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Abstract

The internal quality assessment of potato tubers is a crucial task in agro-industrial processing. Tradi-
tional methods struggle to detect internal defects such as hollow heart, internal bruises, and insect
galleries using only surface features. We present a novel, fully modular hybrid AI architecture designed
for defect detection using RGB images of potato slices, suitable for integration in industrial sorting
lines. Our pipeline combines high-recall multi-threshold YOLO detection, contextual patch validation
using ResNet, precise segmentation via the Segment Anything Model (SAM), and skin-contact analysis
using VGG16 with a Random Forest classifier. Experimental results on a labeled dataset of over 6000
annotated instances show a recall above 90% and precision near 100% for most defect classes. The
approach offers both robustness and interpretability, outperforming previous methods that rely on
costly hyperspectral or MRI techniques. This system is scalable, explainable, and compatible with
existing 2D imaging hardware.

Keywords: potato defect detection; deep learning; RGB imaging; YOLO; SAM; ResNet; random forest

1. Introduction
The demand for automated, reliable, and scalable quality control systems in the agri-food industry

has never been higher. As artificial intelligence (AI) reshapes laboratory inspection processes, the
detection of internal defects in agricultural products presents a uniquely unsolved challenge. Among
these, potato tubers stand out due to their anatomical variability and the economic impact of undetected
internal anomalies during processing [1,2].

The global potato market is one of the most dynamic agricultural sectors, with more than 370
million tonnes produced annually, making the tuber the world’s leading non-cereal food crop by
volume [3]. In Europe, potatoes play a central role in the agri-food industry, both for direct consumption
and for laboratory transformation into high-value products such as chips, fries, and mashed potatoes.

Despite this strategic importance, quality control of tubers remains largely based on manual or
semi-automated practices, particularly for internal quality assessment. In many European countries,
the detection of internal defects such as hollow heart, bruising, or insect galleries still relies on visual
inspections or destructive sampling methods [4,5]. These techniques are poorly suited to current
laboratory demands for speed, traceability, and standardization.

In response to these challenges, this work proposes a novel AI-based approach tailored for real-
time, high-throughput, and low-cost defect detection using standard RGB 2D imaging, with the goal
of bridging the gap between academic advances and laboratory applicability.

1.1. Overview of the Proposed Approach

To overcome the limitations identified in previous studies, we propose a novel hybrid and
modular architecture specifically designed for the automatic detection of internal defects in potato
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tubers using standard RGB 2D slice imagery. Our approach combines the strengths of deep learning,
classical machine learning, and expert-inspired logic to form a sequential decision-making pipeline
that is both accurate and interpretable.

The proposed system begins with a high-recall object detection stage based on multiple YOLO
models trained with class-specific confidence thresholds. Potential detections are then passed through a
series of refinement modules, including patch-level classification using ResNet, semantic segmentation
using the Segment Anything Model (SAM), and a contextual depth evaluation stage that leverages
feature extraction via VGG16 and decision-making via a Random Forest classifier.

This layered architecture mimics human expert reasoning by progressively filtering, validating,
and contextualizing each detection. It is designed to be robust to visual ambiguity and operational
noise while remaining computationally efficient for real-time deployment in laboratory processing
lines.

Unlike end-to-end black-box classifiers, our pipeline introduces transparency at each stage of
inference, allowing for better understanding, easier maintenance, and targeted performance optimiza-
tion. It also offers adaptability to evolving defect taxonomies and processing requirements, making it a
viable and scalable solution for modern quality control systems in the agri-food sector.
Novelty Statement. The originality of the proposed system lies not in a single model, but in its modu-
lar and interpretable design that combines complementary deep and classical learning paradigms.
Unlike traditional monolithic classifiers, our approach establishes a multi-stage decision pipeline inte-
grating high-recall detection, patch-level verification, weakly supervised segmentation, and contextual
depth reasoning. This configuration achieves both laboratory scalability and scientific transparency,
bridging the gap between academic computer vision research and practical on-line quality control of
agricultural products.

1.2. Problem Statement and Limitations of Existing Approaches

Detecting internal defects in potato tubers remains a major technological challenge, primarily due
to the limited surface visibility of internal anomalies, the anatomical diversity of tubers, and signifi-
cant variability across cultivars. In recent years, several approaches have been explored, including
hyperspectral imaging [6,7], magnetic resonance imaging (MRI) [8], and RGB-based deep learning
techniques [4,5]. While each of these methods offers promising results under controlled conditions,
they exhibit several limitations that restrict their deployment in laboratory environments.

Hyperspectral imaging, although highly sensitive, relies on expensive, bulky equipment and
requires precise calibration and lighting conditions, making it unsuitable for real-time, in-line appli-
cations [7]. Similarly, MRI-based techniques provide detailed structural insights but are restricted to
laboratory use due to their high operational costs and complexity [8].

RGB-based computer vision methods represent a more cost-effective and scalable alternative.
However, most existing solutions are based on monolithic classification architectures, often limited
to binary outputs (defect/no defect), without any spatial localization or contextual reasoning. These
models tend to be sensitive to noise, lighting variability, and artifact-prone cases. Moreover, they
typically lack domain-specific logic or depth estimation capabilities, leading to high false-positive rates
and poor interpretability in laboratory conditions [5].

Notably, none of the aforementioned approaches incorporate a multi-stage validation pipeline
capable of refining ambiguous detections or distinguishing between morphologically similar defects,
such as internal bruising versus insect galleries. These limitations underline the need for a modular,
robust, and context-aware architecture specifically designed to meet the constraints of real-world
potato processing lines.

1.3. Research Objectives

This study aims to develop a robust, modular, and laboratoryly viable artificial intelligence (AI)
architecture for the detection of internal defects in potato tubers using only standard RGB 2D imaging.
The proposed solution is designed to address the key limitations of current approaches by combining
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high detection sensitivity, interpretability, and adaptability to varying conditions encountered in real
production environments.

The main objectives of this work are as follows:

• To maximize the recall of internal defect detection while minimizing false positives, particularly
for subtle or ambiguous anomalies.

• To enable precise localization and classification of multiple types of internal defects in a single
pipeline (e.g., hollow heart, bruising, insect galleries).

• To ensure compatibility with real-time operation and laboratory constraints through the exclusive
use of low-cost, high-speed RGB cameras.

• To design a multi-stage AI architecture incorporating detection, verification, segmentation, and
contextual reasoning inspired by expert human inspection logic.

Our overarching goal is to bridge the gap between academic advances in deep learning and the
practical requirements of the agri-food industry, providing a scalable and interpretable solution for
internal quality assessment of potatoes on sorting and grading lines.

1.4. Overview of the Proposed Architecture

To address the challenges outlined above, we propose a multi-stage hybrid AI architecture
tailored to the detection of internal defects in potato tubers from standard RGB 2D slice images. The
core of the system is designed to emulate the reasoning steps of human experts, while leveraging the
complementary strengths of deep learning and classical machine learning.

The pipeline begins with a high-recall detection stage using multiple YOLO-based models trained
with class-specific confidence thresholds. This ensures that even subtle or uncertain anomalies are
flagged for further analysis. Regions with intermediate confidence scores are then re-evaluated using a
ResNet-based patch classifier to improve precision and reduce false alarms.

To obtain fine-grained spatial information, the architecture incorporates the Segment Anything
Model (SAM), which performs pixel-level segmentation within the YOLO bounding boxes. This
weakly supervised coupling allows precise delineation of each defect region without additional
manual annotation, a crucial advantage for laboratory datasets. The following stage performs a
contextual evaluation to estimate the anatomical depth of each defect—specifically, whether it affects
the outer skin or lies deeper in the parenchyma—using features extracted by VGG16 and classified via
a Random Forest.

The final stage applies expert rule-based correction to merge, discard, or adjust detections ac-
cording to laboratory inspection logic. Each module contributes a complementary function within the
global decision process, resulting in a coherent, interpretable, and adaptive workflow.

Although the detection of internal defects in potatoes may appear visually simple, it is in fact
a highly challenging laboratory task. Defects such as bruises, rust spots, or insect galleries exhibit
very low contrast, irregular textures, and strong visual similarity with healthy parenchyma. Their
appearance also varies significantly across cultivars, lighting conditions, and slicing orientations,
which limits the generalization of conventional RGB-based models.

To overcome these challenges, our architecture establishes a progressive reasoning chain that
integrates detection, verification, segmentation, and contextual interpretation:

• Stage 1 (YOLO): high-recall detection with class-dependent thresholds;
• Stage 2 (ResNet): patch-level reclassification to filter ambiguous cases;
• Stage 3 (SAM): pixel-level segmentation within YOLO boxes for fine localization;
• Stage 4 (VGG16 + Random Forest): contextual depth estimation (skin vs. flesh);
• Stage 5 (Expert rules): final correction, merging, and validation.

This modular integration ensures a step-by-step and interpretable reasoning process, closely
mimicking human visual inspection. Unlike previous single-stage approaches, the proposed sys-
tem achieves high precision, interpretability, and robustness to intra-class variability, making it
particularly suitable for real-world laboratory quality control.
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1.5. Scientific Contribution and Positioning

The proposed approach introduces several key innovations that distinguish it from existing
methods in the literature. Unlike traditional single-model solutions that rely solely on classification
or basic segmentation, our pipeline integrates detection, reclassification, segmentation, and depth
estimation into a coherent multi-level reasoning framework. This hybrid structure allows for both
high sensitivity and interpretability, addressing practical laboratory needs such as robustness to noise,
adaptability to defect variability, and compatibility with in-line operation.

Compared to hyperspectral imaging [6,7], magnetic resonance imaging [8], and conventional
RGB-based CNN classifiers [4,5], our method offers:

• laboratory scalability, through the use of low-cost RGB cameras and real-time processing mod-
ules.

• Defect-specific adaptability, enabled by class-dependent YOLO thresholds and revalidation
logic.

• Context-aware analysis, integrating both pixel-level segmentation and depth inference based on
anatomical structure.

• Interpretable decision-making, by combining deep neural networks with classical classifiers in a
modular pipeline.

To our knowledge, this is the first fully deployable architecture specifically designed for internal
defect detection in potatoes that balances performance, interpretability, and ease of integration. As
such, our work contributes both a methodological advance in agricultural computer vision and a
practical solution aligned with the operational constraints of the food processing industry.

Our overarching goal is to bridge the gap between academic advances in deep learning and the
practical requirements of the agri-food industry, providing a scalable and interpretable solution for
internal quality assessment of potatoes on sorting and grading lines.

This work thus sets a new benchmark for RGB-based internal defect detection by combining
precision, transparency, and full laboratory integration capabilities.

2. State of the Art
The automatic detection of internal defects in potato tubers has attracted growing attention over

the past two decades due to its importance in reducing food waste, ensuring product quality, and meet-
ing laboratory throughput requirements [6,9]. Several technological approaches have been explored
to address this challenge, each offering trade-offs between accuracy, cost, speed, and interpretability.
In particular, detecting internal anomalies such as hollow heart, internal bruising, or insect galleries
remains difficult with conventional surface-based inspection

Early methods relied on spectral imaging, including LED-based multispectral systems and hyper-
spectral imaging, which can reveal internal structures through specific wavelength interactions. More
advanced techniques such as Magnetic Resonance Imaging (MRI) and X-ray tomography provide high-
resolution internal scans but remain impractical for large-scale deployment due to cost and complexity.
Recently, deep learning with RGB imaging has emerged as a promising alternative, offering faster and
cheaper implementations, though often at the cost of interpretability and generalization [4,5].

In the following subsections, we critically review the main families of internal defect detection
methods—multispectral imaging, hyperspectral imaging, MRI/X-ray-based systems, and RGB deep
learning—highlighting their strengths, limitations, and suitability for laboratory use.

2.1. Multispectral and LED-Based Imaging

Some studies have explored the use of narrow-band LED illumination combined with 2D cameras
to reveal contrast between healthy and defective tissues. These systems exploit specific absorption
or scattering properties of tuber flesh at certain wavelengths (e.g., near-infrared or blue light) [10,11].
Although low-cost and relatively fast, these methods often lack robustness and generalization due
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to the limited spectral information and sensitivity to lighting conditions, tuber variety, and defect
morphology.

2.2. Multispectral and LED-Based Imaging

Some studies have explored the use of narrow-band LED illumination combined with 2D cameras
to reveal contrast between healthy and defective tuber tissues. These systems exploit specific absorption
or scattering properties of tuber flesh at wavelengths such as near-infrared or blue light [10,11]. For
example, Zheng et al. (2023) demonstrated a line-scan multispectral system with deep learning
that improved defect detection accuracy significantly [12]. Zhang et al. (2019) used a single-shot
multispectral camera spanning 676–952 nm and achieved 91% classification accuracy across defect
types such as scab, greening, and bruises [13]. Similarly, Deng et al. (2023) combined high-definition
multispectral imaging with deep neural networks to detect multiple food defects, including on potatoes,
with high precision [14]. Moreover, Semyalo et al. (2024) applied visible–SWIR spectral analysis
(400–1100 nm) and obtained 91% accuracy in distinguishing internal defects like pythium and internal
browning [15], helping to assess internal defect areas quantitatively.

Although these LED-based multispectral systems offer advantages in cost, compactness, and
acquisition speed, they commonly suffer from several limitations:

• Spectral ambiguity: restricted bands reduce the ability to differentiate deeper or subtle internal
defects.

• Environment sensitivity: performance drops under variable lighting, moisture, or depending on
tuber variety conditions.

• Calibration dependence: each new dataset or operating context typically requires recalibra-
tion [16].

• Limited generalization: models trained on one cultivar or harvest season often fail to generalize
to others [13].

Overall, while LED-based multispectral imaging offers a strong foundation for inline, non-destructive
quality control, its current robustness and generalizability remain insufficient for fully scalable labora-
tory implementation without enhancements like adaptive band selection, intelligent calibration, or
hybrid processing pipelines.

2.3. Magnetic Resonance Imaging (MRI) and X-Ray Techniques

Magnetic Resonance Imaging (MRI) and X-ray imaging have been widely used in laboratory
research to visualize the internal structure of potato tubers with high spatial accuracy [17,18]. These
modalities provide detailed insights into tissue composition, growth patterns, and defect morphology.
For instance, [19] used a 1.5T MRI scanner to monitor the progression of internal rust spots over 33
weeks after harvest, using spatialized multi-exponential T2 relaxometry to non-destructively track
tissue degradation. Similarly, [20] demonstrated how spatially resolved T2 relaxation mapping can
distinguish up to six tissue classes within stored tubers, including cortex, pith, and defect regions.

Beyond MRI, X-ray computed tomography (CT) has been employed to monitor diel growth
and internal structural variation in response to environmental conditions [21]. In earlier studies, [22]
enhanced hollow heart detection by submerging tubers in water during radiography, improving
contrast between healthy and defective zones. A comparative study by [23] evaluated MRI and X-ray
alongside optical spectroscopy, concluding that while MRI offers superior accuracy, its throughput
and cost hinder laboratory deployment.

Despite their precision and research value, these imaging techniques face major limitations for
real-time laboratory use:

• High cost and bulk: MRI and CT systems are expensive, bulky, and require dedicated infrastruc-
ture.

• Low throughput: A typical MRI scan processes only 12–18 tubers in about 30 minutes [19].
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• Safety and regulatory constraints: X-ray systems require shielding, operator certification, and
legal compliance.

• Operational complexity: MRI and CT data require expert interpretation and advanced image
processing pipelines.

In summary, although MRI and X-ray offer unmatched imaging resolution for internal defect
detection, their practical application in high-throughput laboratory sorting lines remains limited due
to technical and economic constraints.

2.4. Deep Learning with RGB Imagery

More recently, RGB-based deep learning methods have emerged as a promising compromise
between cost and performance, leveraging standard RGB cameras and convolutional neural networks
(CNNs) to detect internal defects with high speed and affordability. Early work by Yan et al. [4] and
Moallem et al. [5] used CNN classifiers on 2D cross-sectional images or external cues to infer internal
anomalies. However, these single-shot classifiers often lack spatial reasoning and interpretability.

The adoption of advanced detection and segmentation frameworks has since grown:

• R-CNN/Fast R-CNN: These architectures have been used for tuber segmentation and defect
localization, but tend to be slow and resource-intensive in inference.

• Faster R-CNN: ResNet-based models have achieved ∼98% accuracy in surface defect detection
via transfer learning (e.g., SSD Inception V2, Faster R-CNN ResNet101) [24].

• Mask R-CNN: Applied to segment potato tubers in soil, with detection precision around 90%
and F1≈92

• SSD (Single Shot MultiBox Detector): Fine-tuned for potato surface defects, achieving ∼95 %
mAP [24].

• YOLOv5 and variants: Including DCS-YOLOv5s, tailored for multi-target recognition in seed
tubers (buds, defects), delivering fast real-time detection (∼97% precision) [25].

• YOLOv10/11: Emerging models; HCRP-YOLO achieved ∼90 % true positive rates for germination
defects.

• Survey on YOLO evolution: Recent reviews highlight improvements in speed and accuracy from
YOLOv1 to YOLOv10, especially in agricultural scenarios [26].

• Lightweight YOLOv5s variants: Designed for laboratory defect detection with real-time perfor-
mance on production lines [27].

Despite substantial advances, RGB-based pipelines still suffer from:

• Black-box behavior: Limited interpretability and anatomical reasoning.
• Single-shot limitations: Most approaches perform classification/detection in one pass without

refinement.
• Lack of context: Models often only see external surfaces or slices, missing 3D anatomical struc-

tures.
• Generalization gaps: Performance typically drops when applied to new cultivars, lighting, or

environments.

Nevertheless, the integration of two-stage or multi-stage architectures (detection → segmentation
→ refinement), interpretability modules, and anatomical priors presents a promising path forward—
motivating the development of more modular, explainable, and robust RGB pipelines.

2.5. Limitations and Motivation for a New Approach

Despite substantial progress in the detection of internal potato defects, no existing method
fully meets the combination of laboratory constraints such as low hardware cost, high throughput,
anatomical interpretability, and robustness under real-world conditions.

Hyperspectral imaging, while powerful in laboratory settings, is constrained by its high equip-
ment cost, slow data acquisition, and the need for expert calibration. MRI and X-ray techniques offer
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precise visualization of internal tissue but are unsuitable for real-time laboratory processing due to their
bulk, safety concerns, and high cost. Multispectral systems using LEDs are lightweight and affordable
but lack sufficient spectral richness for consistent detection across cultivars and environments.

Deep learning approaches based on RGB images have brought promising advances, especially
in terms of speed and flexibility. However, most existing RGB-based models are single-shot classifiers
or detectors that:

• Offer limited interpretability, often functioning as black boxes.
• Are sensitive to visual noise and lack contextual anatomical reasoning.
• Do not perform multi-stage refinement to correct or validate uncertain detections.

To address these gaps, our work proposes a modular, interpretable, and scalable architecture that
unifies detection, verification, segmentation, and contextual anatomical analysis within a single
RGB-only pipeline. Each stage contributes complementary reasoning: from high-recall defect detection
to patch-level verification, precise spatial segmentation, and depth-aware classification, mimicking
human inspection logic.

Table 1. Comparison of internal defect detection methods with respect to laboratory requirements

Method Cost Speed Interpretability Robustness

Hyperspectral
Imaging ✗ ✗ ✓ Partial

MRI / X-ray
Imaging ✗ ✗ ✓ Partial

LED
Multispectral ✓ ✓ ✗ Partial

RGB CNN
(Single-Shot) ✓ ✓ ✗ ✗

Our Hybrid
Pipeline ✓ ✓ ✓ ✓

Recent research in anomaly and defect detection has increasingly focused on unsupervised, ex-
plainable, and hybrid learning frameworks, highlighting the shift toward modular and interpretable
architectures. [31] proposed a multi-directional feature aggregation network for unsupervised surface
anomaly detection, improving localization under limited data conditions. [32] introduced a noise-
guided one-class distillation framework that enhances defect detection performance without explicit
annotations. [33] developed a dual-branch attention mechanism for interpretable fruit disease seg-
mentation, demonstrating the benefits of multi-scale fusion in agricultural vision tasks. [34] presented
transformer–CNN hybrid models combining global attention and local convolutional reasoning to
achieve robust and explainable agricultural image analysis. These recent advances further support our
motivation to design a hybrid and interpretable architecture, bridging deep learning and classical
reasoning for reliable laboratory defect detection.

This comparison highlights the novelty of our contribution, which seeks to combine the afford-
ability and speed of RGB imaging with the multistage intelligence typically reserved for more complex
and costly systems. Our pipeline is therefore well-positioned for laboratory deployment in real-time
sorting and quality control scenarios.

3. Proposed Method
This section presents the proposed hybrid pipeline for the detection of internal defects in potato

tubers using RGB 2D imaging. The pipeline has been specifically designed to meet laboratory require-
ments: high throughput, low hardware cost, robustness to real-world conditions, and interpretability.
Our method combines high-recall detection with multi-stage refinement, mimicking human expert
reasoning. The pipeline consists of five stages: (1) YOLO-based detection, (2) patch reclassification, (3)
semantic segmentation, (4) depth estimation, and (5) expert rule-based correction.
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To formalize the processing workflow, Algorithm 1 describes the main steps of the proposed
hybrid AI pipeline. It details how YOLO detection, ResNet-based patch validation, SAM segmentation,
and contextual Random Forest reasoning are integrated to form an explainable decision chain.

Algorithm 1: Hybrid AI Pipeline for Internal Potato Defect Detection
Input: RGB slice image I
Output: Classified defect type and anatomical depth

1 Stage 1 – Detection:
2 Apply multiple YOLO detectors on I with class-specific confidence thresholds.
3 Collect candidate bounding boxes B = {Bi} and associated class predictions Ci .
4 for each bounding box Bi ∈ B do
5 if Ci ∈ {Endo, Mrgal} and YOLO confidence < Td

6 then
7 Stage 2 – Patch Reclassification:
8 Extract patch Pi from Bi and re-evaluate with ResNet-18. if ResNet confidence < Tr then
9 Discard Bi (likely false positive).

10 Stage 3 – Segmentation: Apply SAM on Pi (or Bi) using the bounding box as prompt to obtain a precise mask Mi .
11 Stage 4 – Contextual Depth Analysis:
12 Extract VGG16 features from Pi and predict defect depth (skin or flesh) using a Random Forest classifier.

13 Stage 5 – Expert Rule Correction:
14 Merge overlapping detections and filter inconsistent outputs.
15 return Annotated image with segmented and classified internal defects.

3.1. Dataset Description

The dataset consists of 2D RGB images of potato slices captured in a real laboratory environment.
Each image was manually annotated in the YOLO format, with bounding boxes and class labels
representing internal defects.

A total of over 6000 bounding boxes were labeled across six main classes:

• Hollow Heart (cc) — central voids with regular contours.
• Damaged Tissue (Endo) — internal bruising or blackened zones.
• Insect Galleries (Mrgal) — small tunnels or pest bites.
• Cracks (Crevasse) — structural fractures through the tuber flesh.
• Rust Spots (Rouille) — oxidized tissue lesions, typically subcutaneous.
• Greening (Vert) — green zones near the skin due to light exposure.

All annotations use the YOLO format <class_id> <x_center> <y_center> <width> <height>,
with normalized coordinates. Most defects are small and centered, requiring high sensitivity from the
detection module.
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Figure 1. Distribution of YOLO annotations in the dataset. The majority of annotated defects are ’Endo’ and
’Mrgal’. Most bounding boxes are small (w, h < 0.3), and centered around the core of the tuber.

This analysis supports the need for a sensitive and localized detector, and motivates the design of
a class-specific detection pipeline described in the following sections.
Representative examples of annotated potato slice images are shown in Figure 2. These samples
illustrate the diversity of internal defects considered in this study, as well as the variability in their
visual appearance across the dataset.

This dataset is expected to become a reference resource for potato quality control research. It
encompasses a wide range of samples collected from multiple potato varieties, including both yellow-
and red-fleshed cultivars, thereby capturing the natural diversity encountered in laboratory practice.
Its richness and variability provide a solid foundation for benchmarking and developing advanced
AI-based approaches for defect detection and grading.
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Figure 2. Representative potato slice images annotated with bounding boxes indicating the position and class of
the detected defect. The considered classes include: mrgal (internal gallery), endo (internal damage), cc (hollow
heart), crevasse, rouille (rust spot), and vert (green tissue). The figure highlights the wide variability in defect size,
shape, contrast, and location, which underscores the challenges of building a robust detection pipeline suitable for
laboratory deployment.

Table 2 summarizes the datasets employed in recent potato defect detection studies. While most
existing works are trained and evaluated on small, homogeneous datasets (2–4 defect categories, and
texture variability), the proposed Hybrid AI Pipeline is assessed on a more challenging dataset of
over 6,600 laboratory RGB images.
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Table 2. Datasets used in potato defect detection studies.

Study Images Defect Types Augmentation Split

Enhanced
YOLOv11n [35] 1,864 Peel cracks,

abrasions
Flip, rotation,
noise, scaling 80/10/10

DATW-
YOLOv8n [38] 4,514

Dry rot, worm
hole, damage,
normal

Blur, flip, shift 80/10/10

Improved
YOLOv5s [36] 2,000

Green skin,
germination, rot,
mechanical

Flip, hue, crop 70/20/10

Flaw-
YOLOv5s [37] 2,700 Rot, worm,

damage, normal Flip (V/H) 80/10/10

DCS-
YOLOv5s [39] 8,400 Bud, tail,

wormhole, injury
Cutout, mirror,
noise, brightness 80/10/10

Hybrid AI
Pipeline (Ours) 6,680

Hollow heart,
internal damage,
insect galleries,
cracks, rust spots,
greening

Flip, hue, scale,
mosaic

80/10/10 (YOLO,
ResNet)

The presence of six heterogeneous defect types—Hollow heart, Internal damage, Insect galleries,
Cracks, Rust spots, and Greening—significantly increases intra-class variability and inter-class confusion.

This makes our dataset one of the most comprehensive and complex benchmarks currently
available for internal potato defect detection, providing a more realistic assessment of model robustness
and generalization ability.

3.2. Architecture

The proposed hybrid pipeline is designed to mimic the reasoning process of human experts in
defect inspection. Instead of relying on a single monolithic classifier, our system follows a modular
sequence of specialized components. Each stage contributes complementary information, progressively
refining the detection, verification, and contextual interpretation of potato defects. This modularity
ensures robustness, interpretability, and adaptability for laboratory deployment.

3.2.1. Stage 1: Initial Detection with Multi-YOLO

The pipeline begins with a high-recall detection stage based on multiple YOLO models trained
in parallel. Each model is fine-tuned with class-specific confidence thresholds in order to maximize
recall and ensure that even subtle or ambiguous anomalies are flagged. This stage outputs bounding
box candidates corresponding to potential internal defects such as hollow heart, bruising, or insect
galleries.

The training of the YOLO models was performed over 300 epochs with an early stopping patience
of 60 epochs to prevent overfitting. A batch size of 8 and an image resolution of 640 × 640 pixels were
used, leveraging GPU acceleration on a CUDA-enabled device.

We employed the Adam optimizer with an initial learning rate of 9.5 × 10−4, a cosine learning
rate schedule with a final learning rate factor of 0.0103, and weight decay of 6.1 × 10−4. Momentum
was set to 0.868 with a warm-up phase of 2.3 epochs and a warm-up momentum of 0.95. A dropout
rate of 0.3 was applied to improve generalization.

Data augmentation played a key role in improving robustness. We applied hue, saturation, and
value shifts (h = 0.10, s = 0.10, v = 0.10), random translations (±8.7%), scaling (up to 55%), and
horizontal flipping with a probability of 0.51. Mosaic augmentation was strongly emphasized (prob-
ability 0.97), while mixup and copy-paste augmentations were disabled. These strategies increased
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the diversity of training samples and allowed the models to handle the high intra-class variability
observed in potato defects.

Loss function weights were tuned with values of 3.98 for the bounding box regression term, 0.54
for the classification term, and 1.20 for the distribution focal loss. The IoU threshold for positive
matching during training was set to 0.4. Training was initialized from pretrained weights to accelerate
convergence, with deterministic mode enabled for reproducibility.

This combination of hyperparameters, together with multi-model training, provided a strong
balance between sensitivity and robustness, enabling the detection stage to act as a reliable candidate
generator for subsequent verification and segmentation modules.

3.2.2. Stage 2: Patch-Level Reclassification

To reduce false positives and refine ambiguous detections, the candidate regions identified
in Stage 1 are extracted as image patches and re-evaluated using a secondary classifier based on
ResNet-18. This patch-level reclassification focuses particularly on the mrgal (internal gallery) and
endo (internal damage) classes, which often exhibit highly similar visual patterns and are therefore
prone to misclassification in single-stage detection pipelines. By analyzing localized regions at a higher
resolution and with a dedicated classification network, this module minimizes confusion between
these closely related defects, ensuring greater reliability in the final decision.

The ResNet-18 model was trained on extracted patch datasets with an 80/20 train-validation split.
Training was conducted for 16 epochs with a batch size of 256, an initial learning rate of 1× 10−4, and an
input image size of 230× 230 pixels. Optimization was performed using Adam with default parameters,
and early stopping was applied based on validation loss to prevent overfitting. This lightweight yet
powerful architecture was chosen to balance computational efficiency with discriminative capability,
enabling the classifier to be integrated seamlessly within the real-time pipeline.

Overall, the addition of this reclassification stage significantly improves precision while preserving
high recall. It provides a safeguard against systematic errors in the detection of visually similar defects,
which is particularly important for laboratory potato quality control where false positives can lead to
unnecessary rejection of healthy produce.

3.2.3. Stage 3: Semantic Segmentation with SAM

For precise localization, the Segment Anything Model (SAM) is employed to delineate the exact
contours of each detected defect. Unlike the detection and classification stages, SAM is not retrained
but used in its pre-trained form, which has been shown to generalize well across diverse visual
domains. This allows the model to be directly applied to the extracted patches corresponding to
candidate defects, without the need for additional fine-tuning.

In the proposed pipeline, SAM operates directly on the bounding boxes predicted by the YOLO
detectors. Each bounding box serves as a spatial prompt guiding SAM to generate a precise pixel-level
segmentation of the defect region. This integration effectively transforms the YOLO+SAM combination
into a weakly supervised segmentation framework, where only bounding-box annotations are required
instead of manually drawn masks. Such an approach significantly reduces the annotation cost while
maintaining high spatial accuracy and generalization capability across potato varieties.

By operating on these localized regions, SAM provides fine-grained spatial information, enabling
accurate measurement of the size, shape, and extent of anomalies. This detailed mapping is essential
for downstream quality assessment and grading decisions in laboratory environments, as it allows not
only the identification but also the quantitative analysis of internal potato defects. SAM was specifically
selected for its prompt-based segmentation, strong generalization across visual domains, and zero-shot
adaptability—key advantages for laboratory applications that demand rapid deployment without
retraining on domain-specific data.

This YOLO + SAM synergy has proven particularly effective for potato defect detection due to
the intrinsic texture and structural characteristics of tubers. The subtle variations in color, surface
reflectance, and tissue continuity between healthy and defective regions make traditional supervised
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segmentation challenging. By combining YOLO’s high-recall localization with SAM’s context-aware
segmentation, the system accurately follows the natural boundaries of both the skin and internal tissue
defects, offering robust and interpretable results suitable for real-time laboratory inspection. To the
best of our knowledge, this is the first application of the YOLO + SAM hybrid approach for internal
defect analysis in potatoes.

3.2.4. Stage 4: Contextual Depth Evaluation

In order to assess the anatomical depth of a defect, feature representations are extracted using
VGG16 and subsequently classified with a Random Forest model. This stage distinguishes between
superficial defects that only affect the skin and deeper anomalies located in the parenchyma. By
integrating contextual reasoning, the system provides an interpretable analysis aligned with the logic
of expert inspectors.

3.2.5. Stage 5: Expert Rule-Based Correction

Finally, a rule-based correction module incorporates domain-specific knowledge to address
residual errors. For instance, extremely small segmented regions may be discarded as noise, while
overlapping detections can be merged. This module enhances robustness and aligns the automated
decisions with practical laboratory inspection criteria.

3.2.6. Summary of the Architecture

In summary, the proposed hybrid pipeline combines deep learning, classical machine learning,
and rule-based reasoning within a coherent multi-stage framework. Each component contributes com-
plementary strengths: YOLO for high recall, ResNet for precision, SAM for segmentation, VGG16+RF
for contextual interpretation, and rules for final correction. This layered design ensures both perfor-
mance and interpretability, making the approach suitable for scalable deployment in potato quality
control lines.

Figure 3. Overview of the proposed hybrid AI pipeline for internal potato defect detection. Stage 1: multi-YOLO
detection generates candidate regions. Stage 2: ResNet-18 patch analyser revalidates ambiguous detections. Stage
3: SAM performs pixel-level segmentation within YOLO bounding boxes. Stage 4: VGG16 + Random Forest
module evaluates defect depth (skin vs. flesh). Stage 5: expert rules merge or correct detections. The final output
is a classified and segmented defect map suitable for laboratory quality control.

4. Experiments, Results and Discussion
4.1. Experimental Setup

The proposed pipeline was evaluated on a dataset of more than 6000 annotated potato slice images
collected. Each image was labeled according to six internal defect classes: Hollow Heart (cc), Damaged
Tissue (Endo), Insect Galleries (Mrgal), Cracks (Crevasse), Rust Spots (Rouille), and Greening (Vert).
All annotations followed the YOLO format with normalized bounding boxes. The dataset was split
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into training (80%), validation (10%), and testing (10%) subsets, ensuring a balanced distribution across
defect categories.

The experiments were conducted on a workstation equipped with an NVIDIA RTX GPU, using
PyTorch as the deep learning framework. Performance was assessed in terms of recall, precision,
F1-score, and inference time per slice to evaluate both detection quality and laboratory feasibility.

In this context, the term laboratory refers to the controlled environment where potato slice samples
are tested and validated before being transferred to the industrial process for chip production or other
applications.

Table 3 summarizes the main architectural modules of recent YOLO-based models for potato
defect detection and quality assessment. While existing approaches mainly focus on improving
backbone efficiency or small-object precision through attention mechanisms and convolutional variants,
they remain fundamentally single-stage detectors.

Table 3. Architectural components of YOLO-based models for potato defect detection.

Model Key Modules Objective

Enhanced YOLOv11n [35]
EIEStem (SobelConv + Conv),
MLCA attention, Re-Calib
FPN, AFPN Head, WIoU loss

Enhanced boundary precision,
feature fusion, robustness

DATW-YOLOv8n [38] C2f-DWR-DRB, ADOWN,
TADDH, Wise-EIoU loss

Small-defect detection and
parameter reduction

Improved YOLOv5s [36] Coordinate Attention, ASFF,
ASPP, Alpha-IoU loss

Spatial focus and multi-scale
consistency

Flaw-YOLOv5s [37] DWConv, SPPELAN, CSPC
(Partial Convolution)

Lightweight design and
small-target optimization

DCS-YOLOv5s [39] GhostBottleneck, DPConv,
SimAM attention

Parameter reduction and
salient-region detection

Hybrid AI Pipeline (Ours)

Multi-threshold YOLO
detectors, ResNet-18 patch
reclassification, SAM (Segment
Anything Model)
segmentation, VGG16 +
Random Forest contextual
depth evaluation, Expert
rule-based correction

Multi-stage detection and
validation of internal defects;
precise segmentation and
depth-aware classification
enabling differentiation
between skin and flesh
anomalies

In contrast, the proposed Hybrid AI Pipeline introduces a multi-stage reasoning framework
that integrates detection, patch-level reclassification, semantic segmentation, and contextual depth
evaluation within a unified system. This design provides both higher interpretability and stronger
robustness, particularly suited to complex internal defect patterns found in real laboratory conditions.

Furthermore, by combining YOLO-based high-recall detection with SAM-driven segmentation
and depth inference via VGG16 + Random Forest, the proposed architecture bridges deep learning
and expert logic—allowing consistent differentiation between skin-level and subsurface anomalies in
potato slices.

5. Results
5.1. Quantitative Performance

As shown in Table 4, the proposed model achieves excellent performance at the frame level
(classification), with F1-scores above 0.96 for all defect categories. Both precision and recall remain
consistently high across classes, confirming the robustness and generalization ability of the model.
The slight decrease in recall for Rust Spots can be attributed to the visual variability and subtle
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appearance of these defects. Overall, the results demonstrate that the classifier can accurately identify
all major surface and structural defects with near-perfect precision, providing a reliable foundation for
downstream grading and scoring tasks.

Table 4. Summary of defect detection performance for each class. The model achieves high precision and recall
across all categories, with a slightly lower recall for Rust Spots.

Defect Class TP FP FN Precision Recall F1-Score

Greening (Vert) 100 0 4 1.000 0.961 0.980
Damaged Tissue (Endo) 245 6 8 0.976 0.964 0.970
Insect Galleries (Mrgal) 188 3 6 0.984 0.969 0.976
Cracks (Crevasse) 68 1 7 0.989 0.933 0.966
Rust Spots (Rouil) 30 4 4 0.882 0.882 0.882
Hollow Heart (cc) 57 0 0 1.000 1.000 1.000

Average – – – 0.972 0.9518 0.9617

Ablation Study

To evaluate the contribution of each component, we progressively removed modules from the
hybrid pipeline and measured the change in F1-score, precision and recall on the test set. Results
(Table 7) demonstrate that each stage contributes complementary improvements to precision and
interpretability.

Ablation Study and Visual Comparison
Step 1 — YOLO Baseline

The baseline configuration relies solely on YOLO detectors trained with defect-specific confidence
thresholds. This version effectively identifies most internal defects but tends to produce false positives
between visually similar classes, notably between Internal Damage and Insect Gallery.

Step 2 — YOLO + ResNet (Selective Reclassification)

To mitigate these ambiguities, a lightweight ResNet-18 classifier is applied selectively to low-
confidence detections (Endo and Mrgal). This stage improves discrimination and stabilizes classification
without additional annotation cost The improvement in precision confirms that selective reclassification
helps suppress doubtful or mixed detections while keeping real defects as shown in Figure 4

Step 3 — YOLO + SAM (Weakly Supervised Segmentation)

Although no pixel-level masks exist in the dataset, SAM is applied on YOLO bounding boxes
to obtain fine contours of each defect. This step does not increase the global F1-score but enables
pixel-level interpretation of the detected regions, as shown in Figure 5. The generated pseudo-masks
are later used by the Random Forest classifier to determine whether the defect lies on the skin or within
the flesh, which would be impossible using bounding boxes alone.
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Figure 4. Comparison between (A) Multi-YOLO only and (B) Multi-YOLO combined with ResNet for potato slice
defect detection. The addition of the ResNet feature extractor improves the recognition of subtle defects that were
not correctly identified by Multi-YOLO alone.

Step 4: VGG + RF for Flesh and Skin Detection
This stage aims to eliminate superficial defects that are not considered relevant for industrial

quality assessment. By combining the VGG feature extractor with a Random Forest (RF) classifier, the
system focuses exclusively on internal defects within the potato slices. Such a distinction is crucial,
since in industrial processing only internal imperfections affect the final product quality and are
therefore accounted for in the defect evaluation process.

Comparison with Existing Methods
Compared to state-of-the-art approaches, our pipeline balances high sensitivity, interpretability,

and practical feasibility:

• Hyperspectral imaging methods can reach recall levels above 95% but require costly, bulky
hardware unsuitable for inline sorting [6].

• MRI/X-ray techniques provide detailed internal scans but process fewer than 20 tubers in 30
minutes, making them impractical for real-time deployment [17,19].

• RGB CNN classifiers are lightweight but often behave as black boxes with limited interpretability
and single-pass detection only [4,5].

• Our pipeline combines multi-threshold YOLO, ResNet patch verification, SAM segmentation, and
VGG16+RF depth analysis, reaching F1-scores above 96.2% with real-time throughput in laboratory
conditions using only standard RGB imaging.

This demonstrates that the proposed architecture offers a practical compromise between accuracy
and scalability, outperforming traditional RGB deep learning solutions and providing a more accessible
alternative to hyperspectral and MRI-based systems.
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fig:segmentation

Figure 5. Example of segmentation output distinguishing between surface (skin) and deep (flesh) defects.

The inclusion of the patch-level ResNet classifier significantly improved discrimination between
Damaged Tissue and Insect Galleries, two morphologically similar classes. The SAM module provided
accurate contour extraction. It is important to note that the dataset used in this study does not
include pixel-level annotations or binary masks for the defect regions. Only bounding-box labels
are provided in the YOLO format, which describe the spatial location and class of each defect. As a
result, supervised training of segmentation networks such as U-Net or Mask R-CNN was not feasible.
Instead, we adopted the Segment Anything Model (SAM) in a weakly supervised manner, using YOLO
detections as prompts to generate precise instance masks automatically.
This strategy enables fine-grained localization without requiring additional manual mask annotation,
which would be prohibitively time-consuming in large laboratory datasets.

Table 5. Performance comparison of YOLO-based models and the proposed Hybrid AI Pipeline at frame-level
(classification).

Metric v11n [35] v8n [38] YOLOv5s5
[36] Flaw-v5s [37] DCS-v5s [39]

Hybrid AI
Pipeline
(Ours)

Precision (%) 96.5 95.8 82.0 94.6 95.8 97.2

Recall (%) 96.0 88.1 86.6 91.1 93.2 95.2

F1-score (%) 95.9 92.0 84.3 93.4 95.0 96.2

Generalization High High Medium High Very High Very High

Transparency Partial Partial Low Partial Partial High

laboratory
Scalability High Very High Medium High Very High Very High

As presented in Table 5, the proposed Hybrid AI Pipeline exhibits superior performance at the
frame level (classification), surpassing all YOLO-based architectures across key evaluation metrics.
With a precision of 97.2% and an F1-score of 96.2%, the model demonstrates a remarkable balance
between sensitivity and specificity, reflecting both reliability and robustness in defect recognition.

These results highlight the effectiveness of integrating rule-based logic with deep-learning in-
ference, which enhances interpretability and ensures consistent predictions under varying visual
conditions. In contrast, conventional YOLO-based detectors, while efficient for localization tasks, tend
to exhibit greater variability and lower recall when assessed in a frame-wise classification setting.
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The proposed approach also attains the highest levels of transparency and laboratory scalability,
reinforcing its suitability for real-time inspection and large-scale quality control applications in agri-
food production environments.

Furthermore, the architecture uniquely integrates a depth-aware Random Forest stage for dis-
tinguishing skin versus flesh anomalies—an essential feature for internal defect analysis that existing
YOLO-based solutions lack. This modular and explainable design explains the superior performance
and the complete transparency column in Table 5, making the proposed pipeline particularly suited
for pilot laboratory deployment. Overall, the results demonstrate that interpretability and performance
are not mutually exclusive but can be jointly achieved through hybrid AI design.

Table 6. Technical and architectural comparison between YOLO-based models and the proposed Hybrid AI
Pipeline.

Criteria v11n [35] v8n [38] YOLOv5s+ [36] Flaw-v5s [37] DCS-v5s [39] Hybrid AI
Pipeline (Ours)

Defect Type Surface Surface Surface Surface Surface Internal
(anatomical)

Classes 2 4 4 4 4 6 + skin context

Architecture Monolithic CNN-Light YOLO + ASFF +
CA DWConv Ghost + SimAM

Hybrid (YOLO,
ResNet, SAM,
VGG16, RF,
Rules)

Segmentation
Precision Moderate Moderate ASPP-based SPPELAN SimAM High (SAM

fine-grained)

Contextual
Awareness Limited Partial Spatial only None Partial

High
(texture–depth
fusion)

Interpretability Medium Medium Low Medium Medium
High (modular
and
explainable)

Innovation Incremental Structural Attention-based Lightweight Speed-
optimized

Breakthrough
(Explainable
Hybrid AI)

Table 6 highlights the fundamental differences between conventional YOLO-based architectures
and the proposed Hybrid AI Pipeline. Whereas most existing approaches are monolithic, designed for
surface-level defect detection with limited contextual reasoning, our system is specifically engineered
for internal anatomical defects, requiring multi-stage reasoning, texture understanding, and depth
estimation.

The proposed pipeline combines complementary strengths:

• YOLO detectors ensure high recall and localization precision, generating candidate regions of
potential internal defects even under low contrast or irregular lighting.

• ResNet-18 reclassification refines ambiguous detections, particularly between visually similar
defects such as internal damage and insect galleries, thus improving precision.

• Segment Anything Model (SAM) delivers fine-grained segmentation of the defect region using
weak supervision from YOLO bounding boxes—offering high spatial accuracy without additional
mask annotations.

• VGG16 + Random Forest module introduces contextual intelligence, classifying defects according
to their anatomical depth (skin vs. flesh), which is critical for laboratory potato grading.

• Expert rule-based correction aligns the AI outputs with human inspection logic by filtering
implausible detections and merging redundant ones.

Together, these modules form a transparent and interpretable architecture, capable of both
high quantitative performance and robust laboratory control. This hybrid design demonstrates that
integrating deep learning, classical models, and expert reasoning within a unified framework enables
not only accuracy but also explainability and operational reliability in real-world agri-food inspection.
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Table 7. Summary of performance variations and functional contributions of each module in the hybrid pipeline.

Module Type ∆F1 (%) ∆Recall (%) Gain type Main
contribution

YOLO Detection – – –

Initial detection
of potential
defects with high
recall.

+ ResNet Patch
classification +0.586 +1.89 Quantitative

Reduces
confusion
between visually
similar defects
(Endo vs Mrgal).

+ SAM
Weakly
supervised
segmentation

∼0 ∼0 Functional

Provides
pixel-level
contours for
geometric
measurement
(area, perimeter)
without dense
annotation.

+ VGG16 + RF Contextual
classification ∼0 ∼0 Functional

Adds contextual
depth
information (skin
vs flesh). Full
pixel-level SAM
segmentation
would require
thousands of
annotated
samples,
impractical in
laboratory use.

Final Combined
reasoning +0.586 +1.89 Hybrid

Achieves balance
between accuracy,
interpretability,
and feasibility for
real-time
grading.

Table 7 summarizes both the quantitative and functional contributions of each module in the
hybrid pipeline. While the ResNet stage provides measurable gains in detection accuracy (+0.586% F1,
+1.89% Recall), the SAM and VGG16 + RF modules primarily enhance interpretability and contextual
understanding. Although the performance improvement achieved by adding ResNet to Multi-YOLO
is relatively small (+0.586% in F1-score and +1.89% in Recall), this enhancement is crucial for industrial
applications. Indeed, the ability to more accurately distinguish between bite and gallery defects and
other types of damage directly impacts the reliability of the potato quality control process, ensuring
consistent sorting decisions at large scale.

SAM allows precise geometric measurements from weak supervision, avoiding the need for
time-consuming pixel-level annotation, and VGG16 + RF introduces depth-based reasoning despite
being trained on a small subset of images. Together, these complementary modules achieve a coherent
balance between quantitative performance, explainability, and laboratory feasibility—three essential
pillars for reliable real-world deployment in agri-food inspection systems.

5.2. Interpretation of Segmentation Results

The segmentation results obtained with the unsupervised model are sufficient to reliably de-
termine whether a defect is located on the surface (skin) or deeper within the parenchyma (flesh).
This provides a meaningful first-level contextual analysis directly applicable to laboratory grading.
Nevertheless, performance could be further improved by adopting a supervised segmentation strategy,
such as U-Net or Mask R-CNN, which can learn defect-specific spatial features more precisely from
annotated masks. In this work, however, we highlight the strength of the unsupervised approach:
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despite the absence of additional training data, the model demonstrates remarkable robustness and
generalization across diverse potato varieties and defect morphologies. It is also important to note
that the VGG16 + RF module was trained on a limited subset of annotated images, as its goal was
not to maximize statistical accuracy but to introduce depth-related contextual reasoning into the
pipeline. A fully supervised segmentation approach for skin and flesh, based on SAM fine-tuning,
would require pixel-level annotations for thousands of samples. Such annotation would be extremely
time-consuming and economically impractical in an laboratory environment. By contrast, the current
weakly supervised design allows the system to extract relevant geometric and contextual information
without the need for exhaustive manual labeling, offering an effective trade-off between performance,
interpretability, and feasibility.

5.3. Processing Speed

The total pipeline inference time was measured at 2.5 seconds per potato, corresponding to an
average processing of 10 slices per specimen.

Although slower than lightweight single-stage CNN detectors, this performance remains compat-
ible with real-time operation in a controlled laboratory environment. The achieved speed is sufficient
for research, prototyping, and quality assessment workflows, while ensuring high interpretability
and robustness of the results. Future work will explore GPU optimizations and model compression
techniques to further reduce processing time without sacrificing accuracy.

5.4. Discussion

The results confirm that the proposed multi-stage architecture effectively balances high recall
with very low false-positive rates, outperforming single-shot CNN classifiers commonly reported
in the literature. Unlike hyperspectral or MRI-based techniques, the system operates with standard
RGB imaging, making it both cost-effective and laboratoryly scalable. Moreover, the modular de-
sign introduces interpretability at each stage, facilitating debugging and adaptation to new defect
taxonomies.

Nevertheless, some limitations remain. Rare defects with very few samples (e.g., deep insect
galleries) may still challenge the pipeline, suggesting the need for additional data augmentation or
synthetic defect generation. Furthermore, the current architecture processes 2D slices only; extending
to multi-view or 3D reconstruction could further improve robustness.

Overall, the pipeline demonstrates a strong potential to bridge academic advances in computer
vision with the practical requirements of agro-laboratory quality control.

6. Conclusions
This work presents a novel hybrid, modular, and interpretable pipeline for the detection and

characterization of internal potato defects using cost-effective RGB 2D imaging. The proposed archi-
tecture combines deep and classical learning paradigms in a sequential reasoning chain that mimics
human expert inspection. Through the integration of multi-threshold YOLO detection, patch-level
revalidation with ResNet-18, fine-grained segmentation with the Segment Anything Model (SAM), con-
textual depth estimation using VGG16 features with a Random Forest classifier, and final expert-rule
correction, the system achieves both high accuracy and transparency.

Experimental results demonstrate that the proposed architecture achieves an average recall of over
95.2% and precision close to 97.2%, outperforming conventional single-model CNN approaches. The
combination of weakly supervised segmentation (YOLO + SAM) and contextual depth evaluation
provides a new level of interpretability and reliability for defect classification, which is crucial in
laboratory potato quality control.

Unlike previous end-to-end deep learning systems, the proposed pipeline offers modularity,
adaptability, and laboratory scalability. Each component can be independently optimized or replaced,
enabling rapid adaptation to new cultivars, imaging setups, or crop types. This flexibility bridges the
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gap between academic research and real-world deployment, transforming RGB-based vision into a
robust laboratory tool.

Future work will focus on three main directions: (i) extending the system to other agricultural
products such as bananas or onions; (ii) integrating additional imaging modalities (multispectral or
SWIR) for enhanced subsurface analysis; and (iii) incorporating uncertainty estimation and explainable
AI modules to further improve reliability and user trust.

Overall, this study provides a comprehensive, scalable, and explainable solution for internal
defect detection in potatoes, setting a new benchmark for RGB-based quality inspection systems in the
agri-food industry. Finally, Due to laboratory confidentiality constraints, the dataset cannot be publicly
released, however, access for academic or research collaboration may be granted upon request
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