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Abstract

The Riemann Hypothesis (RH) is proved based on a new expression of the completed zeta function
&(s), which was obtained through pairing the conjugate zeros p; and p; in the Hadamard product with
consideration of zero multiplicity, i.e.
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where €(0) = %, 0; = a; + jBi, pi = & — jBi, with0 < a; < 1,8; # 0,0 < [B1]| < |B2| < -++,and m; > 1
is the multiplicity of p;. Then, according to the functional equation &(s) = (1 — s), we obtain

© s—a;)2\mi 2 —s—a;)2\mi
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which is finally equivalent to

1 .
o = 5,0 < |,31| < |,32| < |,33| <---,1=1,2,3...
Thus, we conclude that the RH is true.

Keywords: Riemann Hypothesis; Hadamard product; new expression of the completed zeta function

1. Introduction

The Riemann zeta function is originally defined in the half-plane R(s) > 1 by the absolutely
convergent series

(s) = Y 4 (s) > 1 <1>

n=1

The connection between the above-defined Riemann zeta function and prime numbers was
discovered by Euler, i.e., the famous Euler product

=[Ja-p=) "L, R(s) >1 (2)
p

where p runs over the prime numbers.
Riemann showed in his paper in 1859 how to extend the zeta function to the whole complex plane

(,(S) — 1—'(1 —.S) /Oo (_x)s dl (3&)

27ti o -1 «x

C by analytic continuation [1]

where ” [ is the symbol adopted by Riemann to represent the contour integral from +oo to +o0
around a domain which includes the value 0 but no other point of discontinuity of the integrand in its
interior.
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Or equivalently,

. G(X);l)dx} (3b)

where 0(x) = Y%, e~""7¥ is the Jaccobi theta function, T is the Gamma function in the following

Weierstrass expression
1 = s
oS 1 2N\,—s/n 4
(s s-e }:[1( +n)e (4)
where 7 is the Euler-Mascheroni constant.
As shown by Riemann, {(s) extends to C as a meromorphic function with only a simple pole at

s = 1, with residue 1, and satisfies the following functional equation

PEN()ls) = i T2 ) ©

The Riemann zeta function {(s) has zeros at the negative even integers: —2, —4, —6, —8, - - - and one
refers to them as the trivial zeros. The other zeros of {(s) are complex numbers, i.e., non-trivial zeros.
In 1896, Hadamard [2] and Poussin [3] independently proved that no zeros could lie on the line
R(s) = 1, together with the functional equation §(s) = (1 — s) and the fact that there are no zeros
with real part greater than 1, this showed that all non-trivial zeros must lie in the interior of the critical
strip 0 < R(s) < 1. Later on, Hardy (1914) [4], Hardy and Littlewood (1921) [5] showed that there are
infinitely many zeros on the critical line R(s) = 3.
To give a summary of the related research works on the RH, we have the following results on the
properties of the non-trivial zeros of {(s) [2-7].
Lemma 1: Non-trivial zeroes of {(s), noted as p = « + jB, have the following properties
1) The number of non-trivial zeroes is infinity;
2)p#0;
N0<a<;
4) p,p,1 —p,1 — p are all non-trivial zeroes.
As further study, the completed zeta function (s) is proposed, i.e.

&(s) = s(s ~ D ET(3)(6) ©)

It is well-known that {(s) is an entire function of order 1. This implies ¢(s) is analytic, and can
be expressed as infinite product of polynomial factors, in the whole complex plane C. In addition,
replacing s with 1 — s in Eq.(6), and combining Eq.(5), we obtain the following functional equation

¢(s) =¢(1—s) )

According to the definition of ¢(s), and recalling Eq.(4), the trivial zeros of {(s) are canceled by
the poles of I'(5). The zero of s — 1 and the pole of {(s) cancel; the zero s = 0 and the pole of I'(5)
cancel [7-9]. Thus, all the zeros of (s) are exactly the nontrivial zeros of {(s). Then we have the
following Lemma 2.

Lemma 2: The zeros of (s) coincide with the non-trivial zeros of (s).

Consequently, the following two statements are equivalent.

Statement 1: All the non-trivial zeros of {(s) have real part equal to %

Statement 2: All zeros of {(s) have real part equal to %

To prove the RH, a natural thinking is to estimate the numbers of non-trivial zeros of {(s)
inside or outside some certain areas according to Argument Principle. Along this train of thought,
there are many research works. Let N(T) denote the number of non-trivial zeros of {(s) inside the
rectangle: 0 < &« < 1,0 < B < T, and let Ny(T) denote the number of non-trivial zeros of {(s) on

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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the line « = %,0 < B < T. Selberg proved that there exist positive constants ¢ and Ty, such that
No(T) > ¢N(T), (T > Tp) [10], later on, Levinson proved that ¢ > % [11], Lou and Yao proved that
¢ > 0.3484 [12], Conrey proved that ¢ > % [13], Bui, Conrey and Young proved that ¢ > 0.41 [14], Feng
proved that ¢ > 0.4128 [15], Wu proved that ¢ > 0.4172 [16].

On the other hand, many non-trivial zeros have been calculated by hand or by computer programs.
Among others, Riemann found the first three non-trivial zeros [17]. Gram found the first 15 zeros based
on Euler-Maclaurin summation [18]. Titchmarsh calculated the 138" to 195" zeros using the Riemann-
Siegel formula [19-20]. Here are the first three (pairs of) non-trivial zeros: % =+ j14.1347251; % +
j21.0220396; % + j25.0108575.

The idea of this paper originates from Euler’s work on proving the famous equality

1 1 1 1 72
t+=+—=5+=+-=— (8)

14+ — il
+22 32 42 5 6

This result was deduced by comparing the coefficients of two infinite expressions of % one as a
power series and the other as an infinite product,

2 2

)(1 x ) 9)

92

: 2 6 2
s x X X X
X 3!+5! 7!+ ( 7'(2)(

X
472

Motivated by this approach, we conjecture that ¢(s) can be factored into the form (1 + (s,ﬂ%)z) , which

is verified by pairing p; and p; in the Hadamard product representation of ¢(s), i.e. (1 — %) (1- ﬁ%) =
1512 (1 + (S_“i)z)
o +p7 B
The Hadamard product expansion of &(s), first proposed by Riemann and later rigorously justified

by Hadamard [21], is given by
¢(s) = ¢TI0~ ) (10)

0
where ¢(0) = 1, p runs over all zeros of &(s).
Hadamard showed that to ensure the absolute convergence of this infinite product expansion,
p and 1 — p must be paired. Later in Section 4, we will demonstrate that pairing p with its complex
conjugate p can also be used to ensure the absolute convergence.

2. Preliminary Lemmas

This section provides preliminary lemmas supporting the proof of the key lemma - Lemma 8 in
the next section.

The key point of this section is to extend, by employing the divisibility concept of entire functions,
both the transitivity of polynomial divisibility and a property of irreducible polynomials (Lemma 3) to
the context of infinite products of polynomial factors.

We begin with the ring of real polynomials R[x], defined as

o
Rlx] ={}_ a;x'|a; € R,a; # 0 for all but a finite number of i}
i=0
and equipped with the operations + (addition) and - (multiplication).

The ring of real polynomials is a subset of the ring of entire functions, which is defined as the set
of all holomorphic functions on the whole complex plane C, together with the operations of addition
and multiplication, denoted as H/(C) [22-23].

Both rings possess properties of divisibility, coprimality, and the greatest common divisor, denoted
as "gecd". There are also differences between these two rings. Among others, the polynomial ring is a
unique factorization domain (UFD), while the ring of entire functions is not a UFD. For entire functions,
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their divisibility, coprimality and common factors are determined by the relationships between their
zero sets [23-24].

To facilitate the subsequent discussions (particularly the proofs of Lemma 5 and Lemma 8), we
provide the following definitions related to the divisibility of infinite products of polynomial factors,
although they are just specific cases of the corresponding definitions for entire functions.

Definition 2.1: Let f(x) = [12; pi(x), pi(x) € R[x], be an entire function, and h(x) € R[x]. We say
h(x) divides f(x), denoted as h(x) | f(x), if there exists an entire function g(x) = [ g;(x), gi(x) €
R[x], such that f(x) = h(x) - g(x).

Definition 2.2: Let f(x) = [, pi(x), pi(x) € R[x], be an entire function, and h(x) € R[x], a
polynomial d(x) € R[x] is called the greatest common divisor of h(x) and f(x) if: 1). d(x) | h(x)
and d(x) | f(x); 2). For every polynomial d;(x) € R[x] that divides both h(x) and f(x), we have
41 (x) | ().

Definition 2.3: Let f(x) = [1;2; pi(x), pi(x) € R[x], be an entire function, and (x) € R[x]. We
say that (x) and f(x) are coprime (relatively prime) if whenever a polynomial d(x) € R[x] divides
both i(x) and f(x), then d(x) must be a nonzero constant. This is denoted by ged (h(x), f(x)) = 1.

By Definition 2.1, the transitivity of divisibility for polynomials extends to infinite products of
polynomial factors. Specifically, let f(x) = [Ti~; pi(x), pi(x) € R[x], be an entire function, and let
hi(x),hy(x) € Rlx]. If hy(x) | ha(x) and hp(x) | f(x), then hy(x) | f(x).

To support the proof of the key lemma - Lemma 8 in next section. We also need the following
lemmas.

Lemma 3: Let m(x), g1(x), ..., gn(x) € R[x],n > 2. If m(x) is irreducible (prime) and divides the
product g1 (x) - - - gn(x), then m(x) divides one of the polynomials g7 (x), ..., gn(x).

Lemma 4: Let f(x), m(x) € R[x]. If m(x) is irreducible and f(x) is any polynomial, then either
m(x) divides f(x) or ged(m(x), f(x)) = 1.

Lemma 5: Let f(x) be an entire function expressed as an absolutely convergent infinite product
on C, ie., f(x) = [I;2; gi(x), where each g;(x) € R[x] is irreducible of degree d (d = 1 or 2). If
m(x) € R[x] is irreducible of degree d and m(x) | f(x), then m(x) divides one of the polynomials
$1(x), 82(%), .-

Remark: The contents of Lemma 3 and Lemma 4 can be found in many textbooks of linear algebra,
modern algebra, or abstract algebra, see for example Refs.[25-27].

Below we give the proof of Lemma 5.

Proof: Let a be a root of m(x), i.e., m(a) = 0. Since m(x) | f(x), we have f(a) = 0. By absolute
convergence of [ 12 g;(x), there exists at least one index i € N such that g;(«) = 0, otherwise f(«a) # 0.
See Theorem 2 in Ref.[8] on page 178 for more details, with f,(x) therein corresponding to [Ti_; gi(x).

As gi(x) and m(x) are irreducible over R with deg(g;(x)) = deg(m(x)) = d, they share the root
«. Thus:
e Ifd=1,thengi(x) =a(x —a)and m(x) = b(x —a) fora,b # 0, so m(x) | gi(x).
e Ifd =2, then both have roots {«, &}, so g;(x) = ¢ - m(x) for ¢ # 0, hence m(x) | g;(x).
In both cases, m(x) divides g;(x).

That completes the proof of Lemma 5.

Additionally, we also need the following results on properties of zeros of entire function for
understanding the multiplicity of zeros of {(s).

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Lemma 6: Let f(s) be a non-zero entire function, and let s be a zero of f(s). Then the multiplicity
of s is a finite positive integer.

Proof: Let f(s) # 0,s € C, be an entire function, which means it is holomorphic on the whole
complex plane. Suppose f(s) has a zero at sy € C of multiplicity m, then f(s) = (s —sg)™g(s), where
¢(s) is also an entire function and g(sp) # 0.

Assume for contradiction that m is infinite, which implies there exists an accumulation point of
zeros in the neighbor of sy. Then, by Identity Theorem for holomorphic functions, and considering
"0" is also an entire function, we have f(s) = 0,s € C, which contradicts the given condition that
f(s) #0,s € C. Thus, the assumption is false, i.e., m must be a finite positive integer.

That completes the proof of Lemma 6.

Remark: Statements similar to Lemma 6 can be found in Ref.[28] and other related text-
books/monographs.

Lemma 7: Let f(s) be a non-zero entire function, and let sy be a zero of f(s). Then the multiplicity
of sg is unique.

Proof: Let f(s) # 0,s € C, be an entire function, which has a multiple zero at sy € C of multiplicity
m. We can write: f(s) = (s —sp)™g(s), where g(s) is also an entire function and g(so) # 0.

Assume for contradiction that there exists another integer n # m such that n is also a multiplicity
of the zero sy. This means we can also write: f(s) = (s — sp)"h(s), where h(s) is an entire function and
h(so) # 0.

Since both expressions for f(s) must be equal, we then obtain (s — s9)"g(s) = (s — so)"h(s).
Without loss of generality, consider m > n, then we have: (s —sg)" "g(s) = h(s) = h(sp) = 0, which
is a contradiction to hi(sg) # 0. Thus, the assumption is false, i.e., the multiplicity of a zero of any
non-zero entire function is unique.

That completes the proof of Lemma 7.

3. Key Lemma
In this section, we prove the key lemma - Lemma 8, which is substantial for the proof of the RH.
Lemma 8: Given two entire functions represented as absolutely convergent (on the whole complex
plane) infinite products of polynomial factors

f(s) = 10‘0[ (1+ %)mi (11)

and

Fl—s) = 1°‘°[ (1+ M)’" (12)

where s is the complex variable, p; = «; + jB; and p; = «; — jB; are the complex conjugate zeros of the
completed zeta function (s), 0 < a; < 1 and B; # 0 are real numbers, 0 < [B1] < |B2| < |B3] < - -+,
m; > 1 is the multiplicity of quadruplets of zeros (p;, p;, 1 — p;, 1 — pi).

Then we have
1

IXZ'ZQ
fe)=f(l=s)e ¢ 0<|B1] <|Ba| <|Bsl <--- (13)
i=1,2,3,- -

Remark: The divisibility contained in the functional equation f(s) = f(1 —s) and the uniqueness
of m; are the key points to the proof of Lemma 8, as they ensure that each polynomial factor can only
divide (and thereby equal) the corresponding factor on the opposite side of the equation; otherwise, it
would violate the uniqueness of m;. As stated in Lemma 6 and Lemma 7, m; is finite and unique, and
then unchangeable.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Proof: We have from Egs.(11) and (12)

o) = fa=9) & T 1+ By - ] (1 B2 20"

< (by rearrangement of absolutely convergent infinite products of both sides) (14)

S— K m —S—« 2 m
(1 By = (o By )
where ,
fl(s):ii}l} (1+(Sﬁ$‘"1)) ’ (15)
—5— ;)2\ ™
fill—s) = iegl} (1+ (1/52)> (16)

with = {1,2,3,---}, and "I" is an arbitrary element of set I. In brief, i € I\ {/} means that i runs over
the elements of I excluding "I".
Then we have

e 2
(1+ o B “)” )" fils) = (1+ u;ﬁal))mlﬁ(ls)

= (according to the definition of divisibility of infinite products of polynomial factors)

(1_}_(5;;1)) (1+(1 Sllxl )mlf( )
(1+ 50"+ )" Aes) 7

= (according to the transitive property of divisibility)
(1 S55) | (+ 2525 " —9)
B Pi
(1 S50 (1 )

Next, we exclude the possibility of (1 + w) ‘fl(l —s)and (1+ w) ‘fl(s) The polyno-
Br
2
mial factor (1+ %) 0 < a; < 1,B; # 0, with discriminant A = (2“1) . é(l + %) =—4- ﬁl—z <
1 1 1 1
0, is irreducible over the field R. Similarly, (1 + % é <0
1 !
(Hw»Z)’"" —

is also irreducible over the field R. Then by Lemma 5 and considering (1 + 7

g — )2 i
(1+usﬁ2m) ...’Wehave
i

m; times

) with discriminant A = —4 -

s —u;)? —s—a;)?
)| A=) (1+(ﬁ%l))‘(1+(1ﬁ2’)),i7&z

= (con31der1ng the dividend polynomial and the divisor polynomial are of the same degree)
e )2
d=s —ai)7 J(Hﬂ) iALkERK#O
P Fi
= (by comparing the like terms in the above polynomial equation)

1 1 2(1—a) 20 (1—0(1-)2 o7
R . 2 N —k(1+ 2
B B B BB pi
=

wi+u=1p=pLk=1,i#1

(1+(S_“’

(1+
(18)
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Similarly, we have (1—|—M ‘fl =swa+ua=1p=pk=1i#l

However, a; +a; =1, ‘[312 ,1 # | implies that (o;, p;,1 — p;, 1 — p;) and (p;, p;,1 — p;, 1 — ;) are
the same zeros in terms of quadruplets, which contradicts the uniqueness of zero multiplicity of §(s).

Thus, (1 + (s—ﬁﬁ) can not divide f;(1 —s), (1+ (1_;7?11)2) can not divide fj(s), denoted as
i

(l+ - “’ )J[fl(l—s) (1—|— (Azs—a)? )J(fl( ), respectively.
Br
Therefore from Eq.(17) we obtain the following result.

(1+(s‘ﬁl"‘l) )" fi(s) = (1+ “‘Sﬁl))’”’f( 5)

=

s—u;)? —s—a;)2\m

(14 E8) | (14 BBy )
—s—a;)? S—u, m

(1 250 | (1 50 " £(s)

= (by Lemma 5 and the fact(1 + (_[321)2) tild—=s), (1+ M) tfi1(s))

! ! (19)
s—ap)? —s—u;)?
{ (1 (ﬁfl)”(l (1}3121))

(1+ (1—51;?&1)2) | (1+ (s—zxz)z)

A
_ 2 1—5— 2
S STy TS G g
P Pi
= (by comparing the like terms in the above polynomial equation)
1

kzl,ﬂilzi

Let! =1,2,3, -, and repeat the above process as shown in Eq.(19), we get

- (s —w)*\mi _ 5 (I—s—a;)®\m 1.
H(HT) 711(”7[52 ) =0 =5,i=123, (20)
i= i i= 1
On the other hand, we have the following fact.
1.
;= ﬁ’l =123, --
= (considering B; # 0)
(s —a;)? (1—5—a;)?
14+ ) = 14+ ——2)
B? B

= (considering m; > 1)

(s —ai)*\m (1—s—a)\m,
(1+ ,321 )= (1+ 5 =)
(takmg infinite products on both sides of the above equations with absolute convergence given in Lemma 8)

=
o (s — aj)%\ mi —5— ;)2\ mi
O A (e

(21)

Furthermore, limiting the imaginary parts 8; of zeros to 0 < |B1] < [B2| < |B3| < --

- in order to keep
zero multiplicity unchanged while a; = %, we finally get from Eqs.(20) and (21):

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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1

& =5
f) = f1=5) &3 0< Bl < [Bal < IBsl <+
i=123,---

That completes the proof of Lemma 8.

In addition, Lemma 9 will also be used in the proof of the RH in the next section.
5
o +B
conditions: 0 < a; < 1,B; # 0,724 ﬁl—z < o0, and m; > 1 is the multiplicity of zero «; + jB;.
Proof: First of all, we know that

mj
Lemma 9: The infinite product []52, ( ) converges to a non-zero constant, given the

2 _ 2
()" - 11"
2, g2 2, g2
i1 7 + P i=1 % + B
where in the right side expression, i”’ factor appears m; times.
. B _ —
Leta; = 2+/32’then P =1 7 +/32 1-—

Since 0 < a; < 1and B; # 0, we have. 0<a; < /5712 Then )2, /5%2 < oo (given condition) implies
Yioq |ail = Y724 a; < oo (absolute convergence).

Fur;cher, the absol;Jte nsionvergence of Y i°,a; guarantees that the product [T7>;(1 —a;) =
112, azi—lﬁz =112, (alzi—’ﬁlz) converges to a non-zero constant.

That Icompletes the proof of Lemma 9.

4. A Proof of the RH

This section presents a proof of the Riemann Hypothesis. We first prove that Statement 2 of the RH
is true, and then by Lemma 2, Statement 1 of the RH is also true. To be brief, to prove the Riemann Hy-
pothesis, it suffices to show that a; = %, i=1,2,3,-- in the new expression of ¢ (s) as shown in Eq.(25).

Proof of the RH: The details are delivered in three steps as follows.

Step 1:
It is well-known that zeros of ¢(s) always come in complex conjugate pairs. Then by pairing
pi = «; + jB; and p; = a; — jB; in the Hadamard product as shown in Eq.(10), we have

oo

OTIa--)=¢0O]1- (1 - ;)
’ i=1 S . g e (22)
1 1

folle- MJ/% O O G g e
where 0 < «; < 1, B; # 0 (according to Lemma 1).
The absolute convergence of the infinite product in Eq.(22) in the form

= s s s(2a; —s)
s) =¢(0 1-—)(1-— _ s@ai—s) (23)
20 =¢oI]a- -2 =TI (1-=F5)

depends on the convergence of infinite series ) °; ﬁ (since |s| < o0 = |s(2a; —s)| < 00), which is an
obvious fact according to Theorem 2 in Section 2, Chapter IV of Ref.[9]. Thus, the infinite products as
shown in Eq.(23) and Eq.(22) are absolutely convergent for |s| < oo.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Further, considering the absolute convergence of
= s(2a; —s) B (s — i)
) =60 (5= ) (24)
Ol -5 0l g

we have the following new expression of {(s) by putting all the possible multiple factors (zeros)
together:

(s —a;)?
(2 + ﬁ2 of + B}

)" (25)

i=
where m; > 1 is the multiplicity of p;/p;, i = 1,2,3,- - -
Step 2: Replacing s with 1 — s in Eq.(25), we obtain the infinite product expression of {(1 —s), i.e.,

o) e v)\2
E(1—s) = 1—[ [j_’g,Z (1 az: /;2,61) )i (26)

i=1

where m; > 1 is the multiplicity of 1 — p; /1 —p;,i =1,2,3,- - -.
The absolute convergence of the infinite product as shown in Eq.(26) can be reduced to that of {(1 —s) =

¢O)IT2,(1— %)(1 — %) =¢(0)TT12, (1 - (175)(|§+71+s)), whose absolute convergence depends
also on the convergence of infinite series ) ;° ; ﬁ (since |s| < oo = [(1 —5)(2a; —1+5)| < o0). Then

from the analysis in Step 1, the infinite product as shown in Eq.(26) is absolutely convergent for |s| < oco.

Step 3: According to the functional equation &(s) = ¢(1 —s), and considering Eq.(25) and Eq.(26),

we have X ( - g ( »
= : S — i)\ _ = : 1—s—a;)"
Ol a0 g e @
which is equivalent to
oo — )2 o _ 2
H(l + (S 2“1) )m,» _ H(l + (1 ?82 0‘1) )mi (28)
i=1 i i=1 i

where m; > 1 is the multiplicity of quadruplets (o;, p;,1 —p;,1 —p;),i =1,2,3,- - -, B; are in order of
increasing |B;| ,i.e., 0 < [B1] < |B2| < |B3| < -+
To check the absolute convergence (on the whole complex plane) of both sides of Eq.(28), it suffices

to prove the convergence of infinite series ) ;- which is an obvious fact because

zlﬁZ’

0<a; <1,|0i|? = oco(since 32, ﬁis convergent, thenﬁ —0) = |Bi> = .
2 2
Then we have lim;_,, |ﬁ|2 lim;_, o zli 7 = =1, that means ) ;°; /32 and Y72, R |2 have the same

convergence. Furthermore, both sides of Eq (28) converge to entire functions, because they differ with
the entire function {(s) by a non-zero multiplicative constant, i.e.

= B (s — &)\,
Ea+ﬁ2 zx2+ﬁ2)
o fT T+ 055 @
00 )2
_C.H(1+(Sﬁ§‘1))mi
i=1 i

where c is a non-zero constant, see Lemma 9 for details.
Finally, according to Lemma 8, Eq.(28) is equivalent to

1 .
=5 0<|prl <|pal < B3l <---5i=123,- (30)
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Thus, we conclude that all the zeros of the completed zeta function ¢(s) have real part equal to %, ie,
Statement 2 of the RH is true. According to Lemma 2, Statement 1 of the RH is also true, i.e., all the
non-trivial zeros of the Riemann zeta function {(s) have real part equal to %

That completes the proof of the RH.
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