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Abstract:  Saudi  Arabia’s  Vision  2030  is  closely  tied  to  issues  of  CO2  emissions  and  energy 

consumption. This initiative aims to modernize the country’s economy, diversify its energy sources, 

and enhance sustainability. This paper examines the relationships among CO2 emissions, Renewable 

Energy Consumption (RENC), and Non‐Conventional Energy Resources (NCER)  in Saudi Arabia, 

from 1990 to 2019. To assess the stationarity of the panel time series data, the Augmented Dickey‐

Fuller (ADF) and Phillips‐Perron (PP) tests were initially used. Given that the data exhibited a mixed 

order of integration, the Autoregressive Distributed Lag (ARDL) framework was employed. Three 

different lag selection criteria were applied for cointegration, using CO2 emissions as the dependent 

variable. Additionally, the direction and significance of causality were analyzed within the ARDL 

framework. Robust tests were conducted to evaluate the generalizability of the study’s findings. We 

demonstrated  a  significant  long‐term  relationship  between  climate  change  and  both RENC  and 

NCER in Saudi Arabia. The findings indicate that in the long run, a 1% increase in RENC leads to a 

0.21% decrease in CO2 emissions. Furthermore, a 1% increase in NCER corresponds to a substantial 

53.4% reduction in CO2 emissions. Finally, policy recommendations were proposed in alignment with 

Saudi Arabia’s Vision 2030. 
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1. Introduction 

Energy  is  a  crucial  factor  that  substantially  impacts  economic  growth,  development,  social 

welfare, and ecology. In today’s industrialized societies, there is an increasing demand for energy in 

various sectors such as industry, commerce, agriculture, services, housing, and transportation [1]. 

In Saudi Arabia, the demand for energy to power air conditioning systems is expected to increase 

significantly due to the heightened risk of heat waves. The effects of global warming on the flow and 

temperature of surface waters, such as rivers and coastal seas, could impact the cooling capabilities 

of thermal or nuclear power plants. Additionally, changes in the water cycle, including precipitation 

and  the melting  of mountain  glaciers,  could  also  impact  the  capacity  for  hydroelectric  power 

generation [2]. 

Saudi Arabia’s economy heavily relies on its oil and petrochemical industries, which account for 

87%  of  government  revenues  and  90%  of  export  earnings.  Though  natural  gas  production  has 

increased, oil remains the primary energy source in the country. Nonetheless, renewable biomass has 

the potential to serve as an alternative energy source. Renewable energy sources are vulnerable to 

climate  change,  which  makes  the  energy  system  susceptible.  The  energy  sector  contributes 

significantly to global CO2 emissions [3]. 

This  research analyzes  the  relationship between climate change and energy  in Saudi Arabia, 

both short—and long‐term, to determine how climate change affects renewable and non‐renewable 
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energy  sources.  In  other words, we  explore whether  there  is  a  short‐  and  long‐term  correlation 

between climate change and energy. 

The  rest of  this paper  is organized as  follows: Section 2 presents a comprehensive  literature 

review of studies examining CO2 emissions and  their  impact on climate change.  In Section 3, we 

describe  the motivating data  set, and  the  econometric  framework used  in  the analysis. Section 4 

analyzes the data set mentioned  in Section 3 to demonstrate the proposed methodologies and the 

results of this analysis are reported. The last section concludes the findings of the paper and presents 

policy implications considering the Saudi Vision 2030. 

2. Literature Review 

In  recent decades,  the environmental degeneration  caused by global warming has become a 

major concern for policymakers and researchers alike [4]. Energy generally comes from two types of 

natural  resources: non‐renewable  (fossil and  fissile) and  renewable. Non‐renewable  resources are 

themselves of two types: fossil and fissile. Fossil resources are those derived from the decomposition 

of organic matter, mostly plant matter, over millions of years to produce mainly coal, oil and natural 

gas [5]. Deposits of these non‐renewable energy sources are depleted over time. Fissile resources are 

those  derived  from  the  fission  of  the  atomic  nucleus, mainly  uranium.  As  these  resources  are 

depleted,  they  are  still  unable  to  satisfy  consumer  demand  in  all  areas  of  daily  life,  and  their 

production  is declining at  the same rate as oil. For  this reason,  they are also referred  to as “stock 

energies” since their reserves are limited. 

On  the other hand,  there  is another  type of natural  resource called  renewable energy. These 

include solar thermal and photovoltaic energy, wind, tidal and river power, heat from the ground 

and subsoil, biomass, and waste. These resources are called renewable energies because they are self‐

renewing  after  consumption  [6]. Moreover,  energy  is one of  the major  factors  affecting not only 

economic growth, but  also  economic development,  social well‐being,  and  ecology.  It’s  clear  that 

modern,  industrialized societies are using more energy  in a variety of areas:  industry, commerce, 

agriculture, services, housing, transport, and so on. The effects of climate change will vary from one 

region of  the world  to another, affecting both energy production and demand.  In Saudia Arabia, 

energy demand for air conditioning could rise sharply, due to the increased risk of heat waves. The 

impact of global warming on the flow and temperature of surface waters (rivers and coastal seas) 

could affect  the cooling capacity of  thermal or nuclear power plants. Changes  in  the water cycle 

(precipitation) and the melting of mountain glaciers could also affect hydroelectric power generation 

capacity. The capacity to renew biomass (which can be used to produce heat or biofuels) could also 

be affected by climate change and its interaction with changes in air quality [7]. 

There is considerable uncertainty about the evolution of small‐scale events such as hurricanes 

or storms, to which energy production systems and power transmission networks are exposed. Saudi 

Arabia’s energy sector is dominant in Saudi Arabia’s economy: around 87% of government revenues 

and 90% of export earnings came from the oil and petrochemicals industry in 2017, accounting for 

around 42% of Saudi Arabia’s gross domestic product [8]. Saudi Arabia’s primary energy production 

is  limited  to  two products: oil  (87.5%) and natural gas  (12.5%):  the share of natural gas has  risen 

sharply: from 5.3% in 1990 to 12.5%  in 2019; in 29 years, energy production has increased by 74% 

(60% for oil and 311% for gas). Increasing the use of renewable energies is an essential strategy for 

mitigating  climate  change  [9].  Nevertheless,  the  sensitivity  of  renewable  energies  to  climatic 

conditions means that the energy system’s vulnerability to climate change may also become greater. 

The energy sector  is known as a major cause of climate change, around  two‐thirds of global CO2 

emissions in 2018 [10,11]. 

Various  authors  [12,13]  concluded  that  there  is  a need  for more  in‐depth knowledge of  the 

impacts of climate change on the energy system as a whole and on a global scale. In addition, the 

uncertainty of climate change and the ability of the energy system to adapt to such impacts must be 

considered. Among  renewable  energies,  energy  and/or  electricity production  from PV  and wind 

turbines is limited by weather conditions, such as solar radiation, cloud cover, wind direction and 
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speed.  Future  climate  change will modify  these weather  conditions.  Some will  increase,  others 

decrease,  and  future  renewable  energy production will  vary  according  to  these  changes.  In  this 

context, at  the same  time as  renewable energies can mitigate climate change,  they also  suffer  the 

consequences  of  climate  change.  In  the  same way  that  renewable  energies  can mitigate  climate 

change, they also suffer the consequences of climate change. 

These  impacts  on  renewable  energies will  be  unavoidable  to  some  extent,  even with  strict 

mitigation policies. [14]  link global warming and  its consequences to human activities rather than 

natural fluctuations. The Earth’s natural climate changes gradually over a long period of time (tens 

of  thousands  to millions of years). Climate  change  is  recognized  as  an  important  issue,  and  the 

international communities, through the United Nations, have created special groups to focus on the 

effects of climate change and have launched protocols to organize a global response to deal with its 

consequences.  Any  change  in  solar  input,  the  atmosphere  or  the  hydrological  cycle will  affect 

interactions  between  the  atmosphere,  hydrosphere,  cryosphere,  and  biosphere.  Climate  change 

interacts with various natural processes in the atmosphere, hydrosphere, cryosphere, and biosphere. 

There  is  growing  evidence  that  anthropogenic  gases  are  responsible  for  climate  change  [14]. 

According to various authors [15,16], the rate of carbon dioxide (CO2) emissions  is a key factor  in 

greenhouse gas emissions (GHG) and  its consequent  impacts on global warming, climate change, 

biodiversity,  air quality  and natural  resources. Coupled with growing human  consumption,  this 

concern not only increases the vulnerability of societies, but also accentuates the scarcity of the earth’s 

ecological  resources  [17,18]. With  the  industrialized world’s  current  fast‐paced  consumption  and 

production  patterns,  climate  change  is  having  a  negative  impact  on  ecosystems,  species,  and 

humanity. Energy transition is necessary to protect the environment in the face of climate change. A 

major energy transition is needed to achieve the goal of climate‐neutral energy systems. The use of 

renewable energies appears as an alternative to conventional energy in this concept. The objective of 

this article  is to analyze the  impact of climate change on renewable and non‐renewable Energy  in 

Saudia Arabia. Is there a short‐ and long‐term relationship between climate change and energy? On 

other words, we aim to gain a deeper understanding of the challenges and opportunities Saudi Arabia 

faces in transitioning towards sustainable and resilient energy systems. To achieve this objective, we 

use the ARDL (Auto‐ Regressive Distributed Lags) model. 

3. Materials and Methods 

3.1. Data Description and Summary Statistics 

In  this  study,  the data are  extracted  from  the World Bank  indicators  (CD‐ROOM2019). This 

study delves into a comprehensive analysis of annual data spanning from 1990 to 2019, focusing on 

key  environmental metrics  for  Saudi Arabia.  Specifically,  it  examines CO2  emissions  per  capita, 

expressed  in  tons,  alongside  the  share  of  Renewable  Energy  Non‐Conventional  (RENC)  as  a 

percentage of total final energy, and the Non‐Conventional Energy Ratio (NCER) as a portion of total 

electricity production. These essential metrics are illustrated in Table 1. 

Table 1. Data description of the variables. 

Variable  Description  Unit  Year  Source 

CO2 

CO2 emissions per capita include sources 

from fossil fuel use and industrial 

processes. 

Ton CO2/capita 
1990– 

2019 
https://edgar.jrc.ec.europa.eu/dataset_ghg78 

RENC 

Renewable energy consumption is the 

share of renewable energy in total final 

energy consumption. 

% of total final 

energy 

consumption 

1990– 

2019 

https://datacatalog.worldbank.org/public‐

licenses#cc‐by 

NCER 

Electricity production from oil (crude oil 

and petroleum products), gas (natural gas

excluding natural gas liquids), and coal 

(all coal and brown coal). 

Electricity 

production from 

oil, gas and coal 

sources (% of 

total) 

1990– 

2019 
https://www.iea.org/data‐and‐statistics 
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The  statistical properties of  these variables unfold  in greater detail  in Table 2,  revealing  the 

underlying patterns within the data. Skewness and kurtosis were meticulously calculated based on 

the  third  and  fourth  central  moments.  Skewness  provides  insight  into  the  asymmetry  of  the 

distribution, while kurtosis sheds light on its peak sharpness. Remarkably, the results of the Jarque‐

Bera test [19] indicate that we do not have enough evidence to reject the null hypothesis, which posits 

that these variables conform to a normal distribution. This suggests that the data analyzed in this 

study  portrays  a  well‐defined  normal  distribution,  offering  valuable  insights  into  the  energy 

landscape of Saudi Arabia. 

Table 2. Statistical proprieties of the time‐series data of Saudi Arabia from 1990 to 2019. 

Variable  CO2 emission  RENC  NCER 

Mean  347064  0.0148941  75.9799315 

Median  339678  0.0204583  74.8247301 

Min.  171407  0.0903271  67.6731248 

Max.  565191  0.3798525  86.9979705 

St. Dev  2746.3187341  0.1478266  3.7394211 

Skewness  ‐0.1105526    0.1865272  ‐0.8554191 

Kurtosis  3.1791151  1.3945724  2.2205716 

Jarque – Bera    1.7691115 (0.5166)  4.5861241 (0.2173)  3.4462135 (0.3615) 

Observations  30  30  30 

Source: author’s computation, 2025. 

3.2. Econometric Framework 

The ARDL cointegration procedure was  introduced by  [20] and extended by  [21]. Compared 

with other cointegration methods [22–24] the ARDL cointegration approach has advantages. This co‐

integration technique does not require the assumption that all variables come from the same order of 

integration.  This  approach  can  be  applied  even  if  the  variables  are  I(0)  or  I(1). We  choose  this 

technique for three main reasons: First, it is effective in executing short‐ and long‐term relationships 

between  different  variables  that  do  not  have  the  same  order  of  integration  provided  that  these 

variables  are  stationary  integration  order  level  are  I(0)  or  I(1).  Second,  the ARDL  approach  can 

remove problems associated with omitted and auto correlated variables. Third, it can be useful for a 

small application. To study the relationship between economic growth and political stability, Solow’s 

growth model is used as a theoretical framework. The model shows that national production (Y) is 

determined by three factors: capital (K), labor (L) and technical progress (A). The production function 

takes the following form: 

𝑌 ൌ  𝐴 𝑓ሺ𝐾, 𝐿ሻ  (1)

By analogy, equation (1) can be written in the following form: 

𝐶𝑂2𝑡 ൌ  𝛼0 ൅  𝛽1 𝑅𝐸𝑁𝐶𝑡 ൅  𝛽12 𝑁𝐶𝐸𝑅𝑡 ൅  𝜀𝑡  (2)

Therefore, the ARDL model can be constructed as follows: 

n n n

t 0 1i t-i 2i t-i 3i t-i
i=1 i=1 i=1

ΔlnCO2 =α + β ΔlnCO2 β ΔlnRENC β Δ+ lnNC+ ER ... t        (3)

t 0 1 t-1 2 t-1 3 t-1 tlnCO2 =α +β lnCO2 +β lnRENC +β lnNCER +ε   (4)

Where  lnCO2,  lnRENC,  and  lnNCER  are  natural  logarithms1   of CO2  emission,  RENC,  and 

NCER, ∆ is the delay operator, α0 is the constant, means short‐term dynamics, while β1, β2, and β3 are 

the long‐term coefficients and Ɛt is the error term of the white noise. After regression of Equation (4), 

 
1The  natural  logarithm  of  the data  is used  to  achieve  constant  variance  and  allow describing  the  relations 

between the variables. 
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the Wald test (F‐statistics) was used to identify the existence of the long‐run relationship between the 

different variables. The Wald test for multiple parameters can be carried out by imposing restrictions 

on  the estimated  long‐run coefficients of CO2 with  the different variables of  the model. Thus, we 

propose the following hypotheses. 

H0: β1 = β2 = β3 (no long run relationship) 

H1: β1 ≠ β2 ≠ β3 (a long run relationship exists) 

The model is verified under the assumptions of H0 (no existence of co‐integration relationships) 

whereas H1 (existence of co‐integration relationships). The geographical focus of the study is Saudi 

Arabia. Data was gathered and managed using Microsoft Excel. However, the study analysis was 

based on statistical packages freely available within the open‐source statistical system R (available at 

http://cran.r‐project.org). 

4. Results 

To investigate the causal relationships among CO2 emissions, renewable energy consumption 

(RENC), and non‐conventional energy resources (NCER) in Saudi Arabia, our initial focus was on 

assessing the stationarity of the time series data for these variables. This preliminary step is essential 

because stationarity is a requirement for conducting accurate modeling and regression analyses. In 

this regard, we utilized two robust statistical techniques: the Augmented Dickey‐Fuller (ADF) test 

and the Phillips‐Perron (PP) test. These tests are designed to detect the presence of unit roots within 

the data, which helps determine the order of integration for each variable. 

The outcomes of the ADF and PP unit root tests are summarized  in Table 3. For the variable 

representing CO2 emissions (lnCO2), both the ADF and PP tests showed that the null hypothesis could 

not be rejected at the level of the data, indicating that lnCO2 is not stationary at this stage. However, 

when we  examined  the  first difference of  lnCO2, we were  able  to  reject  the null hypothesis  at  a 

significance level of 1%. This result suggests that lnCO2 exhibits stationarity at order one, denoted as 

I(1), meaning it requires first differencing to achieve stationarity. 

In contrast, the variable for renewable energy consumption (lnRENC) demonstrated a different 

behavior. The  tests  indicated a  clear  rejection of  the null hypothesis at  the  level,  suggesting  that 

lnRENC is stationary at order zero, or I(0), and does not require differencing. This characteristic is 

significant because it implies that lnRENC can be used in analyses without further transformation. 

Furthermore, we examined the variable for non‐conventional energy resources (lnNCER). The ADF 

and PP tests produced results indicating a weak rejection of the null hypothesis at the level, but a 

strong rejection at the first difference. Thus, we can conclude that lnNCER also exhibits stationarity 

at order one, I(1), like lnCO2. 

In summary, the results of the ADF and PP unit root tests reveal that CO2 emissions, renewable 

energy consumption, and non‐conventional energy resources exhibit mixed orders of  integration, 

specifically I(1) and I(0). Importantly, none of these variables is of second order, or I(2). 

Table 3. Results of Unit‐root tests. 

    At Level  At First Difference   

  Variable  Intercept  Intercept and Trend  Intercept  Intercept and Trend  Decision 

ADF Test  lnCO2 
–2.722 

(0.185) 

–2.511 

(0.131) 

–8.054*** 

(0.000) 

–8.195*** 

(0.000) 
I(1) 

  lnRENC 
–1.165 

(0.332) 

–3.174* 

(0.079) 

–6.226*** 

(0.002) 

–6.273*** 

(0.006) 
I(0) 

  lnNCER 
–1.857 

(0.245) 

–0.827** 

(0.018) 

–5.587*** 

(0.003) 

–3.236 

(0.111) 
I(0) 

PP Test  lnCO2 
–2.722 

(0.185) 

–2.511 

(0.131) 

–10.112*** 

(0.000) 

–5.612*** 

(0.007) 
I(1) 

  lnRENC 
–0.177 

(0.916) 

–2.704* 

(0.086) 

–4.441*** 

(0.007) 

–4.283*** 

(0.002)     
I(0) 
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  lnNCER 
–1.622 

(0.422) 

–3.493* 

(0.091) 

–3.588* 

(0.012) 

–1.247*** 

(0.000) 
I(0) 

Note: ***, **, and * indicate t‐statistics which are significant the 1%, 5% and 10%levels, respectively. 

Given these findings, we proceeded with the co‐integration testing procedure, which is crucial 

in  examining  long‐term  relationships  among  non‐stationary  variables.  This  step  allowed  us  to 

calculate  and  apply  the  panel  Autoregressive  Distributed  Lag  (ARDL)  method.  The  results 

confirming the stationarity tests met the preconditions for ARDL analysis indicate that it is indeed 

appropriate  to  conduct  cointegration  and  relational  analyses within  the ARDL  framework.  This 

approach will  enable  us  to  better  understand  the  dynamic  interactions  between CO2  emissions, 

renewable  energy  consumption,  and  non‐conventional  energy  resources  in  the  context  of  Saudi 

Arabia’s energy landscape. 

A variety of criteria play a crucial  role  in pinpointing  the  ideal number of  lags  for a model. 

Prominently featured in this discussion are the Akaike Information Criterion (AIC) and the Schwarz 

Bayesian Criterion (SBC), as noted by [25]. Among these, AIC often emerges as the favored choice, 

largely due  to  its  roots  in  information  theory and  its  robust approach  to addressing  some of  the 

concerns associated with the underlying assumptions of SBC. Empirical studies further bolster this 

preference, revealing that AIC typically outperforms SBC in terms of efficiency. With this compelling 

evidence in hand, we have decided to rely on AIC to guide us in selecting the most effective number 

of lags for our model [26]. 

Table 4 above shows the maximum number of lags that ensures no serial autocorrelation and 

minimizes the information criteria is p = 2. Applying the Akaike Information Criterion (AIC) and the 

Schwarz Information Criterion (SIC) to the variables resulted in the selection of three lags. Therefore, 

we will explore ARDL models (p, q, r) that minimize the AIC criterion by appropriately choosing the 

delays. 

Table 4. Lagged selection criteria. 

Lag  Log  AIC  SBC  HQ 

0  –28.32414  2.246233  2.342221  2.274775 

1  36.08751  –2.228704*  –1.940741*  –2.143078* 

2  37.76101  –2.056388  –1.576449  –1.913677 

To determine whether  the variables  are  cointegrated, we need  to  compare  the  computed F‐

statistics with the critical values for I(0) and I(1) presented in Table 5, which is part of the bound’s 

test  [21].  If  the computed F‐statistics are greater  than  the  I(1) value, we conclude  that a  long‐run 

relationship exists between the variables. Conversely, if the F‐statistic is less than the I(0) value, we 

find that there is no cointegration. If the computed F‐statistic falls between I(0) and I(1), we cannot 

draw any definitive conclusions. 

Table 5. Critical values and for the ARDL Bounds test. 

Probability  0.1  0.05  0.025  0.01 

Bounds test 
I (0)  I (1)  I (0)  I (1)  I (0)  I (1)  I (0)  I (1) 

2.631  3.355  2.111  3.774  3.551  4.382  4.131  5.011 

Notes:  F‐statistic  =  6.98163,  K  =2.  Null  hypothesis  (H0):  No  long‐run  relationships  exist.  Source:  Author 

calculation. 

Based on the comprehensive findings detailed  in Table 5, we can confidently conclude that a 

significant  long‐run  relationship  exists  between  CO2  emissions,  renewable  energy  consumption 

(RENC), and non‐renewable energy consumption (NCER). Our investigation centred around the F‐

statistics, which yielded a value of 6.98163. This value is a critical component of our analysis as  it 
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enables us to evaluate the nature and strength of the relationships between these key variables over 

an extended period. 

To interpret the significance of this F‐statistic, we compared it to the critical values established 

by Pesaran at a 5%  significance  level. According  to  the Pesaran critical values  table designed  for 

models that include both an unrestricted intercept and a trend, the lower bound is identified as 2.11, 

while  the upper  bound  is  specified  as  3.77. By  juxtaposing  our  calculated  F‐statistics with  these 

established  critical  thresholds,  we  can  determine  the  statistical  significance  of  the  long‐run 

relationship. This comparison will provide valuable insights into the interdependence between CO2 

emissions and the various modes of energy consumption, ultimately enhancing our understanding 

of their contributions to environmental dynamics. 

This conclusion remains valid when we consider the Pesaran critical values at the 10%, 2.5%, 

and 1% significance levels, as the F‐statistic (6.98163) exceeds the upper bounds of 3.35, 4.38, and 5.01, 

respectively. Therefore, we can confidently state that CO2 emissions are significantly linked to the 

other variables  in  this analysis over the  long  term. Table 6 reports on the  long‐term cointegration 

relationship between climate change and renewable and non‐renewable energy. 

Table 6. Coefficient and p‐value results of the long‐run causality. 

Variable  Coefficient  Prob. 

ln RENC  –0.214583  0.0762** 

ln NCER  –0.533823  0.0346* 

Constant  70030.34  0.1369 

Note: *and ** indicate the significance levels of 5% and 10% level, respectively. 

Table  6  illustrates  the  long‐run  causality  relationships  among  the  variables  studied.  Firstly, 

renewable energy consumption (RENC) Granger‐caused carbon dioxide (CO2) emissions at the 10% 

significance  level  (p‐value  =  0.076).  This  indicates  that  a  1%  increase  in  renewable  energy 

consumption  leads  to  a  0.21%  decrease  in  CO2  emissions.  Secondly,  non‐conventional  energy 

resources (NCER) also Granger‐caused CO2 emissions in Saudi Arabia at a 5% significance level in 

the long run (p‐value = 0.0346). Notably, a 1% increase in non‐conventional energy resources resulted 

in a significant 53.4% decrease in CO2 emissions. These findings suggest that both renewable energy 

consumption and non‐conventional energy resources have a negative  impact on CO2 emissions  in 

Saudi Arabia over the long term during the study period. 

In  this paper, diagnostic  tests were conducted  to validate  the  robustness and stability of  the 

models. Therefore, Cumulative Sum (CUSUM) and CUSUM square (CUSUMSQ) tests proposed by 

[27]. The value of  the  statistic must  then be verified under  the null hypothesis  that  indicates  the 

stability of the relationship curve in an interval fixed by two straight lines. In the case of a time series, 

the stability tests, also called structural change tests, examine the stability of the estimated coefficients 

of the equation while showing the presence of a structural change in the correlation. The CUSUM test 

is then adapted to test the hypothesis of stability of the long‐run relations between climate change, 

renewable energy and non‐renewable energy. 

Both Figures 1 and 2 vividly  illustrate the CUSUM and CUSUM squared graphs of recursive 

residuals derived from the stability tests of the Autoregressive Distributed Lag (ARDL) model. The 

solid lines weave through the graphs, depicting the actual residual values, while the dotted lines form 

a delicate boundary representing the 95% credible interval. Throughout the observed timeframe, all 

lines gracefully glide within  these critical bounds, revealing that  the residuals do not display any 

noteworthy  structural  breaks  or  unexpected  deviations  from  their  anticipated  behavior.  This 

consistent  stability not only highlights  the  robustness of  the ARDL  estimation  results previously 

discussed  but  also  reinforces  the model’s  credibility  and  its  significant  applicability within  the 

research context. 
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Figure 1. CUSUMS test for CO2, RENC and NCER. 

 

Figure 2. CUSUM square test for CO2, RENC and NCER variables. 

In  conclusion,  the CUSUM  and CUSUM  squared  test  curves  fall within  the  5%  confidence 

interval, indicating the stability of the model. 

5. Conclusions and Policy Implications 

The objective of this article is to provide a comprehensive analysis of how both renewable and 

non‐renewable energy sources contribute to climate change in Saudi Arabia. The findings reveal that 

these energy types have a negative and significant effect on climate change over the long term. During 

the energy production process, substantial amounts of greenhouse gases and waste are released into 

the atmosphere, posing a serious  threat  to  the ecosystem. The extent of climate change  is gauged 

through various indicators, including the levels of carbon dioxide (CO2) emissions and the country’s 

average  temperature. As energy consumption  increases,  there  is a corresponding  increase  in CO2 

emissions, which can jeopardize Saudi Arabia’s adherence to international climate agreements. 

Climate change is one of the most severe impacts stemming from various activities, particularly 

the burning of fossil fuels, as well as significant greenhouse gas emissions from deforestation and 

agricultural practices. While land serves as both a source of and a victim of climate change, it can also 

play a crucial role  in  finding solutions. Implementing sustainable  land management practices can 

make strides in reducing greenhouse gas emissions from land‐based activities. Additionally, these 

practices not only contribute to climate change mitigation but also provide vital ecosystem services 

that  enhance  society’s  ability  to  adapt  to  the  ongoing  challenges  posed  by  climate  change.  By 

implementing  these  initiatives,  policymakers  can  advance  a  more  sustainable  and  resilient 

environment in Saudi Arabia and beyond. 
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All in all, the findings of this study are highly significant as they provide essential ecosystem 

services  that  can  help  society  adapt  to  the  adverse  effects  of  climate  change.  Additionally, 

policymakers  can utilize  the  insights gained  from  this  research  to mitigate  the  impact of  climate 

change on energy by utilizing modern technologies, such as carbon footprint calculators and other 

applications designed  to effectively monitor and control carbon emissions. Therefore,  the  insights 

from  this study could serve as a valuable reference  for policymakers,  industry  leaders, and other 

stakeholders in developing effective strategies to manage and mitigate the impact of climate change 

on energy in Saudi Arabia. 

This study has  led  to  insightful policy  recommendations based on  its  findings. The  research 

demonstrates that non‐conventional energy sources have consistently reduced CO2 emissions. Given 

that the oil industry has historically driven economic growth in Saudi Arabia, the country’s Vision 

2030 aims to diversify the economy and reduce dependency on fossil fuels. Therefore, policymakers 

are encouraged to invest in renewable energy solutions, such as green hydrogen generation, and to 

implement effective regulations for energy management, transportation, and technology use. This 

approach could create new economic opportunities across various sectors, including manufacturing, 

technology, and services. 

Non‐conventional renewable energy is vital in Saudi Arabia’s efforts to diversify its economy, 

generate jobs, advance technology, and promote sustainability. These efforts align with the goals of 

Vision 2030, initiated by Crown Prince Mohammed bin Salman, which seeks to embrace renewable 

energy  sources  and  lessen  the  Kingdom’s  reliance  on  fossil  fuels. We  believe  that  prioritizing 

renewable energy is essential for sustainable economic growth, resilience, and fulfilling international 

climate commitments. By  focusing on  renewable energy, Saudi Arabia could position  itself as an 

exporter of clean energy technologies, including solar and wind power systems, to regions such as 

the Middle East, Asia, and Africa. Moreover, the Kingdom could supply surplus renewable energy 

to neighbouring countries through regional grids, further strengthening its economic position. 
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