from non-cellular living matter to single-celled organisms with defined cellular
structures.

3) Evolution from unicellular to multicellular organisms with cellular differentiation.

Geological evidence suggests that two major crustal reorganizations before the Paleozoic
corresponded with the completion of the non-cellular—to—cellular transition. As the temperature of
the primordial ocean cooled below 100 °C, conditions became favorable for life-like particles—
capable of metabolism, self-maintenance, and reproduction —to form and float near the ocean surface,
marking Stage 1. Over long timescales, these protocells evolved into single-celled organisms (Stage
2). Under environmental stress, daughter cells sometimes remained attached after division,
eventually forming stable multicellular aggregates. With repeated cycles, these aggregates began
cellular differentiation, initiating Stage 3 of life’s development (Pei 2025).

Stage 1 — From Abiotic Chemistry to Life-like Particles (Table 3)

Early studies identified surface hydrothermal vents as promising settings for prebiotic synthesis,
where geochemical processes could bridge the gap to protocell formation (Ferris, 1984; Pleasant &
Ponnamperuma, 1984; Rimmer & Shorttle, 2019). Experiments have shown that polymeric droplets —
formed before lipid membranes existed —can act as primitive compartments capable of retaining
catalytic molecules, proteins, and RNA. These findings underscore the feasibility of polyester-based
droplets as protocell analogues, marking a key step from abiotic chemistry toward organized, life-
like compartmentalization (Gilbert, 1986; Abigail et al., 2006; Koonin, 2007; Allwood et al., 2009;
Lincoln & Joyce, 2009; Wacey et al., 2011; Bontognali et al., 2012; Michael et al., 2012; Pressman et al.,
2015; Becker et al., 2019; Vay & Mutschler, 2019).

Sharma et al. (2022) reviewed both historical and modern approaches to generating proteinoid
microspheres —protein-like particles from amino acids with cell-like features. Research on non-living
active matter, such as self-propelled colloids, has revealed that physical processes can drive self-
organization into protocellular structures. Theoretical work further suggests that nonequilibrium
“active droplets” can spontaneously grow and divide without membranes (Mann, 2012; Zwicker et
al.,, 2016; Hagan & Baskaran, 2016; Hansma, 2014, 2017; G6zen, 2022).

Recent Miller-Urey-type experiments show that silica surfaces can catalyze the simultaneous
formation of hollow organic vesicles and prebiotic compounds (Jenewein et al., 2024). Geological
evidence indicates that between ~2.8 and 1.9 Ga, Earth transitioned from an anoxic, iron-rich state to
one with oxygenated air, evolving life, and major climate shifts —conditions that paved the way for
complexity. Proxies including zircons, isotopes, BIFs, carbonates, and impact records underpin
current reconstructions of surface, ocean, and atmospheric evolution from Earth’s infancy through
the Great Oxidation Event (Farquhar et al., 2000; Mojzsis et al., 2001; Sleep et al., 2001; Valley et al.,
2002; Hayashi et al., 2008; Abramov & Mojzsis, 2009; Crowe et al., 2013; Planavsky, 2014; Robbins et
al., 2019; Mand et al., 2021; Hodgskiss et al., 2023).

Table 3. Environmental Conditions and Geological Evidence before Life (Prebiotic Earth, ~4.4-4.0 Ga; Hadean
to Early Archean, >4.0 Ga).

Feature Value / Description Geological Evidence
Ocean Temperature ~90-120°C
Ocean Oxygen None Zircon crystals (4.4 Ga):
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pH Acidic (~5 or lower) Suggest liquid water was present soon
after Earth’s formation.
Iron (Fe?) High
Atmospheric CO, Very high
Atmosphere Anoxic; mostly CO,, N, Ho, Isotopic ratios in ancient rocks: Suggest
H,O vapor early oceans were warm and reducing
Life Absent
Continents None or proto-crus No fossil evidence of life until ~3.5-3.8
Ga — supports that life hadn’t yet arisen
when ocean was ~100°C.
Volcanic Activity Intense
Hydrothermal Active, possibly key for early
Systems chemistry

Stage 2 — From Proto-life to Cellular Life (Table 4)

The earliest fossil evidence of life includes stromatolites and microbial mats dated to ~3.5-3.8
Ga, representing prokaryotic single-celled organisms such as bacteria, archaea, and cyanobacteria.
Fossils—cellular filaments, biofilm textures, and stromatolite laminae —occur as early as 3.4-3.7 Ga,
while stable isotope biosignatures (e.g., strongly'*C-enriched organic carbon and large d3C offsets)
extend back to 23.95 Ga. Carbon preserved in robust minerals (apatite, graphite, zircon) has even
pushed tentative biogenic signals into the Hadean (>4 Ga). Collectively, these fossil and geochemical
records establish the multidisciplinary evidence base for Stage 2, when single-celled life first emerged
and persisted (Schopf, 1993; Mojzsis et al., 1996; Rosing, 1999; Tice & Lowe, 2004; Wacey et al., 2011;
Ohtomo et al., 2014; Beli et al., 2015; Nutman et al., 2016; Tashiro et al., 2017).

Table 4. Environmental Condition and Geological Evidence When the Formation of Particles with Life
Characteristics (Photo-life: 4.0 to 2.5 billion years ago).

Parameter Condition ca. 2 Ga Geological Evidence

Oxygen Rise (Great Oxidation Event,
~2.4-2.3 Ga):

Iron (Fe?) Banded Iron Formations (BIFs), Sulfur

Oxygen (O,) Low, localized

Hioh Isotopes (MIF-S) Disappear, Detrital
i
8 Pyrite/Uraninite destroyed by O, Red

Beds & Paleosols appeared.

Sulfate (SO4*) Low

Methane (CH4) | High

Global Glaciations (Huronian &
pH ~6.5 (acidic) Makganyene, ~2.4-2.2 Ga): Glacial
Deposits at Low Latitudes

Temperature ~40-60°C Early Life Expansion
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Stromatolites: Common after ~2.7 Ga —
microbial mats, including oxygenic
Ocean Redox Stratified: oxic surface, anoxic deep | phototrophs; Redox-stratified Oceans:
Shallow O,-rich zones, deeper anoxic

waters

Crustal & Magmatic Activity: Large
Banded  Iron Igneous Provinces (~2.45 Ga):

Still forming or waning
Formations Supplied Fe?* to oceans; drove massive

BIF formation and nutrient cycling.

Nutrients Low (especially nitrate, phosphate)

Carbon

Dioxide (CO,) | High levels of CO, in both | —roon Cycle Shift (Lomagundi Event,

~ . . 1 13C 1
atmosphere and ocean 2.3-2.1 Ga): High 8°C in Carbonates

Stage 3 — From Single-celled to Multicellular Life (Table 5)

The Proterozoic Eon (2.5 Ga-541 Ma) saw sweeping changes in Earth’s
atmosphere, oceans, biosphere, and energy systems, setting the stage for
complex organisms. The earliest transition to multicellularity likely
occurred between ~2.0 and 1.6 Ga, in relatively stable, low-oxygen
conditions. These pioneering multicellular forms—often simple
filaments or colonies—are exemplified by Grypania (~2.1 Ga) (Han &
Runnegar, 1992; Butterfield, 2000; Canfield et al., 2007, Bamforth &
Narbonne, 2009; Love et al., 2009; El Albani et al., 2010; Strother et al.,

2011; Yuan et al., 2011).

Table 5. Environmental Condition and Geological Evidence When the Formation Single-cell Life (late

Archean to early Proterozoic (~2.0 -1.6 Ga).

Parameter Condition (~2.0 Ga) Geological Evidence
Atmospheric Rising O, levels after the Great Oxidation | Banded Iron Formations (BIFs)
Oxygen Event (~2.4-2.0 Ga); not yet modern | decrease; Red Beds appear;

levels
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Sulfur isotope fractionation
(A33S) declines

Ocean Chemistry Stratified oceans: surface oxygenated, | BIFs, Fe-rich shales, and S-rich
deep anoxic and sulfidic (euxinic) black shales in sedimentary
records
Temperature Likely warm but gradually cooling; some | Glacial deposits (Huronian
periods of glaciation may have begun | glaciation), isotopic data from
earlier (~2.3 Ga) carbonates
UV Radiation High UV levels due to lack of an ozone | Stromatolite  structures in
layer (low atmospheric O,); early life | shallow water environments
likely lived underwater or in microbial | (UV protection by mats)
mats
Nutrient Availability | Increasing availability of nutrients (Fe?*, | Isotopic  signatures (d'3C),
P) in oceans; biological productivity | presence of trace metals in
rising slowly sedimentary rocks
Sulfur Cycle Active sulfur cycling, possibly with | Sulfur isotope records
sulfate-reducing bacteria (including mass-independent
fractionation)
Methane Levels Declining atmospheric CH; due to | Carbon isotope excursions;

increased O, and lower methanogen

drop in greenhouse warming

activity potential
Tectonic Activity Continents forming/supercontinent
cycles starting (e.g., Columbia/Nuna); | Zircon dating, sedimentary
influencing ocean basins and nutrient | basins, supercontinent
input reconstructions
Biological Rise of oxygen-using prokaryotes and | Fossil evidence: microfossils
Innovation possibly early eukaryotes; microbial | (e.g.,  Grypania  spiralis),
mats and biofilms prevalent biomarkers (steranes),
stromatolites
Redox  State  of | Development of redox-stratified oceans; | Iron speciation studies in
Oceans oxic-anoxic interfaces crucial for early | shales; presence of euxinic
metabolism evolution indicators like molybdenum
and uranium enrichment
Material and Method

Automatic control model of organism:

d0i:10.20944/preprints202509.2540.v1

Organism:
Organisms: Organism (the same Organism (the same + Self-regulation
Organisms: kind): Organism: kind): and
! . gradual
[ INPU | . etic material Output | & “partial 6] Input |+ iingingself- Output | + partial 6] Input InpUt | scontinuing self- Output adaptation to the
" | \aristion - adaptation - regulation in the > adaptation > > regulation in the ’ surroundings
+ Possibility space * Decline or shrinking * Decline or (generations) shrinking * Survival showing

extinction extinction

possibility space
continually

+ Self-regulation possibility space evolution

= Extinction

* [E] the same or similar environmental stimulus
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Figure 1. Bioevo-Cybernetics Model: Environmental stimuli (input) trigger self-regulation and changes in
physiological/genetic states. Each generation feeds the previous output back into a reduced possibility space,
moving from temporary adaptation (conditioned reflexes) toward permanent adaptation (unconditioned

reflexes). Outcomes are survival/evolution or extinction.

Result and Discussion

1. Evolutionary Model Stage 1: From Abiotic Matter to Life-like Particles

Input: primordial environment (Hadean—early Archean, ~4.6—4.0 Ga) (Table 3)

X Tt) = [T(t),P(t),C1(t),C2(t),...,E(t),pH(t)]

where T=temperature; P=pressure; Ci=concentrations of chemical species (e.g.,
H20,CHa4,NHs,Fe,CO,PO 47); E=energy flux (e.g., hydrothermal, lightning, UV); pH= acidity; t=time
(Ga)

Output: Emergence of proto-life particles (4.0-2.5 Ga).

Life potential function:

L(t)=[o'[Chemistry, autocatalysis, fidelity, energy] dt

L(7) = fo'[a-C(X 1)) -A(T) e 2cORT® R(SL(t),EL(t))] dT 1)

Here, C(X )=chemical complexity potential, A(7)=autocatalytic network rate, AG=free energy
change for life-like structures, R(Sc(t),EL(t)) = compatibility with environmental limits.

Weighted form for simulation:

L(7) = Jo'[(LikiCi(T)) ave t'T(@ - AGIRT@ .R(S(t),EL(t))]dT ()

Equation (2) accumulates the probability of life-like particle formation over time by integrating
(summing up) all the chemical, physical, and energetic and regulatory factors. Life emerges when
L(t)>Lc, estimated from geological evidence at ~4.0-3.8 Ga, representing the minimum threshold for
stable autocatalysis and proto-life formation.

1.1 Formation of the First Life-Like Systems

From Eq.(2), life emerges when L(t)>Lc. The model predicts this threshold around 4.1-4.0 Ga,
consistent with early Archean conditions and predating the oldest clear fossil evidence (~3.5 Ga
stromatolites). Thus, the model suggests life arose before the fossil record confirms it.

1.2 The RNA World Hypothesis

Extending L(t) to include RNA information content (Eq. 3):

L(7) = JoC(X(1))-A(7) I(T)- P(T) dT —d(t)L(t) 3)

with I(T)=y -Ps(t) Ppunc(t), where Psq = probability of RNA chain formation, and Pyuc = probability
of catalytic function. Functional RNA is rare, delaying emergence relative to Eq. (2).

As replication fidelity improves, RNA sequences carried genetic information and catalyzed
chemical reactions and-evolved toward self-replication (Joyce 1989, Ricardo et al 2004). Transition to
DNA introduces greater stability and separation of storage vs catalytic roles. The updated model (Eq.
4) incorporates decay reduction, error correction €(t), and dual information systems (RNA vs DNA),
reflecting this structural and functional shift.

Because functional RNA is very rare, life emergence is delayed slightly compared to the
previous model. When further modelling with mutation and replication fidelity: early on, high
mutation rates reduce fidelity and hinder reliable replication; as Earth cools and chemistry matures,
replication fidelity improves, and a few sequences can self-replicate and evolve; then life is predicted
to emerge under these extended constraints — slightly later than in simpler models.

When RNA evolves into DNA during stage 1, it marks a major structural and functional shift.
Equation (4) reflects this by modeling dual-information systems: RNA provides early catalytic
activity, while DNA offers more stable, accurate replication and storage. The two bracketed terms
weight RNA vs DNA information systems around the transition point 7.(with steepness f), while
decay/error 0, mutation pressure y, and error correction € control effective fidelity. Irscales nucleotide
availability, and P(t) applies thermodynamic and selection constraints, capturing the biological shift
from unstable proto-life to robust genetic systems.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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L(7) = [o'C(X (7)) -A(T) - Io[e- ORNA+@(-RNA@)T / (T+eB(x 10 ) 4 e-EDNA+D(A-DNA@DNT / (14e-B-10)] - P(1) dT
—d(t)L(t) 0

2. Evolutionary Model Stage 2: From Proto-life to Single-cellular Life

The Archean Eon (4.0-2.5 Ga) marks the transition from proto-life (protocells, replicating
molecules) to true single-celled organisms such as bacteria and cyanobacteria.

Input: Archean conditions with protocells and replicators (Table 4).
Output: Stable, self-sustaining cells with membranes, metabolism, genetic control, and reproduction.

This shift (~3.8-3.5 Ga) involved compartmentalization (lipid membranes), metabolic networks,
RNA/DNA control, homeostasis, and higher-fidelity replication. We define the function of cellular
formation as:

M(7) = [o¢[L(t)R(7)-S(T)- P(T) dT —d(t)M(t) (5)

Table 6. Meaning of Symbols in Cellular Life Mormation M(7).

Symbol Meaning

Membrane integrity factor — cumulative probability of true single-celled
M(o) organisms

T
Emergence of lipid-like membrane-bound, single-celled life (bacteria,

cyanobacteria)

Life potential from earlier model-- assumed as input (amount of replicating proto-
L(7) life)

Formation of proto-life particles (e.g., self-replicating molecules)

R(7) Replication fidelity — higher fidelity enables stable genome maintenance

5(7) Selective pressure — advantage of stable cells under early Earth stress

AGm(7) Free energy for cellular organization (formation of cytoplasm, membranes, etc.)
T(7) Temperature over time

R Gas constant

where the integrand captures biological and environmental drivers (replication fidelity,
membranes, energy, selective pressures).

When M(t)>Mc, cellular complexity crosses the threshold for sustained life. Fossil and
geochemical evidence (~3.8-3.5 Ga) supports that once proto-life density, temperature stability,
membrane formation and mutation rates aligned, single-celled prokaryotes emerged. Thus, Mc
represents the minimum integrated conditions needed for stable cells, roughly reached by 3.5-2.0 Ga.

The equation (5) models the cumulative likelihood over time that proto-life (early replicating
molecules or protocells) will evolve into fully cellular organisms —specifically, bacteria-like life
with membranes, metabolism, and genetic continuity, and helps us understand why life didn't just
stop at simple molecules, but instead evolved into organized, cellular life — like bacteria and
cyanobacteria — within the Archean Eon. It also incorporates key scientific ideas: RNA world -
information and catalysis; lipid world - compartmentalization; selective environments ->
hydrothermal vents, UV radiation, etc.; thermodynamics = energy costs of organizing complexity.
Each part of the integrand (what's inside the integral) represents a key biological or environmental
factor that enables that transition.

Life did not emerge at once but in stages. We divide the model into Stage 1: chemical life
formation L(f) and Stage 2: cellular life formation M(f) to capture this stepwise process.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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e Stage 1: Prebiotic chemistry produced proto-life — organic molecules (amino acids,
nucleotides), self-replicating RNA, autocatalytic networks, and protocells lacking stable membranes.

e Stage 2: Transition to true cells with lipid membranes, internal metabolism, and higher
replication fidelity. Cell division and clustering under harsh conditions led to early multicellularity,
initiating Stage 3: differentiation.

The Archean Eon (4.0-2.5 Ga) provided the setting: hot oceans, anoxic atmosphere (CO, H,, Ny,
CH,, NHs, HsS), no ozone (intense UV), and abundant metals/sulfides. These conditions supported
membrane formation, abiotic RNA/peptides, and energy-harvesting cycles — enabling replicators to
evolve into stable, membrane-bound cells.

Thus, the Archean is modeled by L(t) and M(t) as the key eon for life’s origin.

The Archean Eon (about 4.0 to 2.5 billion years ago) is one of the most critical windows in
Earth's history — it's when life first emerged and began to evolve. As showing in Table 4, it was hot
but cooling; most of Earth's surface was ocean (anoxic, dominated by CO,, H,, N, and possibly CH,,
NH; and H,S; no ozone layer (intense UV radiation at the surface); rich in dissolved metals like Fe?*;
sulfur compounds (e.g., sulfides) and extraterrestrial delivery (e.g., meteorites). These conditions
favored the formation of lipid-like molecules (early membranes), abiotic RNA or peptide, and
autocatalytic cycles (e.g., formose reaction, iron-sulfur metabolism). So, it promotes complex organic
chemistry and allows formation of energy-harvesting gradients; Encourage the evolution of
membrane-bound replicating molecules, which is ideal for forming life’s building blocks without
oxygen. That's why the Archean is the key eon for the emergence of life — and why we modeled it
with the functions L(#) and M(#).

3. Evolutionary Model Stage 3: From the Single-cellular Life to Multicellular Life

The Proterozoic Eon (2.5-0.54 Ga) saw the rise of multicellularity, with first evidence between
~2.1-1.6 Ga (e.g., Grypania). This required genetic and metabolic complexity, stable cell adhesion,
cooperation, division of labor, and environmental triggers such as oxygenation, nutrients, and
predation.

Input: M(t) — stable single-celled life (Table 5).

Output: U(t) — multicellular organisms with adhesion, cooperation, and differentiation (~2.1-0.6 Ga).

We define multicellularity as:

U(t) = Jol[M(T)-D(1)-A(T)-E(T) e ACuIRT]dg -d(t)U(t)
(©)

where terms represent biological cooperation, intercellular communication, and environmental
energy balance.

When U(t)zUc, multicellular life emerges and persists (Han & Runnegar 1992, Butterfield 2000,
Bamforth & Narbonne 2009, EI Albani et al. 2010, Strother et al. 2011, Yuan et al. 2011) . Fossil,
geochemical, and biomarker records (~1.6-1.0 Ga) confirm this threshold —showing repeated
independent origins of colonies, tissues, and coordinated growth, alongside redox evidence for rising
O; to fuel complex metabolism (Canfield et al. 2007, Love et al. 2009). Thus, these studies provide
converging fossil morphology, biomolecular, and environmental proxies supporting the model’s
prediction that multicellularity arose once energy and genetic systems enabled stable cooperation,
diversifying into algae, proto-animals and the enigmatic Ediacaran macrobiota.

Table 7. Meaning of Symbols in Cellular Life Formation U(x).

Symbol Name Meaning Why it matters
Total probability that
Multicellular Life
U(7) . multicellular life has emerged | Output of this model
Potential
by time t

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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. Availability of viable single-
Morphological Multicellular life can’t form
M(7) celled organisms (from
Cell Potential without cells
previous layer)
Measures whether cells can
stick together and
Adhesion and Essential for tissue
(1) . . communicate (e.g. proteins ) o
Signaling Factor formation and coordination
for binding, signaling
molecules)
Benefit from dividing
A) Metabolic metabolic roles among cells | Drives cooperation and
T
Complementarity | (e.g., some cells digest, others | specialization
reproduce)
Evolutionary advantage of
Selective Pressure Gives natural selection
being multicellular (e.g., size
2(1) for reason to favor
for protection, division of
Multicellularity multicellularity
labor)
Thermodynamic likelihood of | High energy costs make it
Energetic
g AGu(T/RT(T) supporting multicellular harder to stay
Feasibility
structures multicellularity
4. Biological Evolution Cybernetics

Life is a multi-level, self-regulating system where cells and organisms continuously interact with
their environment. Genetic variation provides a wide possibility space, but real evolution is shaped
by specific environmental pressures, driving adaptation until stability is reached.

4.1 Feedback Regulation in Stage-Based Evolutionary Progression

Evolution advances in stages of rising complexity, regulated by feedback. Based on it, we model
cybernetic control as:

A(t) = wC(t) + wr(t) (7)

where C(t) is structural control, r(t) is regulatory responsiveness, and w., wr are their weights.

e L(t): cumulative structural/functional complexity.

e A(t): real-time adaptive control.

Together, L(t) and A(t) describe self-regulated, logistic evolutionary growth, constrained by
energy and information limits, with decay (-d(f)L(t)) representing entropy and loss.

Stage 1— Origin of Life (Abiotic — Protocells)

L(t+At)=L(t)+g(t)fer+at A(1)-A(t)-I(t)dt-P(t) —d(t)L(t) (8)

Life-like complexity L(#) grows from interactions of molecular information(I(t)),
environment(A(7)), and control signals (A(7)), weighted by survival probability P(t). This models the
gradual accumulation of life-like complexity from abiotic precursors, shaped by catalytic efficiency,
molecular availability, and thermodynamic favorability

A molecular form includes RNA/DNA stability:

L(t+AD=L(D+g()fi+41C (1) -A(t) Dole- GRNA@A-RNACDNT | (b = 10) ) 4 e-ODNARMI-EDNAD)T | (Te-blr = 10)]
P(t)dt —d(t)L(t) )

showing DNA'’s stability accelerates complexity.

This blends RNA-based and DNA-based information storage, showing how the transition to
more stable DNA systems accelerates growth in L(t).

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202509.2540.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 September 2025 d0i:10.20944/preprints202509.2540.v1

11 of 18

Stage 2 — Origin of Unicellular Life
SL(t+AL)=SL(t)+g(1)fi+tauni - A(T) -C(X(T)) -Adeo(T) -P(T)dT—A(t) -SL(E) (10)

Here, Si(t) (selected complexity) grows once chemical systems (L>Lc) cross the threshold into
cells (M=Mc) with replication, membranes, and self-organization.

Stage 3 — Origin of Multicellularity

Su(t+A)=SL(t)+g(B)fit+At gmui- A(T) -C(X(T)) -Adeo(T) -P(T)dT~d(t) -SL(t) (11)

Multicellularity arises when cells cooperate via adhesion, signaling, differentiation, and
coordinated growth and development due to factors of genetic regulation (gene networks),
environmental pressures (oxygenation, nutrients), thermodynamic feasibility (energy to build
complexity) and cybernetic feedback (intercellular communication and organization). Meanwhile,
energy cost (eGRT) and Reduction or recalibration of possibility space (Er(7)-Si(t)) constrain
adaptation, reflecting both rising complexity (cell differentiation) and shrinking adaptability.

4.2 Dynamic Feedback and the Complexity—Adaptability Trade-off

Organisms adapt through feedback loops of regulation, genetic adjustment, and development.
Each feedback cycle reduces future adaptability, turning contingency into necessity (Fig. 1).

To capture this, adaptability is modeled as:

Adev(t) = Aopt(t) [1-h(Cai(t))]

where Cuif(t) is tissue/organ differentiation, h(-) is a penalty for specialization, and the A(t) role
got folded into the optimization/energetic weighting.

The updated equation is:

Su(t+A)=SL(t)+g(t)f+ A amuri C(X(T)) Aopt(T)[1-h(Caig(T))] e ACHRT ‘R(S(t),EL(t))dt-d(t) Sc(t)
(12)
Interpretation:

1) Si(t) grows when environmental demand (Ei—St) drives adaptation, constrained by energy
(AG) and complexity(Ci).

2) Specialization (Caif) increases efficiency but reduces adaptability via h(-).

3) Decay term —d(#)Sc(t) reflects entropy and irreversibility.

This equation shows that the rise of multicellularity is driven by inherent advantages (amu),
environmental conditions, optimized cooperation among cells, energetic feasibility, and feedback
between system and environment, while being limited by cell conflict, decay, and resource
constraints. As the organism becomes more complex and specialized (more differentiated), its ability
to adapt decreases due to limitations on entropy, structure or energy.

4.3 Stability Threshold for Multicellularity

From Eq. (11):

O(t) = ASmui(t) = g(t) [+t amuniC(X(t)) -Ade(t) -P(t)dt —d(t) Si(t) (13)

If 0<0.05, decay dominates and proto-multicellular systems collapse; if 6=0.05, cooperative
complexity stabilizes multicellularity. This threshold is analogous to percolation or epidemiological
Ro limits and aligns with the Mesoproterozoic “boring billion” (~1.6-1.0 Ga) as a pivotal era for stable
multicellular evolution (Han & Runnegar 1992; Butterfield 2000; Anbar & Knoll 2002; King et al. 2008;
de Mendoza et al. 2013; Lyons et al. 2014; Planavsky et al. 2014; Bengtson et al. 2017; Javaux & Lepot
2017; Gibson et al. 2018).

4.4 Entropy and Dissipative Structure in Organisms

Organisms are inherently dissipative structures: they maintain order through cellular
differentiation and depend on irreversible thermodynamic processes to sustain functional and
structural complexity. This is achieved by importing negative entropy from the environment via
metabolism. The complex behaviors of such systems suggest that they tend to evolve toward states
of higher entropy production over time.

We define ©(7) as a new multiplicative dissipative-thermodynamic coupling factor that
encodes entropy production, free-energy throughput, and the system’s tendency to form and

maintain dissipative structures.
Su(t+At)=Sc(t)+g(t)fi+dtamuni C(X(T)) Aopt(T)[1=h(Caip(T))] e AGWRT® .R(S1(t),EL(t)) O(t) dt—d(t) Sc(t)
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Or equivalently,
dSi/dt=g(t)amuiC(X (t)) Aopt(£)[ 1=h(Caig(t)) |e- AN RTIR(St, EL)O()—d(#) St(t). (14)
where O(1)=[1+xW(D(1),0(7))]-Sas(a(T))
Definitions:

e  O(t1) = available free-energy throughput (power input) to the subsystem (J s or similar),

e 0(1) = local entropy-production rate (e.g. ] K's7),

e k = coupling constant (dimensionless) controlling how strongly dissipative structuring
amplifies growth,

e W(d,0) = structural amplification function (dimensionless), and

e Sus(0) =a sigmoid gating function (0..1) that turns on dissipative-structure enhancement only
when entropy production crosses a window appropriate for self-organization

5. The Formation of Autotrophic Plants: Flagellates to Dinoflagellates under Cybernetic
Evolution

Autotrophic dinoflagellates likely arose when ancestral flagellates acquired chloroplasts
through multiple endosymbiotic events. Early marine bacteria exploited geothermal energy to
assimilate nitrogen and generate metabolic energy. With the acquisition of chlorophyll, they became
capable of photosynthesizing carbohydrates, evolving into algae such as the blue-green algae
(Cyunophyceae).

Our stage-based model (Eq. 11) captures Stage 3 dynamics — cooperative, feedback-driven
complexity — and extends it to Stage 4 with the equation:

Lep(t+At)=Leyp(t)+g(B)fit+2t A(T) -C(X (1)) Asym(T) “P(T) Dine(T)dT=A () -Leypo(£) (15)

Here, Asm(t) represents cellular asymmetry (e.g., anterior-posterior polarity, nuclear
dimorphism), and ®i(t) measures internal integration and cooperation (e.g., plastid retention,
nuclear-cytoskeletal coupling).

This equation indicates that the evolutionary transition from flagellates to dinoflagellates was
driven by environmental energy flow, resource conditions, structural asymmetry, population-level
processes, and internal integration, while limited by natural decay. Cybernetic feedback (self-
regulation) ensures that these forces are coordinated over time. The model captures growth driven
by the product of coupling terms and internal flux ®iu, but does not yet incorporate constraints from
entropy production and dissipative-structure modulation —factors central to cybernetic evolution.

Predictions of the model include:

1) Low asymmetry/integration — flat Las(t), representing stagnant evolution;

2) Strong cybernetic control with rising integration — accelerated growth in Ley, crossing
thresholds (e.g., La>2.0) for the emergence of dinoflagellate-grade complexity, consistent with fossil
and geobiological records.

3) Environmental noise — delayed or destabilized transitions.

Inflection points in Loy align with evolutionary traits such as nuclear dualism, stable plastid
retention and permanent flagellar reconfiguration. The model (15) suggests dinoflagellates originated
in the late Neoproterozoic—early Paleozoic (~650 Ma), predating the Triassic fossil cyst record (~240
Ma), with acritarchs as possible relatives. This inference is consistent with multiple geobiological,
molecular, and paleontological studies of plastid acquisition and multiple endosymbioses in
dinoflagellates (Butterfield 2000; Keeling 2004; Riding et al. 2010; Fensome et al. 2016; Gibson et al.
2018; Riding and Head 2018; Lin 2024).

This framework shows how macro-level complexity emerges from coding, feedback and
integration, allowing traits to self-generate (e.g. A(7)=r(t), Qin(7) =p(t)), rather than being externally
imposed parameters. It captures both gradual evolutionary transitions (flagellate — dinoflagellate)
and fast regulatory dynamics (coding, regulation, cooperation), regulated by the feedback loops.
Higher-level feedback can modify Asyw(t) or enhance C(X(7)) via metabolic payoffs, showing how
evolutionary pressures reshape internal dynamics and, in turn, structural evolution.

When incorporating entropy and dissipative structure, we extend the model with entropy-
dissipative constraints:
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Leys(t+At)=Leyp(t)+g(£)fitMA(T) C(X(T)) Asym(T) P(T)Dint(T) xE(Dine(T),0(T), T(7) )dT—efi() Lyt ()
or equivalently,

ALey/dt=g(t) A(t)C(X(t)) Asym(t)P(t)Dint(t) E(Dine(t),0(t), T(t))~def(t) Leyo(t). (16)

with E(D,0, T)=(1+x[D/(D+Do)]-exp(-[ ASbuila(D,0)]/ks)-W(0)

Definitions:

e 0(7): local entropy-production rate (e.g., ]-K'-s or nondimensionalized).

o E(Din,o0,T): dissipative-structure coupling factor (dimensionless), modulating growth by
thermodynamic favorability of maintaining low-entropy organization.

o de(t): effective decay/loss rate, potentially dependent on entropy-production and energy
availability (so disorder can increase loss).

e A(7): external driver (raw input --environmental throughput of energy, matter, or
information: A =0 — no growth, A is large — potential for growth).

Under the bioevo-cybernetics framework, this formulation explicitly captures how internal
regulatory states, environmental drivers, and mortality/turnover interact to shape lineage-level
complexity. The dynamics naturally exhibit hysteresis, bistability, triggered transitions, and
relaxation oscillations —phenomena consistent with major evolutionary transitions.

The growth of complexity depends on energy flow, environmental conditions, structural
asymmetry, population dynamics, and internal integration, but it is sustainable only if entropy
dissipation (E) maintains order. Otherwise, effective decay erodes cybernetic organization.

Bioevo-cybernetics emphasizes adaptive regulation through feedback loops, sensing, and
environment-responsive processes. The factor E(®in,0,T) allows internal readiness (®iu) to interact
with environmental conditions (o, T), producing threshold-dependent transitions. This helps explain
how contingent environmental stresses (e.g., nutrient pulses, temperature shifts) enabled events like
plastid endosymbiosis and flagellar innovation.

Because E introduces conditional activation, the model accounts for why complex traits
sometimes arise transiently in the fossil record: traits stabilize only when environmental and internal
conditions remain supportive.

A detailed experimental validation strategy based on this framework will be presented in a
subsequent manuscript.

Concluson

Control and communication in living systems are fundamentally mediated by feedback loops,
where outputs modify subsequent inputs, enabling continuous adjustment and regulation. The
principles of bioevo-cybernetics illuminate how variation and selection, when embedded within
feedback control architectures, generate and sustain increasing levels of organization and complexity.
Crucially, these dynamics operate under entropy-dissipative constraints: organisms must
continuously export entropy to maintain order, with feedback regulation ensuring that metabolic
throughput and structural organization remain thermodynamically viable.

Environmental stimuli act as initiating signals, triggering adaptive responses that not only
enhance organismal fitness but also channel energy and matter into dissipative pathways capable of
sustaining low-entropy structure. The effectiveness of such responses depends on whether internal
regulatory states can couple with external energy flows to form stable dissipative structures;
otherwise, disorder and decay dominate.

Through the dynamic interplay of variation, selection, feedback, and entropy dissipation,
evolution emerges as an active, self-regulating process rather than a purely passive outcome of
environmental filtering. Developmental transitions—from single-cell states to differentiated
multicellular organisms—are likewise governed by hierarchical feedback mechanisms that
coordinate cell differentiation, tissue integration, and functional specialization, but their success
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depends on maintaining thermodynamic feasibility. While genetic mutations arise stochastically, the
overarching evolutionary process is shaped by regulatory networks that both sense environmental
pressures and enforce entropy-balancing constraints.

From the Bioevo-Cybernetic perspective, life emerges not as a passive outcome of natural
selection, but as an active, self-organizing system navigating between order and disorder; evolution
is reframed as a transformation from contingency to necessity: adaptive control progressively
channels random variation into directed pathways of complexity, but only those pathways that
respect entropy-dissipative constraints are stabilized and propagated across generations.
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