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Abstract: Building small populations mortality tables has great practical importance in actuarial applications.
In recent years, several works in literature explored different methodologies to quantify and assess longevity
and mortality risk, especially within the context of small populations: many models dealing with this problem
usually use a two-population approach, modelling a mortality spread between a larger reference population
and the population of interest, via likelihood-based techniques. To broaden the tools at actuaries” disposal to
build small population mortality tables, a general structure for a two-step two-populations model is proposed, its
main element of novelty residing in a machine-learning based approach to mortality spread estimation. In order
to obtain this, Contrast Trees and related Estimation Contrast Boosting techniques have been applied. A quite
general machine learning-based model has then been adapted in order to generalize Italian actuarial practice in
company tables estimation and implemented using data from Human Mortality Database. Finally, results from

the ML-based model have been compared to those obtained from the traditional model.

Keywords: contrast trees; small population; life tables; mortality spread modelling; machine learning applications

1. Introduction

Producing accurate mortality projections is often of great importance in an actuarial context,
in order to predict death rates for pricing or reserving purposes, to construct policyholders” death
tables for an insurance company, or, more generally, to accurately assess the mortality of a population
of interest such as the participants of a pension fund. While mortality projection has received a
considerable amount of attention in actuarial literature, the main focus usually involves national or
similarly-sized populations: small populations, such as those of regions within a country or groups of
annuitants, are far less studied.

Quantifying and projecting mortality for such small populations is non-trivial, because their
mortality rates tend to be characterized by high variability and irregular behaviour, scarce availability
of data in temporal terms and missing records. Furthermore, due to the usually short-period availability
of data, mortality projections are quite uncertain and sensitive to the choice of fitting time period:
plain extrapolation of historic trends could produce questionable results and biologically implausible
death tables. In such cases, standard mortality models may not be relevant and the resulting mortality
rates could be unreliable. Consequently, using established models, such as the Lee-Carter model
([1]), to project mortality for small populations is not advisable ([2,3]), as it could lead to unrealistic
results. Furthermore, population size can have a noticeable effect on the variation of parameters’
estimates, as in the case of Cairns-Blake-Dowd model ([4,5]). Moreover, as observed by [6], the aim
of mortality projection models should be twofold: on one hand the predictions produced by the
models have to be accurate, as usual in actuarial literature; on the other hand the models” output
should be stable in respect to annual updates of the data. This is to ensure that decision makers,
such as annuity providers or pension authorities, do not suffer consequences (respectively, significant
shifts in liabilities and capital requirements or fluctuations in statutory retirement age) from result
volatility or systematic errors. Stability requirements are particularly difficult to meet for smaller
populations. Nonetheless, small populations” mortality models have great practical interest, for
example in evaluating undertaking-specific mortality tables relative to a portfolio of contracts or in
tackling issues pertaining to longevity swaps in the context of pension scheme de-risking.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202408.1786.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 August 2024 d0i:10.20944/preprints202408.1786.v1

20f16

To overcome such difficulties in modelling mortality for small populations, the mortality parame-
ter estimation is performed in reference to the mortality profile of some larger group, economically and
socially similar to the population of interest: borrowing information in such a way could lead to more
stable results, as noted by [7]. This approach to the problem is known as two-population modeling and
can lead used to the definition of several callses of models, from extensions of Lee-Carter model (see,
e.g., [8,9]) and Cairns-Blake-Dowd (as in [10]) model to Bayesian approaches ([11]) and frailty-based
methods ([3]). More extensive reviews are available in [12,13].

Borrowing terminology and model specification from [13], the larger population will be denoted
as reference population and the smaller population of interest as book population. Two-population
models can be written using a general formulation in terms of central mortality rates my;, respectively
for reference and book populations, as:

N .
Df ~ POiS(Ealc{tmgc{t); logmyy =y + ) e (1)
j=1
B BB B R B u (j.B)..(j.B) B
Dxt ~ POiS(Extmxt>; log My — log My = dx + Z ﬁx], Kt], + Vi—x (2)
j=1

Note that, in Equation (2), book population modeling is expressed in terms of the difference between
reference and book population mortality: the mortality of book population is not directly modelled:
rather the mortality spread between reference and book population is. Therefore, quantities in Equation
(2) refer to mortality trend differences, so that book population average mortality level is af + a? and
cohort effectis v} .+ P .. Depending on how the models are specified, additional constraints may be
needed in order to ensure uniqueness of parameter estimation for Equations (1) and (2). The parameter
estimation is performed using maximum likelihood in two steps: firstly relative to the reference
population and then, conditional on the first-stage estimation, the parameters describing mortality
spread between the two populations are estimated in a second stage. Such approach, widespread in
actuarial literature for small population models (see, e.g., [3,10,12,14]), is based on the assumption
that mortality rate differences can be modeled in the same way as mortality rates are, using the same
functional form as in [15].

Mortality projection is then performed by specifying the dynamics of period indexes, which are
modelled using a multivariate random walk with drift. As for the book populations, it is assumed that
in the long run the two populations will experience similar mortality improvements, thus the spread
in time indexes and cohorts effects are modelled as stationary processes (see [13] for more details).
Two-step estimation for two population models then relies on the distributional assumptions for
number of deaths in reference and book populations and on likelihood based estimation for modelling
mortality spread.

The purpose of this paper is to present a two-population model where mortality spread is
estimated using machine learning techniques, namely Contrast Trees and Estimation Contrast Boosting
proposed by [16]. The model is first described in general terms and then adapted do generalize Italian
actuarial practices for company table estimation. Using data from Human Mortality Database, this
new model is evaluated for some book populations and then compared to traditional methodology.

The remainder of this work is organized as follows: in Section 2, Contrast Trees terminology
and algorithms are briefly recalled (Section 2.1), then the Italian actuarial practice for company
table estimation is described and extended making use of Contrast-Tree related techniques (Section
2.2). Some preliminary consideration about the data are reported in Section 2.3. Section 3 presents
and discusses the results from the extended model, firstly by addressing some issues about model
calibration (Section 3.1) then assessing the performance of the extended model using the traditional
one as a benchmark (Section 3.2); finally, in Section 4, some conclusions are drawn.
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2. Materials and Methods

2.1. Contrast Trees and Estimation Boosting

Contrast Trees (CT) are a general methodology that, leveraging tree-based machine learning tech-
niques, allows for assessing differences between two output variables defined on the same input space,
be them predictions resulting from different models models or observed outcome data. Specifically, the
goal of the Contrast Trees method is to partition the input space to uncover regions presenting higher
values of some difference-related quantity between two arbitrary outcome variables ([16]). Moreover,
a boosting procedure making use of CTs can be constructed, in order to reduce differences between the
two target variables once differences have been uncovered.

Available data consist of N observations of the form {x;, y;, zi}fi 1 where x; is a P-dimensional
vector of observed numerical predictor variables and y; and z; are the corresponding values of two
outcome variables. These can be estimates for a given quantity from different models, or the observed
values of a certain quantity of interest. Given a certain sub-region X* of the input space, a discrepancy
measure, describing the difference between the outcome variables, is defined as a function of the data
points in the sub-region as follows:

d= D({yi}xieX*r {Zi}xieX*) 3)

The particular choice of discrepancy function depends on the problem at hand. While discrepancies
are conceptually similar to loss functions, it must be noted that in the context of Contrast Trees, they
are not required to be convex, differentiable nor expressible as sum of terms, each involving a single
observation. In the following, we’ll make use of the mean absolute difference discrepancy :

1
) = — Y. lyi—zil (4)

M x;€Rm

where Ny, is the number of data points (or, alternatively the sum of weights) relative to region R;;. A
quick review of possible choices for discrepancy functions, and their relation to different estimation
problems, can be found in [16].

Contrast Trees produce a partition of the input space into M components, each one with an
associated value for discrepancy. Such partition can be analyzed to assess discrepancy patterns,
bearing some similarities to residuals analysis in Generalized Linear Models framework. A brief
overview of the iterative splitting procedure of the input space is given in Algorithm 1.
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Algorithm 1 Iterative splitting procedure - Construction of a Contrast Tree

Req e tx i) Zi
ax1r;r;13m number. of re§10ns
? oos > Minimum num ei ata points in a région
or 1 00p OVer successive tPees

m=1

?0 e 1n7%ut S ,ée is partitioned into M disjoint regions {Rm} 5 Loog ](zver reglons ina tree

t
l X do > Loop over valties of 4 preé.(icct)é%
¢ Define two provisional sub-regions R,(ﬂ) and RSZ ), with corresponding discrepancies
49 and 4.

xeRmxjgs%R%); xERmszs%R,g:)

This rule is the same as for ordinary regression trees for numeric variables (see

o Calcu e!tgot feu(r]’cl% 1t(}iie<§?lt]l§12e; split Qi (1, 7):

Qm(l,r) = (f,g1 fm )max( (Z)d,(,:))ﬁ

where f,gf ) and f,g) are the quota of observations in region Ry, falling within each
provisional sub-region and S is a regulation parameters: as found by [16], results
are insensitive to its value;
Uﬁ: d fo
end for =~
o The split point s* for variable x;,

cies ( ) and Ay *{) is associate region;
o Calcu ate 1screpancy 1mprovement or t e m -th re&ion!

whose value maximizes Q, (I, ), with associated discrep-

I, = max (d;(l);d;(r)> —dy
if I, ?T PVm then > Stopping condition (1)

Fd i

oq[qie region Rj},, whose associated split maximizes I, is replaced by its associated sub-regions,
. the input space is now partitioned into M + 1 regions

if #g <5 then P tlreg

ende ?OI'

> Stopping condition (2)

Results from the CT procedure can be summarized in a so-called lack-of-fit (LOF) curve, which
associates to the m-th region the following coordinates:

1 Lz, 4N
N 7y, N
N dedm Zdjzdm N]

(5)

m=

Where the abscissa is the quota of data points having discrepancy grater or equal to that of the m-th
region and the ordinate is the average weighted discrepancy in those same regions. Contrast Trees
can be applied to assess the goodness-of-fit of a certain model, by choosing as output variables (i.e.,
"contrasting") predicted values from the model and observed ones. High-discrepancy regions resulting
from the procedure can be easily detected and interpreted, without having to formulate distributional
hypotheses to define a likelihood: multiple models, of any nature, can be compared estimating a
Contrast Tree for each one, contrasting predicted values with out-of-sample observed outcomes. An
application of CTs to model diagnostics in the context of mortality models can be found in [18] .
Contrast Trees may also be employed to improve model accuracy, by means of an iterative
procedure that reduces uncovered errors and calculates an additive correction to produce more
accurate predictions. Estimation Contrast Boosting (ECB) gradually modifies a starting value of z
using an additive term, reducing its discrepancy with y, producing, at each step k, a partition of the


https://doi.org/10.20944/preprints202408.1786.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 August 2024 d0i:10.20944/preprints202408.1786.v1

50f16

(k)

input space where every element m has an associated update J;,”. The resulting prediction for z is then
adjusted accordingly, so that an updated estimate 2(x) is produced.

Please note that in Estimation Contrast Boosting, the two response variables are no longer
equivalent: response y is taken as the reference, while response z is adjusted. A quick presentation
of the boosting procedure is given in Algorithm 2. Since any point x in the input space lies within a

k)

single region R,(n of each of the trees resulting from the ECB procedure, each with associated updates

(5,% ) and given an initial value z(x), the boosted estimate 2(x) is computed as:

2(x) = z(x) + ) o) 6)

More detail about the iterative splitting procedure to produce Contrast Trees or about ECB algorithm
can be found in [16,18].

Algorithm 2 Estimation Contrast Boosting

Req hoos it gxnn}drﬂ number OI‘; iteratio

? OOS um numbper Or regions OI' each iteration;
or 1

(k=1)

o Bu d’ a Contrast Tree of z versus y using discrepancy in Equation (4), with z(0) = z, thus

(k).
artiti input space in M regions R;,,’;
o Upcfate ngnllpégs f(? owls) 8 "

20 =1 ucé,Sf) X € R,(f)

Where 0 < a < 1 is a learning parameter and the update (5,(15 )

k
D({yi}, i (27} ) = 0

is found by imposing

end for

2.2. Small Population Tables in Relation to Italian Actuarial Practice

In Italian actuarial practice, the assessment of mortality in life insurance companies is heavily
influenced from ISVAP Regulation N.22 of 4th April 2008 and its successive modifications'. Article
23-bis, comma 9 of the regulation states that "The Insurance company conducting life business presents
to IVASS the comparison between technical bases, different from interest rates, used for the calculation
of technical provisions, and the results of direct experience". This happens trough the filling of table
1/1 of Module 41 contained in the Additional Informations to Financial Statements ("Informazioni
aggiuntive al bilancio d’esercizio").

The module is organized separately by risk type (longevity or mortality), product type, age range
and sex: these features define the risk classes to be considered. The underlying idea, common in
actuarial mathematics, is to analyze the portfolio separately for groups defined by known risk factors,
so that individuals composing these groups can be considered homogeneous from the point of view of
probabilistic evaluation. The comparison between direct experience and technical bases consists in
reporting the expected number of deaths in the company portfolio, the expected sum of benefit to be
paid, the actual number of deaths and the actual paid sum of benefits. Expected number of deaths d%
and expected sum of benefit to be paid BS are defined as follows:

i€ = (M

=gy *nc BC (1)*55

qx

where n$ is the number of insureds of age x in risk cluster C at the beginning of the year, S¢ is the total

insured sum for insureds of age x in cluster C at the beginning of the year and q,(cl) is the probability of

1 Provvedimento ISVAP of 29 January 2010 N. 2771, Provvedimento ISVAP of 17 November 2010 N. 28452, Provvedimento
IVASS of 6 December 2016 N. 53, Provvedimento IVASS of 14 February 2018 N. 68.
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death between ages x and x + 1, usually dependent on sex. The table {qj(cl) }§ constitutes part of the
prudential technical basis used for pricing purposes. The time period to which all quantities refer is
the solar year of the Financial Statements in consideration.

While not required by Solvency II directive, in Italian actuarial practice a very similar approach is
adopted in order to produce the mortality hypotheses to be used in the calculation of best estimate
liabilities and, more generally, to estimate company mortality tables, especially in the case of products
subject to mortality risks. In this case, given a certain risk cluster C usually described by sex, risk
type (mortality, longevity) and product type (e.g., endowment or term life insurance), an adaptation
coefficient aC is calculated as:

dC
“a(l: — Zx X

7)
Y g ng

or, using the sum of benefits as a reference:
L. BY

C
(XB = ——— (8)
rq's§

where d$ is the observed number of deaths for age x in cluster C, BS is the sum of benefits paid for
insureds dead at age x in cluster C and qﬁf) is the probability of death, distinct by sex, from some
reference mortality table, usually a national table of some sort (e.g., SIM2011 table or ISTAT table
for people residing in Italy). The table {q,(cz) }& is a demographic realistic technical base that can be
updated over time.

The adapted death rates qg,x or qglx which will constitute the company death tables are then
calculated as follows:

65, = a5q% 45, = a§q® 9)

Essentially, this method scales one-year death probabilities in order to reproduce the total number
of deaths or the total benefits paid. Data used for the calculation include observations from the last
available calendar years. Usually, ten calendar years of data are used: this ensures a sufficiently stable
output without having to resort to data from much earlier calendar years, which is often not available
and could not reflect the actual, more recent, trends in mortality dynamics. This methodology features
ease of implementation, but applies the same adaptation coefficient to all age classes, thus creating
a mortality profile which has the same shape as the reference one, while the company underwriting
process may affect each age group differently. In the remainder of this work, we will refer to this
technique as "table scaling".

To overcome the limitations of table scaling, the ECB algorithm briefly described in section 2.1
can be utilized to build mortality tables for small populations, using a machine learning approach for
mortality spread calculation and generalising the Italian actuarial practice. At the best of the author’s
knowledge, this is the first attempt in applying a machine learning approach to compute mortality
spread in a two-population model.

Let Q§,t and Q%t be some quantity describing mortality in terms of predictor matrix X and
calendar year t respectively for reference and book populations, available for observation years
1,...,T. These can be one-year death probabilities, central mortality rates, mortality odds or, more
generally, any quantity describing mortality in a population. The Estimation Boosting algorithm can
then be applied to variables Q§,t and Q?(,t/ using the quantity relative to reference population as the

(k)

z input of Algorithm 2. The ECB procedure then estimates updates J (1T

) that can be used to
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transform the quantity QX , relative to reference population into the corresponding quantity relative to
book population, as per Equation (6):

K
AB  __ AR (k) .
Qxt = QX +,§15X'(1"~'T)' t=1,...,T

A shift in the target of the estimation boosting procedure must be emphasized : while in [16] the goal
was to reduce differences between outcomes y and z by producing an updated estimate Z and calculate
the updates 5,(5 ) only as a consequence, now the objective is to obtain the updates themselves, in order
to transform the quantity of interest of the reference population into that of the book population. Also
note, on the terminological side, that the word "reference" is used in two different meanings in the
context, respectively, of two-population models and Estimation Contrast Boosting: in the first case it
indicates to the larger population, whose mortality is used as a baseline for mortality spread modelling.
In the second case, it designates the y output variable of the ECB algorithm, in this case Q%t, which in
the present application is relative to the book population.

Now, the quantity Q?{,t can be projected to calendar years T + 1, ... using some standard mortality
projection model, which is feasible for the reference population, thus obtaining estimates QI;U for the

quantity of interest in future calendar years. Some assumptions on the updates & g? )(1,._,T) must then

be made, to extend their range of application from calendar years 1, ..., T, on which they have been

estimated, to projection calendar years T 41, . ... The extended updates (5§? )( ) can then be applied

T+1,...
to projected estimates in order to obtain boosted estimates Q% , for the book population relative to
projection calendar years:

K
> 5 k
%= 0%, +1§15§(’)(T+1""), F=T4+1,...

This methodology pertains to two-step models for small population, with the main difference
residing in the quantification of mortality spread, which now relies on a machine-learning technique. It
must be emphasized that the book population is not requested to be similar to the reference population
in terms of geographical, historical or socio-economical features. In such cases, however, a faster
estimation boosting convergence and, more generally, a better model performance can be expected.
The procedure just described is summarized in Figure 1, and, in the remainder of this work, we will be
referred to as "ECB adaptation”.

B B
o %
y input to ECB
Extensio
z input to ECB o
Projection

Q§/t }/\{ Q§,t

Figure 1. The ECB adaptation process for small population mortality tables. Cells in red refer to
calendar years 1, ..., T, while those in blue refer to calendar years T +1,. ..
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Before model implementation, some critical issues must be pointed out. First of all, no mechanism
for the extension of updates to projection calendar years is straightforwardly provided. So, not having
at disposal a tool for update projection, a reduced form of the input design matrix for Estimation
Contrast Boosting could be used, adopting as predictors just variables age, cohort, or a combination
of the two: this issue will be further addressed in Section 3.1. Also note that using data from the
same calendar years for reference population mortality projection and ECB calibration is not strictly
necessary: it could be possible to use a longer time series of data for mortality projection, while making
use a shorter time series to calibrate the ECB updates. In fact, not using a mechanism to project the ECB
updates means to implicitly assume the the updates themselves, i.e., the transformation function from
reference population to book population mortality, do not change with time. This means assuming
that relative mortality levels are stable during both ECB calibration and projection time periods, thus
suggesting the use of data relative to most recent years.

Aside from these points of attention, this model is quite flexible, leaving considerable freedom in
the choice of the quantity of interest, the projection model and the structure of the design matrix used
as input in the ECB updates’ estimation.

2.3. Data

Data used for numerical evaluation have been provided by the Human Mortality Database
[19]. Due to lack of company-specific data, Italian male population has been considered as reference
population, while Austria, Slovenia and Lithuania males are considered as book populations. The
time period taken into consideration is 1950-2019, for ages comprised between 30 and 90. Calendar
years from 2000 to 2019 will be used for mortality projection purposes. Data relative to Slovenia
and Lithuania are available, respectively, starting from 1983 and 1959. The first two populations
can be considered close, at least in geographical terms, to the reference population. On the contrary,
the Lithuanian population has been selected in order to investigate the ECB adaptation procedure
behaviour when book and reference populations differ substantially.

Using the approach proposed by [20], to have a first qualitative evaluation of similarity between
two reference and book populations, Standardized Death Rates (SDR) relative to period 1950-1999
are calculated, separately for age groups 30-50, 50-70, 70-90, and then for the whole age range in
consideration. Relative to country I, ages ranging from as to a., using reference population R, SDRs
are computed as:

ae ER ml
1 _ x=as —x,t""x,t
SDRtras/ue -

ae R
X=0dg Ex,t

where m denotes the central death rate and E the central exposure-to-risk. Results are reported in
Figure 2.
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Figure 2. Standardized Death Rates (SDR) by age group. Panel (a), ages 30-50; panel (b), ages 50-70;
panel (c), ages 70-90; panel (d), ages 30-90.

Italian and Austrian mortality present a similar trend, with quite a regular behaviour, both on
separate and joint age groups. Slovenian mortality data, while available only since 1983, displays
a similar, albeit more irregular, pattern. This is expected since Slovenian population is the least
numerous of the three countries. On the other hand, Lithuanian mortality exhibits a completely
different pattern, being smaller than the Italian one until year 1975, then steadily increasing until year
1995 and eventually decreasing again.

Following [12], a relative Measure of Mortality (RMM) il aslo computed as:

e ER m[
1 _ aeay Bl
RMMtﬂSrue - R R

?fe:ﬂs x,tmx,t

The nearer RRM value is to 1, the closer the book and reference population are on average in terms of
mortality. As it can be seen from Figure 3, the mortality of reference population tends to be the lowest,
in contrast to what would presumably happen using, say, a group of annuitants as book population.

1.8
1.6
Country
5 -AUS
: i
1.2 -SLO
1.0

1950 1960 1970 1980 1990 2000
Calendar Year

Figure 3. Relative Mortality Measure (RMM) relative to ages 30-90.
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Again, we can clearly see that Italian, Austrian and Slovenian mortality evolve similarly. Lithua-
nian relative mortality dynamics behaves differently: while initially lower in respect to reference
population, it gets higher and higher from the mid-sixties to the mid-nineties, then decreases. This
suggests caution in the choice of the time frame per ECB mortality boosting calibration.

3. Results

3.1. Model Calibration

Since the focus of this paper is not the choice of the best mortality model for the reference
population, but rather studying the implementation of a machine learning-based mortality spread
estimation technique, the choice of the mortality model for reference population mortality projection
has not been investigated in detail. Projection has been performed using a simple Lee-Carter mortality
model, with temporal indexes dynamics described by a random walk with drift, as suggested by [21].
Lee-Carter dynamic mortality model has been implemented using the R package "StMoMo" [15]. The
time period for calibrating mortality projection for the reference population is chosen to be from 1950
to 1999, using ages from 30 to 90. Central mortality rates, with corresponding death rates, have been
projected to period 2000-2019. Central mortality rates resulting from Lee-Carter projection can be
transformed into one-year death probabilities using the constant force of mortality hypothesis (see,
e.g., [22]):

Gup =1 —e"!

Contrast Trees and Estimation Contrast Boosting have been evaluated using the R package "ConTree"
developed by [23], using as response variable one-year death probabilities.

As stated before, the time frame used for ECB adaptation calibration does not have to coincide
with the one used for reference population mortality projection. To investigate which time period
should be used to estimate ECB updates, different Contrast Estimation Boosting adaptations are
performed for different starting years, from 1965 and every fifth year until 1999. For Slovenia, data
allows for year 1983 as minimum starting date. Each ECB procedure was performed, for the sake of
simplicity, using only Age as predictor (more on that in the following) and adopting central death
rates as quantity of interest, s.t. Qf(lt = mfrt: the updates resulting from each procedure were applied
to Italian projected mortality rates, obtaining an estimate for book population mortality rates. A
Contrast Tree has been estimated using discrepancy 4 for each ECB output. Data relative to the 2000-
2019 time frame is split in half into training and test set for Contrast-Tree estimation and evaluation
purposes, respectively, using maximum dissimilarity approach ([24]): corresponding lack-of-fit curves
are reported in Figure 4.
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Figure 4. Lack-of-fit curves for Estimation Contrast Boosting calibration period assessment. Panels
refer respectively to Austrian (a), Slovenian (b) and Lithuanian (c) book population.

Very different behaviours are apparent from the first and third panel: while for Austrian book
population using a longer data series leads to more accurate estimation of future book population
mortality rates, for Lithuanian population the situation is reversed. Moreover, relative variation in
average discrepancy for Lithuanian book population (as can be seen in the far right of the graph) is
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quite impacted from the choice of starting year. Such behaviour can be explained in terms of Relative
Mortality Measures reported in Figure 3: Austrian mortality dynamics is quite aligned with the Italian
one, so using a longer data series allows for a more robust estimation of ECB updates, which do not
presumably change too much in the period 1965-1999 (please note that calendar years 1950-1964, where
Austrian mortality exhibits greater volatility in relative mortality, were not used in ECB estimation).
On the other hand, Lithuanian relative mortality evolves significantly in the 1959-1999 time period
and the assumption of time independent ECB updates should be called into question. Results for
Slovenian book population constitute a middle ground: ECB updates produced using data from just
1990 onwards yield worse results in comparison to 1980, across all input space. This suggests that, due
to the irregularity of Slovenian mortality pattern, using only the more recent calendar years to estimate
the updates could lead to unreliable results.

In order to assess the most sensible choice for ECB predictors and given the absence of an obvious
choice for a projection mechanism for the updates 4, it should be observed that using only variables
age and cohort from ECB modelling does not require any form of time series extrapolation, as already
stated by [25]. Therefore, for each book population, three ECB adaptations were performed, using as
predictors variables Age, Cohort, or both. As before, the quantity of interest is the central mortality
rate. The updates have been calibrated, for each book population, on the minimum discrepancy time
interval identified previously. The resulting mortality rates for book populations have been compared
to the observed ones using lack-of-fit curves, average discrepancy, Root Mean Square Error (RMSE)
and Mean Absolute Percentage Error (MAPE). Data for Contrast Tree estimation have been split into
training and test set using maximum dissimilarity approach, while RMSE and MAPE have been
calculated on the whole projection period. Results are shown in Figure 5 and in Table 1.
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Figure 5. Lack-of-fit curves for Estimation Contrast Boosting predictor assessment, relative to the three
different design matrices taken into consideration. Panels refer respectively to Austrian (a), Slovenian
(b) and Lithuanian (c) book population.

For all three book populations similar conclusions can be drawn: cohort ECB features the highest
discrepancy across all input space. For Slovenian and Austrian population, Age-Cohort ECB produces
the best performances in high discrepancy regions, but when considering the entirety of the input
space, Age-based ECB seems to perform slightly better. As for Lithuanian book population, Age ECB
seems to consistently produce more accurate outputs. Note the different scale on ordinate axis for
Lithuanian discrepancy. Performance statistics reported in Table 1 are consistent with conclusions
from the LOF curves: with the exception of RMSE for Cohort ECB for Slovenian and Lithuanian book
populations, Age-based Estimation Contrast Boosting seems to consistently yield better performances.
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Table 1. Performance statistics for the different structure of design matrix for ECB adaptation.

Boosting ~ Average

. RMSE MAPE
approach discrepancy
A 0.0080 0.0117  0.4392
Austria C 0.0100 0.0142  1.8599
AC 0.0085 0.0110  2.8458
A 0.0051 0.0104 0.3567
Slovenia C 0.0114 0.0154 3.8724
AC 0.0065 0.0100  1.8303
A 0.0105 0.0169  0.2631
Lithuania C 0.0169 0.0217  0.8234
AC 0.0124 0.0180  0.6845

3.2. Generalization of Italian Actuarial Practice Using ECB Adaptation

The procedure presented in Section 2.2 has been further specified and adapted, in order to build a
generalized machine-learning version of the table scaling technique. To mimic the procedure, one-year
death probabilities g, ; have been adopted as quantity of interest. Because of the additive nature of the
updates and to replicate the multiplicative scaling used to adapt national mortality tables, Estimation
Contrast Boosting has been applied to the natural logarithm of such probabilities. The updates
(55? )(1 T) have been estimated using data relative to time period 1990-1999, notwithstanding the results
in Section 3.1, to reproduce the length of the time series usually available to an insurance company. The
ECB updates have been extended to calendar years 2000-2019 using Age-based Estimation Contrast
Boosting.

Performances have been assessed comparing adapted death probabilities for the book popula-
tion, observed death probabilities and rescaled death probabilities, by means of Contrast Trees with
discrepancy 4, RMSE and MAPE. Data used to estimate and evaluate Contrast Trees are split in half
using maximum dissimilarity approach, while RMSE and MAPE have been calculated on the whole
projection period.

Lack-of-fit curves relative to the three book populations are reported in Figure 6. In all three cases,
the discrepancy resulting for the ECB boosting procedure is lower than the one resulting from mortality
scaling across the whole input space. However, the scale of discrepancy is quite different across the
book populations. LOF curve for ECB procedure presents a flatter profile, while, for mortality scaling
LOE, curve presents very high values of discrepancy in the left regions: this means that accuracy issues
relative to mortality scaling occur especially in high discrepancy regions. There, the flexibility of ECB
procedure allows for separate updates for different age classes. While it is possible to extend mortality
adaptation by estimating different coefficients on different age classes, in the case of ECB such classes
are determined directly from the procedure and do not require further input, nor expert judgement. It
should also be recalled that the assumption of relative mortality stability between reference and book
population is not verified for Lithuania: so results relative to Lithuanian book population must be
taken with caution.
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Figure 6. LOF curves comparing mortality scaling and ECB mortality boosting. Panels refer respectively
to Austrian (a), Slovenian (b) and Lithuanian (c) book population.
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Numerical indicators in Table 2 indications are coherent with LOF curves, although they provide
less detail: ECB adaptation features lower average discrepancy and RMSE in all three cases, while
MAPE is comparable for Austrian and Slovenian book population. It can be noted, in line with figure
6, that Austrian book population is characterized by the lowest values of the inaccuracy indexes,
followed by Slovenia and then Lithuania.

Table 2. Performance statistics for mortality scaling and ECB adaptation.

Average

Model . RMSE MAPE
discr.

Austria Adapt  0.0011 0.0018 0.1175
s Scale 0.0019 0.0032 0.1043
Slovenia Adapt  0.0013 0.0027 0.1731
Scale 0.0025 0.0066 0.1733

Lithuania Adapt  0.0058 0.0077  0.2492
Scale 0.0090 0.0134 0.4855

As already observed, model performances differ most in high-discrepancy regions. Since the
input space used in Contrast Tree estimation is quite simple, consisting only of age, calendar year and
cohort predictors, we can represent the pattern of discrepancy on the input space for ages 30-90 and
calendar years 2000-2019, easily identifying such regions. Results are presented in Figures 7, 8 and 9
for Austrian, Slovenian and Lithuanian book populations, respectively: regions filled in green have
lower discrepancy values, while red ones have higher discrepancies. For the sake of image readability,
regions whose associated discrepancy value exceeds the maximum on right-side scale are filled in
purple.

80 80 '

40 40

2000 2005 2010 2015 2020 2000 2005 2010 2015 2020
Year Year

(a) (b)

Figure 7. Regions uncovered by the Contrast Tree on the input space relative to Austrian book
population. Panel (a) reports discrepancy for ECB mortality adaptation, while panel (b) reports
discrepancy for mortality scaling.

For Austrian males, both models are quite well-behaved (i.e., produce relatively low values for
discrepancy) until age 65. For older ages, the accuracy of both models starts to deteriorate, but this
effect is much more noticeable for table scaling and particularly sizeable at very old ages, regardless of
calendar year. For Lithuanian book population this pattern is much less evident, and discrepancy is
more evenly distributed in the input space. The better performances for ECB adaptation are apparent
across all input space.
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Figure 8. Regions uncovered by the Contrast Tree on the input space relative to Slovenian book
population. Panel (a) reports discrepancy for ECB mortality adaptation, while panel (b) reports
discrepancy for mortality scaling.

Similar considerations can be applied to Slovenian male population. Please note that the almost
constant value of discrepancy on input space corresponds directly with the flat profiles of LOF curves
reported in panel (b) of Figure 6.
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Figure 9. Regions uncovered by the Contrast Tree on the input space relative to Lithuanian book
population. Panel (a) reports discrepancy for ECB mortality adaptation, while panel (b) reports
discrepancy for mortality scaling.

For Lithuanian book population the pattern described for Austria and Slovenia is less evident.
Although high discrepancy tends to be more evenly distributed in input space, older age regions still
tend to be associated with worse model performances.

4. Discussion

In this paper, using the tools provided by Contrast Trees, a Machine Learning approach to
mortality spread estimation in the context of two-population models has been constructed. The
proposed model computes mortality spread using Estimation Contrast Boosting (ECB), and produces
book population mortality table by applying ECB updates to the mortality-related quantities of a
reference, much larger, population, whose mortality can be projected using well-attested models. This
ECB-based model provides a good degree of flexibility, allowing for a variety of mortality-related
quantities of interest, dynamic mortality models for reference population projection and predictor
structure for ECB updates estimation. While some caution is advised when assessing the relative
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mortality structure of the two populations taken into account and when extending the ECB updates to
mortality projection time frame, the model can be quite easily implemented.

Finally, taking into account Italian actuarial practice, ECB mortality adaptation has been used to
generalize the mortality scaling usually used within insurance companies for estimating a realistic
demographic technical basis. The new procedure leads to more accurate estimation results compared
to those obtained with the traditional technique and also allows to overcome its main limitation of
applying the same adaptation coefficient to all ages. While these results seems promising, further
investigation is needed since the ECB methodology has not been tested on company data, whose
Relative Mortality Measure could behave differently in respect to the results in Section 2.3.
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