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Abstract: Based on the recorded watershed characteristics, the future conditions on the basin system can be predicted using a
different method. In this study, dynamic land-use change and its impacts on the streamflow for the Dabus watershed were
predicted using ANN-CA based method. The model performance for accurate prediction of the future land-use change on the
Dabus River watershed has been checked by validation of the simulated value with the actual value, hence the overall kappa
value (k) = 0.83 for the simulated 2016-LULC validated with actual 2016-LULC. Then, 2026-LULC was predicted based on the
2004 and 2009-LULC. The streamflow for the case of 2004 and 2009-LULC has been simulated using the SWAT model. The
value of NSE = 0.87 and 0.90 was attained during validation of simulated streamflow for 2004 and 2009-LULC data cases,
respectively. The agreement of simulated value of streamflow with the observed data is indicated as R? = 0.91 and 0.96 for 2004-
LULC and 2009-LULC. The effects of the dynamic land-use change on streamflow for the predicted land use(2026-LULC)
catchment were evaluated by T-test analysis. Hence, T-stat =0.04 and -0.002 in the case of simulated streamflow used 2004-

LULC and 2009-LULC, respectively compared with simulated value using 2026-LULC.
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1. Introduction

Land-use change is always caused by multiple interacting
factors (Lambin et al. 2003). The changes in land-use/land
cover is the major factors influencing the hydrologic process,
including the streamflow (Guo et al. 2008), surface runoff
generation(Shi et al. 2007), ground-water recharge (Mishra
and Kumar 2015), evapotranspiration(Dias et al. 2015; Wang
et al. 2014), lateral flow, water yield (Gumindoga et al. 2014;
Gashaw et al. 2018). The sets of the deriving forces of the
land-use changes vary in time and space. Based on the
specific human activities in a particular environment. The
main sets of the deriving factors for the land-use changes
include natural variability, economic and technological
factors, demographic factors, institutional factors, and
cultural factors. In another word, the dynamic land-use
change can occur due to the increasing agricultural land use
or expansion of built-up areas including urban areas. The
increase in agricultural land use results in an increase in
evapotranspiration, water yield, and sediment yield in the
watershed system. Whereas, the expansion of urban areas led
to a decrease in evapotranspiration, water yield, and sediment
yield (Aghsaei et al. 2020).

In Ethiopia, high population relying only on natural
resources improper land management (Garzanti et al. 2006;
Kidane and Alemu 2015). Rapid population growth in the
upper Blue Nile basin has led to fast land-use changes from
natural forest to agricultural land. This resulted in speeding
up the soil erosion process in the highlands and increasing
sedimentation further downstream in reservoirs and irrigation
canals (Ali et al. 2015). The annual predicted sediment load
from the Blue Nile basin for land use at 1973 and 2000 years
was show increases by 53% at the outlet of the basin within

28 years past ago (Gebremicael et al. 2013). The seasonal and
annual trend analysis was shown the streamflow significantly
increases within a wet season and short season and significant
decreases within the dry season. As a result, the increases in
the annual streamflow and sediment load at the outlet of the
basin was dynamic land-use change.

Several hydrology models can be used to assess the
impacts of land use/land cover change on the hydrologic
responses of a catchment, for the land use/land cover data
derived from the remote sensing. These including Hydrologic
Simulation Program Fortran (HSPF) model (Zhang and Ross
2015), MIKE SHE (Im et al. 2009), PRMS (Legesse et al.
2010), HBV (Ashagrie et al. 2006), HEC-HMS (Younis and
Ahmad 2018), DHSVM(Safeeq and Fares 2012), WaSIM-
ETH (Bormann and Elfert 2010), SWAT(Bieger et al. 2015).
However, the SWAT model has been mostly applied to assess
the impacts of land-use change on catchment hydrology,
around the world.

The aim of this study is to predict the land-use change and
to analyze their impacts on the streamflow in the Dabus River
watershed.

2 Description of Study Area

The Dabus River is a north-flowing tributary of the blue-Nile
River in southwestern Ethiopia. It bound within 34°28'53.57"
West longitude, 10°45'09.69" North latitude, 35°38'21.64"
East longitude, 8°52'16.34” south latitude and it joins its
parent stream at 10°36'38"N 35°8'58"E, sees Figure 1. Its
watershed covers an area of about 14725.39 square
kilometers. The altitude in the Dabus sub-basin ranges
approximately between 485 and 3150 above mean sea level.
The sub-basin has an annual rainfall ranging between 970 mm
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and 1985 mm. The annual maximum and minimum
temperature in the sub-basin vary between 20°c-35% and
8.5%-20 respectively.

3 Input Data

The actual LULC classification of the Dabus watershed for
2004, 2009, and 2016 was processed from the satellite image
data, see Figure 2. The thematic images are acquired from
ESA Glob cover land cover of 0.3km resolution for the period
December 2004 and December 2009. The Sentinel-2A
thematic image of 20.5m resolution was acquired from ESA-
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CCl-land cover for the period December 2016. The soil data
for the watershed was acquired from FAO classification of the
world soil map (1km resolution). The daily meteorological
includes rainfall (mm), temperature (T °C ), wind speed (m/s),
relative humidity (%), solar radiation (kwh/m?) from January
to December 2000-2016 were obtained from Ethiopia national
meteorology agency. The measured streamflow at the Dabus
gauging station was obtained from Ethiopia Ministry of Water
Resource for the calibration and validation of the model.
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Figure 2 Land use/land cover Satellite image
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4 Model Description
4.1 ANN Model

In QGIS, the raster analysis window allows the analysis
of land-use change detection and prediction of the possible
value required output layers based on the behavior of the input
layer through MOLUSCE. In this method, the Pearson
correlation transition matrix algorithm is given in Eq. (1) is
applied to calculate the area of change map of land use classes
in the system. In MOLUSCE four different methods available
to perform the transition potential model, thus includes
ANN(MLP), WoE, MCE, LR. The MLP and LR method
behavior are similar, in which the initial state raster and raster
factor are taken as input data to generate the target output. The
weight of evidence (WoE) method is used to process the
binary map. The change map divided into series of binary
maps (one map per transition class), then the set of weight are
estimated for every binary map. Whereas in the Multi-Criteria
Evaluation method, the factor raster is the input data and
places, where the transition occurs, are target values. It takes
a pairwise comparison matrix of factors and calculates the
weights of every factor. Furthermore, Artificial Neural
Network(ANN) was developed to model the brain
interconnected system of neurons so that the computer could
perform as the brain ability to arrange the patterns and train
from the trial and error, thus observing the relations from
input data (Pijanowski et al. 2002). It has been used in variety
of discipline for pattern recognition such as landscape
classification (Brown et al. 1998; Huang et al. 2009),
sediment transport evaluation (Ebtehaj and Bonakdari 2014),
suspended sediment load prediction (Rajaee et al. 2011),
climate forecasting (Roetter et al. 2005), reservoir inflow
prediction (Jain et al. 2000).
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Where: - Cy is the count of unchanged pixels of land use or
land cover in class-1, Cs ...... Cn#n-1 1S the count of the transit
pixels to the corresponding land use or land cover class, Xi,
Xa..Xn represents the land use or land cover class code, Pij is
transition probabilities.
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Figure 3 Artificial-Neural Network (ANN) -based
Cellular Automata (CA) model structure

In this study, the ANN method is selected to perform the
transition potential model as pre-stage for prediction of land-
use change at the period 2026 using Cellular Automata (CA)
simulator based on the initial LULC change behavior in the
Dabus watershed in 2004 & 2009. The structure of MPL
consists of three-layer such as input layer, hidden layer, and
output layer, see Figure 3.

4.2 SWAT Model

The SWAT (Soil and Water Assessment Tool) model is a
continuous-time, process-based river basin model. It was
developed to evaluate the effects of alternative management
decisions on water resources and nonpoint-source pollution in
large river basins (Arnold et al. 2012). The SWAT model
describes the large-scale spatial variability of soil, land cover,
and managementS by discretizing the catchment into many
sub-divisions. The discretization is carried out in two stages,
the first stage is sub-dividing the large complex topographic
basin area into sub-basins based on the defined threshold area.
In the second stage, the sub-basins are further subdivided into
one or more homogenous hydrologic response units (HRUS).
The model computes the output of water, sediment, nutrient,
and pesticide based on individual HRUs developed from the
land use, soil, and slope parameters in the catchment.

In the SWAT maodel, different routing techniques are uses
with the associate to the stream reaches and basins outlets in
the channel network. The water flow in the streams can be
routed either by variable storage routing or Muskingum
routing method. The variable storage routing method used in
SWAT was proposed by Williams (1969) is based on the
continuity equations given as Eq. ( 2)

\/in _Vout = AVStored Ea. (2)
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Tt — Vstored

Qout

Eq. (3)

Where V;,, and V,,,, = volume of water entered (m®) and left
the reach respectively, TT = travel time in second, g;, and
G,y = rate of flow (m3/s) with water entered and left the reach
with a given time step At.

The Muskingum routing method used in SWAT is based
on the Muskingum Cung (1969) method that uses the match
diffusivity concept. The rout equation is given as Eq. ( 4).

Q,=C,,+C,1,+C,Q Eq. (4)

Where
—2k@ + At 2k6 + At _ 2k(1-0)-At

LTOKA—O) AL 2T 2k(L-0)+ At T 2K(1—6) + At

Where k = storage time constant for the reach (s), 6 =
weighting factor (0-0.5), I, = inflow at the end of time step
(m3/s), I; = inflow at the beginning of time step (m3/s), Q, =
the outflow at the end of time step (m3/s), Q, = the outflow at
the beginning of the time step (m3/s).

In the SWAT model, the hydrologic cycle of a sub-basin
is simulated based on the water balance equation. It is given
asEq. (5)

t
S\Nt = S\No + Z(Rday _qurf - Ea _Wpef _QQW) Ea. ()
i=1

Where SW; is the final water content on day t (mm), SW, is the
initial water content on a day i (mm), Raay iS the amount of
rainfall on a day i (mm), Qsurt is the amount of surface runoff
on a day i (mm), E, is the amount of evapotranspiration on a
day i (mm), Wper is the amount of water percolating into the
soil or entering the vadose zone from the soil profile on a day
i (mm) and Qg is the amount of groundwater return flow on
aday i (mm).

4.3 Model Performance Evaluation

In MOLUSCE, the validation of the model is carried out
by comparing the predicted land use the actual land use. And
the kappa statistics Eq. (6) is used to check the model
performance. In the case of the streamflow, Nash-Sutcliffe
model coefficient (NSE) Eq. (7) and coefficient of
determination (R?) Eq. (8) are used to check the agreement of
the simulated value with the observed value.

kK — % Eq. (6)
- pe
30,5’
NSE =1— izl Eq. (7)
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and Pjj is the i, j cell of a contingency table, Pir is the sum of
all cells in the i row, Prjis the sum of all cells in the j
column, c is the count of raster classes, K is kappa, Si and O;
are simulated and observed values during model evaluation at
time step i respectively, O is the average observed value, and
“n” is the number of values.

5 Result and Discussion

5.1 Land Use Change model

The satellite image of the Dabus watershed in 2004 and
2009 were used to prepare the land use/land cover map in Arc-
GIS. For the prediction of land use /land cover map at period
2026, the land use/ land cover data for 2004 and 2009 were
used as the initial parameters to the analysis in method of land
use simulation change (MOLUSCE). In another word the area
of land us change from 2004-2009 were used to obtain the
proportion of the transition matrix value. The map of
ecluiden- distance from the Road map on the Dabus
watershed, the slope map, and DEM of the Dabus watershed
are taken as the variable parameters for raster correlation
evaluation. The results of the area LULC change from 2004
to 2009 are summarised in Table 1, And the cross-tabular
transition matrix proportion values in Table 2 The analysis of
the Artificial Neural Network (MLP) was done after the map
of LULC change created by the transition matrix proportion
value given in Table 2. The performance of the model (ANN
mothed) for the prediction of the required value (land-use
change map at 2026) was trained for 1000 iterations. So, the
validation kappa value from the trained model, k = 0.74, and
the agreement in the model for the analysis were represented
in Figure 4.

Based on the transition matrix proportion value obtained
in table 2, the Cellular Automata Simulator tool simulates the
land use data for period 2016 and referenced actual land use
map obtained from the satellite image at 2016 of the Dabus
watershed was used to validate the model and the
performance of this model is measure as the overall kappa (k=
0.83), knis= 0.86, kioc= 0.89 and % of correctness = 76.54. And
then for these reasons the 2026-LULC from 2004 & 2009-
LULC was predicted using Cellular Automata (CA), see
Figure 5. In this study, from the predicted land use map (2026-
LULC), the area of agricultural land and mixed forest on the
Dabus watershed shows increases, whereas the other shows a
decrease as compared to 2016-LULC and 2009-LULC. But
as compared to the 2004-LULC, the area of agricultural land
including ranged grassland and forest deciduous are increased
and the others are decreasing, see in Table 3.
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Table 1 LULC area change from 2004-2009 periods Neural Network learning curve
011F — —

] Area (%) Area (%) A% [2004- 010 e
No LULC-type 200(4 : 200(9 : 2009] 3
1 Agricultural 3148 3203 055 G
2 Grass/shrub/Forest 12,95  11.03  -1.92 1 I B
3 Everygreenforest  4.90 3.47 -1.42 0.07} .
4  Forest deciduous 8.01 15.56 7.55 0.06 - - | ]
5 Range Grassland ~ 0.32 4.24 3.93 0.05 AT TAUYSBLAMARNAR KR AR A A i w1y
6 Range Shrubland  0.26 0.24 -0.02 5 i i T 300 1000
7 Mixed forest 42.07 33.42 -8.65 No of iterations
8  Water bodies 0.00 0.00 0

Figure 4 ANN trained model curve

Table 2 Cross-tabular transition matrix for change map analysis algorithm

Transit_ion 2009-LULC
matrix Agricultu  Grass/shrub/ Every green forest Forest Range Range Mixed Water bodies
ral Forest deciduous Grassland Shrubland forest
Agricultural 0.8 0.022 0.009 0.0518 0.0199 0 0.094 0
Grass/shrub/Forest | 0.12 0.468 0.065 0.0798 0.0015 0 0.265 0
% Every green forest | 0.013  0.169 0.186 0.44 0.00013  0.000348  0.19 0
:r' Forest deciduous | 0.018 0.05 0.04 0.469 0.08 0.00638 0.33 0
§ Range Grass land | 0.013  0.0004 0.0069 0.035 0.81 0.0038 0.128 0
Range Shrub land | 0.007  0.059 0.0388 0.193 0.0084 0.68 0.019 0
Mixed forest 0.117  0.071 0.026 165 0.064 0 0.556 0
Water bodies 0 0 0 0.2 0.12 0 0.2 0.48
Table 3 Predicted land use (2026-LULC) and land-use change percentage
Actual -2016  Simulated -2026 A% A% A%
No LULC (km?) (km?) [2016-2026]  [2009-2026]  [2004-2026]
1 Agricultural 4959.29 5095.60 0.93 2.67 3.22
2 Grass/shrub/Forest 1610.41 1571.68 -0.26 -0.33 -2.25
3 Every green forest 195.45 86.90 -0.74 -2.88 -4.31
4 Forest deciduous 2281.27 2176.18 -0.72 -0.74 6.81
5 Range Grass land 430.17 295.40 -0.92 -2.23 1.69
6 Range Shrub land 13.77 12.56 -0.01 -0.15 -0.17
7 Mixed forest 5195.41 5447 .45 1.72 3.67 -4.98
8 Water bodies 0.18 0.18 0.00 0.00 0.00
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Predicted Land use Map (2026-LULC)
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Figure 5 Predicted land use (2026-LULC)

5.2 Streamflow model

The streamflow at the Dabus watershed was simulated
using 2004-LULC, 2009-LULC, 2026-LULC by assuming
the climatic characteristics in 2026 are the same as the 2016
climates’ condition. The contributions of the land use to the
streamflow (groundwater, surface runoff, percolation of
rainfall into the soil) for the simulated land use or land cover
(2026-LULC) was compared with the simulated value for
2004-LULC and 2009-LULC. The estimated maximum %
groundwater for 2004 & 2009-LULC was observed from the
area covered with every green forest. But for 2026-LULC the
max.% GW from the area covered with mixed forest and

Streamflow model for 2004-LULC
2000 4~ mmme=e Simulated
—— Observed
% 1500
3
= 1000
o
[
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(9\'\ (o\'\r /\\'\/ ‘b\\, o,\\’ @\'\ \,\'\N '\')’\\/
Time (Day)

Figure 6 Simulated daily streamflow for 2004-LULC
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deciduous forest contribute to groundwater. The maximum
surface runoff (Q) is calculated from agricultural land and
forest deciduous land in each case. Due to the increasing area
of agricultural land as shown in the 2004-LULC to 2009-
LULC and 2009-LULC to 2026-LULC, the estimated surface
runoff show increase by 2.58% from 2004-LULC to 2009-
LULC and 4.84% from 2009-LULC to the predicted land use
(2026-LULC) for cultivated land. For forest deciduous land
the surface runoff increases by 4.57% f from 2004-2009’s
LULC and 6.06% for 2009 to 2026-LULC. Whereas the
percentage of percolated water into the soil is maximum at the
area covered by forest deciduous and every green forest in
both 2004-LULC & 2009-LULC, but for the predicted one the
report shows the maximum percolation will occur at the area
of catchment covered by agriculture, forest deciduous, mixed
forest and ranged grass in Dabus watershed.

In this study, the validated simulated streamflow for 2004-
LULC data is represented in Figure 6 and its statistical values
of the model performances are NSE = 0.87, R? = 0.91. And
validated streamflow model used 2009-LULC data is shown
in Figure 7 and its statistical values of the model performance
are NSE = 0.9 and R? = 0.96. The homogeneity of simulated
streamflow for the predicted land use (2026-LULC) was
tested using T-test by assuming equal variance to the
simulated streamflow using 2004-LULC and 2009-LULC. As
a result, shows that T-stat values are less than the t-critical
value in both cases, the detail is presented in Table 4 & Table
5. In which the p-values indicate that the results are almost
similar at a = 5% significance level.

Hence in this study, the result shows that there is no any
more difference within the simulated streamflow for the
dynamic land-use change (2026-LULC) as compared with
that of the simulated streamflow for 2004 and 2009-LULC at
the Dabus watershed for the same climatic characteristics.

Streamflow model for 2009-LULC
2500 A
------- Simulated
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Figure 7 Simulated daily streamflow for 2009-LULC


https://doi.org/10.20944/preprints202104.0393.v1

d0i:10.20944/preprints202104.0393.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 April 2021

Simulated Streamfow for Predicted LULC
(2026-LULC)
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Figure 8 Simulated Daily streamflow for 2026-LULC

Table 4 T-test: for null hypothesis (0; = 0,)

Streamflow for LULC @ 2004 @2026 Results
Mean 630.35 628.68

Variance 220899.72 226624.05
Observations 245 245

Pooled Variance 223761.89

df 488
T - Stat 0.04
P-Value 0.97
T-Critical 1.96

Table 5 T-test: for null hypothesis (0; = 07)

Streamflow for LULC ~ @-2009 @-2026 Results
Mean 628.59 628.68
Variance 226414.99 226624.05
Observations 245 245
Pooled Variance 226519.52
df 488
T-Stat -0.002
P-Value 1.00
T-Critical 1.96
6.Conclusion

The dynamic land-use change in 2026 for Dabus
catchments was predicted using ANN-CA based analysis
method. As the output of the model, the Agricultural land area
was shows expansions by 0.93% than 2016-LULC, 2.67%
than 2009-LULC, 3.22% than 2004-LULC. And also, the
catchment area covered by the mixed forest was shows
increases in the predicted land use (2026-LULC) map by
1.72% than 2016-LULC and .367% than 2009-LULC, but it
is reduced by 4.98% as compared with 2004-LULC. This
means the increasing or decreasing coverage area of one type
of land use shows that the conversion of one type of land use

to another type in the watershed due to many factors.
However, for this rate of change in land use in this watershed,
the streamflow will not affect any more if the climatic
characteristics are keeping constant.

The model performances acquired in this study are the
overall kappa(k) = 0.83 when the simulated 2016-LULC by
ANN-CA is validated with the actual land use on the Dabus
watershed. The Nash-Sutcliffe efficiency (NSE) is 0.87 and
0.9 for the validated streamflow model using 2004-LULC and
2009-LULC in the SWAT model, respectively. The
coefficient of the simulated model agreement to the observed
value was measured as R? = 0.91 and 0.96 for 2004-LULC
and 2009-LULC used in the model. The effects of the
dynamic land-use change on the streamflow were checked by
T-test analysis using the simulated streamflow for the
predicted land use map and the streamflow obtained using the
actual land use map on the Dabus watershed (2004-LULC
&2009-LULC). However, the results show that streamflow
patterns are similar. In Figure 8 the graph shows that the
expected pattern of the daily streamflow hydrograph at the
outlet of the Dabus watershed.
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