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Abstract: Heart failure (HF) is a global health challenge characterized by the heart’s inability to satisfy 

metabolic demands, driven by renin-angiotensin-aldosterone system (RAAS) overactivation, 

neurohormonal imbalance, and emerging mechanisms like the gut-heart axis and mitochondrial 

dysfunction. Affecting over 6 million adults in the US alone, HF incurs a 5-year mortality rate of 50% and 

escalating costs projected to double by 2030. This review examines HF’s molecular paradigms, integrating 

established pathways with advances in omics, stem cell therapy, genetic modification, and personalized 

medicine. RAAS blockade remains central, yet its efficacy is limited in HF with preserved ejection fraction 

(HFpEF). Stem cell therapies (mesenchymal and induced pluripotent stem cells) show regenerative 

potential but face poor retention (<10% survival at 30 days). CRISPR/Cas9 offers precision, though off-

target effects persist. The gut microbiome, via trimethylamine N-oxide, exacerbates inflammation, while 

omics technologies promise biomarkers for tailored treatments. Challenges include translating these 

innovations into practice, particularly for HFpEF. Future directions involve novel HFpEF therapies, 

enhanced stem cell delivery, precise genetic tools, and microbiome interventions, supported by artificial 

intelligence. By 2030, these advances could shift HF management toward regeneration, contingent on 

overcoming translational barriers through global collaboration. 

Keywords: heart failure; renin-angiotensin system; microbiota; genomics; stem cell therapy; genetic 
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1. Introduction 

Heart failure (HF) is a complex clinical syndrome characterized by the heart's inability to 

maintain adequate cardiac output to meet peripheral metabolic demands, often requiring elevated 

ventricular filling pressures to compensate [1]. This condition imposes a significant global health 

burden with profound epidemiological and economic implications. In the United States, HF affects 

approximately 6.2 million adults (2013-2016), with an annual incidence of 915,000 new cases and a 

projected 46% increase by 2030, driven by an aging population and persistent risk factors such as 

systemic arterial hypertension and type 2 diabetes mellitus [2]. In Europe, prevalence ranges from 1-

2% in adults, rising to over 10% among those aged 70 and older, with elevated rates in Germany and 

the United Kingdom due to ischemic heart disease [3]. Japan reports a prevalence of 1-1.2%, while 

Brazil’s is 1-2%, reflecting a shift toward Western cardiovascular risk profiles [4,5]. HF’s morbidity is 

marked by recurrent acute decompensation episodes necessitating frequent hospitalizations, with a 

5-year mortality rate approaching 50%, comparable to certain aggressive malignancies [6]. 

Economically, HF-associated costs in the US exceeded $30.7 billion in 2012, projected to double by 

2030, while Europe faces an annual burden of approximately €29 billion, highlighting the need for 

optimized therapeutic strategies [7,8]. 

The pathophysiology of HF involves myocardial contractile dysfunction, oxidative stress, and 

adverse ventricular remodeling, primarily mediated by overactivation of the renin-angiotensin-

aldosterone system (RAAS) and the release of proinflammatory cytokines like tumor necrosis factor-

alpha (TNF-α) [9]. Emerging research has identified novel mechanisms, including epigenetic 

regulation of cardiomyocyte gene expression, the gut-heart axis via the microbiome, and 

mitochondrial dysfunction, all currently under investigation as potential therapeutic targets [10]. This 

review provides an overview of HF’s molecular paradigms, integrating established knowledge with 

cutting-edge research and exploring their applicability across diverse global contexts. 

2. Classic and Contemporary Metabolic Pathways in Heart Failure 

The most widely recognized pathophysiological mechanism in HF is the overactivation of the 

RAAS, a neurohormonal system pivotal to cardiovascular homeostasis [11]. In the short term, RAAS 

activation compensates for reduced cardiac output by inducing adaptive changes at cardiac, renal, 

and vascular levels, such as increased contractility and fluid retention. However, its chronic 

overactivation generates hemodynamic stress, leading to deleterious effects including myocardial 

hypertrophy, fibrosis, and systemic vasoconstriction, all of which exacerbate HF progression [11]. 

This sustained neurohormonal activation, first comprehensively integrated by Packer in 1992, 

remains a primary driver of HF, positioning pharmacological RAAS blockade—via ACE inhibitors 

(ACEIs), angiotensin II receptor blockers (ARBs), and mineralocorticoid receptor antagonists—as a 

cornerstone of contemporary treatment [12]. 

Reduced cardiac output triggers a cascade of compensatory responses detected by peripheral 

arterial baroreceptors, signaling an underfilled state [11]. These responses encompass increased heart 

rate and myocardial contractility (via sympathetic nervous system [SNS] activation), sodium and 

water retention (via RAAS), and peripheral vasoconstriction to maintain blood pressure [11]. In heart 

failure with reduced ejection fraction (HFrEF), these mechanisms initially preserve cardiovascular 

homeostasis but become maladaptive over time [12]. Under normal conditions, counter-regulatory 

systems, such as parasympathetic tone and natriuretic peptides, mitigate SNS and RAAS activity. 

However, in HF, parasympathetic tone diminishes, and resistance to natriuretic peptides increases, 

amplifying neurohormonal activation [12]. Originally termed "neurohormones" due to their 

neuroendocrine origins, these molecules are now recognized to also function via paracrine and 

autocrine pathways, broadening their role in HF pathophysiology [12]. 
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2.1. Neurohormonal Activation 

Circulating volume is tightly regulated by baroreceptors in the aortic arch and carotid sinus 

(sensing high pressure) and pulmonary mechanoreceptors (detecting low pressure), which relay 

inhibitory signals to the central nervous system (CNS) to modulate sympathetic outflow [14]. In HF, 

reduced cardiac output diminishes baroreceptor activity, leading to heightened SNS activation, 

increased heart rate, and enhanced contractility, alongside peripheral vasoconstriction to redistribute 

blood flow [14]. Neurogenic signaling further disrupts the sympathetic-parasympathetic balance, 

with HF patients exhibiting increased chemosensitivity to hypoxia and hypercapnia, as well as 

exaggerated ergoreceptor reflexes triggered by metabolic byproducts of muscle work [14,15]. These 

alterations impair functional capacity, reduce exercise tolerance (evidenced by decreased peak 

oxygen consumption; VO₂), and correlate with disease severity and poorer survival prognosis [14]. 

Elevated circulating neurohormone levels, sufficient to induce ventricular dysfunction and 

remodeling, underscore the therapeutic efficacy of SNS and RAAS inhibitors, which significantly 

improve clinical outcomes [12]. 

SNS overactivation, a hallmark of early HF, elevates circulating norepinephrine levels, 

amplifying adrenergic signaling through sustained release and reduced reuptake at nerve terminals 

[19]. This chronic stimulation promotes cardiomyocyte apoptosis, myocardial fibrosis, and 

endothelial dysfunction, exerting long-term deleterious effects on the heart, kidneys, and peripheral 

vasculature [20]. Concurrently, RAAS activation amplifies these effects by increasing angiotensin II 

and aldosterone, further driving vasoconstriction and fluid overload [11]. Over time, these changes 

contribute to adverse cardiac remodeling, including left ventricular hypertrophy and dilatation, 

worsening HF progression [19]. 

2.2. Renal Function 

Renal sodium and water retention, resulting in peripheral and pulmonary edema, is a central 

feature of HF, orchestrated by SNS and RAAS activation rather than intrinsic renal pathology [21]. 

Sympathetic stimulation constricts the renal afferent arteriole, reducing glomerular blood flow and 

triggering renin release from the juxtaglomerular apparatus, an effect enhanced by β-adrenergic 

receptor activation [21]. Renin catalyzes the conversion of hepatic angiotensinogen to angiotensin I, 

which ACE transforms into angiotensin II, a potent vasoconstrictor that binds to type 1 receptors 

(AT1) in the adrenal glomerulosa, stimulating aldosterone production [21]. Angiotensin II also 

promotes proximal tubule sodium reabsorption and triggers vasopressin release from the 

hypothalamus, increasing water retention via non-osmotic pathways that override plasma 

osmolarity regulation, leading to hyponatremia [22]. Aldosterone, acting on distal nephrons, further 

enhances sodium retention, with levels rising 30-40% in HF patients despite ACEI or ARB use, a 

phenomenon termed “aldosterone escape” [22]. 

Counter-regulatory mechanisms involve natriuretic peptides, secreted in response to atrial and 

myocardial stretch, which promote cyclic guanosine monophosphate (cGMP)-mediated vasodilation 

and natriuresis [22]. However, peripheral resistance to these peptides in HF limits their efficacy, 

compounded by neprilysin-mediated degradation [22]. Additional RAAS derivatives, such as 

angiotensin III (stimulating aldosterone) and angiotensin 1-7 (counteracting ventricular remodeling), 

modulate this axis, though their therapeutic potential remains underexplored [22]. These renal and 

systemic effects highlight the intricate interplay of neurohormonal pathways in HF, informing 

targeted interventions like neprilysin inhibitors (for example, sacubitril) combined with RAAS 

blockers. 
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Figure 1. Pathways in Heart Failure (Simplified View). Note that, for explanatory purposes, the pathways have 

been separated; however, there is complex crosstalking between all of them. 

3. Microbiome in Heart Failure: The Gut-Heart Axis 

The gut microbiome comprises a diverse array of microorganisms, including bacteria, viruses, 

archaea, bacteriophages, protozoa, and fungi, that play critical roles in metabolism, facilitating 

digestion, nutrient absorption, and immune system development [27,28]. Its composition exhibits 

significant interindividual variability, even among genetically related individuals, and is heavily 

shaped by environmental factors such as diet, medications, and lifestyle [29]. To characterize this 

diversity, microbiome research employs three key metrics: alpha diversity, assessing taxonomic 

richness (number of taxa) and evenness (relative abundance) within a sample; beta diversity, 

evaluating variability in microbial community composition across samples from the same habitat; 

and gamma diversity, representing total taxonomic richness across all samples from a habitat [30]. 

Disruptions in microbiome composition, both qualitatively and quantitatively, are implicated in the 

onset and progression of prevalent diseases, including obesity, metabolic syndrome, chronic kidney 

disease, hepatic steatosis, and cardiovascular disorders such as acute myocarditis, coronary artery 

disease, atrial fibrillation, and HF [31–33]. 

3.1. Gut Microbiome and Heart-Gut Axis 

In HF, cardiac dysfunction compromises intestinal barrier function, leading to ischemia and 

edema of the gut wall [34]. This increased permeability permits translocation of microorganisms and 

their metabolic byproducts (e.g., lipopolysaccharides) into the portal and systemic circulation, 

eliciting immune and inflammatory responses [34]. The "gut hypothesis" of HF suggests that this 

process drives chronic low-grade inflammation, worsening cardiac dysfunction and establishing a 

bidirectional feedback loop between the heart and gut [29]. This dysbiosis often precedes clinical HF, 

influenced by factors such as Western diets rich in processed foods, sedentary lifestyles, circadian 

rhythm disruptions, and aging [35,36]. Notably, microbiome profiles in HF patients mirror those in 

dysmetabolic individuals prior to cardiovascular disease onset, suggesting a preclinical role in 

disease progression [35]. In advanced HF, pathogenic genera such as Shigella, Campylobacter, and 

Salmonella proliferate, linked to persistent T-cell activation and increased susceptibility to 

Clostridioides infections, particularly in hospitalized patients receiving antibiotics [29]. Concurrently, 

bacteria like Bacteroides/Prevotella, Eubacterium rectale, and Fusobacterium prausnitzii increase, while 
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anti-inflammatory taxa, including Coriobacteriaceae, Erysipelotrichaceae, Ruminococcaceae, 

Faecalibacterium, Eubacterium, Dorea, and Bifidobacterium decline, reducing butyrate production, a key 

anti-inflammatory metabolite that modulates cytokine cascades and regulatory T-cell activity [29,37]. 

3.2. Disorders of Intestinal Metabolism in HF 

HF-induced intestinal hypoxia and visceral venous congestion, particularly in right-sided HF, 

impair blood flow to epithelial cells, triggering cellular hypoxia, anaerobic metabolism, and 

overexpression of the sodium/hydrogen exchanger 3, which increases sodium transport and lowers 

luminal pH [38]. Given that up to 40% of total blood volume resides in the gastrointestinal tract, these 

metabolic shifts have significant clinical impact [39]. This functional dysbiosis disrupts nutrient 

digestion, vitamin synthesis, and mucosal immunity, with a notable reduction in Bacteroides and 

Bifidobacteria and an increase in Firmicutes and Proteobacteria [40]. Fecal samples from chronic HF 

patients reveal higher concentrations of enteric pathogens (e.g., Salmonella, Shigella, Campylobacter), 

correlating with disease severity and systemic inflammation [40]. These changes exacerbate HF by 

amplifying inflammatory signaling and immune dysregulation, further straining cardiac function 

[29]. 

3.3. Trimethylamine N-Oxide  

Trimethylamine N-Oxide (TMAO), a metabolite produced by gut microbiota from dietary 

precursors like choline, betaine, L-carnitine, and phosphatidylcholine (found in seafood, dairy, eggs, 

meat, and organ meats), is increasingly recognized as a cardiovascular risk factor, dubbed the 

“missing link” between Western diets and HF [43]. Gut bacteria, particularly Firmicutes and 

Proteobacteria (e.g., Providencia rettgeri, Clostridioides sporogenes), hydrolyze these nutrients via 

enzymes like choline-TMA lyase (cutC/D) and carnitine monooxygenase (cntA/B), producing 

trimethylamine (TMA) [43]. TMA is absorbed and oxidized to TMAO by hepatic flavin-containing 

monooxygenase (FMO3), with mutations in FMO3 causing trimethylaminuria due to TMA 

accumulation [44–47]. In HF, elevated TMAO levels correlate with increased inflammation, oxidative 

stress, and adverse ventricular remodeling, amplifying disease progression [43]. Excess TMA may 

also degrade into dimethylamine or methane, though TMAO’s role in HF is most pronounced [46,47]. 

 

Figure 2. Gut-Heart Axis and Its Perpetuation. Intestinal dysbiosis, further sustained by dysfunction secondary 

to heart failure (HF), leads to an increase in TMA, which is converted into TMAO by hepatic FMO3. TMAO, 
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along with other external agents, enhances adverse cardiac remodeling, perpetuating the cycle. Adapted from 

original article by M. Karmazyn y X. T. Gan, 2023 [110]. 

4. The Evolution of Omics in Heart Failure Research 

Recent advances in omics technologies (genomics, transcriptomics, proteomics, and metabolomics) 

have revolutionized HF research by providing comprehensive insights into its molecular mechanisms 

across multiple biological layers [48]. These tools have shifted cardiac research from broad 

pathophysiological models to detailed molecular profiles, enabling precise diagnostic and therapeutic 

strategies that pave the way for personalized medicine [48]. This section explores how omics approaches 

elucidate HF’s complexity and their potential to transform clinical practice. 

4.1. Genomic Foundations and Environmental Interactions 

Genomic studies reveal that HF susceptibility extends beyond single nucleotide polymorphisms to 

include structural variants such as deletions, duplications, and inversions, particularly in inherited 

conditions like hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) [49]. Rare 

genetic disorders underpin these cardiomyopathies, with mutations in genes like MYH7 and TTN driving 

disease progression [50]. Environmental factors, including diet, lifestyle, and toxin exposure, interact with 

genetic predispositions, adding complexity to HF development [49]. Understanding these gene-

environment dynamics has improved risk stratification, enabling family screening protocols and targeted 

preventive strategies, though predicting individual disease trajectories remains challenging [51]. 

 

Figure 3. Basic concepts of the relationship between the genome, transcriptome, proteome, and metabolome. 

Together with other elements (such as the epigenome), these factors shape phenotypic changes, such as 

hypertrophic cardiomyopathy and dilated cardiomyopathy. 
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4.2. Advances in Transcriptomics and Regulatory RNA Networks 

Transcriptomics has uncovered regulatory mechanisms involving long non-coding RNAs 

(lncRNAs) and circular RNAs (circRNAs), which act as scaffolds for protein complexes and modulate 

alternative splicing in the failing heart [52]. The advent of spatial transcriptomics allows mapping of 

gene expression heterogeneity at cellular and tissue levels, revealing distinct transcriptional 

signatures across cardiac regions [53]. For instance, studies have identified upregulated fibrotic genes 

in peri-infarct zones post-myocardial infarction (MI), explaining regional dysfunction in HF [54]. 

These RNA networks offer potential therapeutic targets, with early preclinical efforts exploring RNA-

based interventions to modulate cardiac remodeling [55]. 

4.3. Proteomic Insights and Post-Translational Modifications 

Quantitative and interaction-based proteomics have expanded understanding of HF protein 

networks, identifying key players in contractile dysfunction and signaling cascades [56]. Post-

translational modifications, such as acetylation and methylation, critically regulate protein function, 

influencing cardiac remodeling, energy metabolism, and cellular signaling [57]. Advanced 

techniques have uncovered novel interactions, such as acetylation-driven changes in mitochondrial 

proteins, which underlie energy deficits in HF, and elucidated mechanisms of existing therapies like 

beta-blockers [58]. These findings highlight proteomics as a tool for identifying therapeutic targets 

and biomarkers, though translating these insights into clinical applications requires further 

validation [56]. 

4.4. Metabolomic Alterations and Cellular Energetics 

Metabolomics has detailed perturbations in lipid metabolism, amino acid processing, and 

nucleotide pathways, reflecting altered cellular energetics, protein turnover, and cell death in HF 

[59,60]. These changes underscore the energy crisis in the failing heart, with reduced ATP production 

linked to mitochondrial dysfunction [61]. For example, studies have identified elevated branched-

chain amino acid levels in HFrEF, correlating with disease severity, and altered lipid profiles as early 

markers of cardiac stress [62]. Mapping these metabolic shifts has revealed targets like ketone 

metabolism for improving energy efficiency, alongside potential biomarkers for early detection [63]. 

Thus, integrating multi-omic datasets using artificial intelligence (AI) and deep learning has 

identified precise biomarkers for HF diagnosis and prognosis, such as circulating microRNAs and 

proteomic signatures predictive of acute decompensation [64]. However, challenges include 

validating these biomarkers in diverse cohorts, interpreting complex data, and addressing high costs 

and limited accessibility [64]. Ethical considerations, including genomic data privacy and informed 

consent, also pose hurdles, necessitating robust frameworks to ensure equitable application [64]. The 

future of omics in HF hinges on overcoming these barriers, with potential to deliver personalized 

treatments by combining genomic risk scores with metabolic and proteomic profiles [65]. 

5. Advanced Molecular Therapies 

Advanced molecular therapies aim to regenerate myocardium or correct underlying defects in 

HF, leveraging stem cells and genetic modification techniques with promising yet evolving 

applications. 

5.1. Stem Cell Therapy in Heart Failure 

Stem cell therapy seeks to repair lost myocardium or stimulate endogenous repair using 

mesenchymal stem cells (MSCs), induced pluripotent stem cells (iPSCs), and cardiac progenitor cells 

(CPCs) [66]. MSCs, derived from bone marrow or adipose tissue, exert therapeutic effects primarily 

through paracrine mechanisms, releasing cytokines such as vascular endothelial growth factor 

(VEGF), hepatocyte growth factor (HGF), and interleukin-10 (IL-10) to promote angiogenesis, reduce 

inflammation, and attenuate fibrosis [66]. A 2022 meta-analysis of 34 clinical trials in post-myocardial 
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infarction (MI) HF patients reported a modest left ventricular ejection fraction (LVEF) improvement 

of 3.8% (95% CI 1.2-6.4) at 6 months, though 12-month mortality remained unchanged (OR 0.89; 

p=0.34) [67]. Lineage-tracing studies confirm that differentiation into functional cardiomyocytes is 

minimal (<1%), emphasizing paracrine effects as the dominant mechanism [68]. 

iPSCs, generated by reprogramming somatic cells (for example, fibroblasts), offer scalable 

production of autologous cardiomyocytes [69]. In a 2023 porcine MI model, bioengineered cardiac 

patches with iPSC-derived cardiomyocytes achieved electrical integration with native myocardium, 

boosting LVEF by 12% at 12 weeks, as assessed by cardiac magnetic resonance imaging (MRI) [69]. 

However, risks include teratoma formation (5-10% incidence in animal models) and ventricular 

arrhythmias (15% incidence) due to electrical immaturity, though co-culture with endothelial cells or 

electrical stimulation reduced arrhythmia rates by 50% in preliminary studies [70,71]. 

CPCs, isolated from human cardiac tissue, provide tissue-specific repair potential [72]. The 

ALLSTAR trial (2017-2022) evaluated intramyocardial delivery of allogeneic CPCs in chronic post-

MI HF, reporting an 8.1 mL reduction in left ventricular end-systolic volume (p=0.03) at 6 months, 

though no significant differences in major adverse events (e.g., death, hospitalization) were observed 

at 12 months versus placebo [72]. Advances in bioengineering, such as three-dimensional (3D) 

hydrogel scaffolds with MSCs, have increased post-transplantation cell survival from 25% to 65% at 

4 weeks in murine models, enhancing neovascularization and tissue integration [73]. Despite these 

advances, challenges persist, including poor cell retention (<10% survival at 30 days post-injection), 

variability in delivery methods (intracoronary, intramyocardial, or intravenous), and limited 

differentiation into functional cardiomyocytes [74]. Ongoing research for 2024-2025 explores 

preconditioning with hypoxia or growth factors like insulin-like growth factor-1 (IGF-1), improving 

viability by 30% in preclinical models [75]. 

5.2. Genetic Modification in Heart Failure 

Genetic modification offers strategies to correct mutations or enhance repair, encompassing 

targeted genome editing (CRISPR/Cas9, zinc finger nucleases (ZFNs), transcription activator-like 

effector nucleases (TALENs), meganucleases) and non-integrative gene delivery (viral vectors, 

mRNA, transposons) [76]. CRISPR/Cas9, valued for its simplicity, corrected a MYH7 mutation in 

hypertrophic cardiomyopathy (HCM) patient-derived iPSCs, restoring 90% of cardiomyocyte 

contractility in vitro via calcium transients [76]. In a murine laminopathy-associated dilated 

cardiomyopathy (DCM) model, AAV9-delivered CRISPR reduced fibrosis by 45% and improved 

LVEF by 14% (p<0.01) at 8 weeks [77]. Post-MI, silencing TGF-β1 with CRISPR decreased scar 

formation by 30% and enhanced LVEF by 10% at 6 weeks in mice [78]. However, off-target effects 

(4% in 2023 porcine trials) and low delivery efficiency (15-25% of cardiomyocytes transduced) limit 

clinical use, with base editing and prime editing (95% precision in 2024 murine models) under 

evaluation [79,80]. 

ZFNs corrected a TTN mutation in iPSC-derived cardiomyocytes, improving contractility by 

70% in vitro, while silencing connective tissue growth factor (CTGF) in ischemic HF models reduced 

fibrosis by 20% [81,82]. Their specific design limits flexibility compared to CRISPR [83]. TALENs 

overexpressed VEGF-A in post-MI murine models, increasing capillary density by 35% and LVEF by 

8% at 8 weeks, while transposons like PiggyBac promote cardiomyocyte proliferation [84,85]. AAV9 

vectors delivering VEGF-A in porcine HF models boosted capillary density by 40% and LVEF by 11% 

at 12 weeks, though limited cargo capacity (4.7 kb) and immunity in 50% of humans pose barriers 

[86,87]. Synthetic mRNA via lipid nanoparticles increased capillary density by 45% and LVEF by 11% 

at 4 weeks in post-MI mice, with storage and cost challenges remaining [88,89]. 
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Table 1. Summary of Advanced Molecular Therapies in Heart Failure. 

Therapy Method Advantages Disadvantages Current Use 

Stem Cell Therapy     

Mesenchymal Stem 

Cells (MSCs) 

Derived from bone 

marrow or adipose 

tissue; delivered via 

intracoronary, 

intramyocardial, or 

intravenous routes; 

exert paracrine effects 

via cytokines (VEGF, 

HGF, IL-10). 

Promotes 

angiogenesis, 

reduces 

inflammation and 

fibrosis; modest 

LVEF improvement 

(3.8% at 6 months) 

in post-MI HF [67]. 

Poor cell retention 

(<10% survival at 30 

days); minimal 

differentiation into 

cardiomyocytes (<1%); 

no mortality reduction 

[67,68,74]. 

Clinical trials; 

experimental 

preconditioning with 

hypoxia or IGF-1 

[67,75]. 

Induced Pluripotent 

Stem Cells (iPSCs) 

Reprogrammed 

somatic cells 

(fibroblasts) into 

cardiomyocytes; used 

in bioengineered 

cardiac patches [69]. 

Scalable autologous 

production; 

significant LVEF 

increase (12% at 12 

weeks) in porcine 

MI models with 

electrical 

integration [69]. 

Risks of teratoma 

formation (5-10%) and 

arrhythmias (15%) due 

to electrical immaturity 

[70]. 

Preclinical models; 

maturation strategies 

reducing arrhythmias 

by 50% [71]. 

Cardiac Progenitor 

Cells (CPCs) 

Isolated from human 

cardiac tissue; 

intramyocardial 

delivery of allogeneic 

cells [72]. 

Tissue-specific 

repair; reduces LV 

end-systolic volume 

(-8.1 mL at 6 

months) in chronic 

post-MI HF [72]. 

No significant impact 

on major adverse 

events (death, 

hospitalization) at 12 

months [72]. 

Clinical trials. 

Genetic 

Modification 
    

CRISPR/Cas9 

Targeted genome 

editing to correct 

mutations or silence 

genes; delivered via 

AAV9 or iPSCs [78]. 

High precision; 

restores 

contractility (90% in 

vitro), reduces 

fibrosis (45%), 

improves LVEF 

(14%) in models 

[76–78]. 

Off-target effects (4% in 

porcine trials); low 

delivery efficiency (15-

25% of 

cardiomyocytes) [79]. 

Preclinical; 

base/prime editing 

(95% precision) under 

evaluation [80]. 

Zinc Finger 

Nucleases 

Early genome-editing 

tool to correct TTN 

mutations or silence 

CTGF; delivered to 

iPSC-derived 

cardiomyocytes [81]. 

Improves 

contractility (70% in 

vitro); reduces 

fibrosis (20%) in 

ischemic HF models 

[81,82]. 

Labor-intensive design; 

less flexible than 

CRISPR [83]. 

Limited use; largely 

superseded by 

CRISPR [81]. 

TALENs & 

Meganucleases 

Precision editing to 

overexpress VEGF-A 

or promote 

proliferation; delivered 

in murine models [84–

87]. 

Increases capillary 

density (35%) and 

LVEF (8%) in post-

MI models; 

alternative to 

CRISPR [84]. 

Complex design; 

limited scalability 

compared to newer 

tools [86]. 

Preclinical 

Viral Vectors (e.g., 

AAV9) 

Non-integrative gene 

delivery of VEGF-A or 

SERCA2a; 

intracoronary or 

intramyocardial 

injection [88]. 

Boosts angiogenesis 

(40% capillary 

density) and LVEF 

(11%) in porcine HF; 

robust expression 

[88]. 

Limited cargo capacity 

(4.7 kb); pre-existing 

immunity in 50% of 

humans [89]. 

Clinical trials (CUPID 

for SERCA2a); 

ongoing optimization 

[91]. 

Synthetic mRNA 

Transient gene 

expression (VEGF-A) 

via lipid nanoparticles; 

intramyocardial 

injection [92]. 

Enhances capillary 

density (45%) and 

LVEF (11%) in mice; 

safe, no genomic 

integration [92–94]. 

High cost, storage 

challenges; transient 

effect limits duration 

[93]. 

Preclinical; adapted 

from mRNA vaccine 

technology [94]. 

Transposons (e.g., 

PiggyBac) 

Non-viral gene 

integration to promote 

cardiomyocyte 

proliferation [95]. 

Versatile; enhances 

regeneration in 

murine models [97]. 

Potential mutagenicity; 

less precise than 

CRISPR [96]. 

Early preclinical; 

combined with stem 

cells [97]. 

Synergistic 

Approaches 

Combines stem cells 

with genetic editing 

(e.g., CRISPR-iPSCs 

High differentiation 

efficiency (92%); 

reduces apoptosis 

Combines limitations 

of both approaches 

Preclinical; 

advancing toward 
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with GATA4/TBX5, 

TALEN-MSCs with 

HGF) [93,94]. 

(35%), increases 

angiogenesis (40%) 

[93,94]. 

(e.g., retention, off-

target effects) [93]. 

phase II/III trials by 

2025 [95]. 

Synergistic approaches, such as CRISPR-edited iPSCs overexpressing GATA4 and TBX5 (92% 

differentiation efficiency) or TALEN-modified MSCs with HGF (35% less apoptosis, 40% more 

angiogenesis), enhance regeneration [93,94]. Advances like bioengineered scaffolds and safer 

delivery systems aim to overcome scalability and regulatory hurdles by 2025 [95–100]. 

6. Personalized Medicine in Heart Failure 

Personalized medicine leverages molecular profiling via genomics, transcriptomics, 

epigenomics, and proteomics to enhance HF diagnosis and treatment, tailoring therapies to 

individual profiles [101]. 

One of the main aspects of personalized medicine and HF remains between therapies and 

oxidative stress. Reactive oxygen species (ROS), such as superoxide and hydrogen peroxide, regulate 

cardiac myocyte growth and apoptosis, with mitochondria as both a source and target of oxidative 

damage [101]. Proinflammatory cytokines like TNF-α drive mitochondrial ROS production, 

contributing to HF progression, while imbalanced mitochondrial fission and fusion exacerbate 

ischemia-reperfusion injury [102–104]. 

 

Figure 4. The key difference between personalized and standard medicine lies in identifying similar 

characteristics in phenotypic aspects (lipidome, genome, microbiome, metabolome, etc.), which influence 

specific responses and advantages. This approach adjusts treatments not only based on clinical or demographic 

characteristics but also on cellular and molecular factors. 
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6.1. Therapeutic Interventions 

Structured physical training (aerobic, resistance, or respiratory) improves nitric oxide (NO) 

bioavailability by optimizing endothelial nitric oxide synthase (eNOS) function and antioxidant 

enzyme expression, mobilizing endothelial progenitor cells and reducing TNF-α, IL-10, and IL-6 

levels [106]. ACEIs and ARBs reduce mortality, enhancing endothelial function via increased flow-

mediated dilation and arterial elasticity, with perindopril lowering E-selectin and boosting NO in 

HFrEF and HFpEF [101,105,106]. Sacubitril/valsartan, an angiotensin receptor-neprilysin inhibitor 

(ARNI), inhibits natriuretic peptide degradation, improving vasodilation and natriuresis; a 12-week 

study in 80 HFrEF patients showed increased LVEF, NO, and flow-mediated dilation, with reduced 

endothelin-1 (ET-1) [106,107]. 

Beta-blockers like carvedilol (acting on β2 and α1 receptors) reduce mitochondrial oxygen 

consumption and ROS, achieving a 64% mortality reduction in 1996, unlike metoprolol, while 

improving L-arginine, L-citrulline, and vascular cell adhesion molecule-1 (VCAM-1) levels [101,108]. 

Sodium-glucose cotransporter 2 inhibitors (SGLT2i), such as empagliflozin, counter anaerobic 

glycolysis in HF by increasing ketone production, inhibiting Na+/H+ exchanger activity, and 

reducing ROS and arrhythmogenesis, with benefits in HFpEF via eNOS-dependent pathways [109]. 

Mineralocorticoid receptor antagonists (e.g., spironolactone with olmesartan) mitigate oxidative 

stress in ischemic HF, increasing endothelial progenitor cells (VEGFR2+/CD34+) [101,103,106]. 

In diabetic cardiomyopathy, metformin enhances autophagy via AMPK activation, increasing 

LC3-II and mitochondrial respiration [101]. Statins offer anti-inflammatory and antioxidant effects, 

stabilizing eNOS mRNA, reducing TNF-α, and promoting CD34+ cell activation for 

neovascularization and LVEF improvement [106]. Pharmacological inhibition of dynamin-related 

protein-1 (DRP-1) reduces cell death post-ischemia-reperfusion, while antioxidants (e.g., allopurinol) 

and Szeto-Schiller peptides (e.g., SS-31 in PROGRESS-HF) show limited structural benefits [101,102]. 

These therapies target endothelial dysfunction and oxidative stress, with ongoing research 

needed to optimize clinical outcomes [106]. 

7. Conclusions, Challenges and Future Directions 

HF remains a complex syndrome driven by RAAS overactivation and neurohormonal 

imbalance, with chronic SNS and aldosterone effects amplifying remodeling, as detailed earlier [9,12]. 

Despite progress, challenges persist. RAAS inhibitors excel in HFrEF but show limited efficacy in 

HFpEF [12]. Stem cell therapies (MSCs, iPSCs, CPCs) offer regenerative potential, yet poor retention 

(<10% survival at 30 days) and variable delivery methods (e.g., intracoronary, intramyocardial, 

intravenous) restrict impact, with modest LVEF gains (3.8-12%) and unresolved risks like 

arrhythmias [67,69,74]. CRISPR/Cas9 and viral vectors target mutations, but off-target effects (4% in 

2023 porcine trials) and low transduction efficiency (15-25% of cardiomyocytes) impede translation 

[79]. The gut-heart axis links dysbiosis and TMAO to inflammation, amplifying HF via immune 

activation, yet lacks actionable therapies [29]. Omics technologies promise biomarkers (e.g., 

microRNAs, metabolic profiles), yet face validation, cost, and ethical hurdles [64]. Personalized 

therapies (e.g., SGLT2i, ARNI) improve endothelial function, though structural benefits remain 

inconsistent [106]. 

Future research targets HFpEF with novel inflammation and fibrosis therapies, building on 

RAAS insights [12]. Stem cell advances, such as preconditioning with IGF-1 (30% viability boost) and 

3D scaffolds, aim to enhance efficacy, potentially synergizing with genetic modification [75,93]. 

Genetic tools like base editing (95% precision in 2024) and lipid nanoparticles promise precision [80]. 

Microbiome interventions, including probiotics or TMAO inhibitors, are anticipated for 2025 trials to 

mitigate inflammation [43]. AI-driven omics could validate biomarkers like lncRNAs and lipid 

profiles, supporting cost-effective care models [64]. 

In conclusion, HF’s molecular complexity, from RAAS-driven remodeling to microbiome and 

omics-derived insights, is increasingly understood, yet therapeutic gaps, especially in HFpEF, remain 
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unsolved [10]. Advances in stem cells, genetics, and personalized medicine, bolstered by microbiome 

and omics research, signal a shift toward regenerative care by 2030, contingent on overcoming 

translational barriers through global collaboration [65]. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

 ACE            Angiotensin-converting enzyme                 

 ACEIs          ACE inhibitors                               

 AI             Artificial intelligence                      

 ARBs           Angiotensin II receptor blockers             

 ARNI           Angiotensin receptor-neprilysin inhibitor    

 AT1            Angiotensin II type 1 receptor               

 cGMP           Cyclic guanosine monophosphate               

 CNS            Central nervous system                       

 CPCs           Cardiac progenitor cells                     

 CRISPR         Clustered regularly interspaced short palindromic repeats  

 DCM            Dilated cardiomyopathy                       

 DRP-1          Dynamin-related protein-1                    

 eNOS           Endothelial nitric oxide synthase            

 ET-1           Endothelin-1                                 

 FMO            Flavin-containing monooxygenase              

 HF             Heart failure                                

 HFrEF          Heart failure with reduced ejection fraction 

 HFpEF          Heart failure with preserved ejection fraction  

 HCM            Hypertrophic cardiomyopathy                  

 HGF            Hepatocyte growth factor                     

 IGF-1          Insulin-like growth factor-1                 

 IL-10          Interleukin-10                               

 iPSCs          Induced pluripotent stem cells               

 lncRNAs        Long non-coding RNAs                         

 LVEF           Left ventricular ejection fraction           

 MI             Myocardial infarction                        

 MSCs           Mesenchymal stem cells                       

 NO             Nitric oxide                                 

 RAAS           Renin-angiotensin-aldosterone system         

 ROS            Reactive oxygen species                      

 SGLT2i         Sodium-glucose cotransporter 2 inhibitors    

 SNS            Sympathetic nervous system                   

 TALENs         Transcription activator-like effector nucleases  

 TMA            Trimethylamine                               

 TMAO           Trimethylamine N-oxide                       

 TNF-α          Tumor necrosis factor-alpha                  

 VCAM-1         Vascular cell adhesion molecule-1            

 VEGF           Vascular endothelial growth factor           

 VO₂            Peak oxygen consumption                      

 ZFNs           Zinc finger nucleases                        
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