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Article
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Abstract: The NIEP (National Institute of Earth Physics) monitors and analyzes seismicity in Romania. Over
time, the monitoring stations equipped with seismic equipment have become multifunctional with new devices
for measuring gas emissions, the magnetic field, the telluric field, solar radiation, etc. This made it possible to
introduce a seismic forecasting system, which is intended to extend the alert time of the warning system based
solely on seismic data. The realization of an OEF (Operational Earthquake Forecasting) aims to extend the
warning time from 25-30 seconds before an earthquake manifests its effects with a magnitude of more than
4.8R to several hours or even days. The AFROS project (PCE119/4.01.2021) introduced fundamental research
studies in the development of the OEF system. The results are now public in the form of real-time analysis of
radon and CO:z emissions on the page http://afros.infp.ro/AFROS.php?link=dategeofizice. The monitored area
is Vrancea because it generates the most destructive earthquakes in Romania, with effects in neighboring
countries (Bulgaria, Ukraine, and Moldova). The structure of the monitoring network and the methods used
can be adapted to other seismic zones depending on their particularities. The data acquisition includes analog
signals (e.g., magnetic field, well temperature), digital data (e.g., radon, CO2, well water level), and from other
sources (e.g., VLF receivers, Kp geomagnetic factor from NOAA). All data ends up in a database that can be
accessed through an API and the result will be in JSON format
(https://data.mendeley.com/datasets/28kv3gsgcz/2). The methods used include the detection of events by
exceeding certain thresholds, STA/LTA type data analysis, and analysis of seismic bulletins (parameters a, b
from the Gutenberg Richter law). In each case, the application of these methods involves particularities that
make the monitoring network a novelty in activities of this type. The experimental results indicate the
possibility of using the parameter b from the Gutenberg Richter law and the emission of gases in the real-time
seismic forecast. This was known from previous analyses carried out on data series on the periods in which
earthquakes with a magnitude greater than 4.5R occurred. The novelty is that currently this is done
continuously and the results are public.

Keywords: OEF (Operational Earthquake Forecasting); multidisciplinary monitoring network;
seismic precursor phenomena; radon and CO:z emission

1. Introduction

This article presents the evolution of the seismic forecasting system the OEF of NIEP. Its
theoretical approaches began several years ago, but its development depended on funding sources.
The last important project was AFROS (Analysis and Forecasting of Romanian Seismicity, 2021 -
2023) based on fundamental research (http://afros.infp.ro/proiect_en.php). We went through a year
of checking the Vrancea seismicity assessment methods and the real-time monitoring network.
Previous articles have described the structure and evolution of the data network, including the type
of equipment [1-4]. We expanded the monitoring area, number, and type of equipment with
applications in the field of climate effects. The main goal of creating an automated seismic forecasting
system (OEF) was partially achieved because the detection algorithms were not fully implemented
and not all seismic precursors were used. In the article, we will present the way of implementation,
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and the results obtained, and we will compare the detection methods used. In many cases, OEF
systems are based only on the current earthquake activity and use the ETAS, ETES, STEP, Omori-
Utsu, and Gutenberg—Richter laws as basic models (e.g. [5-7]). These methods have not been verified
for our area of interest, Vrancea. It is characterized by crustal and intermediate earthquakes and there
are not necessarily aftershocks after a main shock. A particularity that is confirmed for the Vrancea
area is the decrease in the value of the "b" parameter from the Gutenberg-Richter law (GR_b) for more
than 18 days [5] before the occurrence of an earthquake with a greater magnitude than 5R. In this
case, we use the seismic bulletins that NIEP produces after each earthquake and to which we have
access before they are public. These are retrieved by the ISC after review, but not in real-time. The
analysis of the 'b' parameter using data from seismic catalogs shows that its variation depends on the
specifics of the analyzed area [8]. The b-values in New Zealand initially increase and then return to
normal [9], unlike Vrancea which decreases and returns to normal after the earthquake. A complete
OEF also includes precursor parameters (radon in the air, water, soil, CO2, electromagnetic field,
thermal anomalies in the soil, water, acoustic noise, infrasound, soil deformation, etc.). In [10],
multidisciplinary monitoring networks in China, Greece, Italy, Japan, Russia, and the USA are
described as part of an OEF structure for short-term earthquake forecasting. An important problem
highlighted in the article is how information is communicated by scientists to the public in order not
to cause confusion and panic. For this reason, the operational forecast of earthquakes is not made
public, and many results are presented only in scientific papers. For this reason, we have limited
ourselves to a concise presentation within the AFROS project platform where real-time information
is presented regarding gas emissions (radon and CO:) correlated with seismicity
(http://afros.infp.ro/AFROS.php?link=dategeofizice). The data we use are accessible on
http://geobs.infp.ro through an API with a result in JSON format.

The project TURNkey (Towards more Earthquake-resilient Urban Societies through a Multi-
sensor-based Information System enabling Earthquake Forecasting, Early Warning, and Rapid
Response actions), grant agreement No 821046, includes an OEF system in addition to seismic
methods. This complex project makes a cost-benefit analysis to assess the potential of an OEF system
before a seismic event in Europe. The paper [11] assesses whether an evacuation of the population
would have been cost—beneficial in cases of high seismic event probability. In our case, there are rules
for the transmission of messages that could cause panic, as in the case of a strong earthquake in the
Vrancea region. Similarly, the NIEP Rapid Earthquake Early Warning System (REWS) transmits
information in real-time to specialized organizations for emergencies. Earthquake forecasts can also
be transmitted via the same data channels. They are currently displayed in the form of a graphic on
the AFROS website. The choice of the Vrancea area is optimal from a cost-benefit point of view, it is
characterized by deep earthquakes that can reach a magnitude of 7.5R, the effects being devastating
in large areas including Bucharest.

In this paper, we analyze two detection methods used in NIEP’s OEF. One is based on
acquisition software that provides a triggering—detriggering facility. This method is used in all
seismic digitizers. The second method is STA/ LTA (Short-Term Averages/ Long-Term Averages)
detection algorithm type Allen [12-14] applied on signal integration and described in [1-4]. We
followed the behavior of the detection algorithms for one year to go through the situations of seasonal
variations in gas emissions (radon and COz). The first method is based on the detection of events in
the monitoring stations, which corresponds to a decentralized structure. This allows a local decision
(activating an engine, opening a valve, etc.) useful in extreme situations where response time matters.
The STA/LTA algorithm requires a large amount of data, which implies larger resources. In this case,
a data server is necessary to analyze the information transmitted from the monitoring stations. The
real-time solution implemented in the AFROS platform uses the trigger information from the
multidisciplinary stations and a central server that gathers all the messages in a decision matrix that
evaluates the possibility of producing a seismic event. The STA/LTA method is tested separately to
evaluate if the results are closer to reality. The OEF structure must be flexible and allow the
introduction of new algorithms that work in parallel. The first method based on the trigger in the
stations is the simplest and easy to implement with low costs. At this moment the trigger thresholds
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are fixed with the possibility for an operator to modify them. They can be adaptive depending on the
time or season because the gas emission is dependent on these factors. The data analysis shows a
dependence of radon and CO: depending on the temperature, which has unexpected variations
under the conditions of climate change. In this case, the level trigger method is not the safest. Until
now, the results of its application have been unexpectedly good for radon and CO2 monitored in the
Vrancea area. The AFROS project (gttp://afros.infp.ro) presented many forecasting methods, but their
real-time implementation requires additional resources.

2. New Equipment in the Multidisciplinary Monitoring Network

The multidisciplinary network was developed with new equipment for measuring radon,
thoron, and CH4. They were installed in the Vrancea area as part of the OEF and will soon be
operational (Table 1).

Table 1. New equipment for gas monitoring of Vrancea area.

Per Start
Station Country Location eqp North East Description end
(sec) yyyy/mm/dd

VRI2dd Romania Vrancioaia RTM1688 45.8657 26.7277 60  VRI, RTM 1688-2 radon S/N 519-16 2024/10/17

PLORCdd Romania Plostina RTM1688 45.8512 26.6498 60 PLOR, RTM 1688-2 radon S/N 518-18 2024/09/10

VriCH4 Romania Vrancioaia GasCardNG 45.8657 26.7277 0.25 VRI, CH4, Infrared Gas Sensor 2024/10/25

PlorCH4 Romania Plostina GasCardNG 45.8512 26.6498 0.25 PLOR, CH4, Infrared Gas Sensor 2024/10/25

Two RTM 1688-2 equipment that measures radon (*?Rn) and thoron (*'Rn) are now in
Vrancioaia and Plostina locations (Table 1, Table 2). The novelty is not only the thoron but also the
alpha spectrum of radon. We have previous radon data at the 2 locations, but not as detailed. The
equipment involves higher costs than the previous ones, and we must analyze whether the results
are better. Both radon (*?Rn) and thoron (**'Rn) are seismic precursors [15,16].

Table 2 shows what data offered by RTM1688-2 and Table 3 shows the Radon Scout Plus used
in the same location. One Radon Scout equipment is still in Plostina installed in a pit (Table 4).

Table 2. Radon - Thoron equipment RTM1688-2 produced by SARAD.

ID Equipment eqp_RTM1688

1 Radon Error Radon*  Error Temp. relHum Pres. Tilt ROI1 ROI2 ROI3 ROI4 Chl Ch2 ... Ch38
(fast)

2 Bq/m3 % Bg/m3 % C % mbar  _ cts cts cts cts cts cts ... cts

3 Y%d %d Y%od %d  %0.1f %d %d  %d  %d  %d  %d %d %d Nd ... %d

4 RTM1688-2 SARAD, radon thoron

Table 3. Radon Radon Scout Plus equipment produced by SARAD.

ID Equipment RADONSCOUTp
1 Radon Error Temp  relHum Pres Tilt ROI1
2 Bg/m3 % C % mbar _ cts

3 %d %d  %0.1f %d Y%d %d  %d
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ID Equipment RADONSCOUTp

4radon, Radon, error - Error, temperature in the equipment - Temp, relative humidity in the
equipment - relHum, atmospheric pressure - Press, inclination - Tilt, region of interest 1 -
ROI1.

The difference between the equipment used can be seen in Table 2, Table 3, and Table 4. Radon
Scout has less memory than Radon Scout Plus, no atmospheric pressure, and older firmware. The
RTM1688-2 is more efficient with an air pump but less reliable and noisy. Its use brings more
information about radon, which allows the creation of an alpha spectrum and, in addition, thoron. In
its case, we have two values for radon (‘Radon’ and ‘Radon* fast’), four regions of interes (ROI1 —
ROI4), and 38 channels alpfa spectrum (Table 2). To better understand the functions of RTM16988-2,
we refer to Figure 1 [17], where the radon decay chain appears. According to Manual_RTM1688-
2_EN_24-01-2024 (SARAD), the alpha particles emitted by Polonium 218 are recorded in a
semiconductor detector resulting in a number of ions proportional to the radon gas concentration.
‘RTM1688-2 offers two calculation modes for the Radon concentration, one (Slow) includes both, Po-
218 and Po-214 decays and the other one includes Po-218 only (Fast). Each Po-218 decay causes one
more detectable decay by the Po-214 which is delayed about 3 hours because of the superposed half-
life times of those nuclides’, according to Manual RTM1688-2_EN_24-01-2024 (SARAD). For this
reason, we chose a time of 3 hours for the radon measurement which we redistribute to one minute
for compatibility with the other data.

Table 4. Radon Radon Scout equipment produced by SARAD.

ID Equipment RADONSCOUT

1 Radon  Error Temp relHum Tilt ROI1

2 Bq/m3 % C % _ cts

3 Y%d Y%od %0.1f Y%d %d Y%d

4 radon, Radon, error - Error, temperature in the equipment - Temp, relative humidity in the equipment - relHum,

inclination - Tilt, region of interest 1 - ROII.
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Figure 1. ‘The Basic Radon (222Rn) Decay Chain. The isotopes and their atomic masses are shown
within the boxes; the main decay processes are indicated by arrows, with the type of decay and half-

life indicated’ [17].

RTM1688-2 measures Thoron (*'Rn), too. Figure 2 present the Thorium (***Th) decay chain where
20Rn, 26Po, 212Bi, and 2?Po apare. Both Figure 1 and Figure 2 are usefull to understand the

measurements of RTM1688-2.
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Figure 2. Thorium (232Th) decay chain.

Figures 3-5 and Figures 7-11 are the results of using Radon Vision (SARAD) software. The
earthquake with magnitude 5.4R is our case study and is marked in the figures.

Figure 3 and Figure 4, which show radon*(fast) and radon in the same location and time interval,
it follows that there are no big differences between the two quantities. The Alpha Spectrum diagram
for the Plostina site (Figure 5, the same time interval) includes information from Figure 1 and Figure
2. The determination of the Alpha Spectrum from RTM1688-2 data is possible with channels 1 — 38
from Table 2 (representation in Figure 6). The same graphics are for the Vrancioaia location (Figure
7, Figure 8, Figure 9). And in this case, there are no big differences between radon*fast and radon.

Thoron is presented with the same Raon Vision software in Figure 10 and Figure 11. On the same
graphs, there are represented temperature, humidity, and atmospheric pressure.
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Figure 4. Radon in Plostina location, RTM1688 data (Radon Vision software)..
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Figure 10. Thoron in Plostina monitoring station (Radon Vision software).
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Figure 11. Thoron in Vrancioaia station (Radon Vision software).

In conformity with SARAD’s User Manual Analogous Radon Sensor (Indoor Air Sensor / Soil
Gas Sensor) Version 12/2007, the Radon concentration is linearly proportional to the number of
detected decay events of the Po-218 (ROI2) and the Po-214 (ROI4). The Thoron concentration is
linearly proportional to the number of detected Po-216 decays (ROI3). The calculation procedures are
shown in the table below (User Manual Analogous Radon Sensor (Indoor Air Sensor / Soil Gas
Sensor) Version 12/2007):

Table 5. Calculation procedures for Radon and Thoron.

ROI1 ROI2 ROI3 ROH4 ROI5 Value Calculation
- X - - - Radon (fast) Crn (fast) = N / (T * Stast)
- X - X - Radon (slow) Crn (slow) =N /(T * Ssiow)
- - - X - Radon (Po-214 only) Crn (Po-214)= N / (T *(Sstow — Stast))
- - X - - Thoron Crtn =N /(T * Sthoron)
Where:

Crn Radon concentration;

Cm Thoron concentration;

- ROI disabled;

X  ROI enabled;

N  Number of counts detected within all enabled ROI;
T  Time period used for counting;

S

Sensitivity (calibration constant stated within the calibration certificate).

So, radon is calculated from ROI2 (Po-218) and ROI4 (Po-214), Radon* fast from ROI2 (Po-218),
Thoron from ROI3 (Po-216). The RTM1688-2 is more efficient than the Radon Scout Plus used until
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now, but more expensive and more difficult to maintain. In conformity with Radon Vision 7 User
Guide, SARAD GmbH#*, December 9, 2020 ‘The energy ranges defined for calculating the radon
measurement variables - also called regions of interest or ROI - are represented by vertical lines with
the respective nuclide, the range limits and the counting pulses contained therein’, Figure 5 and
Figure 6.

Methane is considered a seismic precursor in the Black Sea due to its peculiarities [18], also in
the water in Costa Rica [19], or reflects the intensity status of tectonic activities [20,21].

Table 6 shows the CH4 equipment used in Vrancioaia and Plostina and Figure 12 a test with this
equipment.

Table 6. CH4 monitoring equipment.

ID Equipment eqp_GasCardNG

1 CH4 TL mb H

2 % C mbar

3 %0.4f %0.3f %0.1f %d

4 Chill Card NG Infrared Gas Sensor, CH4 methane, TL lamp temperature, mb air pressure, H humidity

0.050 EFORch9_CH4

0.040 max,/min
- . &,_n, A e, . b 0.020 0045 |
I
O 3002 [Channels]

0.000 Canal® = CH4

28.800

I 28.700 EFORchS_TL Canall
28,600 max/min  Canal2
28,500 [ 28776 | Canal3

28.400 | 28456 |

1020.500 [Measure_Units]

1020.250 @ ue = %
1020.000 max/min  ul = C
- 1012750 [] 1020400 | u2 mbar]
1019.500 1019700 | U3 = _
1.000
EFORch9_H

max,/min
0.000 ,—D.DDD |
o 0.000

TL
mb
H

-1.000
T 0 T T T T
06:00:00.00 06:10:00.00 06:20:00.00 06:30:00.00 06:40:00.00 06:50:00.00 07:01:44,00

Figure 12. Test with Chill Card NG Infrared Gas Sensor, Edinburgh Sensors UK.

The tests will be done in Plostina, Vrancioaia, and Lopatari where there are live fires
accompanied by the smell of gas and traces of oil on the ground. An air pump is required, which
reduces system reliability and produces noise like the RTM1688-2. For this reason, the CH4 detector
cannot be installed together with seismic sensors.

3. Analysis Methods and Results

In this article, we check the analysis methods described in [2—4] after one year of monitoring. It
is described in [2] "The logical tree of the forecast parameters of the Vrancea area" (Figure 16). The
decision matrix and the comparative results of the detection methods used in this paragraph will be
presented. The case study refers to the earthquake of 16.09.2024 with a magnitude of 5.4R (Figure 13).
In Figure 13, the faults, the position of the epicenter, and distances to PLOR, PANC, BISRR, LOPR,
and NEHR monitoring stations used in the Table 7 are marked.

The decision matrix is based on the number of detected events. In this example, the detection is
based on exceeding some predefined thresholds, and the method is analyzed compared to the Allen-
type STA/ LTA (Short-Term Averages/ Long-Term Averages) detection algorithm ([12-14]) applied
to integrated signals after the average value has been extracted. Figure 14 refers to the level-based
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detection that is decentralized in the monitoring stations compared to the STA/LTA method in Figure
15 which uses large time series processed in the NIEP servers.

FCarligele

I cotest

BN Wrechest
~Vintileasea

BISRR

.BISDEE{ \ # :
Y O e : Tamboesti

\w /
. Valeaisalciei % SloboziaBrady

Lopateiri Vintila\oda

Figure 13. Case study, the earthquake of 16.09.2024 with a magnitude of 5.4R.
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Figure 15. The STA/LTA method was applied to the integrated radon and CO: signals before the 5.4R
earthquake and compared with the OEF AFROS decision matrix.

The result of the decision matrix (Table 7), referred to as OEF AFROS, shows an increase of 3.6
days before the earthquake according to Figure 14 and Figure 15. Figure 16 is a combination of these
two figures but on a double time interval (2 months) before the 5.4R earthquake. The red points
represent the detections by the STA/LTA method. Comparing these figures we can say that the time
window of one month is sufficient for the decision matrix and that the method based on exceeding
some thresholds works.

In the case of gas emissions (radon and COz), we used the method of exceeding a level and
returning below 99.96% on the first implementation. The result is a series of detections transmitted
in real-time as Event files to the analysis server. Each station has a logical tree weighting, which was
determined experimentally based on offline analyses. The maximum number of exceedances is 4 and
was determined experimentally for Vrancea. It was also determined experimentally that for an
earthquake of magnitude > 4R with the epicenter in Vrancea, an interval of 4 days corresponds to the
detection groups for all stations. The result is shown in Table 7 and Figure 17, Figure 18 and refers to
the earthquake of magnitude 5.4 R on 16.09.2024 based on monitoring station from Table 8.. In the
example, the weights of the stations in the logical decision tree are equal and the number of stations
is 8, the sum of the weights is 1. The algorithm allows their modification, the separation of radon and
CO: as weights, the modification of the weights according to the distance of the station from the
hypocenter, the modification of the number of stations, the maximum number of detections per
station in one day (4 in the example) and the 4-day drop-grouping period for all stations. Table 7 also
includes  seismicity = in  the  Vrancea area. It is  represented on  the
http://afros.infp.ro/AFROS.php?link=dategeofizice page as magnitude. We chose the cumulative
energy/day , EnergyE, and mean Energy/4days in Figure 18 to include all the earthquakes of that day.
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Figure 16. Representation of two radon and CO: months, time series, and integrated, STA/LTA
detection marked with red dots.

The decision matrix is based on relations (1 - 4).

Mean Day =SUM (Channel Weighto*exceedancess/maxim exceedances, , ,

Channel Weightn1*exceedancesn-1/maxim exceedances)/N stations
)
Mean m Daysn = SUM (Mean Dayn3: Mean Dayn)/ m (2)
Seismic energy is calculated with Richter and Bath formula [22-24]:
EnergyE = 10" (11.8+1.5*M) (3)

The coefficients 11.4 and 1.5 are empirical and depend on the type of magnitude and location. Their
values do not affect the method used. The measurement unit of seismic energy is Erg (ergi), 1 Erg =
10"-7 Joule.

1=SUM (Channel Weights) 4)

Table 7. Decision matrix.

Channel Weights 0125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 1
BI BI DL LO Ma  EnergyE
SR SR M DL Pr LO NE PA Mean Mean g *1E18 Erg EnergyE
AE CO CO M CO PR HR NC Day 4 Days R 4 Days
Station Rd 2 dd dd dd dd *1E18 Erg
2024/08/1 0.07031 1.2; 3.2562E- 8.14048E-
7 2 0 0 0 14 0 0 2 2 0.0175781 0.6 07 08
2024/08/1 0.01171 8.14048E-
8 0 0 0 0 0 0 0 3 8  0.0205078 0 08
2024/08/1 0.00781 8.14048E-
9 0 0 0 0 0 0 0 2 2 0.0224609 0 08
2024/08/2 0.00781 2.51479E-
0 0 0 0 0 0 0 0 2 2 0.0244140 23 6.803E-07 07
2024/08/2 0.01171 0.5; 3.3849E- 2.54696E-
1 2 0 0 0 0 0 0 1 8 0.0097656 1.3 07 07
2024/08/2 0.04687 8.2662E-
2 2 0 0 0 10 0 0 0 5 0.0185546 20 07  4.6135E-07
2024/08/2 0.05078
3 0 0 0 0 13 0 0 0 1 0.0292968 0  4.6135E-07
2024/08/2 0.08203 1.9005E-
4 0 0 0 0o 21 0 0 0 1 0.0478515 > 06 7.664E-07
2024/08/2 0.05078 6.81778E-

5 0 0 0 0 13 0 0 0 1 0.0576171 0 07



https://doi.org/10.20944/preprints202411.1261.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 November 2024

doi:10.20944/,

reprints202411.1261.v1

18

2024/08/2 0.01171 4.1085E- 5.77836E-
6 3 8  0.0488281 ' 07 07
2024/08/2 0.01953 1.5; 6.3309E- 7.36108E-
7 0 1 0.0410156 1.6 07 07

3.4;
2024/08/2 0.01562 1.7; 3.1807E- 1.05615E-
8 2 5 0.0244140 2.6 06 06
2024/08/2 0.00390 9.0991E- 1.28363E-
9 0 6  0.0126953 26 07 06
2024/08/3 0.00390 2.2661E- 1.74745E-
0 0 6 0.0107421 36 06 06
2024/08/3 0.07031 1.58918E-
1 18 2 0.0234375 0 06
2024/09/0 0.01171 2.1647E- 8.48125E-
1 0 8 0.0224609 2 07 07
2024/09/0 0.07031 6.20648E-
2 16 2 0.0390625 0 07
2024/09/0 0.09765 4.16859E-
3 22 6 0.0625 > 1.451E-06 07
2024/09/0 4.16859E-
4 0 0 0.0449218 09 0 07

1.6;

1.7;

1.8;
2024/09/0 2.9; 2.5152E- 9.91554E-
5 0 0 0.0419921 1.1 06 07
2024/09/0 3.7027E- 1.08412E-
6 0 0  0.0244140 L 07 06
2024/09/0 0.00390 6.1627E- 8.75446E-
7 0 6  0.0009765 22 07 07
2024/09/0 0.00390 8.75446E-
8 0 62 0.0019531 0 07
2024/09/0 0.01953 1.5; 5.9951E- 3.96511E-
9 2 1 0.0068359 1.5 07 07

2;

2024/09/1 0.01562 1.4; 5.45744E-
0 0 5 0.0107421 1.1 9.672E-07 07
2024/09/1 0.01953 3.91677E-
1 3 1 0.0146484 0 07
2024/09/1 3.91677E-
2 9 0.0625  0.0292968 0 07



https://doi.org/10.20944/preprints202411.1261.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 November 2024 d0i:10.20944/preprints202411.1261.v1

19
2024/09/1 0.26171 2.41801E-
3 1 24 0 0 40 0 0 2 8 0.0898437 0 07
2024/09/1 0.01562 33334E-  8.33342E-
4 0 o0 0O 0 2 0 0 2 5 0.0898437 ro 07 08
2024/09/1 0.12109 37027E-  1.75902E-
5.1 0 0 0 28 0 0 2 301152343 1 07 07
2024/09/1 0.01953 54;  99126E-  2.65404E-
6 2 0 0 0 2 0 0 1 101044921 1 06 06
2024/09/1 15  43761E-  2.76344E-
7 0 0 0O O 0O 0 0 0 0 0.0390625 0.8 07 06
Total 32 30 0 0 218 0 0 24
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Figure 17. The result of the decision matrix based on level detections.

Figure 18 shows that 'EnergyE' is more intuitive than its mean on 4 days.

So, starting from the seismic Events file sent from monitoring stations we evaluate the possibility
of having a seismic event. This is the simplest method to implement in our case because we made the
data acquisition software and we can implement the detection algorithm.

An Events file example for radon in Bisoca station:

BISRAerd-Events_240911_091400.log ->  24/09/1109:14:00 ROI1  5.920<9.995
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Figure 18. Seismic energy cumulated/ day, EnergyE, and averaged over 4 days.

Table 8. The monitoring stations used in the decision matrix.

Station Location Equipment North East Description Start End
BISRAERd Bisoca AERC 45.5481 26.7099 Biscoca, radon 21/02/25 -
BISRCO2 Bisoca DL303 455481  26.7099 Bisoca CO2/CO 19/07/09 -
DLMCO2 Dalma DL303 453629  26.5965 Dalma CO2/CO  22/07/04 _
DLMdd Dalma RADONSCOUTp  45.3629 26.5965 Dalma, radon 22/07/04 _
LOPrCO2 Lopatari DL303 454738 26.5680 Mocearu, 19/06/26 _

CO+CO2
LOPRdd Lopatari RADONSCOUTp 454738 26.5680 Mocearu, radon  15/08/06 _
NEHRdd Nehoiu RADONSCOUTp 454272 262952 NEHR, radon 15/08/06 _
PANCdd Panciu RADONSCOUTp  45.8723 27.1477 PANC, radon 21/09/29 _

4. Discussion

We will analyze the possibility of integration into the decision-making matrix of the monitoring
stations in Plostina and Vrancioaia where new equipment has been installed. Software implemented
at NIEP implements the data acquisition in real time only radon fast (Figure 19). This software allows
the detection of exceeding thresholds and sends this information as an event. Figure 20 shows the
contents of Figure 3 (Po-218) and Figure 4 (Po-214 + Po218) representing the radon in a room with the
Radon Vision program (SARAD) in offline mode and the radon acquired with Radon Scout located
in a pit. All figures refer to the same location, Plostina. It can be seen that there are no big differences
between radon and radon fast (Figure 21), but its level in the pit (depth 50 cm) is significantly higher.
Also, the evolution of radon in Plostina has no significant variations before the 5.4R earthquake of
16.09.2024, unlike the radon in Vrancioaia which indicates high values , especially after the
earthquake (Figure 7 and Figure 8).
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Figure 21. Radon* (fast) evolution in Plostina site, RTM1688 data (Radon Vision software).

As in the case of radon, the Thoron from Plostina does not indicate a seismic event, but the one

from Vrancioaia exceeds the trigger threshold and several red points appear in the STA/LTA graph
(Figure 22).
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Figure 22. Analysis of Thoron as a seismic precursor in Plostina and Vrancioaia.

The differences in the number of detections (Table 7, Figure 22) could be explained by the
distance from the epicenter (Table 9). The epicentral area should not be regarded as a source of radon
for the other monitoring stations, but the tectonic stress involves soil deformations that allow the gas
emission to change. Table 7 shows that the most exceedances were for COz emissions from Lopatari,
radon and CO:z from Bisoca, and radon from Panciu, following the epicentral distances. The stations
used in Table 7 are the stations of the AFROS platform. The stations Dalma and Nehoiu did not
function during that period, which would have required a change of the website by replacing them
with other stations, which is not easy (the project is finished). Our ground deformation measurements
used accelerometers used in seismic stations. They work as inclinometers at low frequencies. In areas
where we have triaxial magnetometers, we use them because their offset depends on the position of
the support to which they are attached. Regardless of which device is affected by the floor
deformation, the dependence on temperature must be taken into account. Figure 23 shows the
inclination of an Episensor accelerometer from Kinemetrics during the production of the 5.4R
earthquake. Soil deformation, temperature, solar radiation, humidity and geological conditions
determine the fluctuations in gas emissions ([30-33]). For this reason, a detector is installed in
Vrancioaia to measure the air and ground temperature (Vaisala DST111) next to a pyranometer, and
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a net radiometer is installed in Plostina to determine the direct and reflected solar radiation and the
ground temperature.

Table 9. Distance from the epicenter to the monitoring stations.

Earthquake 5.4R,  45.527600°, 26.352500°
Station Latitude, Longitude Distance (Km)
BISRAERJ, BISRCO?2, Bisoca 45.548300°, 26.709740° 28.30
LOPrdd, LOPRCO2, Lopatari | 45.473715°, 26.568721° 17.84
PANCdd, Panciu 45.872272°, 27.147726° 72.76
PLORCdd, Plostina 45.851396°, 26.649772° 34.10
VRICdd, VRI2dd, Vrancioia 45.865695°, 26.727679° 39.59
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Figure 23. Soil deformation was determined by an accelerometer before the 5.4R earthquake.

The OEF of NIEP also has a seismic component that was not included in the decision matrix in
Table 7 but was mentioned in [2,4]. The seismicity from the period analyzed in Table 7 is presented
in Table 10. We note that there are days when we have had several earthquakes (even 5 on 05.09.2024)
that can be a seismic precursor, even if their magnitude is small. The Vrancea area is characterized
by surface and deep earthquakes, which can also be seen in Table 10. The relationship between them
is not yet defined, but the half-life of radon and thoron (Figure 1 and Figure 2) shows that the source
of the gases must be on the surface. Figure 24 shows the decrease of the parameter "b" of the
Gutenberg Richter law (GR_b) 29 days before the earthquake with a magnitude of 5.4R on 16.09.2024.
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Table 10. Vrancea seismicity for earthquakes 2024/08/17 — 2024/09/17.
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N Time Ml Depth Longitude Latitude Mw PZone
yyyy/mm/dd Richter Km Degrees  Degrees Km
1 2024/08/17 11:03:54 1.1 34 27.833 45506 1.67 5.2
2 2024/08/17 19:01:29 0.6 233 26.5962  45.6352 1.43 4.1
3 2024/08/20 01:12:21 2.3 71.6 26.9662  45.7472 251 12
4 2024/08/21 08:02:42 0.5 5 25.1118  45.3059 1.38 3.9
5 2024/08/21 09:46:06 1.3 17.6 25.3323 452751 1.77 5.8
6  2024/08/22 17:15:51 2.5 75.7 26.636  45.6211 2.66 13.9
7 2024/08/24 17:12:46 34 1446 26.5364  45.6592 3.31 26.5
8 2024/08/26 22:43:37 1.8 223 269137  45.3975 2.03 7.4
9 2024/08/27 08:42:29 15 6.9 257513  46.1202 1.87 6.4
10 2024/08/27 21:25:54 1.6 294 27177 458624 1.92 6.7
11 2024/08/28 02:29:02 34 1382 26.5407  45.6608 3.31 26.5
12 2024/08/28 09:16:36 1.7 5 25.7785  46.0638 1.97 7.1
13 2024/08/28 21:22:12 2.6 89.3 26.7991 45.867 2.73 14.9
14 2024/08/29 15:33:22 26 1316 26.5592  45.6529 2.73 14.9
15 2024/08/30 19:12:55 3.6 734 26.6597  45.7876 3.45 30.6
16  2024/09/01 11:43:25 1.2 23.3 26.663  45.6164 1.72 5.5
17 2024/09/03 16:50:43 31 1205 26.4318 454936 3.09 21.3
18 2024/09/04 21:39:13 0.9 3 27.7967 455073 1.57 4.7
19 2024/09/05 02:43:44 1.6 13.3 273125 45.7081 1.92 6.7
20 2024/09/05 02:46:09 1.7 24.1 272354  45.6858 1.97 7.1
21 2024/09/05 10:32:28 1.8 7.5 253004 45.3016 2.03 74
22 2024/09/05 12:11:12 29 1262 26.7778  45.7678 2.95 18.5
23 2024/09/05 15:16:04 1.1 6.3 27.8091  45.5281 1.67 5.2
24 2024/09/06 09:55:21 1.7 8.9 25.7295  46.0722 1.97 7.1
25  2024/09/07 21:57:43 22 1355 26.6322  45.7638 2.44 11.2
26 2024/09/07 21:57:43 2.2 135 26.6167  45.7585 2.44 11.2
27 2024/09/09 09:21:33 1.5 14.2 25.6422 46.165 1.87 6.4
28 2024/09/09 13:25:32 1.5 30.9 27.3081 45.8753 1.87 6.4
29 2024/09/10 06:58:56 2 26.5 27.2948 457896 2.13 8.2
30 2024/09/10 10:52:16 14 14.9 25.3355 45273 1.82 6.1
31 2024/09/10 23:36:40 1.1 18 26.5345 454852 1.67 5.2
32 2024/09/14 15:06:50 16 1143 26.3026 454852 3.24 24.6
33 2024/09/15 17:27:59 1.7 17.9 27.8235 457048 1.97 7.1
34 2024/09/16 14:40:22 54  126.8 26.3525 455276 5.02 1447
35 2024/09/16 16:08:22 1 12.2 27.8053  45.5203 1.62 5
36 2024/09/17 11:33:18 1.5 8 25.2864 45292 1.87 6.4
37 2024/09/17 18:15:35 0.8 5 25.3469  45.3646 1.52 4.5

24
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Figure 24. The seismicity of the Vrancea area, the "b" parameter from the Gutenberg-Richter law

(GR_D), seismic energy.

The decision matrix can also include other parameters such as ULF (Figure 23) or VLF (Figure
25) radio waves. Figure 25 also shows other factors related to local meteorological conditions
(atmospheric pressure, temperature, wind, electrical discharges - EFM100C Boltek, magnetic storms
- Kp). Table 11 shows the anomalies from Figure 25 of VLF waves.

Table 11. VLF radio waves are like forecast parameters [25-28].

VLF Band (Hz) Forecast Time (days)
21750 6
23400 3
16200 10
21750
23400 2

A new receiver was instaled recenly in Plostina location.

Also, the electrical lighting could be a seismic precursor [27,29]. Figure 26 shows the storm on
the earthquake day, but there is not a concentration over the epicenter area. This can be seen in Figure
25, the EFM 100C Boltek signal.

The decision matrix can be extended, but this requires an effort that must be seen through the
prism of costs and Dbenefits [11]. Only the parameters from the AFROS page
http://afros.infp.ro/AFROS.php?link=dategeofizice are public in the OEF analysis, but the offline
studies also involve other parameters and more stations.
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Figure 25. Meteorological, VLF, and Kp data before the 5.4R earthquake.
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Figure 26. Strikes over Romania on 16.09.2024, 5 minutes of data.

4. Conclusions

OEF systems are complex because they sum up theories from many fields and implies a
multidisciplinary approach. The main problem is the implementation of theoretical methods and data
networks. Many methods depend on the specifics of the monitored area and must be adapted ([34—
37]). An example is parameter b from the Gutenberg Richter law, which has a behavior specific to the
Vrancea area, characterized by intermediate earthquakes. This fact is not found in Greece or Italy,
with a high but crustal seismicity. The TURNkey project implemented an OEF, but the consortium
that created it includes 21 partners from 10 European countries (funding from the European Union’s
Horizon 2020 research and innovation program under grant agreement No 821046,
https://cordis.europa.eu/project/id/821046). The AFROS project (PCE119/4.01.2021) also included
fundamental research and the establishment of a seismic forecasting platform. The main problem is
funding after completion of the projects for data support of the implemented platforms. In general,
it is difficult to ensure the costs of maintaining the achievements of projects that do not have a
beneficiary willing to continue financing. In this phase, the NIEP's OEF was limited to the public
presentation of the use of gas emissions (radon and CO2) in a decision matrix related to seismicity in
the Vrancea area. There are all the elements to expand the number and type of precursors. This can
be achieved by extending the decision matrix or by creating further decision matrices depending on
the grouping by data type. The data used must generate countable events that can be integrated in a
platform. On the AFROS web page http://afros.infp.ro/AFROS.php?link=dategeofizice, seismic and
magnetic data are also presented. Information about the water temperature in a borehole, radio
waves in the ULF-VLF bands, etc. can also be added from NIEP’s data platform http://geobs.infp.ro.
Another direction of development is the expansion of the area to be monitored and the type of
progoza. Climatic changes are accompanied by large and rapid fluctuations in precipitation,
temperatures, wind gusts, storms, etc.
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From the experience of implementing an OEEF, it can be concluded that its structure must be
flexible to allow for its development. The more complex it is, the more difficult it will be to implement,
maintain and finance. This is why the cost-benefit analysis is already important in the initial phase.
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