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OSTROWSKI TYPE INEQUALITIES PERTAINING STRONGLY
CONVEX FUNCTIONS VIA CONFORMABLE FRACTIONAL
INTEGRALS AND THEIR APPLICATIONS

ARTION KASHURI AND ROZANA LIKO

ABSTRACT. In the article, by applied the concept of strongly convex function and one
known identity, we establish several Ostrowski type inequalities involving conformable
fractional integrals. As applications, some new error estimations for the midpoint formula
are provided as well.

1. INTRODUCTION
The subsequent inequality is known as Ostrowski inequality.

Theorem 1. Let h : I — R be a mapping differentiable on I° and let a1,as € I° with
a; < ag. If |W(x)| < M for all x € [a1,as9), then

a2 r— aj+as )2
h(x)_agial/ h(z)dx| < M(ag — ay) 111+((a2—21)2)]’ Va € lar,az]. (1)

Ostrowski inequality is playing a very important role in all the fields of mathematics,
especially in the theory of approximations. Thus such inequalities were studied extensively
by many researches and numerous generalizations, extensions, variants and applications

can be found in the literature [[1]-[4],[7]-[13],[15],[16],[18]-[20],[23]-[27],[29],[30]].

Definition 1. [17] Given a function h : [0,00) — R. Conformable fractional derivative
of h of order « is defined by
h(t + et'=®) — h(t
Da(h)(t) = lig AE LD =) 2)

e—0 €

for all ¢ > 0 and « € (0, 1]. If the conformable fractional derivative of h of order « exists,
then we say that h is a-differentiable.

Let h be a-differentiable in (0,a), and lim; ,o+ h®(t) exists, then define
h*(0) = lim h%(t). (3)

t—0t
We will sometimes write h®(t) and % (h) for Do (h)(t), to denote the conformable fractional
derivatives of h of order a.
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Theorem 2. [17] Let o € (0,1] and ¢, be a-differentiable at a point t > 0. Then
i (t”) =nt""?, for alln € R.
. él(jt(b) =0, for all constant functions ¢(t ) b.
iii. % (a10(t) + a2®p(t)) = a1 js (p(t)) + agd o ((t)), for all ay,az € R,
iv'%‘j‘tw(tw()):d() 7 (¥ ()) D (t) 32 (6(2))-
.. 5% (%) P(t) 5256 ((22(15))(2) (w(t)).
vi. 2 ((po)(t) = ¢ (%(1) 42 ((1)), for ¢ differentiable at (t).
If, in addztwn, the function ¢ is differentiable, then

—(6(1)). (4)

Now, let us recall some basic definitions of various convex functions and conformable
fractional integral.

L~

|

Definition 2. A function h: I — R, I C R, is said to be convex on I if the inequality
h(ta; + (1 —t)ag) < th(ar) + (1 — t)h(a2) (5)

holds for all aj,as € I and t € [0,1]. Also, we say that h is concave, if the inequality (5)
is reversed.

Definition 3. A function h : I — R is called strongly convex with modulus ¢ > 0, if
h(tay + (1 — t)as) < th(a1) 4+ (1 — t)h(ag) — ct(1 — t)(ag — a1)? (6)
holds for all aj,as € I and t € [0,1].

Strongly convex functions play important role in optimization theory and mathematical
economics. Many properties and applications of them can be found in the literature
[[6],[14],[21],[22],[28]].

Definition 4. [5] (Conformable fractional integral). Let o € (0,1) and 0 < a1 < a2. A
function h : [a1, a2] — R is a-fractional integrable on [a1, ag] if the integral

/a h(t)dot = / Bt Lt (M)

exists and is finite. All a-fractional integrable functions on [a1, az] is indicated by L. ([a1, as]).
Remark 1.

I (h)(t) = Illn (to‘_lh) = /z Z(_ti dt, (8)

where the integral is the usual Riemann improper integral, « € (0, 1].

The main purpose of the article is to find several Ostrowski type inequalities involving
conformable fractional integrals using the concept of strongly convex functions and one
known identity. At the end of the paper we give some error estimations for the midpoint
formula.
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2. MAIN RESULTS

In order to prove our main results we need the following lemma.

Lemma 1. [1/ Let 0 < o < 1,0 < a1 < ag and h : [a1,a2] — R be an a- fractional
differentiable function. Then the identity

hz)— — / h(5)das

as — af
_ 1
= 2 (- e ) (- + )
2 %1 JO

X Dga(h) (1 —t)ay + tx) t!™%d,t

s — af /01 (((1 —t)ag +tx)** ' —a (1 — t)ag + m,)a—l)

X Dga(h) (1 —t)ag + tx) t1=%d,t

ag — I
+

holds if Do (h) € LY ([a1,a2]).

Theorem 3. Let 0 < a; < ay and h : [a1,a2] — R be an a-fractional differentiable
function for o € (0,1]. If Do(h) € L ([a1,az]) and |W' (x)| is strongly conver function with
modulus ¢ > 0, then

ag — a3
TN 027 (z—a1)® (a2 —2)° \ )
- ay —af § —af ay —af §—af
where
Ar = Lat g (@) 4 29 lay B (a1)| + B (a1)] — ~a2 (B (ar)|
! 61 12 12 4™
1 1 1 1
+ Eallh’(w)l + 52 Laq |1/ (z)| + Zwlh'(w)l - §a?|h’(fv)l,
1 1 1 1
Ay = 6a§“lh’(a2)l - gfﬂ"“lh'(fm)l + gaglh'(fv)l - gwalh’(w)l,
ad 4+ ¢ alxafl +$aa—1 a®
A — 1 1 e
3 20 T 30 6’
aOL aOl +xa
A, = B _ Bt
4 6 12

Proof. By Lemma 1, the fact that @~ and —x® are both convex for x > 0, properties
of the modulus and since the function |h/(z)| is strongly convex with modulus ¢ > 0, we
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have

‘h(x)— @ /:Qh(s)das

ay — af
1
r — al a o
S 3 _aa/ (1 = t)ay +ta)®* — af) |W' (1 — t)ar + tx)|dt
2 1 J0
_ 1
+ Cff_ = / (a§ — (1 — t)ag + t2)*) |W'((1 — t)as + tz)|dt
ag —ay Jo
_ 1
< ‘”a/ (= Har + t2)* 1 (1= ar + t2) = af ) [W((1 = t)an + ta)|dt
ag —ay Jo
_ 1
b2 [ e = (- a8 ) Bty + 1)
az —ay Jo
_ 1
= aa; C;la / (1 =t)ad™ " +ta*71) (1 = tay + tx) — af) [P/ ((1 = t)ay + ta)|dt
2~ Y1 Jo
_ 1
b 2 [ s — (- 005 + 1) (1~ D0z + 1)
g —ay Jo
_ 1
< 2= / (1 = 1)ag™" + 221 (1 = t)ay + ) — af)
ag —ay Jo

x  [(L=8)h (a1)] + t|W (z)] — ct(1 —t)(z — al)Q]dt

1
as —
b2 [ @ - (- e 1)
ay; —ay Jo
X [(1 — )| (a2)| + t|W (x)| — ct(1 — t)(as — x)Q]dt
_ _ _ 3 RY:!
= Z ala A+ 622 -'Ifa Ag — C—(xa al()l Ag — C—(az xl 4-
ay —ajg ay; —ajy ay; —aj ay —ajg
Hence, we have the result in (9). O

Corollary 1. If we take ¢ — 0" in Theorem 3, we obtain (see [1], Theorem 2.2).

Corollary 2. If we take x = (a1 + a2)/2 in Theorem 3, we get
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a2
‘h<a1+a2>_ aa a/ h(s)dos
2 ay —af Jo,

as — aq 208 Yay — 10a$ + a1 + as a1 (a1 + a2 "
< 2(aa _ aa) [ ( : 241 ’h/(a1)| + E 9 ’h/(al)‘
2 1
N 5a1 + 3ay — 12a¢ (@ + ay N ar (a1 +a a-l (@ + as
24 2 12 2 2

a% 1 (a1 +a2\”
) - (M5) e

2
L @Gy (atae)| 1l atae ah, a1 + ag
3 2 3 2 2
ol o ()" ag e (85"
8 (a3 —af) 20 12
Loas—af e (B)T ap! (25
6 30

Remark 2. If a = 1, then Corollary 2 becomes

I
‘h <“1 + “2> _ / h(s)ds
2 as — ay a1
< a2 — aq h, al + a9
- 24 2
Theorem 4. Let 0 < a1 < az and h : [a1,a2] — R be an a-fractional differentiable

function for a € (0,1]. If Do(h) € LY ([a1,a2]) and |k (x)|9 is strongly convex function with
modulus ¢ > 0 for ¢ >1 and p~' +q¢ ' =1, then

W (a)| +4 + [ (a2)| = J(az — ar)?

Ay — a3y
_ _1
T —ay 1R ()| + [P (@) e 2| ”
S o (o) . ~Sw—a) (10)

b e | P EOE e, g

Q=

(=2} e}
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1 €T
L / (t — ag)P dt,

(‘7" - al) a1

1 az
/ (a5 — t*)P dt.

(ag — )

/01 (1 = t)ar + t2)® — )P dt —

1
/0 (a§ — ((1 = t)ag + tz)*)’ dt =

Proof. Using Lemma 1, properties of the modulus, Holder’s inequality and since the func-
tion |h/(z)|? is strongly convex with modulus ¢ > 0, we have

h(x)_ag‘—aff /al h(s)dqs

r—a 1
< 20 [ (= + )" — o) (1 - o + )t

ay —ay Jo

1

+ Of__xa/ (a8 — ((1 —t)ag + tz)®) [ (1 — t)ag + tz)|dt

ay —ay Jo

T w ! _ a_aap % ! / - a - q %
< 22 ([ a-va s —ara) ([ - o +w)a)

a — 7T ' a a\p z ! / q 3
R —— (/0 (a3 = ((1 = t)az + tx)7) dt> </0 W (1= t)az + tz)] dt)

T —a . Vg e B B L
< o)t ([ 100l @) + @ - a1 = - )]t

az — T % ! . / / _ — NVay — )2 %
il (A2(a;, p)) (/0 [(1 = 1)1/ (az)|* + t|M(2)|? — ct(1 — t)(az )]dt>
- az__zla (Al(aap))% |h,(a1)|q;|h/($)|q_ C(w—al)2 q

2 1 L |
* acg__(fa (A2(04,p))% |h/(a2)‘q;’h/(x)‘q_g(ag—x)Q ‘1

2 1 L |

Hence, we have the result in (10).

Corollary 3. If we take ¢ — 0% in Theorem 4, we get the following inequality

]h( - [
x) — s)dys
a% _a(ll al
_ -1
r—a 1 ||h(a1)]|9 4+ |B' (x)|2 | ®
A
a5 —ag (P >
_ -1
as — T 1| |W (a2)| 4+ |W (z)]? |
A

d0i:10.20944/preprints201902.0243.v1
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Corollary 4. If we take x = (a1 + a2)/2 in Theorem 4, we get

a2
’h<a1+a2>_ aa a/ h(s)das
2 ag —af Ja,

L "(a1)le /ch
s@_m)%&@MVFM1N+M(2)‘—@rﬂﬁ]

Q=

2(a§ — af 2 24
1
1 h/ as a4 h/ aj+az) |4 c q
+<&mmwp()' ESI e oy |
2 al;GQ
where By(a,p) = M/ (t* — af)P dt,
2w )
B = — g —tMP dt.
2(aap) <a2 - al) /11+a2 ((12 )

2

Remark 3. If a = 1, then Corollary 4 becomes

az
()
2 az —ax a1
_ 1 / q ! (a1+az2) |4
< (2o 1 o |7 (a1) ]9 + |1 (25%) | _i(@_al)?
4 p+1 2 24

"(as)]4 ! (a1taz |4 c %
[|h(2)| + [ (25%2) | —24(a2—a1)2] }

=

2

Theorem 5. Let M > 0,0 < a1 < ag and h : [a1,a3] — R be an a-fractional differ-
entiable function for o € (0,1]. If Do(h) € LL([a1,a2]) and |W (z)|? is strongly convex
function with modulus ¢ > 0 for ¢ > 1 and |h'(z)| < M, Vz € [a1, as], then

’h(m)— o a/: h(s)dys

Q=

<= M < a;_ ala) (141(01))1_% [Az(a) + 43(a) — c(z — a1)26'1(04)} (11)

Q=

+
7 N\
S
g}I
Q&%
N———
™
—
—~
Q
S~—
VT
Q=

[Ba(0) + By(a) = claz — )26,
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potl _ gotl
where Aj(a) = ot 1)(:cia1) —af,
$a+1 aOé-l—l
B — (0% _ 2
1(0[) 5} (Oé n 1)(@2 - x)?
b)) = - at! (a+2)(x—a1)+a; N o2 _af
(a+1)(z—a1) (a+2)(z—a) (a+1)(z—a1)?(a+2) 2’
B(a) — ag N a%“ (a+2)(ag — x) + as B xot2
2 (a+1)(ag —2x) (a+2)(ag—x) (a+1)(az —x)?(a+2)’
pot! (a+2)(z—a1)—x ast? af
A3(C¥) = + - —,
(a+1)(z—a1) (a+2)(z—ar) (a+1)(x —a1)?(a+2) 2
ey = B @idwen-e
2 (a+1)(ag —x) (a+2)(ag — ) (a+1)(az — x)%2(a+2)’
1 x a1x
G — a+2 _ a+2 _ ; a+1 _ a-+1
1(04) (1)—(11)3 a+2(§6 ay ) a+1 (‘T ay )
1 a+3 a+3 ai a+2 a+2 a(lx
a+3($ ai™) a+2(x o) 6’
— ﬁ _ 1 a2 a+2 _ a42) 1 a+3 _ a+3
&) = F oo |arz @ ) T @t et
a2 +1 1 +2 2
e )|

Proof. Using Lemma 1, properties of the modulus, the well-known power mean inequality,
[P (z)| < M, Vx € [a1,a2] and since the function |h/(z)|? is strongly convex with modulus
¢ > 0, we have
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’h(az)— _— a/f h(s)das

Ay — a3
T —ai ! « /
< = a/ (1= ay + t2)® — af) [((1 - t)ay + ta)|de
ag —ay Jo
1
ag — T @ a ’
;& a/ (a§ — (1 t)az + t2)) [F((1 - t)az + ta)|de
ag —ayg Jo
T —a 1 -3
< 220 ([ - )
ay — a3 0

1

1 q
X (/0 (1 = t)ay + ta)* = af) [P/ ((1 = t)as + tm)‘th)

1

+ =22 (/01 (@S — (1 = tas + tz)%) dt)l_q

ay; —ajy

1

1 q
X (/0 (a5 — (1 = t)ag + tx)*) [W'((1 — t)ag + tm)‘th)

< a® — o (A1(a)) @ [/ (1 =t)ay + tz)* —af)
2 1 0

Q=

X [(1 — )| (a)|? + t|W (2)]9 — ct(1 — t)(x — a1)2]dt]

ag — T

1 1
(Aa(a))' [ /0 (a8 — (1 - t)as + t)")

o (0%
ay; — ajy

Q=

X [(1=t)[1 ()| + |/ (2)|" — ct(1 — t)(as — w)Q]dt]

1
r—a 3
< 21 (E20) () [ka(a) + hale) — ol — ) )]
ay — aj
1
as —x 3
+ < 2 a) Ba(a) + Ba() — e(az — 2)%Ga(a) ] .
ay — ag
Hence, we have the result in (11). O

Corollary 5. If we take c — 0" in Theorem 5, we obtain (see [1], Theorem 2.5).

Corollary 6. If we take x = (a1 + a2)/2 in Theorem 5, we get
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a2
‘h<a1+a2>_ aa a/ h(s)dus
2 g —ay Ja

+ (D)7 [Ba(0) + By(@) = Z(az — ) Bala)]

>0

Q=

Q=

(a2 — @1)*Er(0)|
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(a1+a2)a+1 _ a<11+1

2
(o (52 —a)
(215)" "

«a
—ay,

BT e o))
C(a) = — ag ! (@+2) (("3%) —a1) +a
(@+1) (("5%2) —a1)  (a+2) (("52) —a)
(M)O‘“ ac
+ 2 . - L
(a+1) ((242) —a)" (a+2) 2
o = & ag" (a +2) (a2 — (95%)) + a2
PO e e () @2 - (59))
(2ge2)™ "
(a+1) (a2 = (252))" (@ +2)°
Gra) = (9592)"" (a4 2) ((U5%2) —ar) — (95%2)
(@+1) ((2F%2) —a1)  (a+2)((25%2) —a)
N a?+2 _ﬁ7
(+1) ((22) —a;)* (a+2) 2
Do) = L _ (25%2)"" (e +2) (ap - (4592)) - (45%2)
2 (a+1)(a2—("5%)  (a+2) (- (242))
ag+2
(a+1) (a2 = (952))” (@ +2)’
E(a) = 1
((24%2) - @)’
(a1+a2) a1 +a a+2 . al(m) a1 +a a+1
» aiQ <12 2> — a2 - a+21 <12 2)
a a a+3 a a a a+2
a omlt3<< 1J2r 2> _a?+3>_a;2<< 1—5 2) —aft?
o) = - !
i 6 (a— (252))°
X

d0i:10.20944/preprints201902.0243.v1
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_ a?+1>
_ 9
6 Y

az aot+2 _ a1 + az a2 B 1 a0t ay + ag s
a+2\7? 2 a+3\7? 2

B as (a142ra2) aa—i—l (a + as a+1 . (a142ra2) aa+2 [ m + as
a+1 2 2 at+2 \? 2

")l
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Remark 4. If a = 1, then Corollary 6 becomes
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where Cq(1)

Dy(1)

Co(1)

Do(1)

Cs(1)

E1(1)

Ea(1)

(2152)" o

2 (2% —a)

(52)" -

ag —

2 (a2 — (%5%))
La 3(() e b
6((5%) ~a) ((%5%) ~a)
(52)"  _a
6((25%) — ) 2
@ 3 3o (%) b
2 6 () (- (45%)
(22"
6 a2 — (5%))°
(452)°  3((=5) —a) - (252)
6((5=) —e) () )
6((252) —a)® 2]
() 3fa - () - (24)
26— () (e (459)
6 a2 — (5%2))"
1
(=5) - )
[( ; )<<a1;a2> _a?>_a1(27) ((al‘;GQ) —a%)
() sl )
ag_ 1
O (o= (25)°

Tl () (e (43)
0 - (52 2 - (252 )]

d0i:10.20944/preprints201902.0243.v1
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Theorem 6. Let 0 < a1 < ag and h : [a1,a2] — R be an a-fractional differentiable
function for a € (0,1]. If Do(h) € LY ([a1,a2]) and |k (x)| is strongly convex function with
modulus ¢ > 0 and g > 1, then

‘h(a:) __« / h(s)das

o (e}
ay; —aj

=

5o (B0 [P @)Fi(e) + W@ (@) — el — ] (12)
e B0 (W (@)Fle) + @) Bal) — o — A,
1
where Ej(a) = /0 (L =t)ay™t +t2* 1) (1 — t)ay + tz) — af) dt
_ x%+af apx® 1+ xa?_l o
3 6 —ay,

1 ad — o
Ba) — /O (08 — (1~ t)ag + 1)) dt = 2T

x® — 15af + a1 + xai"_l

Al = 12 ;
H(a) = 3z — baf + Cilzxa_l T :cai“_l |
Fla) = w’

H(a) = o ; a

and As, Ay are defined as in Theorem §.
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Proof. Using Lemma 1, properties of the modulus, the well-known power mean inequality
and since the function |h'(z)|? is strongly convex with modulus ¢ > 0, we have

‘h(:v)— o a/ h(5)das

Gy — aq
1
< 2 [0 ) a) [P~ D + )
2 1 J0
1
- aa2: xa / (a5 — (1 = t)ag + tx)*) |W'((1 — t)ag + ta)|dt
ay —ay Jo
r—a 1 a— o ,
< o alf /0 (((1 —t)ay +tx)* (1 = t)ay + tx) — al) ]h (1 —t)ay —}-tq;)‘dt
a2 — I 1
b 22 [ s — (1= 005 + 1) (1 - D0z + 1)
2 1J0
a1
< = 1,1/ (1= 8)ag™ + 1) (1 — t)ay + ta) — af) | ((1 — t)as + tz)|dt
az —ay Jo
a2 — I 1
b2 e (a8 ) W s + 1)
2 1J0
T—a 1 1—%
< - la </0 (((1 — t)ai“1 + txo‘_l) (1 =t)ay + tx) — a‘f) dt)

1
q

X (/0 (((1 — t)a?‘_1 + ta:afl) (1 =t)ay + tx) — a?) |h'((1 —t)ay + tx)|th)

1—1
as — T q

P </01 (a§ — ((1 —t)a§ + tz®)) dt>

1
X </0 (a5 — ((1 = t)a3 + t=®)) |B'((1 — t)ag + tx)\%t)

r — al

q

IN

) 1
(E1(a))' "4 [/0 (1= t)as™ +t2*71) (1 - t)as + tx) — af)

a o
ay; — ajy

1
q

x  [(1 =)W (a)|? + t|h (2)]? — ct(1 — t)(z — al)z]dt]

1

1
(Ea(a))' i [ /0 (a8 — (1 - t)ag + ta®))

as — T

(e} (7
ay; — aj

Q=

X [(1 — )1 (a2)|? + t|W (z)]9 — ct(1 — t)(az — x)2]dt]

= (1) [ @) @) ) ) — e — ) A ]
as — é

(E2(a))' ™7 [|W(@2)|"Fa(a) + |1 (2)| Mz ) — claz — 2)*Ad]

a _ o
ay; —ay
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Hence, we have the result in (12). O
Corollary 7. If we take ¢ =1 in Theorem 6, we obtain Theorem 3.

Corollary 8. If we take ¢ — 0% in Theorem 6, we get the following inequality

ag —ajy

< ST (E(0) I (00) PR (0) + W (@) i ()]
2 1

b () W) Rs() + W @) ()]
2 1

Corollary 9. If we take x = (a1 + a2)/2 in Theorem 6, we get

az
‘h<a1+a2>_ aa a/ h(s)ds
2 ay —af Jq,

a2 — ay

= 2(@%-@‘%){ (La(a) s [|h’(a1)qu1(a) +
;[ a1+ a2
h (2>

(42)" o | (252) 7 (252 o

n a1 +ag !
2

+ (Lo(a)' [|h’<a2>|‘w2<a> +

where Li(a) = 3 + ; —a,
a _ (a1t+az\<¢
) — = S0
)t (55)" ()
i) = 12 ’
() g (55) 7 (55) o
M) = 12 ’
a _ (a1taz\&
i — G0
o aitas \ &
NQ(OK) = 2 (3 2 ) )
(e (o) (o) g
Aile) = 20 - 30 "6
_ag ag+(52)°
Pola) = % - 12 ‘

Remark 5. If a = 1, then Corollary 9 becomes
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1 e
‘h <a1 + ‘”) - / h(s)ds
2 a2 — a1 Jq,

1
q

X (“1 ;L “2) ' (1) — Z(ag _ a1)2P1(1)]

W <a1 ;‘ (12) | No(1) — z(@ - a1)2P2(1)] q }’

(95%) +ar a1t (25%)

where Lal) = 3 + 6 —ai,
_ (atas
Lo(1) = _a2(22~)7
Ml(l) - (al—ga2)_15011;—a1+(a1-5a2)’
Nl(l) — 3((11—5(12)_5a12—|—a1+(al—5(12)’
as — (M)
My(1) = ?2,
_ (wmtas
Na(1) = a2(32)7
Ca () a4 (932) g
e 20 " 30 T 6
_ Q2 ag + (1492)
Py(1) = e

3. APPLICATIONS TO MIDPOINT FORMULA

Let P be the partition of the points a1 = g < 1 < ... < 1 < &, = a9 of the interval
[a1, az] and consider the quadrature formula

az
/ h(z)doz = To(h,P) + Eo(h,P), (13)
a
where
T (h.P —nzjlh Ti + Tit1 (l’?ﬂ_ﬂﬁ?) 14)
EEWICS _ (

is the midpoint version and E, (h,P) denotes the associated approximation error. Here, we
are going to derive some new estimates for the midpoint formula.
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Proposition 1. Let 0 < xg < x, and h : [zg, z,] —> R be an a-fractional differentiable
function for a € (0,1]. If Do(h) € LL([x0, zn]) and |W' (z)| is strongly convex function with
modulus ¢ > 0, then

n—1 a—1
(l‘i 1— l‘l) 2.%1- Ti+1 — 108 + x; + Tit+1
[Ba(h, P < 30 : e

. 24
=0
Ti+ Tit1
h' 7 i+
( 2

.o (W>a—1 ()| + (5961- +3%i41 — 12x?)
(3
. i gj(.)‘ 1 i 3 “
Y <3:Z +£L‘z+1> ‘ 4 i+1 |h/(l‘i+1)| —c (%‘i‘%-}-l) |h,($i+1)|

12 2 24
2 6 2

L E(midrin ot
12 2

n T3 w o Fi x| 1 (@it win “ w( % + Tit1
3 2 3 2 2
« «
et (L‘i+$i+1) %+ (:ci+aci+1>
C . N3 1 ( 2 B i+1 2
3a (i1 ~ ) 20 12
a—1
+ x?—&-l - IL’? —+ i (Ii+§i+l) + .%'?_1 ($i+§i+1)
6 30 ’

Proof. Applying Corollary 2 of Theorem 3 on the subintervals [x;, z;+1] (: =0,1,...,n—1)
of the partition P, we have

‘h (xz +2$i+1> (i —af) /xiﬂ hz)dos
a -

(:L‘Z'+1 — 1‘1) 21’?_11‘2'4_1 — 101’? +x; + Ti4+1 ’ xT; i+ Ti4+1 a-l /
Wz W (.
- o W)+ 55 (7 W ()]

N N B A ot y (Tt i
2 12 2 2

& 1 (2 + x; @
Il - g () W)

—+

5% + 3Ti41 — 12{[)?
24

6 2

¢ Sl (b)) L (ndme T s
3 2 3 2 2
« «
%+ (Zi+$i+1> %+ ($i+$i+1)
(& ] R Y: 1 2 _ 41 2
a—1
B Tk M (=) e (5)
6 30 )
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Hence from above

n—1 Tit1 . . xa — xo‘
[Ea(h,P)| = | / h(@)dax — h <“”" ki x’“) (28 = 27)
i=0 T 2 @
nollemigg . ) & . — ¢
< Z / h(fl))dal‘ —h <-Tz +25U2+1> ( i+1 z)
i=0 |7 T @
n—1 -1 a—1
(:cl-_,_l — l‘l) 22 Tiv1 — 1028 + x5 + T , T  Ti+ T ,
< ! ! R (x; — | —= R (x;
n ox; + 3wip1 — 12z (i + Tiy1 n Ti (@i + Tip ol B (i + i
24 2 12 2 2

¥ 1 (@ + x|\
+ Zgl W (zi1)| — 5 (2+1) |W (xi11)]

+ xia-i-l h/ T; + LTi41 . 1 m @ h/ m
3 2 3 2 2
S a3 T
a—1
B Tk M (=) e (5)
6 30 )

O

Proposition 2. Let 0 < zy < x, and h : [xg,z,] — R be an a-fractional differentiable
function for o € (0,1]. If Do(h) € LL([wo,zn]) and |W' (z)|? is strongly convex function with
modulus ¢ > 0 for ¢ > 1 and p~* 4+ ¢~ ' =1, then

1
q

1 Titxip q
h ( 2 ) ‘ ¢ 2
— (w1 — )

B =

2 24

i+, a 1
1 ’h'(l‘i+1)’q + |K <7Z+2 H) ‘ c q
2
+ (Si2(a,p))P — oo (it — @) ,

n—1 o . |h/($2)|q_|_
|Eo(h,P)| < Z(Zgal){ (Si1(a,p)) [
i=0

2 24
TitTiqq
2 2 (67 a\p
wh@Te Si7]_(a,p) = m (t —Sﬂl) dt,
(3 2 T,

) Tit1
Sia(onp) = / 22 — )P dt.
() (Tit1 — @) REIES (2 )
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Proof. The proof is analogous to that of Proposition 1 only by using Corollary 4 of The-
orem 4. O

Proposition 3. Let M > 0,0 < 29 < zp, and h : [z9,xn] — R be an a-fractional
differentiable function for a € (0,1]. If Do(h) € LL([wo, zy]) and |h'(z)|7 is strongly convex
function with modulus ¢ > 0 for ¢ > 1 and |V (x)| < M, Vx € [z, x,], then

n—1

Ea(h,B)| < 23 (i xl-){ (Ga(@)' 1 [Gia(a) + Guale) = S (@it — 20 Eia(e)]

Q=

2c0
i=0

+ (D) [Dia(@) + Digla) = §(wi1 — i) Eia(e)|” }
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TitTit1 atl _ potl
5 :

where Cj1(a) = - -z

(a+1) ((%)—%) "

(xi+wi+1>a+1 a+1
2

~Tit1
Dia(a) = aify - o ;
(a+1) (a?i+1 - (_IZ+;Z+1>)
o o e ((2452) w) 4
o) = — - -
(a+1) <<xz+;z+1) - x,) (a+2) ((L;u) _ xz)
itTi ot2
D
it . 2 9 )
(a+1) ((77) —zi) (@+2)
Dyo(0) Ty n it (a+2) («Ti—i-l - (—zﬁ;"“)) + Tiy1
i2(a) = — )
(a+1) (l‘z‘+1 - (%)) (a+2) (l‘i+1 _ (%-ﬁ-;mﬂ))
<Ii+$i+1>a+2
2
(a+1) <$i+1 - (mi+§i+1)> (o + 2)
(%)aﬁ‘l (a + 2) ((€E1+2-Tz+1) _ fL'Z) o <xz+§z+1>
CGisla) = T2
(a+1) ((—xi+;i+1) — xz> (o +2) ((xi'f‘;i-&-l) -~ -Tz)
N 2o t2 a0
Ti+Tit1 ) 2 2’
(1) ((*5%) —2i) (a+2)
R a+1 . o
T <x1+§z+1> (a+2) (xi“ — <“#>) _ <xz+#>
D’L,3(a) - 2 N . _ $i+il?i+1 ' B zi+$i+1
Oé+ 1 Ti11 =T O[+ 2 Tit1
+ 3 N :
2
_ )
2 )
(a+1) (l“z'+1 - (—zi+§i+1)> (a+2)
1
Ej(a) =

((aci+2zi+1 ) _ xl> 3
i+ Zitx;
(ac ;+1> N - x ( : +1) N o
— 2€ _ _
a+2 2 ¢ a+1 2 '
B 1 Ti + Tit ot _ o3 _ T; T+ Ti1 ot _ o2 _ ﬁ
a+3 2 ! a+2 2 ¢ 6’
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& 1
Eia(a) = ol

3
6 <$i+1 _ <$i+’;i+1>)
Tit1 g2 Ti + Tit1 at2 B 1 Lot3 T; + Tig1 ot
a2 |7t 2 a+3 7t 2
, Tit+Tit1 TitTit1
B Tit1 ( 3 ) ot _ Ti + it at1 N ( 2 ) Lot2 Ti + Tit1 a+2
a+1 i+l 2 a+2 \7H! 2 '

Proof. The proof is analogous to that of Proposition 1 only by using Corollary 6 of The-
orem 5. 0

Proposition 4. Let 0 < zy < x,, and h : [xg,z,] — R be an a-fractional differentiable
function for o € (0,1]. If Do(h) € LL([x0,zn]) and |W' (z)|? is strongly convex function with
modulus ¢ > 0 and ¢ > 1, then

i
L

|E(h,P)| < —(x”;_x")
=0 @
q -1
_1 T+ x; c 4
. {(Lm(a))l q[m’(m)m,l(aw (25 ) | o) = S - pinta)

q ;
_1 i+
b (L) q[|h'<xi+1>|%,2<a>+ ()| o) = S - aPiate)
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($i+wi+1>a + oz T (wi+$i+1)a71 + ($i+zi+1) xqfl
2 7 2 2 7
where Lij(a) = 3 + G -z,
$q+1 _ (332‘+2$i+1>a
(3
Lig(a) = = 5 :
(Ii+$i+1)a — 1529 + 2, (xi+l'i+1)a71 + ($i+xi+1> xafl
2 4 2 2 A
Mi,l(a) - 12 )
3 (a:i+2-fi+1)a —5z% + 7 (xi+2-’ﬂi+1)a + (mi+m¢+1> xa—l
(2 (2
N 1(a) = ,
i1 (@) D
Ti+T;
T — ( H)
1%:72(@) == 6 P
X . (0%
xzoz+1 . <zz+12vz+l>
M,Q(a) — 3 )
x4 (xi+xi+1)a T <x¢+$i+1)a_1 + (xi+93¢+1> xq—l o
Pilo) = ——— LT 2 /8w
b 20 30 6’
a 7 +_(E£Eﬁil)a
P, 2(0() _ Tiyq B 141 2
N 6 12
Proof. The proof is analogous to that of Proposition 1 only by using Corollary 9 of The-
orem 6. O

4. CONCLUSION

In this paper, using the concept of strongly convex functions and one known identity,
we found several Ostrowski type inequalities pertaining conformable fractional integrals.
Also, we give some error estimations for the midpoint formula.
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