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Abstract: Celiac disease is a chronic small intestinal immune-mediated enteropathy precipitated by exposure 

to dietary gluten, affecting approximately 1% of the global population and two million Americans. An 

increasing number of studies have identified a link between celiac disease and adverse maternal and fetal 

outcomes during pregnancy and after birth. Additionally, both celiac disease and pregnancy are associated 

with an increased risk for nutrient deficiencies, specifically vitamin B12 and folate. Deficiencies in these key 

nutrients are linked with several negative maternal and fetal health outcomes including preeclampsia, 

gestational diabetes, spontaneous abortion/miscarriage, preterm birth, NTDs, Intrauterine Growth Restriction, 

and low gestational age and birthweight. This review examines the current literature related to the folate trap 

and vitamin B12 deficiency in patients with celiac disease and pregnant women independently, and to provide 

rationale for future research to explore the correlation between the folate to B12 ratio in pregnant woman with 

celiac disease. 
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1. Introduction 

Vitamin B12 and folate are essential vitamins involved in DNA synthesis, methylation 

pathways, and cell growth [1]. They have strong protective mental health benefits and have shown 

associations in chronic disease prevention [2]. However, during vitamin B12 deficiency, folate 

becomes ‘trapped’ in its methylated form, unable to drive other enzymatic processes essential for 

transmethylation pathways. This, in turn, leads to a buildup of homocysteine that has been linked to 

cardiovascular disease and cognitive decline, including dementia and Alzheimer’s Disease [3,4]. 

Vitamin B12 and folate intake requirements increase during pregnancy to prevent neural tube 

defects, preterm birth, small gestational birthweight, and miscarriage [5–7]. Individuals with celiac 

disease are another population prone to vitamin B12 deficiency due to the malabsorption [8]. Celiac 

disease is often associated with worse pregnancy outcomes, but few studies have investigated the 

relationship between folate and vitamin B12 deficiency in pregnant women with celiac disease. The 

folate trap has the potential to exacerbate the impacts of vitamin B12 deficiency in pregnant women 

with celiac disease that may be detrimental to both maternal and fetal outcomes (Figure 1). The 

purpose of this review is to explore the relationships between the folate trap and vitamin B12 

deficiency in the context of pregnancy and celiac disease, discuss associations between celiac disease 

and pregnancy outcomes, and identify current gaps in knowledge. 
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Figure 1. Rationale for Subpopulation of Interest. 

2. Folate and Vitamin B12 Requirements and Prevalence of Deficiency 

Vitamin B12 is an essential water-soluble B vitamin that is produced exclusively by bacteria and 

rare algae. The human microbiome is unable to synthesize sufficient vitamin B12 to sustain life. Thus, 

consumption of animal products or supplementation is required [9]. Deficiency has been linked with 

several adverse health outcomes outlined in Table 1 [10–12]. The Institute of Medicine recommends 

2.4 μg/day of vitamin B12 for adults, with an increase to 2.6 μg /day in pregnant women [13] (Table 

3). Data from the National Health and Nutrition Examination Survey (NHANES) from 2007-2018 

found that roughly 3.6% of US adults were vitamin B12 deficient (serum <148 pmol/L) and 12.5% had 

sub-clinical deficiency (<221 pmol/L) [13]. Vitamin B12 deficiency is particularly prevalent in low- 

and middle-income countries (40% in Latin America, 70% in Sub-Saharan Africa, and 70-80% in South 

Asia) [6,14].  

Folate (vitamin B9) is also an essential water-soluble vitamin that plays an essential role in cell 

growth and division, DNA & RNA synthesis, and maintenance of new cells [15]. Folate must be 

obtained through the diet or via supplementation from folic acid, the synthetic form of folate [16]. 

Folic acid is roughly twice as bioavailable than natural folate [17]. Deficiency can be caused by poor 

diet, malabsorption due to certain chronic and autoimmune diseases (e.g. celiac disease, short bowel 

syndrome, amyloidosis, gastric bypass), and drug or alcohol abuse and can develop within weeks to 

months of a folate-deficient diet [12,18]. Table 2 outlines manifestations of folate deficiency [12,18–

20]. In a systematic review of 45 surveys conducted in 39 countries over 14 years, folate deficiency 

ranged from <1% to 88% [21]. This discrepancy was partly due to country income-level and multiple 

methods of measuring folate. Folate deficiency in the US in recent years is not common due to 

fortification initiatives, and in fact, it is estimated that more than one-third of the North American 

population consumes excess folate [22]. It is estimated that adult body has 1,000-2,000 μg of folate 

stores, and adults require 400 μg per day to replenish those stores and 600 μg /day for pregnant 

women [15] (Table 3). Normal serum folate levels are above 4 ng/mL, subclinical deficiency is 

between 3-4 ng/mL, and under 2 ng/mL is considered clinical deficiency [2]. 

Table 1. Manifestations of Vitamin B12 Deficiency. 

Symptoms  Signs  Lab Findings  

Fatigue  Beefy red tongue  Megaloblastic anemia  

Cognitive decline  Ataxia  Anisocytosis  

Upper or lower extremity 

paresthesia  
Diminished proprioception Poikilocytosis  

Loss of balance  Diminished vibratory sense  
Hyper segmented 

neutrophils  

Falls  Romberg’s sign  Hyperhomocysteinemia  
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Table 2. Manifestations of Folate Deficiency. 

Symptoms  Signs  Lab Findings  

Fatigue  Pale skin Megaloblastic anemia  

Cognitive decline  Mouth sores Anisocytosis  

Irritability Diminished proprioception Poikilocytosis  

Decreased Appetite Diminished vibratory sense  
Hyper segmented 

neutrophils  

Diarrhea Smooth and tender tongue Hyperhomocysteinemia  

Table 3. Vitamin B12 and Folate Intake Recommended Dietary Allowance (RDA). 

  Vitamin B12  Folate  

Adults  2.4 μg/day  400 μg/day  

Pregnant Women  2.6 μg/day  600 μg/day  

3. Diagnosis of Folate and Vitamin B12 Deficiency 

There are numerous methods to assess folate and vitamin B12 deficiency. The World Health 

Organization guidelines classify total serum vitamin B12 levels above 221 pmol/L as adequate, 148-

221 pmol/L as low, and levels under 148 as deficient [5]. Serum vitamin B12 is widely used in clinical 

practice and in research and measures the total amount of vitamin B12 in the blood, of which only 

about 20% is metabolically active and available for cellular uptake, leading to under-reporting of 

deficiency [11]. Holo-transcobalamin (holoTC) is considered a more accurate measure of vitamin B12, 

but it is still much less common in practice [23]. When vitamin B12 enters the digestive system, it 

binds to haptocorrin, intrinsic factor, and transcobalamin. Holo-TC measures the amount of 

circulating vitamin B12 bound to transcobalamin that is bioavailable to cells. Plasma homocysteine 

and methylmalonic acid (MMA) are functional measures of vitamin B12 because both rely on vitamin 

B12 to be converted to methionine and succinyl-CoA, respectively. Elevated levels of either can 

indicate vitamin B12 insufficiency, with Hcy as a more sensitive measure, but MMA is more specific 

as HHcy may indicate other vitamin deficiencies [10]. Elevated blood Hcy levels >15umol/L are 

considered elevated, whereas MMA levels >260nmol/L are considered elevated [5].  

As discussed above, serum folate levels under 2 ng/mL are considered deficient. However, as is 

true for vitamin B12, serum folate levels are not always accurate and does not account for 

unmetabolized folate or the variations of folate at different points in its metabolic cycle. Serum folate 

represents recent dietary intake, whereas red blood cell (RBC) folate is a more accurate long-term 

reflection [10]. Folate deficiency can be confirmed with elevated Hcy, as with vitamin B12 deficiency, 

but with normal vitamin B12 and MMA levels in the plasma. 

4. Folate Trap 

One-carbon metabolism is a series of metabolic reactions involving the donation of single carbon 

units (methyl groups) to aid in DNA, protein, and lipid biosynthesis and amino acid homeostasis 

[24]. The folate cycle is a component of one-carbon metabolism, working synergistically with the 

methionine cycle. Within the folate cycle, during the conversion of 5-MTHF to THF, 5-MTH donates 

a methyl group to cobalamin (vitamin B12), which becomes methyl cobalamin, catalyzed by the 

methionine synthase enzyme. Methyl cobalamin then donates a methyl group to homocysteine to 

form methionine. Methionine is then converted into s-adenosyl methionine (SAM) and eventually s-

adenosyl homocysteine (SAH) before returning to its homocysteine form. In the conversion of SAM 

to SAH, a methyl group is released to be used in the transmethylation pathway that drives gene 

regulation [10].  

In the context of vitamin B12 deficiency, this cycle is fragmented as 5-MTHF cannot be converted 

to THF and homocysteine cannot accept a methyl group from methyl cobalamin. This causes folate 

to become “trapped” in its 5-MTHF form, unable to drive the multitude of downstream reactions. 
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This prevents the conversion of homocysteine (Hcy) to methionine [25]. When this occurs, Hcy levels 

are often elevated in the blood, known as hyperhomocysteinemia (HHcy), which has been linked to 

dementia, stroke, recurrent early pregnancy loss, endothelial cell injury, and cardiovascular disease 

[11,25–28].  

The body cannot naturally synthesize folate, so it instead relies on dietary or supplemental 

intake. 5-MTHF is the biologically active form of folate that can be used in one carbon metabolism 

and the primary form of folate in blood plasma. Folic acid is the synthetic, monoglutamate precursor 

of folate that is found in supplements and fortified foods, primarily grains [15]. It’s then converted 

via multi-step enzymatic reactions to the biologically active form, relying on slow-acting and highly 

variable dihydrofolate reductase (DHFR) to convert folic acid to dihydrofolate in the initial step. 

Naturally occurring food folates, on the other hand, are not limited by the function of the DHFR 

enzyme and instead bypass this reaction when being converted into 5-MTHF (Figure 2). Regardless 

of the form of folate or folic acid, a vitamin B12 deficiency inhibits the folate acid cycle and halts 

downstream metabolic processes. 

 

Figure 2. Folate and Methionine Metabolism. The conversion of 5-methyltetrahydrofolate (5-MTHF) 

to tetrahydrofolate (THF) is halted when there is a vitamin B12 deficiency. This inhibits the 

methionine cycle and leaves elevated homocysteine (Hcy) levels in the blood. 

5. Folic Acid Fortification in the US and Exacerbation of Vitamin B12 Deficiency 

5.1. Implementation of Folic Acid Fortification Programs 

A folic acid fortification program was developed the United States in 1998 aimed at reducing 

neural tube defects (NTDs). Canada, Chile, and Australia followed and now more than 80 countries 

have guidelines in place [29]. According to data from the National Health and Nutrition Examination 

Survey (NHANES) pre- and post-fortification in the US, serum folate concentrations increased by 

119-161% and RBC folate increased by 44-64% and the prevalence of low serum folate decreased from 

21% to <1% in women of childbearing age and low RBC folate declined from 38% to 5% [30]. Not 

surprisingly, serum vitamin B12 levels did not change significantly, increasing an unbalanced ratio 

of folate to vitamin B12 [30]. In the US, NHANES data demonstrated that serum folate concentrations 

in the post-fortification era have substantially increased leading to 31% decrease in NTD incidence 

[31] . Another randomized double-blind prevention trial revealed a 72% protective effect of folic acid 

supplementation on preventing NTDs [32]. 

5.2. Elevated Folate Levels May Exacerbate Vitamin B12 Deficiency 

While fortification successfully reduced the percent of the population with folate deficiency, it 

may have added too much folate to the diet. Despite the many benefits of sufficient folate levels, 

adequate or increased folate levels have been associated with exacerbating the health effects of 

vitamin B12 deficiency. High serum folate (>20ng/mL) was found in 42% of children and 38% of 

elderly, compared to 5% and 7% pre-fortification, respectively [30]. Furthermore, the combination of 
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insufficient vitamin B12 and elevated serum folate increased from 0.09% to 0.61% post fortification 

[33]. High plasma folate, as seen more post-fortification, is associated with amplifying clinical 

implications of vitamin B12 deficiency [34–36].  

In addition to blood folate levels, The Framingham Offspring Cohort Study and NHANES data 

found increased prevalence of high circulating folic acid after fortification [34,37]. In a 2007 study, 

healthy adults were given fortified bread with varying levels of folic acid, up to 400 μg. In the group 

given 400 μg of folic acid, unmetabolized folic acid was detected in plasma [38]. Unmetabolized folic 

acid has also been detected in umbilical cord blood from infants, which has the potential to interfere 

with folate metabolism [39–41]. Unmetabolized folic acid may be indicative of enzymatic saturation 

leading to decreased conversion of folic acid into 5-MTHF. These increases in blood folate and 

unmetabolized folic acid levels were seen after fortification guidelines were put in place, when 

vitamin B12 levels have not changed substantially. There has been a push to include vitamin B12 

fortification along with folic acid to ensure adequate levels of both nutrients and prevent exacerbation 

of the impacts of vitamin B12 deficiency [35,42]. 

6. Folic Acid and Vitamin B12 Needs in Pregnancy 

Folic Acid and vitamin B12 intake requirements increase during pregnancy to meet increased 

biological need. Infant vitamin B12 and folate status at delivery is most largely influenced by maternal 

cobalamin and folate levels, but also varies based on placental function, gestational age, and birth 

weight [5–7]. The placenta has many folate receptors that help to regulate folate and cobalamin 

transfer to the fetus. Pregnancy requires a five-to-ten-fold increase in folate [15]. It is recommended 

that women take a folic acid supplement with at least 0.4mg daily during pregnancy, but vitamin B12 

supplementation is not recommended at the same frequency [18]. Studies have found vitamin B12 

deficiencies in pregnant women to be between 18 and 43% in developed countries, with higher rates 

in areas with fewer resources [43–46]. 

Vitamin B12 deficiency and elevated Hcy concentrations are associated with the adverse fetal 

outcomes of spontaneous abortion/miscarriage, preterm birth, NTDs, Intrauterine Growth 

Restriction, and low gestational age and birthweight [6,47–60]. This is especially prevalent when the 

vitamin B12 to folate intake ratio was imbalanced (vitamin B12 < 4.0 μg per day and folate > 268 μg 

per day) [61]. A meta-analysis of 18 studies identified a significant relationship between vitamin B12 

deficiency and low birth weight (15% increased risk) and preterm birth (21% higher risk) [62]. A 

recent case study followed a woman who had suffered three miscarriages and had an elevated Hcy 

level of 15.9 uM. After receiving folate, vitamin B6, taurine, and cystine, her Hcy levels did not drop. 

This suggested that the folate trap may have been contributing to the elevated Hcy levels as all other 

endocrine biomarkers were within normal range. She was then treated with supplemental methyl 

cobalamin and adenosyl cobalamin. Four months later, her Hcy dropped to within normal range at 

9.9 uM because of the addition of vitamin B12 [63]. Supplemental vitamin B12 and folate also 

significantly decreased the rate of NTDs compared to a minimal vitamin without those nutrients (13.3 

vs 22.9 per 1000) in a randomized control trial [60]. Aside from fetal outcomes, B12 deficiency also 

put maternal health at risk, with up to four times the chance of preeclampsia and significantly 

increased risk of insulin resistance and gestational diabetes [64–66].  

Adequate vitamin B12 levels alone, or in conjunction with enough folate, has proven to lead to 

positive maternal and fetal outcomes. However, vitamin B12 deficiency is often under-diagnosed in 

pregnant women and their children [5]. Folic acid supplementation during pregnancy is widely 

accepted, but the addition of vitamin B12 is rarely discussed, potentially causing imbalanced nutrient 

levels that prevent the methionine cycle and other downstream processes that impact the clinical 

health outcomes seen in pregnant women. 

7. Folic Acid and Vitamin B12 Absorption in Celiac Disease 

Celiac disease (CD) is defined as “a chronic small intestinal immune-mediated enteropathy 

precipitated by exposure to dietary gluten in genetically predisposed individuals” [67]. Gluten is a 

protein found in wheat, barley, rye, malt, and sometimes oats. Symptoms can present as diarrhea, 
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weight loss, bloating, abdominal pain, and iron deficiency. The autoimmune disease can be detected 

through celiac-specific antibodies in bloodwork and confirmed via a duodenal mucosal biopsy [68]. 

CD is found in about 1% of the population, is more common in females (60-70% of CD diagnoses are 

women) and has seen an increase in prevalence over the last 50 years [68–71].    

Celiac disease largely impacts the villi of the small intestine, the primary site of nutrient 

absorption. The immune response of celiac ranges in severity from mild intraepithelial lymphocytosis 

to total villous atrophy [8]. The disease reduces the surface area and digestive enzymes available for 

nutrient absorption, leading to the development of nutrient deficiencies, including iron, folic acid, 

B12, and B6 [68]. Folic acid is primarily absorbed in the jejunum of the small intestine, the main site 

impacted by CD [8]. Conversely, vitamin B12 is mostly absorbed in the ileum, the last section of the 

small intestine, which is also impacted in CD patients [72]. Past research has shown that 20-38% of 

CD patients have at least one nutritional deficiency, which could be attributed to malabsorption or 

deficiencies within a gluten-free diet (GFD) [8]. The GFD has been associated with decreased intake 

of dietary fiber, iron, and vitamin B along with increased consumption of caloric fats [8]. The reported 

prevalence of vitamin B12 deficiency specifically in patients with CD has ranged from 8-41% [8,73–

75].  

A complete GFD is the only treatment for the disease with no current cure [8]. For most patients, 

strict adherence to a GFD will lead to reversal of intestinal damage and eliminate symptoms over 

time [68]. A study of 40 patients with recent CD diagnoses followed severity of intestinal damage 

over a year of treatment and found: (1) severity of the villous atrophy was linked with vitamin B12 

and erythrocyte folate concentrations and (2) most biochemical markers improved within a year of 

treatment with a GFD [76]. However, while most serological levels return to normal with a GFD, this 

is not the case for all patients and additional vitamin supplementation may be required [76–79]. 

However, CD is often undiagnosed in the US which impedes a patient’s ability to access treatment 

[68].   

Even with a CD diagnosis, adherence to a GFD is impacted by several factors, with adherence 

rates estimated to be between 45% and 90% [81]. Barriers to diet adherence include income, 

knowledge about GFD, temptation control, motivation from peers, confidence in health practitioners, 

religious food, cost and availability of GF food, amount of counseling for GFD, and contact with 

health care professionals [82,83]. Over 25% of subjects stated that their income could not support a 

GFD. A 2019 market-based study comparing gluten-free products with their glutenous counterparts 

found GF products to be 183% more expensive overall [84]. Thus, there are many barriers to strict 

adherence to a GFD which can negatively impact the overall health of an individual with CD. 

8. Celiac Disease and Pregnancy 

Several studies have identified a link between CD, especially untreated CD, and worse maternal 

and fetal outcomes during pregnancy. The likelihood of at least one pregnancy complication is 

estimated to be over 4x higher in women with CD compared to the general population [85]. A recent 

18-study meta-analysis identified an increased risk for spontaneous abortion, fetal growth restriction, 

preterm delivery, cesarean delivery, and lower mean birthweight in women with CD [86]. A case-

control study comparing treated vs untreated CD patients found the relative risk of miscarriage to be 

8.9 times higher in untreated women and a GFD reduced that risk 9.18 times and reduced low birth 

rate from 29.4% to 0% [87].  

Aside from pregnancy outcomes, CD also impacts fertility, with an increased likelihood for both 

amenorrhea and infertility [85,88]. A meta-analysis found three-fold increased odds of having CD in 

those with infertility compared to the general population [94]. Some evidence has shown that once 

treated and adhering to a GFD, many of the fertility and pregnancy complications associated with 

CD resolved [86,87,90,91]. However, the mean age of CD diagnosis is 38 in the United States, often 

after fertile age in females [92]. This could mean years of untreated CD during the reproductive years. 

Studies have reported between 74.5% and 85.7% of participants being diagnosed with CD after their 

first pregnancy [85,93].  
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Asymptomatic CD is not uncommon, resulting in lack of diagnoses and/or treatment. Mayo 

Clinic reported only 6% of CD patients to present with classic symptoms, 66% with non-typical 

symptoms, and 28% asymptomatic [94]. A case study of a 37-year-old woman on her third pregnancy, 

with one uncomplicated past pregnancy and one with intrauterine fetal death (IUFD), revealed 

asymptomatic CD. In her third pregnancy, the patient presented with vaginal bleeding, iron 

deficiency, and high IgA levels. CD was confirmed via biopsy. After treatment with iron 

supplementation and a strict GFD, all biomarkers resolved, and the patient gave birth to a healthy 

son [95]. Despite most evidence supporting a GFD’s success in reversing negative pregnancy 

outcomes, lack of diagnosis or adherence to treatment remains a significant barrier for addressing 

these concerns. 

9. Conclusion 

An extensive amount of research has been conducted on the folate trap, the importance of 

vitamin B12 and folate supplementation in pregnancy, vitamin B12 deficiency in CD, and associations 

between pregnancy and CD. What has remained largely understudied are the implications of vitamin 

B12 deficiency in pregnant women with CD and how the folate trap may play a role in negative health 

outcomes. Folic acid supplementation is widely recommended during pregnancy, but 

complementary vitamin B12 supplementation is not standard. Numerous studies have proven the 

harm of vitamin B12 deficiency, which has been shown to be exacerbated in those with normal to 

high folate levels. This deficiency is especially prevalent in some subpopulations, notably in pregnant 

patients and in those with CD. An imbalanced folate to vitamin B12 ratio can cause several negative 

pregnancy outcomes including early abortion/miscarriage, preterm birth, NTDs, and low gestational 

age and birthweight. These can be easily resolved with vitamin B12 supplementation. Similarly, CD 

is associated with higher rates of similar outcomes that can be reversed or prevented with adherence 

to a GFD. However, since most people are not diagnosed with CD until after pregnancy, treatment 

with a GFD is often initiated after reproductive years. Additionally, the pathogenic nature of CD 

disrupts nutrient absorption in the small intestine, where both vitamin B12 and folate are primarily 

absorbed. Together, this may suggest that patients who are pregnant and have CD may be at even 

higher risk of maternal and fetal harm.   

Ultimately, additional research is necessary to determine the impact of the folate trap and health 

outcomes in pregnant women with CD. Variables impacting health outcomes may include length of 

CD diagnosis, adherence to GFD, family history of pregnancy complications, nutrient 

supplementation, and more. Clinically, it may be worthwhile to screen for both CD and vitamin B12 

deficiency in pregnant patients to identify those who may benefit from GFD or vitamin B12 

supplementation intervention. Addressing vitamin B12 deficiency and CD in pregnant patients 

through early screening and targeted treatments may represent a strategy to significantly reduce 

maternal and fetal health risks. 
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