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Abstract. In the article, by applied the concept of strongly convex function and one
known identity, we establish several Ostrowski type inequalities involving conformable
fractional integrals. As applications, some new error estimations for the midpoint formula
are provided as well.

1. Introduction

The subsequent inequality is known as Ostrowski inequality.

Theorem 1. Let h : I −→ R be a mapping differentiable on I◦ and let a1, a2 ∈ I◦ with
a1 < a2. If |h′(x)| ≤M for all x ∈ [a1, a2], then∣∣∣∣∣h(x)− 1

a2 − a1

∫ a2

a1

h(x)dx

∣∣∣∣∣ ≤M(a2 − a1)

[
1

4
+

(
x− a1+a2

2

)2
(a2 − a1)2

]
, ∀x ∈ [a1, a2]. (1)

Ostrowski inequality is playing a very important role in all the fields of mathematics,
especially in the theory of approximations. Thus such inequalities were studied extensively
by many researches and numerous generalizations, extensions, variants and applications
can be found in the literature [[1]-[4],[7]-[13],[15],[16],[18]-[20],[23]-[27],[29],[30]].

Definition 1. [17] Given a function h : [0,∞) −→ R. Conformable fractional derivative
of h of order α is defined by

Dα(h)(t) = lim
ε→0

h(t+ εt1−α)− h(t)

ε
, (2)

for all t > 0 and α ∈ (0, 1]. If the conformable fractional derivative of h of order α exists,
then we say that h is α-differentiable.

Let h be α-differentiable in (0, a), and limt→0+ h
α(t) exists, then define

hα(0) = lim
t→0+

hα(t). (3)

We will sometimes write hα(t) and dα
dαt

(h) for Dα(h)(t), to denote the conformable fractional
derivatives of h of order α.
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2 ARTION KASHURI AND ROZANA LIKO

Theorem 2. [17] Let α ∈ (0, 1] and φ, ψ be α-differentiable at a point t > 0. Then

i. dα
dαt

(tn) = ntn−α, for all n ∈ R.

ii. dα
dαt

(b) = 0, for all constant functions φ(t) = b.

iii. dα
dαt

(a1φ(t) + a2ψ(t)) = a1
dα
dαt

(φ(t)) + a2
dα
dαt

(ψ(t)), for all a1, a2 ∈ R.
iv. dα

dαt
(φ(t)ψ(t)) = φ(t) dαdαt(ψ(t)) + ψ(t) dαdαt(φ(t)).

v. dα
dαt

(
φ(t)
ψ(t)

)
=

ψ(t) dα
dαt

(φ(t))−φ(t) dα
dαt

(ψ(t))

(ψ(t))2
.

vi. dα
dαt

((φ ◦ ψ)(t)) = φ′(ψ(t)) dαdαt(ψ(t)), for φ differentiable at ψ(t).

If, in addition, the function φ is differentiable, then

dα
dαt

(φ(t)) = t1−α
d

dt
(φ(t)). (4)

Now, let us recall some basic definitions of various convex functions and conformable
fractional integral.

Definition 2. A function h : I −→ R, I ⊆ R, is said to be convex on I if the inequality

h(ta1 + (1− t)a2) ≤ th(a1) + (1− t)h(a2) (5)

holds for all a1, a2 ∈ I and t ∈ [0, 1]. Also, we say that h is concave, if the inequality (5)
is reversed.

Definition 3. A function h : I −→ R is called strongly convex with modulus c > 0, if

h(ta1 + (1− t)a2) ≤ th(a1) + (1− t)h(a2)− ct(1− t)(a2 − a1)2 (6)

holds for all a1, a2 ∈ I and t ∈ [0, 1].

Strongly convex functions play important role in optimization theory and mathematical
economics. Many properties and applications of them can be found in the literature
[[6],[14],[21],[22],[28]].

Definition 4. [5] (Conformable fractional integral). Let α ∈ (0, 1) and 0 ≤ a1 < a2. A
function h : [a1, a2] −→ R is α-fractional integrable on [a1, a2] if the integral∫ a2

a1

h(t)dαt =

∫ a2

a1

h(t)tα−1dt (7)

exists and is finite. All α-fractional integrable functions on [a1, a2] is indicated by L1α([a1, a2]).

Remark 1.

Ia1α (h)(t) = Ia11 (tα−1h) =

∫ x

a1

h(t)

t1−α
dt, (8)

where the integral is the usual Riemann improper integral, α ∈ (0, 1].

The main purpose of the article is to find several Ostrowski type inequalities involving
conformable fractional integrals using the concept of strongly convex functions and one
known identity. At the end of the paper we give some error estimations for the midpoint
formula.
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2. Main Results

In order to prove our main results we need the following lemma.

Lemma 1. [1] Let 0 < α ≤ 1, 0 ≤ a1 < a2 and h : [a1, a2] −→ R be an α- fractional
differentiable function. Then the identity

h(x)− α

aα2 − aα1

∫ a2

a1

h(s)dαs

=
x− a1
aα2 − aα1

∫ 1

0

(
((1− t)a1 + tx)2α−1 − aα1 ((1− t)a1 + tx)α−1

)
× Dα(h) ((1− t)a1 + tx) t1−αdαt

+
a2 − x
aα2 − aα1

∫ 1

0

(
((1− t)a2 + tx)2α−1 − aα2 ((1− t)a2 + tx)α−1

)
× Dα(h) ((1− t)a2 + tx) t1−αdαt

holds if Dα(h) ∈ L1α([a1, a2]).

Theorem 3. Let 0 ≤ a1 < a2 and h : [a1, a2] −→ R be an α-fractional differentiable
function for α ∈ (0, 1]. If Dα(h) ∈ L1α([a1, a2]) and |h′(x)| is strongly convex function with
modulus c > 0, then∣∣∣∣h(x)− α

aα2 − aα1

∫ a2

a1

h(s)dαs

∣∣∣∣
≤ x− a1

aα2 − aα1
∆1 +

a2 − x
aα2 − aα1

∆2 − c
(x− a1)3

aα2 − aα1
∆3 − c

(a2 − x)3

aα2 − aα1
∆4, (9)

where

∆1 =
1

6
aα−11 x|h′(a1)|+

1

12
xα−1a1|h′(a1)|+

1

12
x|h′(a1)| −

1

4
aα1 |h′(a1)|

+
1

12
a1|h′(x)|+ 1

12
xα−1a1|h′(x)|+ 1

4
x|h′(x)| − 1

2
aα1 |h′(x)|,

∆2 =
1

6
aα2 |h′(a2)| −

1

6
xα|h′(a2)|+

1

3
aα2 |h′(x)| − 1

3
xα|h′(x)|,

∆3 =
aα1 + xα

20
+
a1x

α−1 + xaα−11

30
− aα1

6
,

∆4 =
aα2
6
− aα2 + xα

12
.

Proof. By Lemma 1, the fact that xα−1 and −xα are both convex for x > 0, properties
of the modulus and since the function |h′(x)| is strongly convex with modulus c > 0, we
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4 ARTION KASHURI AND ROZANA LIKO

have

∣∣∣∣h(x)− α

aα2 − aα1

∫ a2

a1

h(s)dαs

∣∣∣∣
≤ x− a1

aα2 − aα1

∫ 1

0
(((1− t)a1 + tx)α − aα1 )

∣∣h′((1− t)a1 + tx)
∣∣dt

+
a2 − x
aα2 − aα1

∫ 1

0
(aα2 − ((1− t)a2 + tx)α)

∣∣h′((1− t)a2 + tx)
∣∣dt

≤ x− a1
aα2 − aα1

∫ 1

0

(
((1− t)a1 + tx)α−1 ((1− t)a1 + tx)− aα1

) ∣∣h′((1− t)a1 + tx)
∣∣dt

+
a2 − x
aα2 − aα1

∫ 1

0
(aα2 − ((1− t)aα2 + txα))

∣∣h′((1− t)a2 + tx)
∣∣dt

≤ x− a1
aα2 − aα1

∫ 1

0

((
(1− t)aα−11 + txα−1

)
((1− t)a1 + tx)− aα1

) ∣∣h′((1− t)a1 + tx)
∣∣dt

+
a2 − x
aα2 − aα1

∫ 1

0
(aα2 − ((1− t)aα2 + txα))

∣∣h′((1− t)a2 + tx)
∣∣dt

≤ x− a1
aα2 − aα1

∫ 1

0

((
(1− t)aα−11 + txα−1

)
((1− t)a1 + tx)− aα1

)
×

[
(1− t)|h′(a1)|+ t|h′(x)| − ct(1− t)(x− a1)2

]
dt

+
a2 − x
aα2 − aα1

∫ 1

0
(aα2 − ((1− t)aα2 + txα))

×
[
(1− t)|h′(a2)|+ t|h′(x)| − ct(1− t)(a2 − x)2

]
dt

=
x− a1
aα2 − aα1

∆1 +
a2 − x
aα2 − aα1

∆2 − c
(x− a1)3

aα2 − aα1
∆3 − c

(a2 − x)3

aα2 − aα1
∆4.

Hence, we have the result in (9). �

Corollary 1. If we take c −→ 0+ in Theorem 3, we obtain (see [1], Theorem 2.2).

Corollary 2. If we take x = (a1 + a2)/2 in Theorem 3, we get
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∣∣∣∣h(a1 + a2
2

)
− α

aα2 − aα1

∫ a2

a1

h(s)dαs

∣∣∣∣
≤ a2 − a1

2(aα2 − aα1 )

[(
2aα−11 a2 − 10aα1 + a1 + a2

24

)
|h′(a1)|+

a1
12

(
a1 + a2

2

)α−1
|h′(a1)|

+

(
5a1 + 3a2 − 12aα1

24

) ∣∣∣∣∣h′
(
a1 + a2

2

) ∣∣∣∣∣+
a1
12

(
a1 + a2

2

)α−1 ∣∣∣∣∣h′
(
a1 + a2

2

) ∣∣∣∣∣
+

aα2
6
|h′(a2)| −

1

6

(
a1 + a2

2

)α
|h′(a2)|

+
aα2
3

∣∣∣∣∣h′
(
a1 + a2

2

) ∣∣∣∣∣− 1

3

(
a1 + a2

2

)α ∣∣∣∣∣h′
(
a1 + a2

2

) ∣∣∣∣∣
]

− c

8

(a2 − a1)3

(aα2 − aα1 )

[
aα1 +

(
a1+a2

2

)α
20

−
aα2 +

(
a1+a2

2

)α
12

+
aα2 − aα1

6
+
a1
(
a1+a2

2

)α−1
+ aα−11

(
a1+a2

2

)
30

]
.

Remark 2. If α = 1, then Corollary 2 becomes

∣∣∣∣h(a1 + a2
2

)
− 1

a2 − a1

∫ a2

a1

h(s)ds

∣∣∣∣
≤

(
a2 − a1

24

)[
|h′(a1)|+ 4

∣∣∣∣∣h′
(
a1 + a2

2

) ∣∣∣∣∣+ |h′(a2)| −
c

4
(a2 − a1)2

]
.

Theorem 4. Let 0 ≤ a1 < a2 and h : [a1, a2] −→ R be an α-fractional differentiable
function for α ∈ (0, 1]. If Dα(h) ∈ L1α([a1, a2]) and |h′(x)|q is strongly convex function with
modulus c > 0 for q > 1 and p−1 + q−1 = 1, then

∣∣∣∣h(x)− α

aα2 − aα1

∫ a2

a1

h(s)dαs

∣∣∣∣
≤ x− a1

aα2 − aα1
(A1(α, p))

1
p

[
|h′(a1)|q + |h′(x)|q

2
− c

6
(x− a1)2

] 1
q

(10)

+
a2 − x
aα2 − aα1

(A2(α, p))
1
p

[
|h′(a2)|q + |h′(x)|q

2
− c

6
(a2 − x)2

] 1
q

,
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where A1(α, p) =

∫ 1

0
(((1− t)a1 + tx)α − aα1 )p dt =

1

(x− a1)

∫ x

a1

(tα − aα1 )p dt,

A2(α, p) =

∫ 1

0
(aα2 − ((1− t)a2 + tx)α)p dt =

1

(a2 − x)

∫ a2

x
(aα2 − tα)p dt.

Proof. Using Lemma 1, properties of the modulus, Hölder’s inequality and since the func-
tion |h′(x)|q is strongly convex with modulus c > 0, we have∣∣∣∣h(x)− α

aα2 − aα1

∫ a2

a1

h(s)dαs

∣∣∣∣
≤ x− a1

aα2 − aα1

∫ 1

0
(((1− t)a1 + tx)α − aα1 )

∣∣h′((1− t)a1 + tx)
∣∣dt

+
a2 − x
aα2 − aα1

∫ 1

0
(aα2 − ((1− t)a2 + tx)α)

∣∣h′((1− t)a2 + tx)
∣∣dt

≤ x− a1
aα2 − aα1

(∫ 1

0
(((1− t)a1 + tx)α − aα1 )p dt

) 1
p
(∫ 1

0

∣∣h′((1− t)a1 + tx)
∣∣qdt) 1

q

+
a2 − x
aα2 − aα1

(∫ 1

0
(aα2 − ((1− t)a2 + tx)α)p dt

) 1
p
(∫ 1

0

∣∣h′((1− t)a2 + tx)
∣∣qdt) 1

q

≤ x− a1
aα2 − aα1

(A1(α, p))
1
p

(∫ 1

0

[
(1− t)|h′(a1)|q + t|h′(x)|q − ct(1− t)(x− a1)2

]
dt

) 1
q

+
a2 − x
aα2 − aα1

(A2(α, p))
1
p

(∫ 1

0

[
(1− t)|h′(a2)|q + t|h′(x)|q − ct(1− t)(a2 − x)2

]
dt

) 1
q

=
x− a1
aα2 − aα1

(A1(α, p))
1
p

[
|h′(a1)|q + |h′(x)|q

2
− c

6
(x− a1)2

] 1
q

+
a2 − x
aα2 − aα1

(A2(α, p))
1
p

[
|h′(a2)|q + |h′(x)|q

2
− c

6
(a2 − x)2

] 1
q

.

Hence, we have the result in (10). �

Corollary 3. If we take c −→ 0+ in Theorem 4, we get the following inequality∣∣∣∣h(x)− α

aα2 − aα1

∫ a2

a1

h(s)dαs

∣∣∣∣
≤ x− a1

aα2 − aα1
(A1(α, p))

1
p

[
|h′(a1)|q + |h′(x)|q

2

] 1
q

+
a2 − x
aα2 − aα1

(A2(α, p))
1
p

[
|h′(a2)|q + |h′(x)|q

2

] 1
q

.
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Corollary 4. If we take x = (a1 + a2)/2 in Theorem 4, we get

∣∣∣∣h(a1 + a2
2

)
− α

aα2 − aα1

∫ a2

a1

h(s)dαs

∣∣∣∣
≤ a2 − a1

2(aα2 − aα1 )

{
(B1(α, p))

1
p

[
|h′(a1)|q +

∣∣h′ (a1+a22

) ∣∣q
2

− c

24
(a2 − a1)2

] 1
q

+ (B2(α, p))
1
p

[
|h′(a2)|q +

∣∣h′ (a1+a22

) ∣∣q
2

− c

24
(a2 − a1)2

] 1
q
}
,

where B1(α, p) =
2

(a2 − a1)

∫ a1+a2
2

a1

(tα − aα1 )p dt,

B2(α, p) =
2

(a2 − a1)

∫ a2

a1+a2
2

(aα2 − tα)p dt.

Remark 3. If α = 1, then Corollary 4 becomes

∣∣∣∣h(a1 + a2
2

)
− 1

a2 − a1

∫ a2

a1

h(s)ds

∣∣∣∣
≤

(
a2 − a1

4

)(
1

p+ 1

) 1
p

×

{[
|h′(a1)|q +

∣∣h′ (a1+a22

) ∣∣q
2

− c

24
(a2 − a1)2

] 1
q

+

[
|h′(a2)|q +

∣∣h′ (a1+a22

) ∣∣q
2

− c

24
(a2 − a1)2

] 1
q
}
.

Theorem 5. Let M > 0, 0 ≤ a1 < a2 and h : [a1, a2] −→ R be an α-fractional differ-
entiable function for α ∈ (0, 1]. If Dα(h) ∈ L1α([a1, a2]) and |h′(x)|q is strongly convex
function with modulus c > 0 for q ≥ 1 and |h′(x)| ≤M, ∀x ∈ [a1, a2], then

∣∣∣∣h(x)− α

aα2 − aα1

∫ a2

a1

h(s)dαs

∣∣∣∣
≤ M

(
x− a1
aα2 − aα1

)
(A1(α))

1− 1
q

[
A2(α) + A3(α)− c(x− a1)2G1(α)

] 1
q

(11)

+ M

(
a2 − x
aα2 − aα1

)
(B1(α))

1− 1
q

[
B2(α) + B3(α)− c(a2 − x)2G2(α)

] 1
q
,
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where A1(α) =
xα+1 − aα+1

1

(α+ 1)(x− a1)
− aα1 ,

B1(α) = aα2 −
xα+1 − aα+1

2

(α+ 1)(a2 − x)
,

A2(α) = − aα+1
1

(α+ 1)(x− a1)
(α+ 2)(x− a1) + a1

(α+ 2)(x− a1)
+

xα+2

(α+ 1)(x− a1)2(α+ 2)
− aα1

2
,

B2(α) =
aα2
2

+
aα+1
2

(α+ 1)(a2 − x)

(α+ 2)(a2 − x) + a2
(α+ 2)(a2 − x)

− xα+2

(α+ 1)(a2 − x)2(α+ 2)
,

A3(α) =
xα+1

(α+ 1)(x− a1)
(α+ 2)(x− a1)− x

(α+ 2)(x− a1)
+

aα+2
1

(α+ 1)(x− a1)2(α+ 2)
− aα1

2
,

B3(α) =
aα2
2
− xα+1

(α+ 1)(a2 − x)

(α+ 2)(a2 − x)− x
(α+ 2)(a2 − x)

− aα+2
2

(α+ 1)(a2 − x)2(α+ 2)
,

G1(α) =
1

(x− a1)3

[
x

α+ 2

(
xα+2 − aα+2

1

)
− a1x

α+ 1

(
xα+1 − aα+1

1

)
− 1

α+ 3

(
xα+3 − aα+3

1

)
− a1
α+ 2

(
xα+2 − aα+2

1

) ]
− aα1

6
,

G2(α) =
aα2
6
− 1

(a2 − x)3

[
a2

α+ 2

(
aα+2
2 − xα+2

)
− 1

α+ 3

(
aα+3
2 − xα+3

)
− a2x

α+ 1

(
aα+1
2 − xα+1

)
+

x

α+ 2

(
aα+2
2 − xα+2

) ]
.

Proof. Using Lemma 1, properties of the modulus, the well-known power mean inequality,
|h′(x)| ≤M, ∀x ∈ [a1, a2] and since the function |h′(x)|q is strongly convex with modulus
c > 0, we have
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∣∣∣∣h(x)− α

aα2 − aα1

∫ a2

a1

h(s)dαs

∣∣∣∣
≤ x− a1

aα2 − aα1

∫ 1

0
(((1− t)a1 + tx)α − aα1 )

∣∣h′((1− t)a1 + tx)
∣∣dt

+
a2 − x
aα2 − aα1

∫ 1

0
(aα2 − ((1− t)a2 + tx)α)

∣∣h′((1− t)a2 + tx)
∣∣dt

≤ x− a1
aα2 − aα1

(∫ 1

0
(((1− t)a1 + tx)α − aα1 ) dt

)1− 1
q

×
(∫ 1

0
(((1− t)a1 + tx)α − aα1 )

∣∣h′((1− t)a1 + tx)
∣∣qdt) 1

q

+
a2 − x
aα2 − aα1

(∫ 1

0
(aα2 − ((1− t)a2 + tx)α) dt

)1− 1
q

×
(∫ 1

0
(aα2 − ((1− t)a2 + tx)α)

∣∣h′((1− t)a2 + tx)
∣∣qdt) 1

q

≤ x− a1
aα2 − aα1

(A1(α))
1− 1

q

[∫ 1

0
(((1− t)a1 + tx)α − aα1 )

×
[
(1− t)|h′(a1)|q + t|h′(x)|q − ct(1− t)(x− a1)2

]
dt

] 1
q

+
a2 − x
aα2 − aα1

(A2(α))
1− 1

q

[∫ 1

0
(aα2 − ((1− t)a2 + tx)α)

×
[
(1− t)|h′(a2)|q + t|h′(x)|q − ct(1− t)(a2 − x)2

]
dt

] 1
q

≤ M

(
x− a1
aα2 − aα1

)
(A1(α))

1− 1
q

[
A2(α) + A3(α)− c(x− a1)2G1(α)

] 1
q

+ M

(
a2 − x
aα2 − aα1

)
(B1(α))

1− 1
q

[
B2(α) + B3(α)− c(a2 − x)2G2(α)

] 1
q
.

Hence, we have the result in (11). �

Corollary 5. If we take c −→ 0+ in Theorem 5, we obtain (see [1], Theorem 2.5).

Corollary 6. If we take x = (a1 + a2)/2 in Theorem 5, we get
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10 ARTION KASHURI AND ROZANA LIKO

∣∣∣∣h(a1 + a2
2

)
− α

aα2 − aα1

∫ a2

a1

h(s)dαs

∣∣∣∣
≤ M

2

(
a2 − a1
aα2 − aα1

){
(C1(α))

1− 1
q

[
C2(α) + C3(α)− c

4
(a2 − a1)2E1(α)

] 1
q

+ (D1(α))
1− 1

q

[
D2(α) + D3(α)− c

4
(a2 − a1)2E2(α)

] 1
q

}
,
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where C1(α) =

(
a1+a2

2

)α+1 − aα+1
1

(α+ 1)
((

a1+a2
2

)
− a1

) − aα1 ,
D1(α) = aα2 −

(
a1+a2

2

)α+1 − aα+1
2

(α+ 1)
(
a2 −

(
a1+a2

2

)) ,
C2(α) = − aα+1

1

(α+ 1)
((

a1+a2
2

)
− a1

) (α+ 2)
((

a1+a2
2

)
− a1

)
+ a1

(α+ 2)
((

a1+a2
2

)
− a1

)
+

(
a1+a2

2

)α+2

(α+ 1)
((

a1+a2
2

)
− a1

)2
(α+ 2)

− aα1
2
,

D2(α) =
aα2
2

+
aα+1
2

(α+ 1)
(
a2 −

(
a1+a2

2

)) (α+ 2)
(
a2 −

(
a1+a2

2

))
+ a2

(α+ 2)
(
a2 −

(
a1+a2

2

))
−

(
a1+a2

2

)α+2

(α+ 1)
(
a2 −

(
a1+a2

2

))2
(α+ 2)

,

C3(α) =

(
a1+a2

2

)α+1

(α+ 1)
((

a1+a2
2

)
− a1

) (α+ 2)
((

a1+a2
2

)
− a1

)
−
(
a1+a2

2

)
(α+ 2)

((
a1+a2

2

)
− a1

)
+

aα+2
1

(α+ 1)
((

a1+a2
2

)
− a1

)2
(α+ 2)

− aα1
2
,

D3(α) =
aα2
2
−

(
a1+a2

2

)α+1

(α+ 1)
(
a2 −

(
a1+a2

2

)) (α+ 2)
(
a2 −

(
a1+a2

2

))
−
(
a1+a2

2

)
(α+ 2)

(
a2 −

(
a1+a2

2

))
− aα+2

2

(α+ 1)
(
a2 −

(
a1+a2

2

))2
(α+ 2)

,

E1(α) =
1((

a1+a2
2

)
− a1

)3
×

[(
a1+a2

2

)
α+ 2

((
a1 + a2

2

)α+2

− aα+2
1

)
−
a1
(
a1+a2

2

)
α+ 1

((
a1 + a2

2

)α+1

− aα+1
1

)

− 1

α+ 3

((
a1 + a2

2

)α+3

− aα+3
1

)
− a1
α+ 2

((
a1 + a2

2

)α+2

− aα+2
1

)]
− aα1

6
,

E2(α) =
aα2
6
− 1(

a2 −
(
a1+a2

2

))3
×

[
a2

α+ 2

(
aα+2
2 −

(
a1 + a2

2

)α+2
)
− 1

α+ 3

(
aα+3
2 −

(
a1 + a2

2

)α+3
)

−
a2
(
a1+a2

2

)
α+ 1

(
aα+1
2 −

(
a1 + a2

2

)α+1
)

+

(
a1+a2

2

)
α+ 2

(
aα+2
2 −

(
a1 + a2

2

)α+2
)]

.
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Remark 4. If α = 1, then Corollary 6 becomes

∣∣∣∣h(a1 + a2
2

)
− 1

a2 − a1

∫ a2

a1

h(s)ds

∣∣∣∣
≤ M

2

{
(C1(1))

1− 1
q

[
C2(1) + C3(1)− c

4
(a2 − a1)2E1(1)

] 1
q

+ (D1(1))
1− 1

q

[
D2(1) + D3(1)− c

4
(a2 − a1)2E2(1)

] 1
q

}
,
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where C1(1) =

(
a1+a2

2

)2 − a21
2
((

a1+a2
2

)
− a1

) − a1,
D1(1) = a2 −

(
a1+a2

2

)2 − a22
2
(
a2 −

(
a1+a2

2

)) ,
C2(1) = − a21

6
((

a1+a2
2

)
− a1

) 3
((

a1+a2
2

)
− a1

)
+ a1((

a1+a2
2

)
− a1

)
+

(
a1+a2

2

)3
6
((

a1+a2
2

)
− a1

)2 − a1
2
,

D2(1) =
a2
2

+
a22

6
(
a2 −

(
a1+a2

2

)) 3
(
a2 −

(
a1+a2

2

))
+ a2(

a2 −
(
a1+a2

2

))
−

(
a1+a2

2

)3
6
(
a2 −

(
a1+a2

2

))2 ,
C3(1) =

(
a1+a2

2

)2
6
((

a1+a2
2

)
− a1

) 3
((

a1+a2
2

)
− a1

)
−
(
a1+a2

2

)((
a1+a2

2

)
− a1

)
+

a31

6
((

a1+a2
2

)
− a1

)2 − a1
2
,

D3(1) =
a2
2
−

(
a1+a2

2

)2
6
(
a2 −

(
a1+a2

2

)) 3
(
a2 −

(
a1+a2

2

))
−
(
a1+a2

2

)(
a2 −

(
a1+a2

2

))
− a32

6
(
a2 −

(
a1+a2

2

))2 ,
E1(1) =

1((
a1+a2

2

)
− a1

)3
×

[(
a1+a2

2

)
3

((
a1 + a2

2

)3

− a31

)
−
a1
(
a1+a2

2

)
2

((
a1 + a2

2

)2

− a21

)

− 1

4

((
a1 + a2

2

)4

− a41

)
− a1

3

((
a1 + a2

2

)3

− a31

)]
− a1

6
,

E2(1) =
a2
6
− 1(

a2 −
(
a1+a2

2

))3
×

[
a2
3

(
a32 −

(
a1 + a2

2

)3
)
− 1

4

(
a42 −

(
a1 + a2

2

)4
)

−
a2
(
a1+a2

2

)
2

(
a22 −

(
a1 + a2

2

)2
)

+

(
a1+a2

2

)
3

(
a32 −

(
a1 + a2

2

)3
)]

.
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14 ARTION KASHURI AND ROZANA LIKO

Theorem 6. Let 0 ≤ a1 < a2 and h : [a1, a2] −→ R be an α-fractional differentiable
function for α ∈ (0, 1]. If Dα(h) ∈ L1α([a1, a2]) and |h′(x)|q is strongly convex function with
modulus c > 0 and q ≥ 1, then

∣∣∣∣h(x)− α

aα2 − aα1

∫ a2

a1

h(s)dαs

∣∣∣∣
≤ x− a1

aα2 − aα1
(E1(α))

1− 1
q

[
|h′(a1)|qF1(α) + |h′(x)|qH1(α)− c(x− a1)2∆3

] 1
q

(12)

+
a2 − x
aα2 − aα1

(E2(α))
1− 1

q

[
|h′(a2)|qF2(α) + |h′(x)|qH2(α)− c(a2 − x)2∆4

] 1
q
,

where E1(α) =

∫ 1

0

((
(1− t)aα−11 + txα−1

)
((1− t)a1 + tx)− aα1

)
dt

=
xα + aα1

3
+
a1x

α−1 + xaα−11

6
− aα1 ,

E2(α) =

∫ 1

0
(aα2 − ((1− t)aα2 + txα)) dt =

aα2 − xα

2
,

F1(α) =
xα − 15aα1 + a1x

α−1 + xaα−11

12
,

H1(α) =
3xα − 5aα1 + a1x

α−1 + xaα−11

12
,

F2(α) =
aα2 − xα

6
,

H2(α) =
aα2 − xα

3
.

and ∆3, ∆4 are defined as in Theorem 3.
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Proof. Using Lemma 1, properties of the modulus, the well-known power mean inequality
and since the function |h′(x)|q is strongly convex with modulus c > 0, we have∣∣∣∣h(x)− α

aα2 − aα1

∫ a2

a1

h(s)dαs

∣∣∣∣
≤ x− a1

aα2 − aα1

∫ 1

0
(((1− t)a1 + tx)α − aα1 )

∣∣h′((1− t)a1 + tx)
∣∣dt

+
a2 − x
aα2 − aα1

∫ 1

0
(aα2 − ((1− t)a2 + tx)α)

∣∣h′((1− t)a2 + tx)
∣∣dt

≤ x− a1
aα2 − aα1

∫ 1

0

(
((1− t)a1 + tx)α−1 ((1− t)a1 + tx)− aα1

) ∣∣h′((1− t)a1 + tx)
∣∣dt

+
a2 − x
aα2 − aα1

∫ 1

0
(aα2 − ((1− t)aα2 + txα))

∣∣h′((1− t)a2 + tx)
∣∣dt

≤ x− a1
aα2 − aα1

∫ 1

0

((
(1− t)aα−11 + txα−1

)
((1− t)a1 + tx)− aα1

) ∣∣h′((1− t)a1 + tx)
∣∣dt

+
a2 − x
aα2 − aα1

∫ 1

0
(aα2 − ((1− t)aα2 + txα))

∣∣h′((1− t)a2 + tx)
∣∣dt

≤ x− a1
aα2 − aα1

(∫ 1

0

((
(1− t)aα−11 + txα−1

)
((1− t)a1 + tx)− aα1

)
dt

)1− 1
q

×
(∫ 1

0

((
(1− t)aα−11 + txα−1

)
((1− t)a1 + tx)− aα1

) ∣∣h′((1− t)a1 + tx)
∣∣qdt) 1

q

+
a2 − x
aα2 − aα1

(∫ 1

0
(aα2 − ((1− t)aα2 + txα)) dt

)1− 1
q

×
(∫ 1

0
(aα2 − ((1− t)aα2 + txα))

∣∣h′((1− t)a2 + tx)
∣∣qdt) 1

q

≤ x− a1
aα2 − aα1

(E1(α))
1− 1

q

[∫ 1

0

((
(1− t)aα−11 + txα−1

)
((1− t)a1 + tx)− aα1

)
×

[
(1− t)|h′(a1)|q + t|h′(x)|q − ct(1− t)(x− a1)2

]
dt

] 1
q

+
a2 − x
aα2 − aα1

(E2(α))
1− 1

q

[∫ 1

0
(aα2 − ((1− t)aα2 + txα))

×
[
(1− t)|h′(a2)|q + t|h′(x)|q − ct(1− t)(a2 − x)2

]
dt

] 1
q

=
x− a1
aα2 − aα1

(E1(α))
1− 1

q

[
|h′(a1)|qF1(α) + |h′(x)|qH1(α)− c(x− a1)2∆3

] 1
q

+
a2 − x
aα2 − aα1

(E2(α))
1− 1

q

[
|h′(a2)|qF2(α) + |h′(x)|qH2(α)− c(a2 − x)2∆4

] 1
q
.
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Hence, we have the result in (12). �

Corollary 7. If we take q = 1 in Theorem 6, we obtain Theorem 3.

Corollary 8. If we take c −→ 0+ in Theorem 6, we get the following inequality∣∣∣∣h(x)− α

aα2 − aα1

∫ a2

a1

h(s)dαs

∣∣∣∣
≤ x− a1

aα2 − aα1
(E1(α))

1− 1
q

[
|h′(a1)|qF1(α) + |h′(x)|qH1(α)

] 1
q

+
a2 − x
aα2 − aα1

(E2(α))
1− 1

q

[
|h′(a2)|qF2(α) + |h′(x)|qH2(α)

] 1
q
.

Corollary 9. If we take x = (a1 + a2)/2 in Theorem 6, we get∣∣∣∣h(a1 + a2
2

)
− α

aα2 − aα1

∫ a2

a1

h(s)dαs

∣∣∣∣
≤ a2 − a1

2(aα2 − aα1 )

{
(L1(α))

1− 1
q

[
|h′(a1)|qM1(α) +

∣∣∣∣∣h′
(
a1 + a2

2

) ∣∣∣∣∣
q

N1(α)− c

4
(a2 − a1)2P1(α)

] 1
q

+ (L2(α))
1− 1

q

[
|h′(a2)|qM2(α) +

∣∣∣∣∣h′
(
a1 + a2

2

) ∣∣∣∣∣
q

N2(α)− c

4
(a2 − a1)2P2(α)

] 1
q
}
,

where L1(α) =

(
a1+a2

2

)α
+ aα1

3
+
a1
(
a1+a2

2

)α−1
+
(
a1+a2

2

)
aα−11

6
− aα1 ,

L2(α) = =
aα2 −

(
a1+a2

2

)α
2

,

M1(α) =

(
a1+a2

2

)α − 15aα1 + a1
(
a1+a2

2

)α−1
+
(
a1+a2

2

)
aα−11

12
,

N1(α) =
3
(
a1+a2

2

)α − 5aα1 + a1
(
a1+a2

2

)α−1
+
(
a1+a2

2

)
aα−11

12
,

M2(α) =
aα2 −

(
a1+a2

2

)α
6

,

N2(α) =
aα2 −

(
a1+a2

2

)α
3

,

P1(α) =
aα1 +

(
a1+a2

2

)α
20

+
a1
(
a1+a2

2

)α−1
+
(
a1+a2

2

)
aα−11

30
− aα1

6
,

P2(α) =
aα2
6
−
aα2 +

(
a1+a2

2

)α
12

.

Remark 5. If α = 1, then Corollary 9 becomes
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∣∣∣∣h(a1 + a2
2

)
− 1

a2 − a1

∫ a2

a1

h(s)ds

∣∣∣∣
≤ 1

2

{
(L1(1))

1− 1
q

[
|h′(a1)|qM1(1) +

∣∣∣∣∣h′
(
a1 + a2

2

) ∣∣∣∣∣
q

N1(1)− c

4
(a2 − a1)2P1(1)

] 1
q

+ (L2(1))
1− 1

q

[
|h′(a2)|qM2(1) +

∣∣∣∣∣h′
(
a1 + a2

2

) ∣∣∣∣∣
q

N2(1)− c

4
(a2 − a1)2P2(1)

] 1
q
}
,

where L1(1) =

(
a1+a2

2

)
+ a1

3
+
a1 +

(
a1+a2

2

)
6

− a1,

L2(1) = =
a2 −

(
a1+a2

2

)
2

,

M1(1) =

(
a1+a2

2

)
− 15a1 + a1 +

(
a1+a2

2

)
12

,

N1(1) =
3
(
a1+a2

2

)
− 5a1 + a1 +

(
a1+a2

2

)
12

,

M2(1) =
a2 −

(
a1+a2

2

)
6

,

N2(1) =
a2 −

(
a1+a2

2

)
3

,

P1(1) =
a1 +

(
a1+a2

2

)
20

+
a1 +

(
a1+a2

2

)
30

− a1
6
,

P2(1) =
a2
6
−
a2 +

(
a1+a2

2

)
12

.

3. Applications to midpoint formula

Let P be the partition of the points a1 = x0 < x1 < ... < xn−1 < xn = a2 of the interval
[a1, a2] and consider the quadrature formula∫ a2

a1

h(x)dαx = Tα(h, P) + Eα(h, P), (13)

where

Tα(h, P) =

n−1∑
i=0

h

(
xi + xi+1

2

) (
xαi+1 − xαi

)
α

(14)

is the midpoint version and Eα(h, P) denotes the associated approximation error. Here, we
are going to derive some new estimates for the midpoint formula.
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Proposition 1. Let 0 ≤ x0 < xn and h : [x0, xn] −→ R be an α-fractional differentiable
function for α ∈ (0, 1]. If Dα(h) ∈ L1α([x0, xn]) and |h′(x)| is strongly convex function with
modulus c > 0, then∣∣Eα(h, P)

∣∣ ≤ n−1∑
i=0

(xi+1 − xi)
2α

[(
2xα−1i xi+1 − 10xαi + xi + xi+1

24

)
|h′(xi)|

+
xi
12

(
xi + xi+1

2

)α−1
|h′(xi)|+

(
5xi + 3xi+1 − 12xαi

24

) ∣∣∣∣∣h′
(
xi + xi+1

2

) ∣∣∣∣∣
+

xi
12

(
xi + xi+1

2

)α−1 ∣∣∣∣∣h′
(
xi + xi+1

2

) ∣∣∣∣∣+
xαi+1

6
|h′(xi+1)| −

1

6

(
xi + xi+1

2

)α
|h′(xi+1)|

+
xαi+1

3

∣∣∣∣∣h′
(
xi + xi+1

2

) ∣∣∣∣∣− 1

3

(
xi + xi+1

2

)α ∣∣∣∣∣h′
(
xi + xi+1

2

) ∣∣∣∣∣
]

− c

8α
(xi+1 − xi)3

[
xαi +

(
xi+xi+1

2

)α
20

−
xαi+1 +

(
xi+xi+1

2

)α
12

+
xαi+1 − xαi

6
+
xi

(
xi+xi+1

2

)α−1
+ xα−1i

(
xi+xi+1

2

)
30

]
.

Proof. Applying Corollary 2 of Theorem 3 on the subintervals [xi, xi+1] (i = 0, 1, . . . , n−1)
of the partition P, we have∣∣∣∣h(xi + xi+1

2

)
(xαi+1 − xαi )

α
−
∫ xi+1

xi

h(x)dαx

∣∣∣∣
≤ (xi+1 − xi)

2α

[(
2xα−1i xi+1 − 10xαi + xi + xi+1

24

)
|h′(xi)|+

xi
12

(
xi + xi+1

2

)α−1
|h′(xi)|

+

(
5xi + 3xi+1 − 12xαi

24

) ∣∣∣∣∣h′
(
xi + xi+1

2

) ∣∣∣∣∣+
xi
12

(
xi + xi+1

2

)α−1 ∣∣∣∣∣h′
(
xi + xi+1

2

) ∣∣∣∣∣
+

xαi+1

6
|h′(xi+1)| −

1

6

(
xi + xi+1

2

)α
|h′(xi+1)|

+
xαi+1

3

∣∣∣∣∣h′
(
xi + xi+1

2

) ∣∣∣∣∣− 1

3

(
xi + xi+1

2

)α ∣∣∣∣∣h′
(
xi + xi+1

2

) ∣∣∣∣∣
]

− c

8α
(xi+1 − xi)3

[
xαi +

(
xi+xi+1

2

)α
20

−
xαi+1 +

(
xi+xi+1

2

)α
12

+
xαi+1 − xαi

6
+
xi

(
xi+xi+1

2

)α−1
+ xα−1i

(
xi+xi+1

2

)
30

]
.
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Hence from above∣∣Eα(h, P)
∣∣ =

∣∣∣∣∣
n−1∑
i=0

{∫ xi+1

xi

h(x)dαx− h
(
xi + xi+1

2

) (
xαi+1 − xαi

)
α

}∣∣∣∣∣
≤

n−1∑
i=0

∣∣∣∣∣
∫ xi+1

xi

h(x)dαx− h
(
xi + xi+1

2

) (
xαi+1 − xαi

)
α

∣∣∣∣∣
≤

n−1∑
i=0

(xi+1 − xi)
2α

[(
2xα−1i xi+1 − 10xαi + xi + xi+1

24

)
|h′(xi)|+

xi
12

(
xi + xi+1

2

)α−1
|h′(xi)|

+

(
5xi + 3xi+1 − 12xαi

24

) ∣∣∣∣∣h′
(
xi + xi+1

2

) ∣∣∣∣∣+
xi
12

(
xi + xi+1

2

)α−1 ∣∣∣∣∣h′
(
xi + xi+1

2

) ∣∣∣∣∣
+

xαi+1

6
|h′(xi+1)| −

1

6

(
xi + xi+1

2

)α
|h′(xi+1)|

+
xαi+1

3

∣∣∣∣∣h′
(
xi + xi+1

2

) ∣∣∣∣∣− 1

3

(
xi + xi+1

2

)α ∣∣∣∣∣h′
(
xi + xi+1

2

) ∣∣∣∣∣
]

− c

8α
(xi+1 − xi)3

[
xαi +

(
xi+xi+1

2

)α
20

−
xαi+1 +

(
xi+xi+1

2

)α
12

+
xαi+1 − xαi

6
+
xi

(
xi+xi+1

2

)α−1
+ xα−1i

(
xi+xi+1

2

)
30

]
.

�

Proposition 2. Let 0 ≤ x0 < xn and h : [x0, xn] −→ R be an α-fractional differentiable
function for α ∈ (0, 1]. If Dα(h) ∈ L1α([x0, xn]) and |h′(x)|q is strongly convex function with
modulus c > 0 for q > 1 and p−1 + q−1 = 1, then

∣∣Eα(h, P)
∣∣ ≤ n−1∑

i=0

(xi+1 − xi)
2α

{
(Si,1(α, p))

1
p

[ |h′(xi)|q +
∣∣∣h′ (xi+xi+1

2

) ∣∣∣q
2

− c

24
(xi+1 − xi)2

] 1
q

+ (Si,2(α, p))
1
p

[ |h′(xi+1)|q +
∣∣∣h′ (xi+xi+1

2

) ∣∣∣q
2

− c

24
(xi+1 − xi)2

] 1
q
}
,

where Si,1(α, p) =
2

(xi+1 − xi)

∫ xi+xi+1
2

xi

(tα − xαi )p dt,

Si,2(α, p) =
2

(xi+1 − xi)

∫ xi+1

xi+xi+1
2

(
xαi+1 − tα

)p
dt.
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Proof. The proof is analogous to that of Proposition 1 only by using Corollary 4 of The-
orem 4. �

Proposition 3. Let M > 0, 0 ≤ x0 < xn and h : [x0, xn] −→ R be an α-fractional
differentiable function for α ∈ (0, 1]. If Dα(h) ∈ L1α([x0, xn]) and |h′(x)|q is strongly convex
function with modulus c > 0 for q ≥ 1 and |h′(x)| ≤M, ∀x ∈ [x0, xn], then

∣∣Eα(h, P)
∣∣ ≤ M

2α

n−1∑
i=0

(xi+1 − xi)

{
(Ci,1(α))

1− 1
q

[
Ci,2(α) + Ci,3(α)− c

4
(xi+1 − xi)2Ei,1(α)

] 1
q

+ (Di,1(α))
1− 1

q

[
Di,2(α) + Di,3(α)− c

4
(xi+1 − xi)2Ei,2(α)

] 1
q

}
,
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where Ci,1(α) =

(
xi+xi+1

2

)α+1
− xα+1

i

(α+ 1)
((

xi+xi+1

2

)
− xi

) − xαi ,
Di,1(α) = xαi+1 −

(
xi+xi+1

2

)α+1
− xα+1

i+1

(α+ 1)
(
xi+1 −

(
xi+xi+1

2

)) ,
Ci,2(α) = −

xα+1
i

(α+ 1)
((

xi+xi+1

2

)
− xi

) (α+ 2)
((

xi+xi+1

2

)
− xi

)
+ xi

(α+ 2)
((

xi+xi+1

2

)
− xi

)
+

(
xi+xi+1

2

)α+2

(α+ 1)
((

xi+xi+1

2

)
− xi

)2
(α+ 2)

− xαi
2
,

Di,2(α) =
xαi+1

2
+

xα+1
i+1

(α+ 1)
(
xi+1 −

(
xi+xi+1

2

)) (α+ 2)
(
xi+1 −

(
xi+xi+1

2

))
+ xi+1

(α+ 2)
(
xi+1 −

(
xi+xi+1

2

))
−

(
xi+xi+1

2

)α+2

(α+ 1)
(
xi+1 −

(
xi+xi+1

2

))2
(α+ 2)

,

Ci,3(α) =

(
xi+xi+1

2

)α+1

(α+ 1)
((

xi+xi+1

2

)
− xi

) (α+ 2)
((

xi+xi+1

2

)
− xi

)
−
(
xi+xi+1

2

)
(α+ 2)

((
xi+xi+1

2

)
− xi

)
+

xα+2
i

(α+ 1)
((

xi+xi+1

2

)
− xi

)2
(α+ 2)

− xαi
2
,

Di,3(α) =
xαi+1

2
−

(
xi+xi+1

2

)α+1

(α+ 1)
(
xi+1 −

(
xi+xi+1

2

)) (α+ 2)
(
xi+1 −

(
xi+xi+1

2

))
−
(
xi+xi+1

2

)
(α+ 2)

(
xi+1 −

(
xi+xi+1

2

))
−

xα+2
i+1

(α+ 1)
(
xi+1 −

(
xi+xi+1

2

))2
(α+ 2)

,

Ei,1(α) =
1((

xi+xi+1

2

)
− xi

)3
×

[(xi+xi+1

2

)
α+ 2

((
xi + xi+1

2

)α+2

− xα+2
i

)
−
xi

(
xi+xi+1

2

)
α+ 1

((
xi + xi+1

2

)α+1

− xα+1
i

)

− 1

α+ 3

((
xi + xi+1

2

)α+3

− xα+3
i

)
− xi
α+ 2

((
xi + xi+1

2

)α+2

− xα+2
i

)]
− xαi

6
,
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Ei,2(α) =
xαi+1

6
− 1(

xi+1 −
(
xi+xi+1

2

))3
×

[
xi+1

α+ 2

(
xα+2
i+1 −

(
xi + xi+1

2

)α+2
)
− 1

α+ 3

(
xα+3
i+1 −

(
xi + xi+1

2

)α+3
)

−
xi+1

(
xi+xi+1

2

)
α+ 1

(
xα+1
i+1 −

(
xi + xi+1

2

)α+1
)

+

(
xi+xi+1

2

)
α+ 2

(
xα+2
i+1 −

(
xi + xi+1

2

)α+2
)]

.

Proof. The proof is analogous to that of Proposition 1 only by using Corollary 6 of The-
orem 5. �

Proposition 4. Let 0 ≤ x0 < xn and h : [x0, xn] −→ R be an α-fractional differentiable
function for α ∈ (0, 1]. If Dα(h) ∈ L1α([x0, xn]) and |h′(x)|q is strongly convex function with
modulus c > 0 and q ≥ 1, then

∣∣Eα(h, P)
∣∣ ≤ n−1∑

i=0

(xi+1 − xi)
2α

×

{
(Li,1(α))

1− 1
q

[
|h′(xi)|qMi,1(α) +

∣∣∣∣∣h′
(
xi + xi+1

2

) ∣∣∣∣∣
q

Ni,1(α)− c

4
(xi+1 − xi)2Pi,1(α)

] 1
q

+ (Li,2(α))
1− 1

q

[
|h′(xi+1)|qMi,2(α) +

∣∣∣∣∣h′
(
xi + xi+1

2

) ∣∣∣∣∣
q

Ni,2(α)− c

4
(xi+1 − xi)2Pi,2(α)

] 1
q
}
,
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where Li,1(α) =

(
xi+xi+1

2

)α
+ xαi

3
+
xi

(
xi+xi+1

2

)α−1
+
(
xi+xi+1

2

)
xα−1i

6
− xαi ,

Li,2(α) = =
xαi+1 −

(
xi+xi+1

2

)α
2

,

Mi,1(α) =

(
xi+xi+1

2

)α
− 15xαi + xi

(
xi+xi+1

2

)α−1
+
(
xi+xi+1

2

)
xα−1i

12
,

Ni,1(α) =
3
(
xi+xi+1

2

)α
− 5xαi + xi

(
xi+xi+1

2

)α−1
+
(
xi+xi+1

2

)
xα−1i

12
,

Mi,2(α) =
xαi+1 −

(
xi+xi+1

2

)α
6

,

Ni,2(α) =
xαi+1 −

(
xi+xi+1

2

)α
3

,

Pi,1(α) =
xαi +

(
xi+xi+1

2

)α
20

+
xi

(
xi+xi+1

2

)α−1
+
(
xi+xi+1

2

)
xα−1i

30
− xαi

6
,

Pi,2(α) =
xαi+1

6
−
xαi+1 +

(
xi+xi+1

2

)α
12

.

Proof. The proof is analogous to that of Proposition 1 only by using Corollary 9 of The-
orem 6. �

4. Conclusion

In this paper, using the concept of strongly convex functions and one known identity,
we found several Ostrowski type inequalities pertaining conformable fractional integrals.
Also, we give some error estimations for the midpoint formula.
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[23] Özdemir, M. E., Kavurmac, H., Set, E., Ostrowski’s type inequalities for (α,m)-convex functions,
Kyungpook Math. J., 50, 371-378, (2010).
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