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Abstract: Large Language Models (LLMs) have demonstrated promising capabilities to solve complex tasks in

critical sectors such as healthcare. However, LLMs are limited by their training data which is often outdated, the

tendency to generate inaccurate ("hallucinated") content and a lack of transparency in the content they generate.

To address these limitations, retrieval augmented generation (RAG) grounds the responses of LLMs by exposing

them to external knowledge sources. However, in the healthcare domain there is currently a lack of systematic

understanding of which datasets, RAG methodologies and evaluation frameworks are available. This review

aims to bridge this gap by assessing RAG-based approaches employed by LLMs in healthcare, focusing on the

different steps of retrieval, augmentation and generation. Additionally, we identify the limitations, strengths and

gaps in the existing literature. Our synthesis shows that proprietary models such as GPT-3.5/4 are the most used

for RAG applications in healthcare. Also, there is a lack of standardized evaluation frameworks for RAG-based

applications. In addition, the majority of the studies do not assess or address ethical considerations related to RAG

in healthcare. It is important to account for ethical challenges that are inherent when AI systems are implemented

in the clinical setting. Lastly, we highlight the need for further research and development to ensure responsible

and effective adoption of RAG in the medical domain.

Keywords: retrieval augmented generation; large language models; healthcare; evaluation; ai ethics

1. Introduction

Large Language Models (LLMs) have revolutionised natural language processing (NLP) tasks
in various domains, including healthcare. For example, models such as Generative Pre-trained
Transformers (GPT) [1,2], LLaMA[3] and Gemini [4], have shown impressive capabilities in generating
coherent and contextually relevant text. However, their application in healthcare is hampered by
critical limitations, such as the propensity to generate inaccurate or nonsensical information [5]. This
issue is often referred to as "model hallucinations" [6] and methodologies for its mitigation are still an
active area of research [7].

In healthcare, several LLMs has been customised to aid in different medical tasks. Models such
as BioBERT [8] and ClinicalBERT [9] have been proposed, leveraging the power of Bidirectional
Encoder Representations from Transformers (BERT) [10]. These models are developed through fine-
tuning using biomedical texts with the aim to improve contextual language comprehension within
the medical domain. However, they occasionally encounter challenges when dealing with contextual
data. To address this contextual need in medicine, Med-Palm was introduced demonstrating good
performance in retrieving clinical knowledge and excelling in decision-making on several clinical
tasks [11]. However, Med-Palm could not outperform human clinicians, generated bias and returned
harmful answers.

To address the aforementioned limitations, a novel approach called Retrieval-Augmented Genera-
tion (RAG) was proposed to expose the model to external knowledge sources [12]. RAG combines
the power of LLMs with the ability to retrieve relevant information from external knowledge sources,
such as medical databases, literature repositories, or expert systems. Briefly, the RAG process involves
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retrieving relevant information from the knowledge source, and then using the relevant information
to generate a response to answer the question. By incorporating a retrieval step, RAG leverages on
in-context learning [13] to reduce hallucinations and enhance the transparency of the sources from
which the LLM completion is generated. This is particularly important in healthcare, a knowledge-
intensive domain that requires accurate, up-to-date, and domain-specific information [14]. In addition,
by incorporating up-to-date clinical data and reliable medical sources such as clinical guidelines
into LLMs, the latter can offer more personalised patient advice, quicker diagnostic and treatment
suggestions and significantly enhance patient outcomes [15].

Despite the growth in RAG related research, we only came across a few review studies that outline
the state-of-the-art in RAG [16] and methodologies for retrievers and generators [17]. To the best of our
knowledge, there is no comprehensive review on methodologies and application of RAG for LLMs in
the healthcare domain.

This review aims to fill this knowledge gap, providing a systematic analysis of RAG techniques in
the medical setting. We examine different architectures and evaluation frameworks, and explore the
potential benefits and challenges associated with the integration of retrieval-based methods. Finally,
we propose future research directions and comment on open issues of current RAG implementations.
Our contributions:

1. Provide a systematic review of RAG-based methodologies applied in the medical domain.
Therefore contextualising the scope of RAG approaches in healthcare.

2. Provide an overview of evaluation methods, including metrics used to evaluate the performance
of RAG pipelines.

3. Discuss ethical concerns associated with RAG pipelines in critical sectors such as healthcare.
4. Provide insights for future research directions in RAG-based applications.

2. Materials and Methods

Many researchers have proposed RAG as a way to provide LLMs with up-to-date and user-specific
information, not available as part of the LLM’s pre-trained knowledge (also known as "grounding the
LLM) [18–24]. Our goal is to integrate the existing literature and evaluate the state-of-the-art RAG
techniques used in healthcare. Thus, conducting a systematic literature review is a promising method
to explore our objective. Moreover, our aim is to enhance the current knowledge about RAG for LLMs
in healthcare. We intend to achieve this by employing a systematic and transparent methodology that
produces reproducible results. For this, we employed the Preferred Reporting Items for Systematic
reviews and Meta-Analyses (PRISMA) [25]. All studies included met the inclusion criteria shown in
Table 1.

Table 1. Summary of inclusion criteria used in this study.

Criteria Definition

Languages of articles English
Years of publication 2020 - 2024

Solutions considered • Retrieval-Augmented Generation (RAG)
• Large Language Models (LLMs)

As illustrated in Table 1, the initial criteria used to identify articles, includes 1) only articles avail-
able in the English language; 2) articles published between January 2020 and March 2024, including
archives with an arxivid or medrxiv id; 3) only papers proposing RAG-based methods applied in the
medical domain. Articles that did not meet the above criteria were excluded. In addition, we also
excluded articles that met the criteria below.

Exclusion Criteria

• Review articles, including surveys, comprehensive reviews or systematic reviews.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 July 2024                   doi:10.20944/preprints202407.0876.v1

https://doi.org/10.20944/preprints202407.0876.v1


3 of 31

• Papers for which the full text is not available.
• Short conference papers.

2.1. Search Technique

First, we carried out a scoping review using Google Scholar and PubMed to identify and retrieve
articles that proposed the application of RAG in the medical domain. The fields considered in the
search included the title, abstract, and the article itself. The search terms used are available in Table 2.
We used specific search terms to retrieve more relevant articles.

Table 2. The keywords used to query the selected databases.

Database Search keywords

PubMed (large language models OR LLMs OR "transformer models" OR "Generative AI") AND (healthcare OR medicine OR medical) AND (retrieval OR augmented OR generation OR grounded)

Google Scholar ("Large Language Models" OR LLMs OR Transformer Models" OR "Generative Models") AND (Retrieval-Augmented Generation OR grounding) AND (healthcare OR medical OR medicine)

2.2. Study Selection

After identification, the articles were imported in the ReadCube (Digital Science & Research
Solutions Inc, Cambridge, MA 02139, USA) literature management software to create a database of
references. We used a three-step process for the selection of articles to be included in this study:
relevance of the title, relevance of the abstract and finally relevance of the full-text [26]. This process
ensured that only papers that met our eligibility criteria were reviewed. Figure 1 illustrates the process
used for screening and determining the eligibility and exclusion criteria.
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Figure 1. PRISMA [25] workflow applied to the search, identification and selection of the studies that
were included in the systematic review.

2.3. Data Extraction

For each of the selected studies, we extracted the following information: 1) LLMs, 2) embedding (a
numerical representation of information), 3) pre-retrieval, 4) post-retrieval, 5) advanced methodologies
and 6) outcomes. In addition, we critically evaluated the technique used to assess the performance of
the RAG-based application in the medical domain, including ethical concerns such as privacy, safety,
robustness, bias, and trust (explainability/interpretability). Lastly, we performed analyses on data
extracted from the papers surveyed in this study.

3. Results

3.1. Included Studies

We selected and included 37 studies between 2020 – 2024. The articles were selected from
2,301 articles retrieved from Google Scholar and PubMed after multiple exclusion steps. Lastly, the
compressive review includes studies that employed innovative RAG-based approaches addressing
questions such as “what information to retrieve”, “when to retrieve” and “how to use the retrieved
information” to ground LLMs in the medical domain.

3.2. Datasets

Relevant knowledge sources are essential for LLMs to generate clinically correct responses to
users’ queries. Several datasets have been proposed in the literature to augment the responses of LLMs
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in healthcare. Generally, existing retrieval datasets are divided into two categories: question-answering
(QA) and information retrieval. As seen in Table 3, most of the datasets used in the studies we reviewed
are aimed at QA for medical dialogue. QA dataset provide a short concise answers. On the other hand,
information retrieval datasets are geared towards extracting and presenting relevant information to
the user’s query (generally extracted from large datasets) [27]. The major sources of the dataset used
in the studies we surveyed include Web, PubMed, and Unified Medical Language System (UMLS).

Among the available datasets, MedDialog [28] contains conversations and utterances between pa-
tients and doctors in both English and Chinese, sourced from two websites, namely healthcaremagic.com
and iclinic.com. MedDialog dataset covers 96 different diseases. In another study, a name entity dataset
called MedDG was created from 17,000 conversations related to 12 types of common gastrointestinal
diseases, collected from an online health consultation community [29]. Besides QA datasets, some
researchers have curated information-retrieval datasets.
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Table 3. Detailed information datasets used in retrieval to augment responses of LLMs in the medical domain.

Category Author Domain Dataset #Q in Train #label in train #q in dev #q in test #instance

Question
Answering

Tsatsaronis et al. [30] Biomedical BioASQ 3,743 35,285 497 15,559,157

Chen et al. [28] Clinical MedDialog
EN: 257,454
C: 1,145,231

Liu et al. [29] Gastointestinal MedDG 14,864 - 2,000 1,000
Abacha et al. [31] Biomedical LiveQA 634 - - 104
Zakka et al. [24] Biomedical ClinicalQA 130
Lozano et al. [32] Biomedical PubMedRS-200 200
Jin et al. [33] Biomedical PubMedQA 1,000 1,000

Jin et al. [34] Biomedical MedQA
USMLE 10,178
MCMLE 27,400
TWMLE 11,298

1272
3425
1412

1273
3426
1413

12,723
34,251
14,123

Ma et al. [35] Orthodontic MD-QA 59,642
Chen et al. [36] 10 pediatric diseases IMCS-21 - - - - 4,116
Zeng[37] Biomedical MMCU-Medical 2,819

Information
Retrieval

Boteva et al. [38] Biomedical NFCorpus 5,922 110,575 24 323 3,633
Roberts et al. [39] COVID-19 TREC- COVID-19 - - - -

Johnson et al. [40] Radiology MIMIC-CXR - - - -
Img: 377,110
Txt: 227,927

Ramesh et al. [41] Radiology Adapted MIMIC-CXR - - - - 226,759

* Abbreviations: Biomedical semantic indexing and Question Answering (BioASQ), Chinese (C), English (EN), Images (Img), United States Medical Licensing Examination (USMLE), Text (Txt).
#q represents the number of queries and #instance the number of texts in the dataset.
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For example, [41] curated a dataset containing 226,759 reports derived from the MIMIC-CXR
dataset of X-ray images and radiology report text. Another retrieval dataset is the TREC-COVID-19
dataset, curated using data from medical library searches, MedlinePlus logs, and Twitter posts on
COVID by high-profile researchers [39]. Guo et al. [42] presented a dataset linking scientific abstracts
to expert-authored lay language summaries. The dataset, named CELLS, was generated with the aim
of improving lay language generation models and includes 62,886 source–target pairs from 12 journals.

Benchmark datasets have been released to evaluate the retrieval abilities of LLMs. The Biomedical
QA (BioASQ) dataset was proposed through a series of competitions as a benchmark dataset to assess
systems and methodologies for large scale medical semantic indexing and QA tasks [30]. Other evalu-
ation datasets for QA tasks include MedMCQA [43], PubMedQA[33] and MedQA[34]. Benchmark
datasets such as MedMCQA, PubMedQA and alike do not include broad medical knowledge, and thus
lack the detail required for real world clinical applications. To address this limitation, MultiMedQA
was created incorporating seven medical QA datasets, including six existing datasets, namely: MedQA,
MedMCQA, PubMedQA, LiveQA 2017, MedicationQA[44] and MMLU[45] clinical topics, and a new
dataset comprising of the most searched medical questions on the internet.

Although MultiMedQA is a useful benchmark, it does not capture the actual clinical scenarios
and workflows followed by clinicians. To address this limitation, Zakka et al. [24] curated ClinicalQA
as a benchmark dataset containing open-ended questions for different medical specialties, includ-
ing treatment guidelines recommendations. The authors in [46] introduce MIRAGE, a benchmark
for biomedical settings consisting of five commonly used datasets for medical QA. In particular,
MMLU-Med, MedQA-US and MedMCQA are included to represent examination QA datasets, while
PubMedQA and BioASQ-Y/N account for research QA settings. Note that all tasks in MIRAGE consist
of multi-choice questions, and accuracy and its standard deviation are the default evaluation metrics.

The majority of the existing datasets have insufficient medical labels. For instance, most datasets
only provide a single label, e.g. medical entities, which are not detailed enough to represent the
condition and intention of a patient in the real world. Moreover, the existing annotated datasets
are limited in scale, usually consisting of only a few hundred dialogues [36]. To address these
issues, Chen et al. [36] proposed an extensive medical dialogue dataset with multi-level fine-grained
annotations comprising five separate tasks which include named entity recognition (NER), dialogue
act classification, symptom label inference, medical report generation, and diagnosis-oriented dialogue
policy.

Most datasets released to date are curated in English, making it difficult to obtain a non-English
dataset. However, recently Chinese datasets such MedDG [29] and MedDialog-CN [28] have been
proposed

3.3. RAG Overview

RAG aims to ground the responses of LLMs to provide more factual and truthful responses
and reduce hallucination. This is achieved by including new knowledge from external sources. As
illustrated in the example of Figure 2, a user asks a question about a new COVID-19 variant ("Tell
me about the new KP.3 COVID variant that is dominant in the US: What are the symptoms? The
new "FLiRT" COVID-19 variants, including KP.2 and KP.3, are on the rise in the US. Experts discuss
symptoms, transmission and vaccines."). An LLM such as ChatGPT will not be able to provide
information on recent events because responses from LLMs are time-constrained by the data they are
trained on (which is, in the best cases, a few months old). RAG helps LLMs overcome this limitation
by retrieving information from up-to-date knowledge sources. In our case, the search algorithm will
retrieve a collection of articles related to the prompted virus. Then, retrieved articles together with the
prompt are used by the LLM model to generate an informed response.
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Figure 2. A schematic illustration of the basic RAG workflow applied to answering a user question.
Adapted from [16].

As seen in Figure 2, RAG workflow comprises three important steps. The first step involves
splitting documents into distinct segments, and vector indices are created using an encoder model
(in the case of dense retrieval). This process is called indexing. After that, segments are located
and retrieved based on their vector similarity with the query and indexed segments. The last step
involves the model generating a response based on the context derived from the fetched segments
and query. These steps constitute the core structure of the RAG process, reinforcing its capabilities in
information retrieval and context-aware response generation. RAG leverages a synergistic approach
that integrates information retrieval and in-context learning to enhance the performance of an LLM.
With RAG, the LLM performance is contextually bolstered without performing computationally
expensive model retraining or fine-tuning. This nuanced approach makes RAG practical and relatively
easy to implement, making it a popular choice for building conversational AI tools, especially in
critical sectors such as healthcare. A recent review outlined the progression of RAG technologies and
their impact on tasks requiring extensive knowledge [16]. Three developmental approaches within the
RAG framework were outlined: Naive, Advanced, and Modular RAG, each representing a successive
improvement over the one before. In the context of this review, we discuss the RAG techniques used
in healthcare by grouping them into these three categories.

3.4. Naive RAG

Naive RAG is one of the earliest techniques employed to ground LLMs to generate text using
relevant information retrieved from external knowledge sources [16]. It is the simplest form of RAG
without the sophistication needed to handle complex queries. The Naive RAG process follows the
mentioned three steps: indexing, retrieval and generation. Implementations of Naive RAG in the
medical domain are discussed below.

Ge et al. [47] used text embeddings to transform guidelines and guidance documents for liver
diseases and conditions. Then, they converted user queries into embeddings in real-time using the
text-embedding-ada-002 model and performed a search over a vector database to find matches for the
embeddings before generating a response using GPT-3.5-turbo or GPT-4-32k. Their results show that
they were able to generate more specific answers compared to general ChatGPT using GPT-3.5.

In another study, [48] presented ChatENT, a platform for question and answer over otolaryngol-
ogy–head and neck surgery data. For the development of ChatENT, the authors curated a knowledge
source from open source access and indexed it in a vector database. Then, they implemented a Naive
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RAG architecture using GPT-4 as the LLM to generate responses. With ChatENT they demonstrated
consistent responses and fewer hallucinations compared to ChatGPT4.0.

Zakka et al. [24] proposed Almanac, an LLM augmented with clinical knowledge from a vector
database. They used a dataset containing 130 clinical cases curated by 5 experts with different
specialties and certifications. The results showed that Almanac provided more accurate, complete,
factual and safe responses to clinical questions. In another study, GPT-3.5 and GPT-4 models were
compared to a custom retrieval-augmentation (RetA) LLM [49]. The results showed that both GPT-
3.5 and GPT-4 generated more hallucinated responses than the RetA model in all 19 cases used for
evaluation.

Thompson et al. [50] implemented a pipeline for zero-shot disease phenotyping over a collection
of electronic health records (EHRs). Their method consisted in enriching the context of a PaLM
2-based LLM by retrieving text snippets from the patients’ clinical records. The retrieval step was
performed using regular expressions (regex) generated with the support of an expert physician. Then,
a MapReduce technique was implemented to supply the final query to the LLM using only a selection
of the complete snippet sets retrieved by the regex. The authors tested several prompting strategies and
were able to obtain a improved performance in pulmonary hypertension phenotyping compared to the
decision-rule approach devised by expert physicians (F1-score = 0.75 vs F1-score = 0.62, respectively).

The authors in [46] performed a systematic evaluation of naive RAG over a set of medical QA
datasets from both examination and research areas. They compared the output of chain-of-thought
prompting with and without external context from 5 different medical and general corpora. Inclusion
of external knowledge increased GPT-4 average accuracy over multi-choice questions from 73.44% to
79.97%, whereas the average accuracy of GPT-3.5 and Mixtral were improved from 60.69% to 71.57%
and from 61.42% to 69.48%, respectively. For questions in which related references can be found in
PubMed, RAG strongly improved the performance of LLaMA2-70B (from 42.20% to 50.40%), leading to
an accuracy that is close to the corresponding fine-tuned model over the medical domain. In addition,
it was shown that by combining different retrievers using rank fusion algorithms leads to improved
performances across various medical QA tasks. The authors investigated the impact of the number
of retrieved chunks on the accuracy of the responses. They found that for accuracy of response, the
optimal number of retrieved chunks varies with the QA dataset: for PubMed-based QA datasets, fewer
chunks provided better accuracy, while for examination-based QA datasets, more retrieved chunks the
LLM provided a better response.

Guo et al. [42] presented work in which text-to-summary generation is performed. They evaluated
the ability of language models to generate lay summaries from scientific abstracts. The authors
proposed a series of custom-made language models based on the BART architecture, enriching the
text generation with retrieved information from external knowledge sources. They made use of
both dense retrieval and definition-based retrieval, with corpora including PubMed and Wikipedia.
Finally, the authors compared the output of the custom models to general pre-trained LLMs such as
GPT-4 and LLaMA-2. They showed a trade-off between the integration of external information and
understandability of the generated output, and validated their observations with both automated and
human-based evaluation.

In general, the reviewed literature shows that Naive RAG systems perform better than foun-
dational models alone. Different authors emphasize the importance to tune parameters such as the
number of chunks and the retrieval mode to improve the model outcomes. Also, it is found that some
Naive RAG approaches may be limited by low retrieval quality, redundancy, and generation errors. To
overcome these challenges, advanced RAG methods have been proposed, which use techniques such
as chunk optimisation, metadata integration, indexing structure, and context fusion. A review of the
latter approaches is provided in the next section.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 July 2024                   doi:10.20944/preprints202407.0876.v1

https://doi.org/10.20944/preprints202407.0876.v1


10
of31

Table 4. A detailed list of different RAG methods used in the surveyed studies.

Authors LLMs Embedding Pre-retrieval Post-retrieval Adv. Meth. Outcomes

Al Ghadban et al. [19] GPT-4 NA Chunking SS
MMR

One-shot
learning.

Acc: #141 (79%). Adeq: #49 (35%)
Promising role RAG and LLMs
in medical education.

Chen et al. [21] GPT-4 NA OIS SS Zero-shot
CoT

Improved accuracy with RAG
compared foundational models.

Chen et al. [22] LLaMA-2-7B-chat all-MiniLM
-L6-v2

Chunking SS FT FT+RAG provided best performance.

Gao et al. [51] T5[52]
GPT-3.5-T

OIS
KGs

Path ranker.
Aggregated

Zero-shot
with path
prompts

Improved diagnosis performance.

Ge et al. [47] GPT-3.5-T
GPT-4

ada-002 EDG SS Prompting
strategy

7/10 completely correct with RAG.

Guo et al. [42] LLaMA-2
GPT-4

BERT Alignment
optimisation

RR
Summary

RALL Improved generation performance
and interpretability.

Jeong et al. [23] Self-BioRAG Chunking RR Critic & LLMS
Generator

7.2% absolute improvement over
SOTA with 7B or less.

Jiang et al. [53] GPT-3.5
Baichuan13B-chat

BGE[54] OIS
KGs

RR
Query expansion
CoK
Noise filtering

Superior performance with RAG.
F1: 4.62% better than baseline.

Jin et al. [55] GPT-3.5-T
GPT-4

ada-002 Chunking SS Integration
with XGBoost

F1: 0.762. Acc: 83.3%.
RAG surpasses the
performance traditional methods.

Kang et al. [56] GPT-3.5-T
GPT-4

None Create TOC Truncation
Summary

Use LLM for
retrieval &
generation

Improved retrieval capabilities.
Score: 5.5.

Ke et al. [57]

GPT-4
GPT-3.5-T
LLaMA-2 7B
LLaMA-2 13B

ada-002 EDG
Chunking

SS
Acc: 91.4%. RAG the performance
comparable to human evaluators.
Faster decision-making.

Li et al. [58] LLaMA-7B NA EDG
Chunking

RR FT + wikipedia
retrieval

RAG improved acc & efficiency
F1 score: 0.84. Reduced workload.
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Table 4 Continued: A detailed list of different RAG methods used in the surveyed studies.

Long et al. [48] GPT-4 ada-002 Chunking SS
Knowledge
specific
database

Improved performance with RAG
over base models.

Lozano et al. [32] GPT-3.5-T
GPT-4

NA Relevance
Classifier

Synthesis
Summary

Online
search

Improvement with RAG over
base models.

Manathunga &
Illangasekara[59]

GPT-3.5-T ada-002 Chunking SS
Summary

Embedding
visualisation

Benefits of RAG in
retrieving information quickly
from large knowledge bases.

Markey et al. [60] GPT-4 NA Chunking SS Online
search.

Potential for GenAI-powered
clinical writing.

Miao et al. [61] GPT-4 FT + CoT
RAG provides specialised &
accurate medical advice
for nephrology practices

Murugan et al. [62] GPT-4 ada-002 MR SS
MMR

Prompt engineering
Guardrails

Improvements with RAG.

Neupane et al. [63]
GPT-3.5-T
Mistral-7B
-Instruct

ada-002
Structured
context.
Chunking

Contextual
compression

Online
search

Efficacy in generating
relevant responses.
GPT-3.5-T: 0.93 & Mistral-7B: 0.92.

Ong et al. [64]
GPT-4
Gemini Pro 1.0
Med-PaLM-2

ada-002
bgeSENv1.5[65]

Manual
indexing.
Auto-merging
retrieval.

SS LLM
vs "copilot"

RAG-LLM outperformed
LLM alone.

Parmanto et al. [66]
LLaMA-2-7B
Falcon-7B
GPT 3.5-T

BGE[54] Chunking SS FT RAG + FT best results.

Quidwai &

Lagana[67] Mistral-7B
-Instruct

bgeSENv1.5 Indexing
Chunking

SS
Pubmed
dataset
curation

Improved accuracy over base
models.

Ranjit et al. [68]
davinci-003
GPT-3.5-T
GPT-4

ALBEF[69] Compression Coupling to
vision model

RAG achieved better outcomes
BERTScore: 0.2865. Semb: 0.4026.

Rau et al. [70] GPT-3.5-T
GPT-4

ada-002 Chunking SS Visual
interface

Superior performance with RAG.
Time & cost savings.
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Table 4 Continued: A detailed list of different RAG methods used in the surveyed studies.

Russe et al. [71] GPT 3.5-T
GPT-4

ada-002 Chunking SS Prompting
strategy

Acc: GPT 3.5-T: 57%
GPT-4: 83%.

Shi et al. [72] GPT-3.5-T MP-Net Chunking
MR

SS ReAct architecture Improved performance with RAG
over baseline models.

Soman et al. [73]
LLaMA-2-13B
GPT-3.5-T
GPT-4

PubMedBert
MiniLM

KGs
Similarity
Context
pruning.

KG-RAG enhanced performance.

Soong et al. [49]
Prometheus
GPT-3.5-T
GPT-4

ada-002 Chunking Summary Improved performance with RAG
over baseline models.

Thompson et al. [50] Bison-001 NA
Token
splitter.
Regex

Map Reduce Regex + LLM
aggregation

RAG-LLM outperformed
rule-based method. F1: 0.75.

Unlu et al. [74] GPT-4 ada-002
Adding
metadata
Chunking

SS Iterative
prompting

Potential to improve efficiency
and reduce costs. Acc: 92.7%.

Vaid et al. [75]

GPT-3.5
GPT-4
Gemini Pro
LLaMA-2-70B
Mixtral-8x7B

CoT prompting.
Agents

RAG with GPT-4 best performance.

Wang et al. [76]
LLaMA-2-13B
GPT-3.5-T
GPT-4

QO
HR

Knowledge
self-refiner

LLM-aided pre-
and post-retrieval

RAG outperform baseline models.

Wang et al. [77] LLaMA-2-7B
LLaMA-2-13B

ColBERT QO RR JMLR Demonstrate potential of joint
IR & LLM training.

Wornow et al. [78]

GPT 3.5-T
GPT-4
LLaMA-2-70B
Mixtral-8x7B

MiniLM
BGE

Chunking SS
Compared
zero-shot
and retrieval.

RAG with GPT-4 beats SOTA in
zero-shot.

Yu, Guo and Sano[79]
LLaMA-2-7B
LLaMA-2-7B
GPT-3.5

ada-002 Chunking SS Feature extraction
from ECG

RAG outperform few-shot
approach.

Zakka et al. [24] text-davinci-003 ada-002 Chunking Similarity
threshold

Adversarial
prompting

RAG-LLM outperform ChatGPT.
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Table 4 Continued: A detailed list of different RAG methods used in the surveyed studies.

Ziletti and
D’Ambrosi[80]

GPT-3.5-T
GPT-4-T
Gemini Pro 1.0
Claude 2.1
Mixtral-8x7B
Mixtral-Medium

bgeSENv1.5 Entity
masking

SS
EN

Text-to-SQL GPT-4-T best accuracy and
executability.

1 * Accuracy (Acc); Advanced Methodologies (Adv. Meth.); OpenAI’s text-embedding-ada-002 model (ada-002); ALign the image and text representations BEfore Fusing (ALBEF); Accuracy (ACC);
BAAI general embedding (bge); bge-small-en-v1.5 (bgeSENv1.5); Chain-of-Knowledge (CoK); Chain-of-Thought (CoT); Text-davinci-003 (davinci-003); Desnse X Retrieval (DXR), Dense Passage
Retriever (DPR); Enhancing data granularity (EDG); Entity normalisation (EN); Fine-tuning (FT); Frequency (Freq); Joint Medical LLM and Retrieval Training (JMLR); In-context learning (ICL),
Image-Text Contrastive learning (ITC); Hybrid Retrival (HR); Hypothesis Knowledge Graph Enhanced (HyKGE), Knowledge graphs (KGs); Maximal Marginal Relevance (MMR); Mixed Retrieval
(MR); N/A (Not Available); Retrieval-Augmented Language Modelling (RALM); Retrieval Augmented Generation (RAG); Regular expression (Regex); Re-ranking (RR); Retrieval-Augmented Lay
Language (RALL); Optimising Index Structure (OIS); Query Optimisation (QO); Similarity Search (SS); State-of-the-art (SOTA); Table of Contents (TOC); Turbo (T).
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3.5. Advanced RAG

Advanced RAG employs specialized pre-retrieval and post-retrieval mechanisms with the aim to
address challenges faced by Naive RAG such as failure to retrieve all relevant information, problem
of integrating context from chunks retrieved and generating answers using irrelevant context. This
is achieved by employing different strategies, including pre-retrieval, retrieval and post-retrieval.
Pre-retrieval methods aim to optimize data indexing and can be achieved using different strategies
such as improving data granularity, optimizing indexing structures, adding metadata, optimizing
alignment and using mixed retrieval [16].

During the retrieval phase, dense retrieval-based RAG systems use embedding models to identify
suitable context by computing the similarity between the prompt and the chunks. The retrieval step
can be optimized by filtering the retrieved chunks using a threshold on their similarity with the user
query. For example, Quidwai and Lagana [67] developed a system with a sophisticated retrieval
component which allowed for the use of a predefined threshold to determine when insufficient
relevant information were retrieved, after which the system can respond "Sorry, I could not find
relevant information to complete your request." In this way, they reduced the generation of misleading
or false information.

Presenting all retrieved content can introduce noise, shift attention from important content and
may exceed the context window limit (number of tokens or words) of the LLM. To overcome the
context window limits of LLMs and focus on crucial information, the post-retrieval process combines
the query with the relevant context from knowledge sources before feeding it to the LLM. An important
step is to reorder the retrieved information so that the most relevant content is closer to the prompt.
This idea has been applied in frameworks like LlamaIndex [81] and LangChain [82].

Rau et al. [70] used LlamaIndex and GPT-3.5 to create a context aware chatbot grounded in a spe-
cialised knowledge base containing vectorised American College of Radiology (ACR) appropriateness
criteria documents and compared its performance to GPT-3.5 and GPT-4. Out of 50 case files, they
found that their context-based accGPT gave the most accurate and consistent advice that matched the
ACR criteria for “usually appropriate” imaging decisions, in contrast to generic chatbots and radiology
experts. Similarly, Russe et al. [71] used LlamaIndex as an interface between the external knowledge
and a context-aware LLM (FraCChat). They extracted text information from radiology documents
using the GPTVectorIndex function, which divides the content into smaller chunks (up to 512 tokens),
converting chunks into data nodes. The data nodes were then encoded and stored as a dictionary-like
data structure and then used in the answer creation. Using 100 radiology cases, FraCChat performed
better on classification of fractures compared to generic chatbots, achieved 57% and 83% correct full
"Arbeitsgemeinschaft Osteosynthesefragen" codes with GPT-3.5-Turbo and GPT-4 respectively.

A more recent study has shown that "noise" (documents not directly relevant to the query) can
impact the performance of RAG systems - some models such LLaMA-2 and Phi-2 perform better when
irrelevant documents are positioned far from the query [83]. Yang et al. [84] explored techniques
for dealing with noise, namely: Bio-Epidemiology-NER, direct and indirect extraction to identify
medical terminology augment an LLM using UMLS knowledge base. Using GPT-3.5 augmented
with UMLS information, they created a trustable and explainable medical chatbot supported by
factual knowledge. However, the extracted terminologies are not always related to the question asked,
producing incomplete answers. Wang, Ma and Chen [76] used a large dataset containing high quality
medical textbooks as an external knowledge source, combined with multiple retrievers to improve
LLM performance in generating high quality content.

To improve retrieval and reasoning, researchers are investigating incorporating commonsense
knowledge graphs (KGs) with dialogue systems in the medical domain. Two conversational models,
MedKgConv[85] and MED[86] for medical dialogue generation were proposed, utilising multi-head
attention and knowledge-aware neural conversation respectively. MedKgConv uses a BioBERT encoder
to encode conversation history, which is then processed through Quick-UMLS to extract knowledge
graphs for reasoning, and a BioBERT decoder for response generation. MED, on the other hand,
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encodes augmented KGs alongside patient conversations using LLMs, enhancing it through medical
entity annotation in a semi-supervised manner. Both models demonstrated improved performance on
MedDialog and Covid datasets, with MedKgConv showing an increased 3.3% in F1 score and 6.3%
in BLEU-4, and MED outperforming BioBERT by 8.5 points on F1 and 9.3 points on BLEU-4. These
results underscore the effectiveness of integrating dialogue and graph-based knowledge in generating
medical dialogues. The aforementioned KG approaches are implemented for QA tasks, where KGs
contain structured information used as context for predicting the answer. As such, they could have
limited versatility.

Soman et al. [73] proposed a context-aware prompt framework that adeptly retrieves biomedical
context from the Scalable Precision Medicine Open Knowledge Engine (SPOKE) [87]. Using their KG-
RAG approach, the performance of LLaMA-2 was significantly improved, showing a 71% improvement
from the baseline.

In the realm of clinical development, advanced RAG techniques have been explored for clinical
trial patient matching [78,88] and to accurately identify and report on inclusion and exclusion criteria
for a clinical trial [74]. For instance, Jin et al. [88] employed aggregated ranking to perform patient-
trial-matching using clinical notes. Similarly, a recent study used two retrieval pipelines, first selecting
the top-k most pertinent segments from the patients’ notes, and then using top-k segments as a prompt
input to assess the LLM [78]. Their results demonstrated that it is possible to reduce processes that
typically takes an hour-per-patient to a matter of seconds.

Another study used GPT-4 enabled with clinical notes through RAG for clinical trial screening [74].
The authors used LangChain’s recursive chunking to divide patient notes into segments to preserve
the context. To optimise the retrieval, they employed Facebook’s AI Similarity Search (FAISS) [89].
They showed that using GPT-4 with RAG to screen patients for clinical trials can improve efficiency
and reduce costs.

In summary, Advanced RAG systems are shown to improve over using only foundational models
or Naive RAG approaches. The reviewed literature highlights a trade-off between complexity and
performance gains, with more complex RAG implementations providing better outcomes at the cost of
more application blocks to implement and maintain. In addition to that, some approaches stress the
importance of ranking of the retrieved chunks, or the use of multiple retrievers to improve extraction
of the required information from the knowledge source. With respect to the latter component of RAG,
some authors employ particular implementations of the knowledge source (e.g., knowledge graphs).
The improvements in response generation compared to more standard approaches depend on the
nature of the information included in the knowledge source and the complexity of the user queries.

3.6. Modular RAG

Modular RAG incorporates several techniques and modules from advanced RAG, allowing more
customisation and optimization of the RAG system, as well as integration of methods to improve
different functions [16]. For example, modular RAG can include a search module for similarity retrieval,
which can improve the quality and diversity of the retrieved content, and apply a fine-tuning approach
in the retriever, which can adapt the retriever to the specific domain or task [90].

Wang, Ma and Chen [76] presented an LLM augmented by medical knowledge, using modules
consisting of hybrid retrievers, query augmentation and an LLM reader. Each module enhanced
a particular task, e.g., the query augmentation module improved prompts for effective medical
information retrieval and the LLM reader module provided medical context to the question. They
reported an improvement in response accuracy ranging between 11.4% to 13.2% on open-medical QA
tasks, as compared to the GPT-4-Turbo without RAG. Despite using a smaller dataset, they showed
that using medical textbooks as a knowledge source outperformed Wikipedia in the medical domain.
This highlights the importance of context and quality information in specialised domains such as
healthcare.
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A recent study by Jin et al. [55] proposed a framework that integrates advanced techniques
such as large-scale feature extraction combined with RAG, accurate scoring of features from medical
knowledge using LlamaIndex, and XGBoost [91] algorithm for prediction. By employing this modular
approach, they showed improved prediction of potential diseases, surpassing the capabilities of
GPT-3.5, GPT-4, and fine tuning LLaMA-2.

In another study, a new approach to perform RAG is presented, eliminating the reliance on
vector embedding by employing direct and flexible retrieval using natural language prompts [56]. The
authors used an LLM to handle the step of document retrieval to response generation without needing
a vector database and indexing, simplifying the RAG process. They showed the performance of
prompt-RAG through a QA GPT-based chatbot using Korean medicine documents. They showed that
the novel prompt-RAG achieved good results, outperforming ChatGPT and RAG-based models which
used traditional vector embedding. Specifically, based on ratings from three doctors, prompt-RAG
scored better in relevance and informativeness, similarly on readibility. On the downside, the response
time was significantly slower.

When user queries contain limited context information, the retriever may be unable to retrieve
relevant documents from the knowledge sources. A method that uses hypothetical outputs generated
from user queries has been proposed [18], improving performance in zero-shot scenarios. Compared
to knowledge stored in unstructured documents such as in the portable document format (PDF),
KGs are more ideal for RAG because of the easiness in accessing relations among knowledge items
[92]. Ongoing explorations are focused on designing the best strategy to extract information from
KGs and to facilitate interaction between LLMs and KGs. For instance, [53] presented a Hypothesis
Knowledge Graph Enhanced (HyKGE) framework to improve the generation of responses from LLMs.
The HyKGE comprises 4 modules, namely: hypothesis output, Named Entity Recognition (NER),
KG retrieval, and noise knowledge filtering. Experimenting on two medical QA tasks, the authors
demonstrated a 4.62% improvement compared to baseline in F1 score with their modular HyKGE
framework. HyKGE also was able to address challenges such as poor accuracy and interpretability,
and showcased potential application in the field of medicine.

As a general trend, researchers are now exploring the implications of having multiple LLMs
jointly working together. For instance, Lozano et al. [32] proposed a RetA LLM system called Clinfo.ai
consisting of 4 LLMs, jointly forming an LLM chain. They employed the first LLM to perform an index
search on either PubMed or Semantic Scholars, an LLM for relevance classification, an LLM for article
summarisation using a user query and the fourth LLM using task-specification prompts to guide the
LLM output. Another study proposed a RAG-based method employing multiple LLM agents for
feature extraction, prompt preparation and augmented model inference [79]. The authors evaluated
their approach using two datasets for diagnosing arrhythmia and sleep apnea. The findings suggest
that their zero-shot strategy not only outperforms previous methods that use a few-shot LLM, but also
comparable to supervised techniques trained on large datasets. Finally, agents are increasingly being
used to improve capabilities of LLMs in solving complex problems by sharing tasks across multiple
agents [93]. Multi-agents systems have the potential to improve the capabilities of LLMs in solving
complex problems in the medical domain, by splitting tasks into multiple subtasks and assigning
specific LLM agents to each of them.

In summary, approaches that implement the Modular RAG framework are characterized by more
complex pre- and post-retrieval steps, showcasing reformulation of the user query or LLM readers.
From the trend in the more recent literature, we envision a wider and wider adoption of agentic
frameworks in RAG systems. LLM-based agents [94] allow for a redefinition of complex tasks into
simpler ones, with dedicated "reasoning engines" to tackle them. This has the advantage of casting
the original problem into a modular approach, with the related pros and cons in terms of managing
maintainance and complexity.

To conclude this section, we provide a summary of the reviewed literature, encompassing the dif-
ferent RAG implementations, in Table 4. Overall, the reviewed implementations of RAG in healthcare
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follow the three paradigms of RAG, namely Naive, Advanced, and Modular RAG, as described in
[16]. Across each RAG implementation, researchers have proposed different solutions to improve the
retrieval and generation steps. In the next section, we will introduce the common evaluation criteria
that are being adopted to assess performance of RAG-based applications.

3.7. Evaluation Metrics and Frameworks

In a RAG system, there are three important aspects: 1) the user prompt (that is, the user query), 2)
the retrieval of the context related to the prompt, and 3) using the retrieved context and the user prompt
to produce output. Because there are usually no reference answers to questions (i.e., ground truth),
evaluations have been focused on quality aspects, separately evaluating the retriever and generator.
Commonly used evaluation metrics for RAG-based applications include: 1) Accuracy/Correctness -
e.g., by comparing generated text to ground truth or using human evaluators to assess the correctness
of LLM outputs; 2) Completeness - the proportion of all retrieved context that is relevant to the
user query; 3) Faithfulness/Consistency - the degree to which the LLM’s output is grounded in the
provided context and factually consistent (i.e., not an hallucination) [95]; 4) Relevance - whether
the generated answer addresses the question asked by the user (answer relevance), and whether the
retrieved context is relevant to the query (context relevance); 5) Fluency - the ability of the system to
generate natural and easy-to-read text. The evaluation metrics employed in the surveyed studies are
presented in Table 5.

To date, there is no harmonized evaluation approach, with different frameworks using different
metrics. For example, Retrieval Augmented Generation Assessment (RAGAs) [95] is one of the most
commonly used frameworks to evaluate RAG-based systems. It evaluates a RAG pipeline using four
aspects: faithfulness, answer relevance, context relevance and context recall, combining these four
aspects to generate a single score to measure the performance of the system. Other packages, such as
continuous-eval, have proposed a combination of deterministic, semantic and LLM-based approaches
to evaluate RAG pipelines [96]. In addition, TrueLens framework also provides metrics for objective
evaluation of RAG pipelines [97]. Another evaluation framework is DeepEval [98], an open-source
framework for evaluating LLMs, including RAG applications.

The previously described Clinfo.ai from Lazano et al. [32] introduced a novel dataset, PubMedRS-
200, which contains question-answer pairs derived from systematic reviews. This dataset allows for
automatic assessment of LLM performance in a RAG QA system. Their framework and benchmark
dataset are openly accessible to promote reproducibility. In another study, a toolkit for evaluation of
Naive RAGs was proposed [46]. Briefly, the authors considered different LLMs (both from general and
biomedical domains), supplemented with five diverse corpora. They compared the performance on
medical QA tasks using RAG over four different retrievers. As the tasks in the QA set required the
choice between a given set of answers, they chose to use accuracy as the evaluation metric.

Guo et al. [42] presented an evaluation of LLM-generated lay summaries that comprises both
automatic and human-based metrics. For evaluating the quality of the synthetic text generation to
the target text, they employed ROUGE-L, BERTScore, BLUE and METEOR metrics. Notably, this list
of metrics includes both lexicon-based metrics and embeddings similarity. Also, the authors used
the Coleman-Liau readability score and word familiarity to assess the easiness of text readability. In
addition, the authors trained a RoBERTa model [99] to generate a "Plainness Score", a metric that
indicates how much a generated text is representative of the target one. In their effort to holistically
evaluate the output of the language models, the authors also employed human reviewers for evalu-
ating characteristics such as grammar, understandability, meaning preservation, correctness of key
information and relevance of external information in the generated texts. The human evaluators gave
their evaluation on a Likert scale.

Despite the progress achieved in evaluating RAG systems, two main limitations still remain:
reliance on human evaluations, which hinders scalability and comparability, and the focus on output
quality without considering the relevance of the information used. The challenge of selecting relevant
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sources for summarisation is as significant as the summarisation itself. Therefore, a benchmark is
needed for comprehensive evaluation of document selection and summary generation capabilities.

In summary, the evaluation landscape of RAG-based applications is still in an early stage, with
several library-specific metrics put forward by different teams. As a general remark, there is a need to
translate from pure word/gram-based metrics to more complex ones that can capture the generative
nature of LLM outputs. Also, there is a suite of benchmarks and metrics developed for information
retrieval that should be adapted and refined for the retrieval part of RAG systems.

3.8. Ethical Considerations

Healthcare is one of the most regulated industries, guided by principles such as bioethics [100] and
various data regulations. For LLMs to be accepted and adopted in healthcare, ethical considerations
surrounding their use such as bias, safety and hallucination need to be addressed.

Recently, RAG has shown the ability to boost the performance of LLMs by grounding LLM’s
responses using retrieved knowledge from external sources. While the benefits of RAG are numerous,
its practical application in the medical domain also underscores ethical considerations given the critical
nature of medical decision-making. Though RAG can help to constrain LLMs from generating incorrect
output, a recent study has shown that even with RAG, LLMs may generate incorrect answers and
explanations [47]. Any system that might suggest an incorrect treatment plan or diagnosis could have
disastrous consequences for the patient. Therefore, the correctness of an LLM-based system is an
ethical concern. As seen in Table 5, all studies included in this review evaluated the accuracy of their
RAG pipeline, including outputs generated by the model.

Data leakage is another known problem for LLMs that has been extensively studied [101–103].
Researchers have proposed RAG as a safer approach to reduce LLMs’ tendency to output memorised
data from its training. However, as argued in [104], information from pre-training/fine-tuning datasets
(from the LLM) and the retrieval dataset can be potentially exposed when using RAG. In the context
of healthcare, a retrieval dataset may contain sensitive patient information such as medications,
diagnoses, and personally identifiable information (PII). As such RAG-based LLM system need to
ensure and evaluate safety and privacy. The majority of the studies we reviewed do not address
privacy issues with the exception of [58] and [74]. Li et al. [58] reduced privacy risks by removing
identifiable information about the patient or doctor from their retrieval dataset. Another study used a
multi-layered approach to ensure data privacy and security when using Azure OpenAI for sensitive
healthcare data [74]. Another important concern that cannot be overlooked when LLMs are applied
in the healthcare is safety. Only three out of the thirty-seven studies we reviewed evaluated their
models against intentional or unintentional harms. In one study, adversarial prompting [105] was used
to evaluate the robustness and reliability of system outputs in unexpected situations [24]. Another
study used preoperative guidelines to guide decision-making of LLMs, thus, improve patients safety
[57]. Similarly, a technique that flags safety concerns was developed, demonstrating zero instances of
alarming red flags during testing [48].
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Table 5. Metrics used to evaluate RAG-based systems in the medical domain. Additionally, we assess whether ethical principles: privacy, safety, robustness (robust), bias,
trust (explainability/interpretability) have been considered.

Ethical Issues

Author Accuracy
(Correctness) Complete Faithfulness

(Consistency) Fluency Relevance Verify
Source Privacy Safety Robust Bias Trust Eval

Al Ghadban et al. [19] ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗ Auto
Chen et al. [21] ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗ Man
Chen et al. [22] ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ Man
Ge et al. [47] ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ Man
Guo et al. [42] ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✓ Both
Jin et al. [88] ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ Man
Jin et al. [55] ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ Auto
Kang et al. [56] ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ Man
Ke et al. [57] ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ Man
Li et al. [58] ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ Auto
Long et al. [48] ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ Man
Lozano et al. [32] ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ Auto
Muragan et al. [62] ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗ Man
Neupane et al. [63] ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ Auto
Parmanto et al. [66] ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ Both
Ranjit et al. [68] ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ Auto
Rau et al. [70] ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ Auto
Russe et al. [71] ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ Auto
Shi et al. [72] ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗ Man
Soong et al. [49] ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ Man
Thompson et al. [50] ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ Auto
Unlu et al. [74] ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ Auto
Vaid et al. [75] ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ Man
Wang et al. [76] ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ Auto
Wornow et al. [78] ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ Auto
Yu, Guo and Sana[79] ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ Auto
Zekka et al. [24] ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ Man

* Evaluation (Eval) indicates the type of evaluation used: automated (Auto), manual (Man) or a combination of both approaches.
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Bias is another concern that is extensively studied in AI due to its ability to amplify inequity.
Surprisingly, most of the papers we examined do not assess the existence of bias in the responses
generated by their RAG systems. In the studies we reviewed that evaluated bias, Chen et al. [21]
utilised a physician to determine the potential bias in the answers generated by DocQA, a RAG-
enabled LLM. They observed reduced bias content with RAG compared to an LLM alone. Though
RAG substantially reduces the LLM’s ability to use memorised data from model training [72], it does
not avert bias completely, which is baked into the LLMs underlying training data.

Ethical considerations such as bias, privacy, hallucination and safety are of paramount importance
and should be addressed when working with RAG-based LLMs in healthcare. In a nutshell, these
concerns can be addressed by implementing robust data privacy measures, promoting transparency
and accountability, mitigating bias, emphasizing human oversight, and promoting human-autonomy.
From our review, we see that only a few articles tackle these issues, and we see here wide margin of
improvement.
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(a) The languages of the datasets used.

(b) Names of LLMs.

Figure 3. a) Dataset Languages. b) LLMs explored for retrieval-augmented generation in healthcare.
Please note that some studies used more than one model, hence the total count of models is higher
than the number of studies included in this review

3.9. Data Analysis

Figure 3a presents the distribution of languages of common retrieval datasets used for RAG in
medical domain. It is evident that the majority (78.9%) of the datasets are in English, except for four
datasets which are in Chinese. As seen in Figure 3b, the majority of the studies that employed RAG in
the healthcare setting made use of proprietary models such as OpenAI’s GPT-3.5/4 models. However,
the use of these models raises privacy issues, especially when dealing with sensitive information
such as patient data. In such cases, open-source models deployed in a controlled environment may
be a suitable solution. However, it is worth noting that open-source models generally have lower
performance compared to proprietary models and have a more limited context window [106]. We
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also observed that the majority of the studies we reviewed made use of OpenAI’s text-embedding-
ada-002 model [107] for generating embeddings. Other embedding models used included BAAI
general embedding (BGE) [54,65], and HuggingFace’s all-MiniLM-L6-v2 [22]. Other studies used
custom embedding models, as in [23]. A study by Kang et al. [56] demonstrated the feasibility of
embeddings-free RAG in the medical domain. This suggests that one may not always need to utilise
vector embeddings for successful RAG implementation.

The majority of the studies we surveyed used dense passage retrievers (DPR) as a retrieval method
in their RAG architecture. Few studies have used custom retrievers. For pre-retrieval, strategies
employed are enhancing data granularity, adding metadata, optimising indexing, mixed retrieval
and alignment optimisation. This involves methods such as chunking, knowledge graphs, creating
Table-of-Contents and entity masking. Finally, studies have explored different modalities to improve
the performance of their RAG architectures, ranging from one-shot learning, chain-of-thought and
prompting to more advanced techniques such as using LLMs as agents

4. Discussion

We comprehensively reviewed recent advancements of RAG-based approaches for LLMs in
healthcare. Our survey discusses broader applications of RAG-based approaches within the landscape
of LLMs for healthcare, dividing RAG approaches into three paradigms: naive, advanced and modular
RAG. Moreover, we outline evaluation frameworks, including objectives and metrics used to assess
the performance of RAG-based LLMs for healthcare.

Our findings indicate that proprietary LLMs such as GPT-3.5/4 are the most commonly used for
RAG, employed in 30 out of the 37 studies we reviewed (see Table 4). The dominance of proprietary
models is not surprising, given their superior performance in tasks like "zero-shot reasoning" when
compared to open-source models. For example, GPT-4 and Claude 2 have consistently outperformed
their open-source counterparts in these tasks [106], illustrating the strong capabilities and potential for
off-the-shelf LLMs in solving complex problems in medicine. Another key observation from our review
is the language bias in the datasets used as external knowledge sources. We found that the majority of
these datasets are in English, with only a few exceptions in Chinese. This language bias presents a
challenge in evaluating the performance of RAG on non-English datasets, other than Chinese. The lack
of representative datasets highlight a gap in the current research and underscores the need for more
diverse language datasets. Representation is crucial for fairness and equity in medical AI systems
[108,109].

We found that most RAG-based studies are primarily focused on optimising retrieval and gen-
eration, including techniques such as incorporating metadata, re-ranking, chunking, summarisation,
and adapting prompts. However, we believe that these optimisation techniques, while important,
may only lead to marginal improvements in performance. They may also prove inadequate when
handling complex medical queries, which often require reasoning over the evidence. An example of
this is answering multi-hop queries where the system must retrieve and reason over several pieces of
supporting evidence [110]. Furthermore, we observed that even within RAG, LLMs may not always
respond as expected. This can be attributed to several factors: 1) the information contained in the pre-
training of the model may leak in the final model answer; 2) irrelevant information may be retrieved,
leading to inaccurate responses; 3) LLM generation can be unpredictable, resulting in unexpected
outputs. Also, our findings indicate a lack of standardisation in the evaluation metrics used across
different studies (as seen in Table 5). This makes it difficult to compare the performance of the RAG
systems across different studies, highlighting a need for more uniform evaluation metrics. Recently, a
standard benchmark collection for evaluating clinical language understanding tasks was proposed
[111]. Lastly, we find that the majority of the studies we reviewed do not address safety concerns.
Ensuring safety is essential to ensure that the system causes no harm, protect patients’ privacy and
comply with regulations.
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We acknowledge that our study is not exempt from limitations. First, we only included papers
published in English, which may have excluded relevant studies in other languages. Second, key-
words used in the search may have excluded some RAG-based studies in healthcare because RAG
terminologies continues to rapidly evolve. Third, we relied on the information reported by the authors
of the original papers, which may have introduced some bias or errors in our analysis. Last, despite
conducting a systematic review we might have missed some relevant studies because we limited our
search to studies published between January 2020 - March 2024.

Despite RAG advancements, retrieval quality remains a challenge. Several issues can arise from
poor retrieval quality from external knowledge sources. For example, when not all the relevant chunks
are retrieved (low context recall), it is challenging for the LLM to produce complete and coherent
text. Also, the retrieved chunks might not align with the user query, potentially lead to hallucinations.
To identify and mitigate hallucinations, different methods have been proposed. The authors in [5]
proposed Med-Halt, a domain specific benchmark to evaluate and reduce hallucination in LLMs.
Other researchers have proposed overcoming hallucination by using human-in-the-loop, algorithmic
corrections and fine-tuning [112]. However, the aforementioned studies do not specifically focus on
RAG scenarios. Wu et al. [113] proposed a high quality manually annotated dataset called RAGTruth
and achieved comparative performance on existing prompt based techniques using SOTA LLMs, for
e.g, GPT-4. Further research should focus on retrieval issues, by developing novel methods to find
the most relevant information for the query. In addition, curation of diverse benchmark datasets
for hallucination detection in healthcare, going beyond multi-choice questions and more inline with
clinical practise, should constitute a primary research endeavour.

Current LLMs are limited by their context window. The context window determines the number
of tokens the model can process and generate at a given user session. A right balance should be
sought by the user, who should provide a sufficient context to the model without exceeding its context
length [114]. Inadequate context can lead to a lack of necessary information, while excessive irrelevant
context can impair the ability to recall relevant context. Ongoing research is exploring the benefits
of longer context in enabling models to access more information from external knowledge sources
[115]. This is especially important in healthcare settings, where clinicians often rely on longitudinal
data, such as clinical notes, lab values, and imaging data. To incorporate multi-modal data effectively,
LLMs need to consider much longer contexts. Future work should prioritise evaluating the impact of
longer context on LLMs for healthcare. Though a longer context window can enhance the properties
of RAG, it is not clear how this can reduce hallucination. A recent study has demonstrated that even
with RAG, out of all the medical queries, approximately 45% of the responses provided by GPT-4
were not completely backed by the URLs retrieved [116]. Future studies should focus on techniques
to robustly handle noise, information integration and improving the validity of sources, e.g., using
post-hoc citation-enhanced generation [117].

The emergence of multimodal LLMs that can understand and output text, images, and audio
presents exciting prospects for RAG. In healthcare, the gap in visual semantics and language under-
standing has been addressed by vision-language models that correlate visual semantics from medical
images and text from medical reports or EHRs. For instance, Liu et al. [118] proposed contrastive
language-image pre-training using zero-shot prompting to provide additional knowledge to help the
model making explainable and accurate diagnosis from medical images. Beyond images, multimodal
LLMs grounded in an individual’s specific data to estimate disease risk have been proposed [20]. Other
researchers have proposed RAG driven frameworks to improve multimodal EHRs representation
[119].

Human evaluations remains crucial in assessing the output generated by RAG-based models.
While human evaluation remains important, automated solutions are being developed to improve
evaluation of LLMs by assessing both the output generated and information used to generate the
answers. For instance, the RAGAs framework [95] allows to evaluate both generator and retriever
separately. Automated benchmarks have also been proposed, integrating the evaluation of the ability
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of the system to retrieve and summarise relevant information [32]. Future research should explore
combining automated metrics and human evaluation, ensuring that there is alignment. Finally, there
is a need to shift from generic evaluation frameworks and benchmarks to contextual standardised
evaluation metrics for RAG-based LLMs in healthcare.

While RAG holds immense promise in healthcare, its adoption must be guided by ethical prin-
ciples, balancing innovation with patient privacy and safety. For instance, when external databases
are accessed in RAG systems, there is a risk of inadvertently revealing sensitive information such as
patient prescription information [58]. One way to overcome this challenge is to ensure that retrieval
databases do not contain personally identifiable patient information. Additionally, composite struc-
tured prompting can be used to effectively extract retrieval data and evaluate privacy leakages by
comparing LLM-generated outputs with the retrieved information [104]. Future studies, should ex-
plore novel measures to effectively overcome retrieval information leakages. Furthermore, it is crucial
for LLM developers in healthcare to proactively address ethical issues throughout the AI development
life cycle [120]. This proactive approach would foster trust and encourage the adoption of RAG-based
LLMs in critical sectors such as healthcare [121,122]. Finally, if developed ethically, LLMs in medicine
can potentially increase access and equity in healthcare, for example enabling clinical trials to be more
inclusive or providing treatments that are tailored to patients from diverse demographics.

5. Conclusions

In this paper, we comprehensively outline RAG’s advancement in grounding and improving
the capabilities of LLMs in the medical domain. First, we discuss the available datasets used for
grounding LLMs for healthcare tasks such as question-answer/dialogue and information retrieval.
Second, we compare the models, and the retrieval and augmentation techniques employed by existing
studies. Third, we assess evaluation frameworks proposed for RAG systems in the medical domain.
Our results shows that there is a growing interest in applying RAG to ground LLMs in healthcare,
and proprietary LLMs are the most commonly used models. When it comes to evaluation of RAG-
pipeline, our findings highlight the absence of a standardised framework for assessing RAG pipelines
in the medical field. Despite these challenges, RAG has the potential to ground and customise the
domain knowledge of LLMs for healthcare, by integrating dynamic data, standards, and a complete
integration with individual scenarios. Therefore, revolutionise various areas in healthcare from drug
development to disease prediction and personalised care management. Nevertheless for RAG to
be effectively implemented in healthcare, it is essential to adequately address challenges such as
integration of information, handling of noise, source factuality and ethical considerations. Finally, with
continuous improvements LLMs will play an instrumental role in shaping the future of healthcare,
driving innovation and enhancing patient care.
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The following abbreviations are used in this manuscript:

BERT Bidirectional Encoder Representations from Transformers
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KGs Knowledge Graphs
LLM Large Language Models
RAG Retrieval Augmented Generation
QA Question answering
SOTA State-of-the-art (SOTA)

References

1. Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.;
Askell, A.; Agarwal, S.; Herbert-Voss, A.; Krueger, G.; Henighan, T.; Child, R.; Ramesh, A.; Ziegler, D.M.; Wu,
J.; Winter, C.; Hesse, C.; Chen, M.; Sigler, E.; Litwin, M.; Gray, S.; Chess, B.; Clark, J.; Berner, C.; McCandlish,
S.; Radford, A.; Sutskever, I.; Amodei, D. Language models are few-shot learners. Proceedings of the 34th
International Conference on Neural Information Processing Systems; Curran Associates Inc.: Red Hook, NY,
USA, 2020; NIPS’20.

2. OpenAI. GPT-4 Technical Report, 2023, [arXiv:cs.CL/2303.08774].
3. Touvron, H.; Martin, L.; Stone, K.; Albert, P.; Almahairi, A.; Babaei, Y.; Bashlykov, N.; Batra, S.; Bhargava, P.;

Bhosale, S.; Bikel, D.; Blecher, L.; Ferrer, C.C.; Chen, M.; Cucurull, G.; Esiobu, D.; Fernandes, J.; Fu, J.; Fu,
W.; Fuller, B.; Gao, C.; Goswami, V.; Goyal, N.; Hartshorn, A.; Hosseini, S.; Hou, R.; Inan, H.; Kardas, M.;
Kerkez, V.; Khabsa, M.; Kloumann, I.; Korenev, A.; Koura, P.S.; Lachaux, M.A.; Lavril, T.; Lee, J.; Liskovich,
D.; Lu, Y.; Mao, Y.; Martinet, X.; Mihaylov, T.; Mishra, P.; Molybog, I.; Nie, Y.; Poulton, A.; Reizenstein, J.;
Rungta, R.; Saladi, K.; Schelten, A.; Silva, R.; Smith, E.M.; Subramanian, R.; Tan, X.E.; Tang, B.; Taylor, R.;
Williams, A.; Kuan, J.X.; Xu, P.; Yan, Z.; Zarov, I.; Zhang, Y.; Fan, A.; Kambadur, M.; Narang, S.; Rodriguez,
A.; Stojnic, R.; Edunov, S.; Scialom, T. Llama 2: Open Foundation and Fine-Tuned Chat Models, 2023,
[arXiv:cs.CL/2307.09288].

4. Gemini Team. Gemini: A Family of Highly Capable Multimodal Models, 2023, [arXiv:cs.CL/2312.11805].
5. Pal, A.; Umapathi, L.K.; Sankarasubbu, M. Med-HALT: Medical Domain Hallucination Test for Large

Language Models, 2023, [arXiv:cs.CL/2307.15343].
6. Ji, Z.; Lee, N.; Frieske, R.; Yu, T.; Su, D.; Xu, Y.; Ishii, E.; Bang, Y.J.; Madotto, A.; Fung, P. Survey of

Hallucination in Natural Language Generation. ACM Comput. Surv. 2023, 55. doi:10.1145/3571730.
7. Bubeck, S.; Chandrasekaran, V.; Eldan, R.; Gehrke, J.; Horvitz, E.; Kamar, E.; Lee, P.; Lee, Y.T.; Li, Y.; Lundberg,

S.; Nori, H.; Palangi, H.; Ribeiro, M.T.; Zhang, Y. Sparks of Artificial General Intelligence: Early experiments
with GPT-4, 2023, [arXiv:cs.CL/2303.12712].

8. Lee, J.; Yoon, W.; Kim, S.; Kim, D.; Kim, S.; So, C.H.; Kang, J. BioBERT: a pre-trained biomedical language rep-
resentation model for biomedical text mining. Bioinformatics 2019, 36, 1234–1240.
doi:10.1093/bioinformatics/btz682.

9. Alsentzer, E.; Murphy, J.R.; Boag, W.; Weng, W.H.; Jin, D.; Naumann, T.; McDermott, M.B.A. Publicly
Available Clinical BERT Embeddings, 2019, [arXiv:cs.CL/1904.03323].

10. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding, 2019, [arXiv:cs.CL/1810.04805].

11. Singhal, K.; Azizi, S.; Tu, T.; Mahdavi, S.S.; Wei, J.; Chung, H.W.; Scales, N.; Tanwani, A.; Cole-Lewis, H.;
Pfohl, S.; Payne, P.; Seneviratne, M.; Gamble, P.; Kelly, C.; Babiker, A.; Schärli, N.; Chowdhery, A.; Mansfield,
P.; Demner-Fushman, D.; Agüera y Arcas, B.; Webster, D.; Corrado, G.S.; Matias, Y.; Chou, K.; Gottweis, J.;
Tomasev, N.; Liu, Y.; Rajkomar, A.; Barral, J.; Semturs, C.; Karthikesalingam, A.; Natarajan, V. Large language
models encode clinical knowledge. Nature 2023, 620, 172–180. doi:10.1038/s41586-023-06291-2.

12. Lewis, P.; Perez, E.; Piktus, A.; Petroni, F.; Karpukhin, V.; Goyal, N.; Küttler, H.; Lewis, M.; tau Yih, W.;
Rocktäschel, T.; Riedel, S.; Kiela, D. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks,
2021, [arXiv:cs.CL/2005.11401].

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 July 2024                   doi:10.20944/preprints202407.0876.v1

http://xxx.lanl.gov/abs/2303.08774
http://xxx.lanl.gov/abs/2307.09288
http://xxx.lanl.gov/abs/2312.11805
http://xxx.lanl.gov/abs/2307.15343
https://doi.org/10.1145/3571730
http://xxx.lanl.gov/abs/2303.12712
https://doi.org/10.1093/bioinformatics/btz682
http://xxx.lanl.gov/abs/1904.03323
http://xxx.lanl.gov/abs/1810.04805
https://doi.org/10.1038/s41586-023-06291-2
http://xxx.lanl.gov/abs/2005.11401
https://doi.org/10.20944/preprints202407.0876.v1


26 of 31

13. Dong, Q.; Li, L.; Dai, D.; Zheng, C.; Wu, Z.; Chang, B.; Sun, X.; Xu, J.; Li, L.; Sui, Z. A Survey on In-context
Learning, 2023, [arXiv:cs.CL/2301.00234].

14. Das, S.; Saha, S.; Srihari, R.K. Diving Deep into Modes of Fact Hallucinations in Dialogue Systems, 2023,
[arXiv:cs.CL/2301.04449].

15. Wang, C.; Ong, J.; Wang, C.; Ong, H.; Cheng, R.; Ong, D. Potential for GPT Technology to Optimize Future
Clinical Decision-Making Using Retrieval-Augmented Generation. Annals of Biomedical Engineering 2023.
doi:10.1007/s10439-023-03327-6.

16. Gao, Y.; Xiong, Y.; Gao, X.; Jia, K.; Pan, J.; Bi, Y.; Dai, Y.; Sun, J.; Guo, Q.; Wang, M.; Wang, H. Retrieval-
Augmented Generation for Large Language Models: A Survey, 2024, [arXiv:cs.CL/2312.10997].

17. Zhao, P.; Zhang, H.; Yu, Q.; Wang, Z.; Geng, Y.; Fu, F.; Yang, L.; Zhang, W.; Cui, B. Retrieval-Augmented
Generation for AI-Generated Content: A Survey, 2024, [arXiv:cs.CV/2402.19473].

18. Gao, L.; Ma, X.; Lin, J.; Callan, J. Precise Zero-Shot Dense Retrieval without Relevance Labels, 2022,
[arXiv:cs.IR/2212.10496].

19. Al Ghadban, Y.; Lu, H.Y.; Adavi, U.; Sharma, A.; Gara, S.; Das, N.; Kumar, B.; John, R.; Devarsetty, P.; Hirst,
J. Transforming Healthcare Education: Harnessing Large Language Models for Frontline Health Worker
Capacity Building using Retrieval-Augmented Generation, 2023. doi:10.1101/2023.12.15.23300009.

20. Belyaeva, A.; Cosentino, J.; Hormozdiari, F.; Eswaran, K.; Shetty, S.; Corrado, G.; Carroll, A.; McLean, C.Y.;
Furlotte, N.A. Multimodal LLMs for Health Grounded in Individual-Specific Data. Machine Learning
for Multimodal Healthcare Data; Maier, A.K.; Schnabel, J.A.; Tiwari, P.; Stegle, O., Eds.; Springer Nature
Switzerland: Cham, 2024; pp. 86–102.

21. Chen, X.; You, M.; Wang, L.; Liu, W.; Fu, Y.; Xu, J.; Zhang, S.; Chen, G.; Li, K.; Li, J. Evaluating and
Enhancing Large Language Models Performance in Domain-specific Medicine: Osteoarthritis Management
with DocOA, 2024, [arXiv:cs.CL/2401.12998].

22. Chen, X.; Zhao, Z.; Zhang, W.; Xu, P.; Gao, L.; Xu, M.; Wu, Y.; Li, Y.; Shi, D.; He, M. EyeGPT: Ophthalmic
Assistant with Large Language Models, 2024, [arXiv:cs.CL/2403.00840].

23. Jeong, M.; Sohn, J.; Sung, M.; Kang, J. Improving Medical Reasoning through Retrieval and Self-Reflection
with Retrieval-Augmented Large Language Models, 2024, [arXiv:cs.CL/2401.15269].

24. Zakka, C.; Shad, R.; Chaurasia, A.; Dalal, A.R.; Kim, J.L.; Moor, M.; Fong, R.; Phillips, C.; Alexander, K.;
Ashley, E.; Boyd, J.; Boyd, K.; Hirsch, K.; Langlotz, C.; Lee, R.; Melia, J.; Nelson, J.; Sallam, K.; Tullis, S.;
Vogelsong, M.A.; Cunningham, J.P.; Hiesinger, W. Almanac — Retrieval-Augmented Language Models for
Clinical Medicine. NEJM AI 2024, 1, AIoa2300068, [https://ai.nejm.org/doi/pdf/10.1056/AIoa2300068].
doi:10.1056/AIoa2300068.

25. Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux,
P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of
Studies That Evaluate Health Care Interventions: Explanation and Elaboration. PLOS Medicine 2009, 6, 1–28.
doi:10.1371/journal.pmed.1000100.

26. Stefana, E.; Marciano, F.; Cocca, P.; Alberti, M. Predictive models to assess Oxygen Deficiency Hazard (ODH):
A systematic review. Safety Science 2015, 75, 1–14. doi:https://doi.org/10.1016/j.ssci.2015.01.008.

27. Hambarde, K.A.; Proença, H. Information Retrieval: Recent Advances and Beyond. IEEE Access 2023,
11, 76581–76604. doi:10.1109/access.2023.3295776.

28. Chen, S.; Ju, Z.; Dong, X.; Fang, H.; Wang, S.; Yang, Y.; Zeng, J.; Zhang, R.; Zhang, R.; Zhou, M.; Zhu, P.; Xie,
P. MedDialog: a large-scale medical dialogue dataset. arXiv preprint arXiv:2004.03329 2020.

29. Liu, W.; Tang, J.; Cheng, Y.; Li, W.; Zheng, Y.; Liang, X. MedDG: An Entity-Centric Medical Consultation
Dataset for Entity-Aware Medical Dialogue Generation, 2022, [arXiv:cs.CL/2010.07497].

30. Tsatsaronis, G.; Balikas, G.; Malakasiotis, P.; Partalas, I.; Zschunke, M.; Alvers, M.R.; Weissenborn, D.;
Krithara, A.; Petridis, S.; Polychronopoulos, D.; Almirantis, Y.; Pavlopoulos, J.; Baskiotis, N.; Gallinari, P.;
Artiéres, T.; Ngomo, A.C.N.; Heino, N.; Gaussier, E.; Barrio-Alvers, L.; Schroeder, M.; Androutsopoulos, I.;
Paliouras, G. An overview of the BIOASQ large-scale biomedical semantic indexing and question answering
competition. BMC Bioinformatics 2015, 16, 138. doi:10.1186/s12859-015-0564-6.

31. Abacha, A.B.; Agichtein, E.; Pinter, Y.; Demner-Fushman, D. Overview of the Medical Question Answering
Task at TREC 2017 LiveQA. Text Retrieval Conference, 2017.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 July 2024                   doi:10.20944/preprints202407.0876.v1

http://xxx.lanl.gov/abs/2301.00234
http://xxx.lanl.gov/abs/2301.04449
https://doi.org/10.1007/s10439-023-03327-6
http://xxx.lanl.gov/abs/2312.10997
http://xxx.lanl.gov/abs/2402.19473
http://xxx.lanl.gov/abs/2212.10496
https://doi.org/10.1101/2023.12.15.23300009
http://xxx.lanl.gov/abs/2401.12998
http://xxx.lanl.gov/abs/2403.00840
http://xxx.lanl.gov/abs/2401.15269
http://xxx.lanl.gov/abs/https://ai.nejm.org/doi/pdf/10.1056/AIoa2300068
https://doi.org/10.1056/AIoa2300068
https://doi.org/10.1371/journal.pmed.1000100
https://doi.org/https://doi.org/10.1016/j.ssci.2015.01.008
https://doi.org/10.1109/access.2023.3295776
http://xxx.lanl.gov/abs/2010.07497
https://doi.org/10.1186/s12859-015-0564-6
https://doi.org/10.20944/preprints202407.0876.v1


27 of 31

32. Lozano, A.; Fleming, S.L.; Chiang, C.C.; Shah, N. Clinfo.ai: An Open-Source Retrieval-Augmented Large Lan-
guage Model System for Answering Medical Questions using Scientific Literature, 2023.
[arXiv:cs.IR/2310.16146].

33. Jin, Q.; Dhingra, B.; Liu, Z.; Cohen, W.W.; Lu, X. PubMedQA: A Dataset for Biomedical Research Question
Answering, 2019, [arXiv:cs.CL/1909.06146].

34. Jin, D.; Pan, E.; Oufattole, N.; Weng, W.H.; Fang, H.; Szolovits, P. What Disease Does This Patient Have?
A Large-Scale Open Domain Question Answering Dataset from Medical Exams. Applied Sciences 2021, 11.
doi:10.3390/app11146421.

35. Ma, L.; Han, J.; Wang, Z.; Zhang, D. CephGPT-4: An Interactive Multimodal Cephalometric Measurement
and Diagnostic System with Visual Large Language Model, 2023, [arXiv:cs.AI/2307.07518].

36. Chen, W.; Li, Z.; Fang, H.; Yao, Q.; Zhong, C.; Hao, J.; Zhang, Q.; Huang, X.; Peng, J.; Wei, Z. A Bench-
mark for Automatic Medical Consultation System: Frameworks, Tasks and Datasets. Bioinformatics 2022,
/bioinformatics/btac817/48290490/btac817.pdf btac817, doi:/bioinformatics/btac817.

37. Zeng, H. Measuring Massive Multitask Chinese Understanding, 2023, [arXiv:cs.CL/2304.12986].
38. Boteva, V.; Gholipour, D.; Sokolov, A.; Riezler, S. A Full-Text Learning to Rank Dataset for Medical

Information Retrieval. Advances in Information Retrieval; Ferro, N.; Crestani, F.; Moens, M.F.; Mothe, J.;
Silvestri, F.; Di Nunzio, G.M.; Hauff, C.; Silvello, G., Eds.; Springer International Publishing: Cham, 2016; pp.
716–722.

39. Roberts, K.; Alam, T.; Bedrick, S.; Demner-Fushman, D.; Lo, K.; Soboroff, I.; Voorhees, E.; Wang, L.L.; Hersh,
W.R. TREC-COVID: rationale and structure of an information retrieval shared task for COVID-19. Journal of
the American Medical Informatics Association 2020, 27, 1431–1436, [https://academic.oup.com/jamia/article-
pdf/27/9/1431/34153771/ocaa091.pdf]. doi:10.1093/jamia/ocaa091.

40. Johnson, A.E.W.; Pollard, T.J.; Berkowitz, S.J.; Greenbaum, N.R.; Lungren, M.P.; Deng, C.y.; Mark, R.G.;
Horng, S. MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text
reports. Scientific Data 2019, 6, 317. doi:10.1038/s41597-019-0322-0.

41. Ramesh, V.; Chi, N.A.; Rajpurkar, P. Improving Radiology Report Generation Systems by Removing
Hallucinated References to Non-existent Priors, 2022, [arXiv:cs.CL/2210.06340].

42. Guo, Y.; Qiu, W.; Leroy, G.; Wang, S.; Cohen, T. Retrieval augmentation of large language models for lay
language generation. Journal of Biomedical Informatics 2024, 149, 104580. doi:10.1016/j.jbi.2023.104580.

43. Pal, A.; Umapathi, L.K.; Sankarasubbu, M. MedMCQA: A Large-scale Multi-Subject Multi-Choice Dataset
for Medical domain Question Answering. Proceedings of the Conference on Health, Inference, and Learning;
Flores, G.; Chen, G.H.; Pollard, T.; Ho, J.C.; Naumann, T., Eds. PMLR, 2022, Vol. 174, Proceedings of Machine
Learning Research, pp. 248–260.

44. Ben Abacha, A.; Mrabet, Y.; Sharp, M.; Goodwin, T.; Shooshan, S.E.; Demner-Fushman, D. Bridging the Gap
between Consumers’ Medication Questions and Trusted Answers. MEDINFO 2019, 2019.

45. Hendrycks, D.; Burns, C.; Basart, S.; Zou, A.; Mazeika, M.; Song, D.; Steinhardt, J. Measuring Massive
Multitask Language Understanding, 2021, [arXiv:cs.CY/2009.03300].

46. Xiong, G.; Jin, Q.; Lu, Z.; Zhang, A. Benchmarking Retrieval-Augmented Generation for Medicine, 2024,
[arXiv:cs.CL/2402.13178].

47. Ge, J.; Sun, S.; Owens, J.; Galvez, V.; Gologorskaya, O.; Lai, J.C.; Pletcher, M.J.; Lai, K. Development
of a Liver Disease-Specific Large Language Model Chat Interface using Retrieval Augmented Genera-
tion. medRxiv 2023, [https://www.medrxiv.org/content/early/2023/11/11/2023.11.10.23298364.full.pdf].
doi:10.1101/2023.11.10.23298364.

48. Long, C.; Subburam, D.; Lowe, K.; dos Santos, A.; Zhang, J.; Saduka, N.; Horev, Y.; Su, T.; Cote, D.; Wright, E. Cha-
tENT: Augmented Large Language Models for Expert Knowledge Retrieval in Otolaryngology - Head and Neck
Surgery. medRxiv 2023, [https://www.medrxiv.org/content/early/2023/08/21/2023.08.18.23294283.full.pdf].
doi:10.1101/2023.08.18.23294283.

49. Soong, D.; Sridhar, S.; Si, H.; Wagner, J.S.; Sá, A.C.C.; Yu, C.Y.; Karagoz, K.; Guan, M.; Hamadeh, H.; Higgs,
B.W. Improving accuracy of GPT-3/4 results on biomedical data using a retrieval-augmented language
model, 2023, [arXiv:cs.CL/2305.17116].

50. Thompson, W.E.; Vidmar, D.M.; Freitas, J.K.D.; Pfeifer, J.M.; Fornwalt, B.K.; Chen, R.; Altay, G.; Manghnani,
K.; Nelsen, A.C.; Morland, K.; Stumpe, M.C.; Miotto, R. Large Language Models with Retrieval-Augmented
Generation for Zero-Shot Disease Phenotyping, 2023, [arXiv:cs.AI/2312.06457].

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 July 2024                   doi:10.20944/preprints202407.0876.v1

http://xxx.lanl.gov/abs/2310.16146
http://xxx.lanl.gov/abs/1909.06146
https://doi.org/10.3390/app11146421
http://xxx.lanl.gov/abs/2307.07518
http://xxx.lanl.gov/abs/https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093
https://doi.org/10.1093
http://xxx.lanl.gov/abs/2304.12986
http://xxx.lanl.gov/abs/https://academic.oup.com/jamia/article-pdf/27/9/1431/34153771/ocaa091.pdf
http://xxx.lanl.gov/abs/https://academic.oup.com/jamia/article-pdf/27/9/1431/34153771/ocaa091.pdf
https://doi.org/10.1093/jamia/ocaa091
https://doi.org/10.1038/s41597-019-0322-0
http://xxx.lanl.gov/abs/2210.06340
https://doi.org/10.1016/j.jbi.2023.104580
http://xxx.lanl.gov/abs/2009.03300
http://xxx.lanl.gov/abs/2402.13178
http://xxx.lanl.gov/abs/https://www.medrxiv.org/content/early/2023/11/11/2023.11.10.23298364.full.pdf
https://doi.org/10.1101/2023.11.10.23298364
http://xxx.lanl.gov/abs/https://www.medrxiv.org/content/early/\ 2023/08/21/2023.08.18.23294283.full.pdf
https://doi.org/10.1101/2023.08.18.23294283
http://xxx.lanl.gov/abs/2305.17116
http://xxx.lanl.gov/abs/2312.06457
https://doi.org/10.20944/preprints202407.0876.v1


28 of 31

51. Gao, Y.; Li, R.; Caskey, J.; Dligach, D.; Miller, T.; Churpek, M.M.; Afshar, M. Leveraging A Medical Knowledge
Graph into Large Language Models for Diagnosis Prediction, 2023, [arXiv:cs.CL/2308.14321].

52. Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.; Liu, P.J. Exploring the
Limits of Transfer Learning with a Unified Text-to-Text Transformer, 2023, [arXiv:cs.LG/1910.10683].

53. Jiang, X.; Zhang, R.; Xu, Y.; Qiu, R.; Fang, Y.; Wang, Z.; Tang, J.; Ding, H.; Chu, X.; Zhao, J.; Wang, Y.
Think and Retrieval: A Hypothesis Knowledge Graph Enhanced Medical Large Language Models, 2023,
[arXiv:cs.CL/2312.15883].

54. Xiao, S.; Liu, Z.; Zhang, P.; Muennighoff, N. C-Pack: Packaged Resources To Advance General Chinese
Embedding, 2023, [arXiv:cs.CL/2309.07597].

55. Jin, M.; Yu, Q.; Zhang, C.; Shu, D.; Zhu, S.; Du, M.; Zhang, Y.; Meng, Y. Health-LLM: Personalized
Retrieval-Augmented Disease Prediction Model, 2024, [arXiv:cs.CL/2402.00746].

56. Kang, B.; Kim, J.; Yun, T.R.; Kim, C.E. Prompt-RAG: Pioneering Vector Embedding-Free Retrieval-
Augmented Generation in Niche Domains, Exemplified by Korean Medicine, 2024, [arXiv:cs.CL/2401.11246].

57. Ke, Y.; Jin, L.; Elangovan, K.; Abdullah, H.R.; Liu, N.; Sia, A.T.H.; Soh, C.R.; Tung, J.Y.M.; Ong, J.C.L.; Ting,
D.S.W. Development and Testing of Retrieval Augmented Generation in Large Language Models – A Case
Study Report, 2024, [arXiv:cs.CL/2402.01733].

58. Li, Y.; Li, Z.; Zhang, K.; Dan, R.; Jiang, S.; Zhang, Y. ChatDoctor: A Medical Chat Model Fine-Tuned on a Large
Language Model Meta-AI (LLaMA) Using Medical Domain Knowledge, 2023, [arXiv:cs.CL/2303.14070].

59. Manathunga, S.S.; Illangasekara, Y.A. Retrieval Augmented Generation and Representative Vector Summa-
rization for large unstructured textual data in Medical Education, 2023, [arXiv:cs.CL/2308.00479].

60. Markey, N.; El-Mansouri, I.; Rensonnet, G.; van Langen, C.; Meier, C. From RAGs to riches: Using large
language models to write documents for clinical trials, 2024, [arXiv:cs.CL/2402.16406].

61. Miao, J.; Thongprayoon, C.; Suppadungsuk, S.; Garcia Valencia, O.A.; Cheungpasitporn, W. Integrat-
ing Retrieval-Augmented Generation with Large Language Models in Nephrology: Advancing Practical
Applications. Medicina 2024, 60. doi:10.3390/medicina60030445.

62. Murugan, M.; Yuan, B.; Venner, E.; Ballantyne, C.M.; Robinson, K.M.; Coons, J.C.; Wang, L.; Empey, P.E.;
Gibbs, R.A. Empowering personalized pharmacogenomics with generative AI solutions. Journal of the
American Medical Informatics Association 2024, p. ocae039, [https://academic.oup.com/jamia/advance-article-
pdf/doi/10.1093/jamia/ocae039/56880048/ocae039.pdf]. doi:10.1093/jamia/ocae039.

63. Neupane, S.; Mitra, S.; Mittal, S.; Golilarz, N.A.; Rahimi, S.; Amirlatifi, A. MedInsight: A Multi-Source
Context Augmentation Framework for Generating Patient-Centric Medical Responses using Large Language
Models, 2024, [arXiv:cs.CL/2403.08607].

64. Ong, J.C.L.; Jin, L.; Elangovan, K.; Lim, G.Y.S.; Lim, D.Y.Z.; Sng, G.G.R.; Ke, Y.; Tung, J.Y.M.; Zhong, R.J.; Koh,
C.M.Y.; Lee, K.Z.H.; Chen, X.; Chng, J.K.; Than, A.; Goh, K.J.; Ting, D.S.W. Development and Testing of a
Novel Large Language Model-Based Clinical Decision Support Systems for Medication Safety in 12 Clinical
Specialties, 2024, [arXiv:cs.CL/2402.01741].

65. Chen, J.; Xiao, S.; Zhang, P.; Luo, K.; Lian, D.; Liu, Z. BGE M3-Embedding: Multi-Lingual, Multi-Functionality,
Multi-Granularity Text Embeddings Through Self-Knowledge Distillation, 2024, [arXiv:cs.CL/2402.03216].

66. Parmanto, B.; Aryoyudanta, B.; Soekinto, W.; Setiawan, I.M.A.; Wang, Y.; Hu, H.; Saptono, A.; Choi, Y.K. De-
velopment of a Reliable and Accessible Caregiving Language Model (CaLM), 2024, [arXiv:cs.CL/2403.06857].

67. Quidwai, M.A.; Lagana, A. A RAG Chatbot for Precision Medicine of Multiple Myeloma. medRxiv 2024,
[https://www.medrxiv.org/content/early/2024/03/18/2024.03.14.24304293.full.pdf].
doi:10.1101/2024.03.14.24304293.

68. Ranjit, M.; Ganapathy, G.; Manuel, R.; Ganu, T. Retrieval Augmented Chest X-Ray Report Generation using
OpenAI GPT models, 2023, [arXiv:cs.CL/2305.03660].

69. Li, J.; Selvaraju, R.R.; Gotmare, A.D.; Joty, S.; Xiong, C.; Hoi, S. Align before Fuse: Vision and Language
Representation Learning with Momentum Distillation, 2021, [arXiv:cs.CV/2107.07651].

70. Rau, A.; Rau, S.; Zöller, D.; Fink, A.; Tran, H.; Wilpert, C.; Nattenmüller, J.; Neubauer, J.; Bamberg, F.; Reisert,
M.; Russe, M.F. A Context-based Chatbot Surpasses Radiologists and Generic ChatGPT in Following the
ACR Appropriateness Guidelines. Radiology 2023, 308, e230970, [https://doi.org/10.1148/radiol.230970].
doi:10.1148/radiol.230970.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 July 2024                   doi:10.20944/preprints202407.0876.v1

http://xxx.lanl.gov/abs/2308.14321
http://xxx.lanl.gov/abs/1910.10683
http://xxx.lanl.gov/abs/2312.15883
http://xxx.lanl.gov/abs/2309.07597
http://xxx.lanl.gov/abs/2402.00746
http://xxx.lanl.gov/abs/2401.11246
http://xxx.lanl.gov/abs/2402.01733
http://xxx.lanl.gov/abs/2303.14070
http://xxx.lanl.gov/abs/2308.00479
http://xxx.lanl.gov/abs/2402.16406
https://doi.org/10.3390/medicina60030445
http://xxx.lanl.gov/abs/https://academic.oup.com/jamia/advance-article-pdf/doi/10.1093/jamia/ocae039/56880048/ocae039.pdf
http://xxx.lanl.gov/abs/https://academic.oup.com/jamia/advance-article-pdf/doi/10.1093/jamia/ocae039/56880048/ocae039.pdf
https://doi.org/10.1093/jamia/ocae039
http://xxx.lanl.gov/abs/2403.08607
http://xxx.lanl.gov/abs/2402.01741
http://xxx.lanl.gov/abs/2402.03216
http://xxx.lanl.gov/abs/2403.06857
http://xxx.lanl.gov/abs/https://www.medrxiv.org/content/early/2024/03/18/2024.03.14.24304293.full.pdf
https://doi.org/10.1101/2024.03.14.24304293
http://xxx.lanl.gov/abs/2305.03660
http://xxx.lanl.gov/abs/2107.07651
http://xxx.lanl.gov/abs/https://doi.org/10.1148/radiol.230970
https://doi.org/10.1148/radiol.230970
https://doi.org/10.20944/preprints202407.0876.v1


29 of 31

71. Russe, M.F.; Fink, A.; Ngo, H.; Tran, H.; Bamberg, F.; Reisert, M.; Rau, A. Performance of ChatGPT, human
radiologists, and context-aware ChatGPT in identifying AO codes from radiology reports. Scientific Reports
2023, 13, 14215. doi:10.1038/s41598-023-41512-8.

72. Shi, W.; Zhuang, Y.; Zhu, Y.; Iwinski, H.; Wattenbarger, M.; Wang, M.D. Retrieval-Augmented Large
Language Models for Adolescent Idiopathic Scoliosis Patients in Shared Decision-Making. Proceedings of
the 14th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics;
Association for Computing Machinery: New York, NY, USA, 2023; BCB ’23. doi:10.1145/3584371.3612956.

73. Soman, K.; Rose, P.W.; Morris, J.H.; Akbas, R.E.; Smith, B.; Peetoom, B.; Villouta-Reyes, C.; Cerono, G.; Shi, Y.;
Rizk-Jackson, A.; Israni, S.; Nelson, C.A.; Huang, S.; Baranzini, S.E. Biomedical knowledge graph-enhanced
prompt generation for large language models, 2023, [arXiv:cs.CL/2311.17330].

74. Unlu, O.; Shin, J.; Mailly, C.J.; Oates, M.F.; Tucci, M.R.; Varugheese, M.; Wagholikar, K.; Wang, F.; Scirica, B.M.; Blood,
A.J.; Aronson, S.J. Retrieval Augmented Generation Enabled Generative Pre-Trained Transformer 4 (GPT-4) Perfor-
mance for Clinical Trial Screening. medRxiv 2024,
[https://www.medrxiv.org/content/early/2024/02/08/2024.02.08.24302376.full.pdf].
doi:10.1101/2024.02.08.24302376.

75. Vaid, A.; Lampert, J.; Lee, J.; Sawant, A.; Apakama, D.; Sakhuja, A.; Soroush, A.; Lee, D.; Landi, I.; Bussola,
N.; Nabeel, I.; Freeman, R.; Kovatch, P.; Carr, B.; Glicksberg, B.; Argulian, E.; Lerakis, S.; Kraft, M.; Charney,
A.; Nadkarni, G. Generative Large Language Models are autonomous practitioners of evidence-based
medicine, 2024, [arXiv:cs.AI/2401.02851].

76. Wang, Y.; Ma, X.; Chen, W. Augmenting Black-box LLMs with Medical Textbooks for Clinical Question
Answering, 2023, [arXiv:cs.CL/2309.02233].

77. Wang, J.; Yang, Z.; Yao, Z.; Yu, H. JMLR: Joint Medical LLM and Retrieval Training for Enhancing Reasoning
and Professional Question Answering Capability, 2024, [arXiv:cs.CL/2402.17887].

78. Wornow, M.; Lozano, A.; Dash, D.; Jindal, J.; Mahaffey, K.W.; Shah, N.H. Zero-Shot Clinical Trial Patient
Matching with LLMs, 2024, [arXiv:cs.CL/2402.05125].

79. Yu, H.; Guo, P.; Sano, A. Zero-Shot ECG Diagnosis with Large Language Models and Retrieval-Augmented
Generation. Proceedings of the 3rd Machine Learning for Health Symposium; Hegselmann, S.; Parziale, A.;
Shanmugam, D.; Tang, S.; Asiedu, M.N.; Chang, S.; Hartvigsen, T.; Singh, H., Eds. PMLR, 2023, Vol. 225,
Proceedings of Machine Learning Research, pp. 650–663.

80. Ziletti, A.; D’Ambrosi, L. Retrieval augmented text-to-SQL generation for epidemiological question answer-
ing using electronic health records, 2024, [arXiv:cs.CL/2403.09226].

81. Team, L.D. LlamaIndex: A Framework for Context-Augmented LLM Applications, 2024.
82. Team, L.D. Langchain: A framework for developing applications powered by large language models, 2024.
83. Cuconasu, F.; Trappolini, G.; Siciliano, F.; Filice, S.; Campagnano, C.; Maarek, Y.; Tonellotto, N.; Silvestri, F.

The Power of Noise: Redefining Retrieval for RAG Systems, 2024, [arXiv:cs.IR/2401.14887].
84. Yang, R.; Marrese-Taylor, E.; Ke, Y.; Cheng, L.; Chen, Q.; Li, I. Integrating UMLS Knowledge into Large

Language Models for Medical Question Answering, 2023, [arXiv:cs.CL/2310.02778].
85. Varshney, D.; Zafar, A.; Behera, N.K.; Ekbal, A. Knowledge graph assisted end-to-end medical dialog gener-

ation. Artificial Intelligence in Medicine 2023, 139, 102535. doi:https://doi.org/10.1016/j.artmed.2023.102535.
86. Varshney, D.; Zafar, A.; Behera, N.K.; Ekbal, A. Knowledge grounded medical dialogue generation using

augmented graphs. Scientific Reports 2023, 13, 3310. doi:10.1038/s41598-023-29213-8.
87. Morris, J.H.; Soman, K.; Akbas, R.E.; Zhou, X.; Smith, B.; Meng, E.C.; Huang, C.C.; Cerono, G.; Schenk, G.;

Rizk-Jackson, A.; Harroud, A.; Sanders, L.; Costes, S.V.; Bharat, K.; Chakraborty, A.; Pico, A.R.; Mardirossian,
T.; Keiser, M.; Tang, A.; Hardi, J.; Shi, Y.; Musen, M.; Israni, S.; Huang, S.; Rose, P.W.; Nelson, C.A.; Baranzini,
S.E. The scalable precision medicine open knowledge engine (SPOKE): a massive knowledge graph of
biomedical information. Bioinformatics 2023, 39, btad080, [https://academic.oup.com/bioinformatics/article-
pdf/39/2/btad080/49278346/btad080.pdf]. doi:10.1093/bioinformatics/btad080.

88. Jin, Q.; Wang, Z.; Floudas, C.S.; Sun, J.; Lu, Z. Matching Patients to Clinical Trials with Large Language
Models, 2023, [arXiv:cs.CL/2307.15051].

89. Douze, M.; Guzhva, A.; Deng, C.; Johnson, J.; Szilvasy, G.; Mazaré, P.E.; Lomeli, M.; Hosseini, L.; Jégou, H.
The Faiss library, 2024, [arXiv:cs.LG/2401.08281].

90. Lin, X.V.; Chen, X.; Chen, M.; Shi, W.; Lomeli, M.; James, R.; Rodriguez, P.; Kahn, J.; Szilvasy, G.; Lewis, M.;
Zettlemoyer, L.; Yih, S. RA-DIT: Retrieval-Augmented Dual Instruction Tuning, 2023, [arXiv:cs.CL/2310.01352].

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 July 2024                   doi:10.20944/preprints202407.0876.v1

https://doi.org/10.1038/s41598-023-41512-8
https://doi.org/10.1145/3584371.3612956
http://xxx.lanl.gov/abs/2311.17330
http://xxx.lanl.gov/abs/https://www.medrxiv.org/content/early/2024/02/08/2024.02.08.24302376.full.pdf
https://doi.org/10.1101/2024.02.08.24302376
http://xxx.lanl.gov/abs/2401.02851
http://xxx.lanl.gov/abs/2309.02233
http://xxx.lanl.gov/abs/2402.17887
http://xxx.lanl.gov/abs/2402.05125
http://xxx.lanl.gov/abs/2403.09226
http://xxx.lanl.gov/abs/2401.14887
http://xxx.lanl.gov/abs/2310.02778
https://doi.org/https://doi.org/10.1016/j.artmed.2023.102535
https://doi.org/10.1038/s41598-023-29213-8
http://xxx.lanl.gov/abs/https://academic.oup.com/bioinformatics/article-pdf/39/2/btad080/49278346/btad080.pdf
http://xxx.lanl.gov/abs/https://academic.oup.com/bioinformatics/article-pdf/39/2/btad080/49278346/btad080.pdf
https://doi.org/10.1093/bioinformatics/btad080
http://xxx.lanl.gov/abs/2307.15051
http://xxx.lanl.gov/abs/2401.08281
http://xxx.lanl.gov/abs/2310.01352
https://doi.org/10.20944/preprints202407.0876.v1


30 of 31

91. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. Proceedings of the 22nd acm sigkdd
international conference on knowledge discovery and data mining, 2016, pp. 785–794.

92. Luo, L.; Li, Y.F.; Haffari, G.; Pan, S. Reasoning on Graphs: Faithful and Interpretable Large Language Model
Reasoning, 2024, [arXiv:cs.CL/2310.01061].

93. Hong, S.; Zhuge, M.; Chen, J.; Zheng, X.; Cheng, Y.; Zhang, C.; Wang, J.; Wang, Z.; Yau, S.K.S.; Lin, Z.; Zhou,
L.; Ran, C.; Xiao, L.; Wu, C.; Schmidhuber, J. MetaGPT: Meta Programming for A Multi-Agent Collaborative
Framework, 2023, [arXiv:cs.AI/2308.00352].

94. Weng, L. LLM-powered Autonomous Agents. lilianweng.github.io 2023.
95. Es, S.; James, J.; Espinosa-Anke, L.; Schockaert, S. RAGAS: Automated Evaluation of Retrieval Augmented

Generation, 2023, [arXiv:cs.CL/2309.15217].
96. Team, C.E.D. Continuous Eval: an open-source package created for granular and holistic evaluation of

GenAI application pipelines, 2024.
97. Team, T.D. TruLens: Evaluate and Track LLM Applications, 2024.
98. Team, D.D. DeepEval: the open-source LLM evaluation framework, 2024.
99. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V.

RoBERTa: A Robustly Optimized BERT Pretraining Approach, 2019, [arXiv:cs.CL/1907.11692].
100. Steinbock, B. The Oxford Handbook of Bioethics; Oxford University Press, 2009.

doi:10.1093/oxfordhb/9780199562411.001.0001.
101. Carlini, N.; Ippolito, D.; Jagielski, M.; Lee, K.; Tramer, F.; Zhang, C. Quantifying Memorization Across

Neural Language Models, 2023, [arXiv:cs.LG/2202.07646].
102. Zhang, C.; Ippolito, D.; Lee, K.; Jagielski, M.; Tramèr, F.; Carlini, N. Counterfactual Memorization in Neural

Language Models, 2023, [arXiv:cs.CL/2112.12938].
103. Lee, J.; Le, T.; Chen, J.; Lee, D. Do Language Models Plagiarize? Proceedings of the ACM Web Confer-

ence 2023; Association for Computing Machinery: New York, NY, USA, 2023; WWW ’23, p. 3637–3647.
doi:10.1145/3543507.3583199.

104. Zeng, S.; Zhang, J.; He, P.; Xing, Y.; Liu, Y.; Xu, H.; Ren, J.; Wang, S.; Yin, D.; Chang, Y.; Tang, J. The Good and
The Bad: Exploring Privacy Issues in Retrieval-Augmented Generation (RAG), 2024, [arXiv:cs.CR/2402.16893].

105. Vassilev, A.; Oprea, A.; Fordyce, A.; Anderson, H. Adversarial machine learning: A taxonomy and
terminology of attacks and mitigations. Technical report, National Institute of Standards and Technology,
2024.

106. Wu, S.; Koo, M.; Blum, L.; Black, A.; Kao, L.; Fei, Z.; Scalzo, F.; Kurtz, I. Benchmarking Open-Source
Large Language Models, GPT-4 and Claude 2 on Multiple-Choice Questions in Nephrology. NEJM AI 2024,
1, AIdbp2300092, [https://ai.nejm.org/doi/pdf/10.1056/AIdbp2300092]. doi:10.1056/AIdbp2300092.

107. Greene, R.; Sanders, T.; Weng, L.; Neelakantan, A. New and improved embedding model, Dec. 15, 2022.
108. Amugongo, L.M.; Bidwell, N.J.; Corrigan, C.C. Invigorating Ubuntu Ethics in AI for healthcare: En-

abling equitable care. Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Trans-
parency; Association for Computing Machinery: New York, NY, USA, 2023; FAccT ’23, p. 583–592.
doi:10.1145/3593013.3594024.

109. Bergman, A.S.; Hendricks, L.A.; Rauh, M.; Wu, B.; Agnew, W.; Kunesch, M.; Duan, I.; Gabriel, I.; Isaac, W.
Representation in AI Evaluations. Proceedings of the 2023 ACM Conference on Fairness, Accountability,
and Transparency; Association for Computing Machinery: New York, NY, USA, 2023; FAccT ’23, p. 519–533.
doi:10.1145/3593013.3594019.

110. Tang, Y.; Yang, Y. MultiHop-RAG: Benchmarking Retrieval-Augmented Generation for Multi-Hop Queries,
2024, [arXiv:cs.CL/2401.15391].

111. Goodwin, T.R.; Demner-Fushman, D. Clinical Language Understanding Evaluation (CLUE), 2022,
[arXiv:cs.CL/2209.14377].

112. Ahmad, M.A.; Yaramis, I.; Roy, T.D. Creating Trustworthy LLMs: Dealing with Hallucinations in Healthcare
AI, 2023, [arXiv:cs.CL/2311.01463].

113. Wu, Y.; Zhu, J.; Xu, S.; Shum, K.; Niu, C.; Zhong, R.; Song, J.; Zhang, T. RAGTruth: A Hallucination Corpus
for Developing Trustworthy Retrieval-Augmented Language Models, 2023, [arXiv:cs.CL/2401.00396].

114. Gu, A.; Dao, T. Mamba: Linear-Time Sequence Modeling with Selective State Spaces, 2023,
[arXiv:cs.LG/2312.00752].

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 July 2024                   doi:10.20944/preprints202407.0876.v1

http://xxx.lanl.gov/abs/2310.01061
http://xxx.lanl.gov/abs/2308.00352
http://xxx.lanl.gov/abs/2309.15217
http://xxx.lanl.gov/abs/1907.11692
https://doi.org/10.1093/oxfordhb/9780199562411.001.0001
http://xxx.lanl.gov/abs/2202.07646
http://xxx.lanl.gov/abs/2112.12938
https://doi.org/10.1145/3543507.3583199
http://xxx.lanl.gov/abs/2402.16893
http://xxx.lanl.gov/abs/https://ai.nejm.org/doi/pdf/10.1056/AIdbp2300092
https://doi.org/10.1056/AIdbp2300092
https://doi.org/10.1145/3593013.3594024
https://doi.org/10.1145/3593013.3594019
http://xxx.lanl.gov/abs/2401.15391
http://xxx.lanl.gov/abs/2209.14377
http://xxx.lanl.gov/abs/2311.01463
http://xxx.lanl.gov/abs/2401.00396
http://xxx.lanl.gov/abs/2312.00752
https://doi.org/10.20944/preprints202407.0876.v1


31 of 31

115. Gemini Team, G. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context.
https://storage.googleapis.com/deepmind-media/gemini/gemini_v1_5_report.pdf, 2024. [Accessed 26-02-
2024].

116. Wu, K.; Wu, E.; Cassasola, A.; Zhang, A.; Wei, K.; Nguyen, T.; Riantawan, S.; Riantawan, P.S.; Ho, D.E.;
Zou, J. How well do LLMs cite relevant medical references? An evaluation framework and analyses, 2024,
[arXiv:cs.CL/2402.02008].

117. Li, W.; Li, J.; Ma, W.; Liu, Y. Citation-Enhanced Generation for LLM-based Chatbots, 2024,
[arXiv:cs.CL/2402.16063].

118. Liu, J.; Hu, T.; Zhang, Y.; Gai, X.; Feng, Y.; Liu, Z. A ChatGPT Aided Explainable Framework for Zero-Shot
Medical Image Diagnosis, 2023, [arXiv:eess.IV/2307.01981].

119. Zhu, Y.; Ren, C.; Xie, S.; Liu, S.; Ji, H.; Wang, Z.; Sun, T.; He, L.; Li, Z.; Zhu, X.; Pan, C. REALM: RAG-
Driven Enhancement of Multimodal Electronic Health Records Analysis via Large Language Models, 2024,
[arXiv:cs.AI/2402.07016].

120. Amugongo, L.M.; Kriebitz, A.; Boch, A.; Lütge, C. Operationalising AI ethics through the agile soft-
ware development lifecycle: a case study of AI-enabled mobile health applications. AI and Ethics 2023.
doi:10.1007/s43681-023-00331-3.

121. Tucci, V.; Saary, J.; Doyle, T.E. Factors influencing trust in medical artificial intelligence for healthcare
professionals: a narrative review. Journal of Medical Artificial Intelligence 2021, 5.

122. Amugongo, L.M.; Kriebitz, A.; Boch, A.; Lütge, C. Mobile Computer Vision-Based Applications for Food
Recognition and Volume and Calorific Estimation: A Systematic Review. Healthcare 2023, 11.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 July 2024                   doi:10.20944/preprints202407.0876.v1

https://storage.googleapis.com/deepmind-media/gemini/gemini_v1_5_report.pdf
http://xxx.lanl.gov/abs/2402.02008
http://xxx.lanl.gov/abs/2402.16063
http://xxx.lanl.gov/abs/2307.01981
http://xxx.lanl.gov/abs/2402.07016
https://doi.org/10.1007/s43681-023-00331-3
https://doi.org/10.20944/preprints202407.0876.v1

	Introduction
	Materials and Methods
	Search Technique
	Study Selection
	Data Extraction

	Results
	Included Studies
	Datasets
	RAG Overview
	Naive RAG
	Advanced RAG
	Modular RAG
	Evaluation Metrics and Frameworks
	Ethical Considerations
	Data Analysis

	Discussion
	Conclusions
	References

