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_____________________________________________________________________________________ 

Abstract:  Based on the recorded watershed characteristics, the future conditions on the basin system can be predicted using a 

different method. In this study, dynamic land-use change and its impacts on the streamflow for the Dabus watershed were 

predicted using ANN-CA based method. The model performance for accurate prediction of the future land-use change on the 

Dabus River watershed has been checked by validation of the simulated value with the actual value, hence the overall kappa 

value (k) = 0.83 for the simulated 2016-LULC validated with actual 2016-LULC. Then, 2026-LULC was predicted based on the 

2004 and 2009-LULC. The streamflow for the case of 2004 and 2009-LULC has been simulated using the SWAT model. The 

value of NSE = 0.87 and 0.90 was attained during validation of simulated streamflow for 2004 and 2009-LULC data cases, 

respectively. The agreement of simulated value of streamflow with the observed data is indicated as R2 = 0.91 and 0.96 for 2004-

LULC and 2009-LULC. The effects of the dynamic land-use change on streamflow for the predicted land use(2026-LULC) 

catchment were evaluated by T-test analysis. Hence, T-stat =0.04 and -0.002 in the case of simulated streamflow used 2004-

LULC and 2009-LULC, respectively compared with simulated value using 2026-LULC. 
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____________________________________________________________________________________ 

1. Introduction 

      Land-use change is always caused by multiple interacting 

factors (Lambin et al. 2003). The changes in land-use/land 

cover is the major factors influencing the hydrologic process, 

including the streamflow (Guo et al. 2008), surface runoff 

generation(Shi et al. 2007), ground-water recharge (Mishra 

and Kumar 2015), evapotranspiration(Dias et al. 2015; Wang 

et al. 2014), lateral flow, water yield (Gumindoga et al. 2014; 

Gashaw et al. 2018). The sets of the deriving forces of the 

land-use changes vary in time and space. Based on the 

specific human activities in a particular environment. The 

main sets of the deriving factors for the land-use changes 

include natural variability, economic and technological 

factors, demographic factors, institutional factors, and 

cultural factors. In another word, the dynamic land-use 

change can occur due to the increasing agricultural land use 

or expansion of built-up areas including urban areas. The 

increase in agricultural land use results in an increase in 

evapotranspiration, water yield, and sediment yield in the 

watershed system. Whereas, the expansion of urban areas led 

to a decrease in evapotranspiration, water yield, and sediment 

yield (Aghsaei et al. 2020). 

       In Ethiopia, high population relying only on natural 

resources improper land management (Garzanti et al. 2006; 

Kidane and Alemu 2015). Rapid population growth in the 

upper Blue Nile basin has led to fast land-use changes from 

natural forest to agricultural land. This resulted in speeding 

up the soil erosion process in the highlands and increasing 

sedimentation further downstream in reservoirs and irrigation 

canals (Ali et al. 2015). The annual predicted sediment load 

from the Blue Nile basin for land use at 1973 and 2000 years 

was show increases by 53%  at the outlet of the basin within 

28 years past ago (Gebremicael et al. 2013). The seasonal and 

annual trend analysis was shown the streamflow significantly 

increases within a wet season and short season and significant 

decreases within the dry season. As a result, the increases in 

the annual streamflow and sediment load at the outlet of the 

basin was dynamic land-use change. 

     Several hydrology models can be used to assess the 

impacts of land use/land cover change on the hydrologic 

responses of a catchment, for the land use/land cover data 

derived from the remote sensing. These including Hydrologic 

Simulation Program Fortran (HSPF) model (Zhang and Ross 

2015), MIKE SHE (Im et al. 2009), PRMS (Legesse et al. 

2010), HBV (Ashagrie et al. 2006), HEC-HMS (Younis and 

Ahmad 2018), DHSVM(Safeeq and Fares 2012), WaSIM-

ETH (Bormann and Elfert 2010), SWAT(Bieger et al. 2015). 

However, the SWAT model has been mostly applied to assess 

the impacts of land-use change on catchment hydrology, 

around the world. 

     The aim of this study is to predict the land-use change and 

to analyze their impacts on the streamflow in the Dabus River 

watershed. 

2 Description of Study Area 

The Dabus River is a north-flowing tributary of the blue-Nile 

River in southwestern Ethiopia. It bound within 34°28′53.57″ 

West longitude, 10°45′09.69″ North latitude, 35°38′21.64″ 

East longitude, 8°52′16.34″  south latitude and it joins its 

parent stream at 10°36′38″N 35°8′58″E, sees Figure 1. Its 

watershed covers an area of about 14725.39 square 

kilometers. The altitude in the Dabus sub-basin ranges 

approximately between 485 and 3150 above mean sea level. 

The sub-basin has an annual rainfall ranging between 970 mm 
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and 1985 mm. The annual maximum and minimum 

temperature in the sub-basin vary between 200c-350c and 

8.50c-200c respectively.  

3 Input Data 

The actual LULC classification of the Dabus watershed for 

2004, 2009, and 2016 was processed from the satellite image 

data, see Figure 2. The thematic images are acquired from 

ESA Glob cover land cover of 0.3km resolution for the period 

December 2004 and December 2009. The Sentinel-2A 

thematic image of 20.5m resolution was acquired from ESA-

CCI-land cover for the period December 2016. The soil data 

for the watershed was acquired from FAO classification of the 

world soil map (1km resolution). The daily meteorological 

includes rainfall (mm), temperature (T c ), wind speed (m/s), 

relative humidity (%), solar radiation (kwh/m2) from January 

to December 2000-2016 were obtained from Ethiopia national 

meteorology agency. The measured streamflow at the Dabus 

gauging station was obtained from Ethiopia Ministry of Water 

Resource for the calibration and validation of the model. 

 

 

 

Figure 1Location of Study Area 

 

Figure 2 Land use/land cover Satellite image 
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4 Model Description 

4.1 ANN Model 

      In QGIS, the raster analysis window allows the analysis 

of land-use change detection and prediction of the possible 

value required output layers based on the behavior of the input 

layer through MOLUSCE. In this method, the Pearson 

correlation transition matrix algorithm is given in Eq. (1) is 

applied to calculate the area of change map of land use classes 

in the system. In MOLUSCE four different methods available 

to perform the transition potential model, thus includes 

ANN(MLP), WoE, MCE, LR. The MLP and LR method 

behavior are similar, in which the initial state raster and raster 

factor are taken as input data to generate the target output. The 

weight of evidence (WoE) method is used to process the 

binary map. The change map divided into series of binary 

maps (one map per transition class), then the set of weight are 

estimated for every binary map. Whereas in the Multi-Criteria 

Evaluation method, the factor raster is the input data and 

places, where the transition occurs, are target values. It takes 

a pairwise comparison matrix of factors and calculates the 

weights of every factor. Furthermore, Artificial Neural 

Network(ANN) was developed to model the brain 

interconnected system of neurons so that the computer could 

perform as the brain ability to arrange the patterns and train 

from the trial and error, thus observing the relations from 

input data (Pijanowski et al. 2002). It has been used in variety 

of discipline for pattern recognition such as landscape 

classification (Brown et al. 1998; Huang et al. 2009), 

sediment transport evaluation (Ebtehaj and Bonakdari 2014), 

suspended sediment load prediction (Rajaee et al. 2011), 

climate forecasting (Roetter et al. 2005), reservoir inflow 

prediction (Jain et al. 2000). 
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Where: - C0 is the count of unchanged pixels of land use or 

land cover in class-1, C1 ……CN*N-1 is the count of the transit 

pixels to the corresponding land use or land cover class, X1, 

X2...XN  represents the land use or land cover class code, Pi j  is 

transition probabilities.  

 

       Figure 3 Artificial-Neural Network (ANN) -based 

Cellular Automata (CA) model structure 

       In this study, the ANN method is selected to perform the 

transition potential model as pre-stage for prediction of land-

use change at the period 2026 using Cellular Automata (CA) 

simulator based on the initial LULC change behavior in the 

Dabus watershed in 2004 & 2009.  The structure of MPL 

consists of three-layer such as input layer, hidden layer, and 

output layer, see Figure 3. 

4.2 SWAT Model 

      The SWAT (Soil and Water Assessment Tool) model is a 

continuous-time, process-based river basin model. It was 

developed to evaluate the effects of alternative management 

decisions on water resources and nonpoint-source pollution in 

large river basins (Arnold et al. 2012). The SWAT model 

describes the large-scale spatial variability of soil, land cover, 

and managements by discretizing the catchment into many 

sub-divisions. The discretization is carried out in two stages, 

the first stage is sub-dividing the large complex topographic 

basin area into sub-basins based on the defined threshold area. 

In the second stage, the sub-basins are further subdivided into 

one or more homogenous hydrologic response units (HRUs). 

The model computes the output of water, sediment, nutrient, 

and pesticide based on individual HRUs developed from the 

land use, soil, and slope parameters in the catchment. 

      In the SWAT model, different routing techniques are uses 

with the associate to the stream reaches and basins outlets in 

the channel network. The water flow in the streams can be 

routed either by variable storage routing or Muskingum 

routing method. The variable storage routing method used in 

SWAT was proposed by Williams (1969) is based on the 

continuity equations given as Eq. ( 2)  

in out storedV V V− =                   Eq. ( 2) 

Or 

,1 ,2 ,1 ,2

2 2

in in out out

stored

q q q q
t t V

+ +   
 −  =    
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stored

out

V
Tt

q
=                           Eq. (3) 

Where 𝑉𝑖𝑛 and 𝑉𝑜𝑢𝑡  = volume of water entered (m3) and left 

the reach respectively, TT = travel time in second, 𝑞𝑖𝑛 and 

𝑞𝑜𝑢𝑡 = rate of flow (m3/s) with water entered and left the reach 

with a given time step ∆𝑡. 
       The Muskingum routing method used in SWAT is based 

on the Muskingum Cung (1969) method that uses the match 

diffusivity concept. The rout equation is given as Eq. ( 4).  

2 1 2 2 1 3 1Q C I C I C Q= + +                  Eq. ( 4) 

Where 
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Where k = storage time constant for the reach (s), 𝜃 = 

weighting factor (0-0.5), 𝐼2 = inflow at the end of time step 

(m3/s), 𝐼1 = inflow at the beginning of time step (m3/s), 𝑄2 = 

the outflow at the end of time step (m3/s), 𝑄1 = the outflow at 

the beginning of the time step (m3/s). 

     In the SWAT model, the hydrologic cycle of a sub-basin 

is simulated based on the water balance equation. It is given 

as Eq. (5 )  

1

( )
t

t o day surf a per gw

i

SW SW R Q E W Q
=

= + − − − −  Eq. (5) 

Where SWt is the final water content on day t (mm), SWo is the 

initial water content on a day i (mm), Rday is the amount of 

rainfall on a day i (mm), Qsurf is the amount of surface runoff 

on a day i (mm), Ea  is the amount of evapotranspiration on a 

day i (mm), Wper  is the amount of water percolating into the 

soil or entering the vadose zone from the soil profile on a day 

i (mm) and Qgw is the amount of groundwater return flow on 

a day i (mm). 

4.3 Model Performance Evaluation 

       In MOLUSCE, the validation of the model is carried out 

by comparing the predicted land use the actual land use. And 

the kappa statistics Eq. (6) is used to check the model 

performance. In the case of the streamflow, Nash-Sutcliffe 

model coefficient (NSE) Eq. (7) and coefficient of 

determination (R2) Eq. (8) are used to check the agreement of 

the simulated value with the observed value. 
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Where: 
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a ij e iT Tj iT Tj

i j i j i

p p p p p p p p
= = =

= = =  

and Pij is the i, jth cell of a contingency table, PiT is the sum of 

all cells in the ith row, PTj is the sum of all cells in the jth 

column, c is the count of raster classes, K is kappa, Si and Oi 

are simulated and observed values during model evaluation at 

time step ith respectively, Ō is the average observed value, and 

“n” is the number of values. 

5 Result and Discussion 

5.1 Land Use Change model 

      The satellite image of the Dabus watershed in 2004 and 

2009 were used to prepare the land use/land cover map in Arc-

GIS. For the prediction of land use /land cover map at period 

2026, the land use/ land cover data for 2004 and 2009 were 

used as the initial parameters to the analysis in method of land 

use simulation change (MOLUSCE). In another word the area 

of land us change from 2004-2009 were used to obtain the 

proportion of the transition matrix value. The map of 

ecluiden- distance from the Road map on the Dabus 

watershed, the slope map, and DEM of the Dabus watershed 

are taken as the variable parameters for raster correlation 

evaluation. The results of the area LULC change from 2004 

to 2009 are summarised in Table 1, And the cross-tabular 

transition matrix proportion values in Table 2 The analysis of 

the Artificial Neural Network (MLP) was done after the map 

of LULC change created by the transition matrix proportion 

value given in Table 2.  The performance of the model (ANN 

mothed) for the prediction of the required value (land-use 

change map at 2026) was trained for 1000 iterations. So, the 

validation kappa value from the trained model, k = 0.74, and 

the agreement in the model for the analysis were represented 

in Figure 4. 

        Based on the transition matrix proportion value obtained 

in table 2, the Cellular Automata Simulator tool simulates the 

land use data for period 2016 and referenced actual land use 

map obtained from the satellite image at 2016 of the Dabus 

watershed was used to validate the model and the 

performance of this model is measure as the overall kappa (k= 

0.83), khis= 0.86, kloc= 0.89 and % of correctness = 76.54. And 

then for these reasons the 2026-LULC from 2004 & 2009-

LULC was predicted using Cellular Automata (CA), see 

Figure 5. In this study, from the predicted land use map (2026-

LULC), the area of agricultural land and mixed forest on the 

Dabus watershed shows increases, whereas the other shows a 

decrease as compared to 2016-LULC and 2009-LULC.  But 

as compared to the 2004-LULC, the area of agricultural land 

including ranged grassland and forest deciduous are increased 

and the others are decreasing, see in Table 3. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 April 2021                   doi:10.20944/preprints202104.0393.v1

https://doi.org/10.20944/preprints202104.0393.v1


  

5 

 

Table 1 LULC area change from 2004-2009 periods  

No LULC-type Area (%) 

2004 

Area (%) 

2009 

% [2004-

2009] 

1 Agricultural  31.48 32.03 0.55 

2 Grass/shrub/Forest 12.95 11.03 -1.92 

3 Every green forest 4.90 3.47 -1.42 

4 Forest deciduous  8.01 15.56 7.55 

5  Range Grassland 0.32 4.24 3.93 

6  Range Shrub land 0.26 0.24 -0.02 

7 Mixed forest 42.07 33.42 -8.65 

8  Water bodies 0.00 0.00 0 
 

Figure 4 ANN trained model curve

 

Table 2 Cross-tabular transition matrix for change map analysis algorithm 

Transition  

matrix 
      2009-LULC       
Agricultu

ral 

Grass/shrub/ 

Forest 
Every green forest 

Forest 

deciduous 

Range 

Grassland 

Range 

Shrubland 

Mixed 

forest 
Water bodies 

 Agricultural  0.8 0.022 0.009 0.0518 0.0199 0 0.094 0 

2
0

0
4
-L

U
L

C
 Grass/shrub/Forest 0.12 0.468 0.065 0.0798 0.0015 0 0.265 0 

Every green forest 0.013 0.169 0.186 0.44 0.00013 0.000348 0.19 0 

Forest deciduous  0.018 0.05 0.04 0.469 0.08 0.00638 0.33 0 

 Range Grass land 0.013 0.0004 0.0069 0.035 0.81 0.0038 0.128 0 

 Range Shrub land 0.007 0.059 0.0388 0.193 0.0084 0.68 0.019 0 

 Mixed forest 0.117 0.071 0.026 165 0.064 0 0.556 0 

   Water bodies 0 0 0 0.2 0.12 0 0.2 0.48 

 

Table 3 Predicted land use (2026-LULC) and land-use change percentage  

No LULC 

Actual -2016 

(km2) 

Simulated -2026 

(km2) 

%  
[2016-2026] 

%  

[2009-2026] 

%  

[2004-2026] 

1 Agricultural  4959.29 5095.60 0.93 2.67 3.22 

2 Grass/shrub/Forest 1610.41 1571.68 -0.26 -0.33 -2.25 

3 Every green forest 195.45 86.90 -0.74 -2.88 -4.31 

4 Forest deciduous  2281.27 2176.18 -0.72 -0.74 6.81 

5  Range Grass land 430.17 295.40 -0.92 -2.23 1.69 

6  Range Shrub land 13.77 12.56 -0.01 -0.15 -0.17 

7 Mixed forest 5195.41 5447.45 1.72 3.67 -4.98 

8  Water bodies 0.18 0.18 0.00 0.00 0.00 
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Figure 5 Predicted land use (2026-LULC) 

5.2 Streamflow model 

     The streamflow at the Dabus watershed was simulated 

using 2004-LULC, 2009-LULC, 2026-LULC by assuming 

the climatic characteristics in 2026 are the same as the 2016 

climates’ condition. The contributions of the land use to the 

streamflow (groundwater, surface runoff, percolation of 

rainfall into the soil) for the simulated land use or land cover 

(2026-LULC) was compared with the simulated value for 

2004-LULC and 2009-LULC. The estimated maximum % 

groundwater for 2004 & 2009-LULC was observed from the 

area covered with every green forest. But for 2026-LULC the 

max.% GW from the area covered with mixed forest and 

deciduous forest contribute to groundwater. The maximum 

surface runoff (Q) is calculated from agricultural land and 

forest deciduous land in each case. Due to the increasing area 

of agricultural land as shown in the 2004-LULC to 2009-

LULC and 2009-LULC to 2026-LULC, the estimated surface 

runoff show increase by 2.58% from 2004-LULC to 2009-

LULC and 4.84% from 2009-LULC to the predicted land use 

(2026-LULC) for cultivated land. For forest deciduous land 

the surface runoff increases by 4.57% f from 2004-2009’s 

LULC and 6.06% for 2009 to 2026-LULC. Whereas the 

percentage of percolated water into the soil is maximum at the 

area covered by forest deciduous and every green forest in 

both 2004-LULC & 2009-LULC, but for the predicted one the 

report shows the maximum percolation will occur at the area 

of catchment covered by agriculture, forest deciduous, mixed 

forest and ranged grass in Dabus watershed. 

      In this study, the validated simulated streamflow for 2004-

LULC data is represented in Figure 6 and its statistical values 

of the model performances are NSE = 0.87, R2 = 0.91. And 

validated streamflow model used 2009-LULC data is shown 

in Figure 7 and its statistical values of the model performance 

are NSE = 0.9 and R2 = 0.96. The homogeneity of simulated 

streamflow for the predicted land use (2026-LULC) was 

tested using T-test by assuming equal variance to the 

simulated streamflow using 2004-LULC and 2009-LULC. As 

a result, shows that T-stat values are less than the t-critical 

value in both cases, the detail is presented in Table 4 & Table 

5. In which the p-values indicate that the results are almost 

similar at α = 5% significance level. 

     Hence in this study, the result shows that there is no any 

more difference within the simulated streamflow  for the 

dynamic land-use change (2026-LULC) as compared with 

that of the simulated streamflow for 2004 and 2009-LULC at 

the Dabus watershed for the same climatic characteristics. 

 

 

 

 

Figure 6 Simulated daily streamflow for 2004-LULC 

 

 

Figure 7 Simulated daily streamflow for 2009-LULC
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Figure 8 Simulated Daily streamflow for 2026-LULC

Table 4 T-test: for null hypothesis ( 1 2 = ) 

Streamflow for LULC @ 2004  @2026    Results 

Mean 630.35 628.68  
Variance 220899.72 226624.05  
Observations 245 245  
Pooled Variance 223761.89   
df   488 

T - Stat   0.04 

P-Value    0.97 

T-Critical     1.96 

Table 5 T-test: for null hypothesis ( 1 2 = )  

Streamflow for LULC @-2009 @-2026 Results 

Mean 628.59 628.68  
Variance 226414.99 226624.05  
Observations 245 245  
Pooled Variance 226519.52   
df   488 

T-Stat   -0.002 

P-Value   1.00 

T-Critical      1.96 

 

6.Conclusion  

     The dynamic land-use change in 2026 for Dabus 

catchments was predicted using ANN-CA based analysis 

method. As the output of the model, the Agricultural land area 

was shows expansions by 0.93% than 2016-LULC, 2.67% 

than 2009-LULC, 3.22% than 2004-LULC. And also, the 

catchment area covered by the mixed forest was shows 

increases in the predicted land use (2026-LULC) map by 

1.72% than 2016-LULC and .367% than 2009-LULC, but it 

is reduced by 4.98% as compared with 2004-LULC. This 

means the increasing or decreasing coverage area of one type 

of land use shows that the conversion of one type of land use 

to another type in the watershed due to many factors. 

However, for this rate of change in land use in this watershed, 

the streamflow will not affect any more if the climatic 

characteristics are keeping constant. 

      The model performances acquired in this study are the 

overall kappa(k) = 0.83 when the simulated 2016-LULC by 

ANN-CA is validated with the actual land use on the Dabus 

watershed. The Nash-Sutcliffe efficiency (NSE) is 0.87 and 

0.9 for the validated streamflow model using 2004-LULC and 

2009-LULC in the SWAT model, respectively. The 

coefficient of the simulated model agreement to the observed 

value was measured as R2 = 0.91 and 0.96 for 2004-LULC 

and 2009-LULC used in the model. The effects of the 

dynamic land-use change on the streamflow were checked by 

T-test analysis using the simulated streamflow for the 

predicted land use map and the streamflow obtained using the 

actual land use map on the Dabus watershed (2004-LULC 

&2009-LULC). However, the results show that streamflow 

patterns are similar. In Figure 8 the graph shows that the 

expected pattern of the daily streamflow hydrograph at the 

outlet of the Dabus watershed. 
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