

1 Article

2 **Green synthesis of Ag nanoparticles using grape
3 stalk waste extract for the modification of screen-
4 printed electrodes**5 **Julio Bastos-Arrieta^{1,2*}, Antonio Florido^{1,3}, Clara Pérez-Ràfols⁴, Núria Serrano⁴, Núria Fiol⁵, Jordi
6 Poch⁶, Isabel Villaescusa⁵**7 ¹Departament d'Enginyeria Química, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de
8 Catalunya. BarcelonaTEch (UPC), Av. Eduard Maristany, 10-14, 08019 Barcelona, Spain9 ²Physical Chemistry TU Dresden, Zellescher Weg 19, 01062 Dresden, Germany10 ³Barcelona Research Center for Multiscale Science and Engineering, Av. Eduard Maristany, 10-14, 08019
11 Barcelona, Spain12 ⁴Departament d'Enginyeria Química i Química Analítica, Facultat de Química, Universitat de Barcelona, c/
13 Martí i Franquès 1-11, 08028 Barcelona, Spain14 ⁵Departament d'Enginyeria Química, Escola Politècnica Superior, Universitat de Girona, c/ M^a Aurèlia
15 Capmany, 61, 17071 Girona, Spain16 ⁶Departament d'Informàtica Aplicada i Matemàtiques, Escola Politècnica Superior, Universitat de Girona, c/
17 M^a Aurèlia Capmany, 61, 17071 Girona, Spain18 *Corresponding Author: Dr. Julio Bastos-Arrieta: julio.bastos@tu-dresden.de and Dr. Núria Fiol
19 nuria.fiol@udg.edu

20

21

22 **Abstract:** The chemical synthesis of silver nanoparticles (Ag-NPs) by using an environmentally
23 friendly methodology for their preparation is presented. Thus, considering that plants possess
24 components that can act as reducing agents and stabilizers in the nanoparticles production, in this
25 work, the synthesis of Ag-NPs by using a solution of grape waste extract as reducing and capping
26 agent is studied. First, the total polyphenols content and reducing sugars in extracts produced at
27 different conditions are characterized. After that, Ag-NPs are synthesized regarding the interaction
28 of Ag ions (from silver nitrate) and the grape waste extract. The effect of temperature, contact time,
29 extract/metal solution volume ratio and pH solution in the synthesis of metal nanoparticles are
30 studied too. Different sets of nanoparticle samples are fully characterized by means of Electron
31 Microscopy coupled with Energy Dispersive X-Ray for qualitative chemical identification. Ag-NPs
32 with an average diameter of 27.7 ± 0.6 nm are selected to proof their suitability for sensing purposes.
33 Thus, screen-printed electrodes modified with Ag-NPs are tested for the simultaneous voltammetric
34 stripping determination of Pb(II) and Cd(II). Results indicate good reproducibility, sensitivity and
35 limits of detection around $2.7 \mu\text{g L}^{-1}$ for both metal ions.

36

37 **Keywords:** silver nanoparticles, screen printed electrodes, grape stalk, green synthesis,
38 voltammetry, metal analysis

39

40

41 1. Introduction

42 Several recent publications review the greener routes to metal nanoparticles synthesis mediated
43 by microorganisms [1], algae and waste material [2], and plant materials extract [3,4]. The different
44 routes to synthetize silver nanoparticles (Ag-NPs) have also been reviewed recently [5]. Some authors
45 underline the advantages of using plant derivatives extracts over microorganisms. Plant derivatives
46 extract has no need of neither cells culture maintenance nor sterile conditions [6,7]. Moreover, plant
47 extracts provide natural capping agents for the stabilization of nanoparticles, therefore reducing the
48 nanoparticles synthesis process to a single step [8]. All these advantageous features of plant extract
49 result in a less reagent consumption and, consequently, in a reduction of the cost that facilitates the
50 development of large scale production of nanoparticles in an environmental friendly approach. The
51 synthesis of silver nanoparticles mediated by plant extract, recently reviewed by Ahmed [8] and
52 Kuppusamy [9], reveals that reduction and stabilization of the nanoparticles is performed by
53 combination of different biomolecules such as proteins, amino acids, enzymes, polysaccharides,
54 alkaloids, tannins, phenolic acid, terpenoids and flavonoids. The content of these biomolecules
55 acting as reducing and capping agents is known to be dependent on the source of the extract,
56 providing different characteristics (i.e size, shape, stability) to the synthetized nanoparticles. In spite
57 of the importance of the extract composition on the reduction process, few researchers reporting
58 nanoparticles biosynthesis provide information about the main reducing components of the extract.

59 Grape stalks (GS) are the lignocellulosic skeleton of grape and account for the main by-product
60 after grape harvesting and wine production. The extract of some grape sub-products such as leaves,
61 stems, seeds and dried fruit, has been used for the production of bimetallic Fe/Pd [10], Fe₃O₄-Ag [11]
62 and silver [12] nanoparticles, respectively. Three different grape wastes (seed, skin and stalk) were
63 used by Krishnaswamy *et al.* [13], for the production of gold nanoparticles. A chemical
64 characterization of grape stalk carried out recently [14] revealed that the main components of this by-
65 product are polar compounds soluble in hot water with a high content in tannins and other
66 polyphenolic compounds.

67 Nanoparticles (NPs) have been widely applied in different research fields due to their surface-
68 volume ratio that provides them unique and improved properties in comparison to the analogous
69 bulk material. One interesting feature of NPs (e.g. Ag-NPs) is the ease of their application in the
70 modification of screen-printed electrodes (SPEs), which nowadays are a great platform for
71 environmental portable electroanalysis due to their commercial availability, relatively low cost and
72 reproducibility. Nanoparticles enhance the electron transfer among redox centers between the
73 analyte and the electrode, reducing the over potentials of several analytically important
74 electrochemical reactions [15,16]. Although the use of NPs have already been successfully applied to
75 the development of new electrochemical sensors for the determination of heavy metal ions [17,18], to
76 the best of our knowledge no previous research about the implementation of green-synthetized NPs
77 has been published.

78 Here we report the synthesis of silver nanoparticles (Ag-NPs) mediated by the use of the
79 aqueous extract of grape stalk waste with the evaluation of different factors that affect the synthesis
80 of these NPs. Moreover, and for first time, the feasibility of these green synthesized Ag-NPs for
81 electrochemical assays is presented. For this purpose, screen-printed carbon nanofibers electrodes
82 (SPCNFE), which has been demonstrated to be a very suitable support for the modification of
83 sensors [19], are modified with Ag-NPs using the drop casting approach and the resulting modified
84 sensor is applied to the simultaneous determination of Cd(II) and Pb(II) ions in aqueous solution as
85 a model metal ion system.

86 2. Materials and Methods

87 2.1 Reagents and materials

88 Grape stalk waste from wine production was kindly supplied by a winemaking cooperative
89 (Empordà-Costa Brava, Spain). The waste was rinsed abundantly with water, dried and cut to
90 separate the pedicels from the stalk branches. The pedicels were then ground and sieved to get the
91 desired particle size (1-1.6 mm).

92 10^{-2} mol L⁻¹ Cd(II) and Pb(II) stock solutions were prepared from Pb(NO₃)₂·4H₂O and
93 Cd(NO₃)₂·4H₂O respectively and standardized complexometrically [20]. 0.1 mol L⁻¹ acetate buffer
94 solution (pH 4.5) was used for pH control. Ultrapure water (Milli-Q plus 185 system, Millipore) was
95 used in all experiments.
96

97 **2.2 Preparation of grape stalks extract**

98 The extract was obtained by placing grape stalks in a 200 mL round bottom flask and adding
99 100 mL of Milli-Q water. A reflux condenser was placed at the top of the flask. The device was
100 placed in a heating mantle. Extracts were obtained at different temperatures (60-100°C) and contact
101 times (15-120 min). After this, the extract was separated from the solid by filtration using a cellulose
102 paper and centrifuged 30 minutes at 5000 rpm (Universal 320, Selecta). Extract samples were
103 analyzed in order to determine their content in total polyphenols and reducing sugars. Prior to the
104 analysis, the loss of volume of the filtrate due to possible water evaporation was compensated by
105 adding water to a total volume of 100 mL.

106 **2.2.1 Determination of total phenolic and reducing sugars**

107 The total polyphenol content of the filtrates was analyzed by the Folin-Ciocalteu method and
108 the reducing sugars content was determined by reaction of the sample with Fehling's solution
109 followed by iodimetric titration of the unreduced copper remaining in the solution. A statistical
110 analysis of experimental data (total polyphenols and reducing sugars) was performed to determine
111 which of the studied parameters (temperature and extraction time) had a significant influence on the
112 concentration of total polyphenols and reducing sugars of the obtained extracts. This statistical
113 analysis was performed using SPSS software program for Windows with a significance level of 0.05
114 (confidence interval 95%).

115 **2.3 Synthesis of silver nanoparticles**

116 **2.3.1 General procedure of synthesis using grape stalk as reducing agent**

117 Synthesis of silver nanoparticles was carried out by putting into contact a certain volume of
118 extract with a certain volume of 0.01 mol L⁻¹ silver nitrate solution in sample tubes. The tubes were
119 submerged in a thermostatic water bath (Digiterm 3000542, Selecta). The color change from pale
120 yellow brown to reddish brown indicated the reduction of silver nitrate to metallic silver. This change
121 of color has been taken as indicative of Ag-NPs synthesis by almost all the researchers [5,17]. Once
122 the samples were cooled down, pH of the solution was measured (pH meter Basic 20, Crison
123 Instruments). Then, the samples were filtered through Whatman No. 1 filter paper first and
124 centrifuged at 5000 rpm for 30 minutes. The pellet was kept in the fridge for further analysis and the
125 maximum absorption of the supernatant was scanned at the wavelength between 200-800 nm (UV
126 mini 1240, Shimadzu).

127 **2.4 Characterization of Ag nanoparticles**

128 **2.4.1 UV/Vis spectroscopy**

129 The UV/Vis spectra of the centrifugation supernatants diluted 1:10 were recorded using an
130 UVmini-1240 spectrophotometer (Shimadzu). Different spectra were obtained showing the SPR of
131 the prepared Ag-NPs.

132 **2.4.2 Electron Microscopy Characterization**

133 Field Emission Scanning Electron Microscopy (FE-SEM) coupled with an Energy-Dispersive
134 Spectrometer (EDX) Zeiss® MERLIN FE-SEM, and a Transmission Electron Microscopy (HR-TEM)
135 coupled to an EDX (JEM-1400 unit with an acceleration voltage of 120 kV) were used. Approximately
136 1 mL of sample was filtered and then dispersed in 5 mL of acetone as organic solvent and then placed
137 in ultrasound bath for 1 h. Finally, a drop of the solution was placed on a grid and dried before TEM
138 analysis.

139 The size distribution of the prepared NPs was obtained by direct observation of the TEM images
140 and the construction of the corresponding size distribution histograms. These measurements were
141 performed using the Image J Software, and the histograms obtained were adjusted to a 3-parameter
142 Gaussian curve (Equation 1) where x_0 is the mean diameter (to which most nanoparticles correspond),

143 *b* is the standard deviation and *a* is a statistical parameter related to this fitting. Histograms were
144 calculated using the Microsoft Excel 2010, and the equation was adjusted with SigmaPlot 11.0.

$$y = ae^{-0.5\left(\frac{x_0-x}{b}\right)^2} \quad (1)$$

145

146 **2.4.3 Fourier Transformed Infrared (FTIR) spectroscopy**147 To elucidate the functional groups, present in the grape stalk extract and the molecules
148 surrounding the Ag nanoparticles, FTIR spectra in the range of 4000-400 cm⁻¹, were performed in a
149 Platinum ATR spectrometer (Bruker). Both, raw extract and three times washed and centrifuged Ag-
150 NPs (to ensure the removal of unbound molecules) were freeze dried in a lyophilizer Unitop HL
151 (Virtis).

152

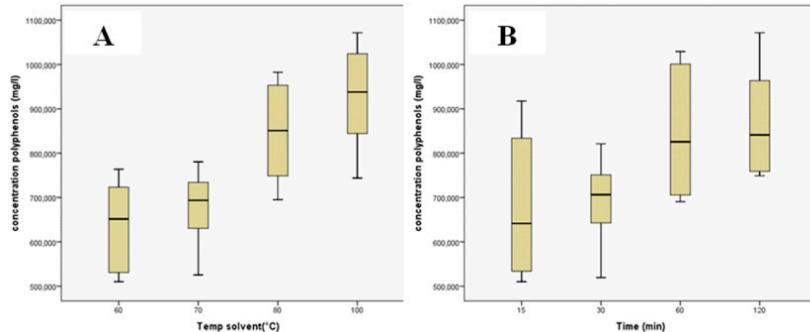
153 **2.4.4 Electrochemical characterization of modified SPCNFE**154 Differential pulse anodic stripping voltammetric (DPASV) measurements were performed in an
155 Autolab System PGSTAT12 (EcoChemie, The Netherlands), in a multichannel configuration, attached
156 to a Metrohm 663 VA Stand (Metrohm, Switzerland) and a personal computer with GPES
157 Multichannel 4.7 software package (EcoChemie).158 The auxiliary and the reference electrode (to which all potentials are referred) were Pt wire and
159 Ag|AgCl|KCl (3 mol L⁻¹) respectively, both purchased from Metrohm (Switzerland). The working
160 electrode used was a screen-printed carbon nanofiber electrode (SPCNFE) modified with silver
161 nanoparticles (Ag-NPs-SPCNFE) and connected to the Autolab Systems by means of a flexible cable
162 (ref. CAC, Dropsens). SPCNFE was a disk electrode of 4 mm diameter provided by Dropsens (ref.
163 110CNF, Oviedo, Spain).164 Stripping voltammetric measurements using Ag-NPs-SPCNFE for the determination of Pb(II)
165 and Cd(II) ions were carried out at a deposition potential (E_d) of -1.40 V applied with stirring during
166 a deposition time (t_d) of 120 s and followed by a rest period (t_r) of 5 s. Measurements were performed
167 by scanning the potential from -1.40 to -0.30 V, and by using pulse times of 50 ms, step potentials of
168 5 mV and pulse amplitudes of 50 mV. All experiments were carried out without any oxygen removal
169 and at room temperature (20 °C).170 Ag-NPs-SPCNFE working electrodes were prepared by drop-casting 40 μL of Ag-NPs solution
171 onto the electrode surface and drying it at 50 °C for 30 min. The Ag-NPs solutions were
172 supernatants resulting from different washings of the pellets obtained from Ag-NPs carried out at
173 different pH values (pH 4 and 6). The corresponding pellets were suspended in 10 mL of deionized
174 water under agitation. Then the suspension was centrifuged. The resulting supernatant (W1) was
175 separated from the washed pellet. This washing operation was repeated three more times. The aim
176 of these washings was to remove non-reacted ions and molecules from the silver nanoparticles
177 suspension that could interfere on sensor response. The obtained supernatants (W1, W2, W3 and W4,
178 increasing regarding the number of times the pellets were washed) obtained from NPs synthesis,
179 were drop-casted on SPCNFE to obtain 16 different modified sensors.

180

181 **3. Results and Discussion**

182

183 **3.1 Grape stalks extracts**


184

185 To show the effect of temperature and contact time on grape stalks extraction box plots (BP) were
186 used (Figure 1). The line across the box represents the median value, whereas the top and the bottom
187 box show the location of the first and third quartiles (Q1 and Q3). The whiskers are the lines that
188 extent from the top and bottom of the box. The box itself contains the middle 50% of the data. If the
189 median is not equidistant from the top and the bottom of the box, then the data are skewed. Box

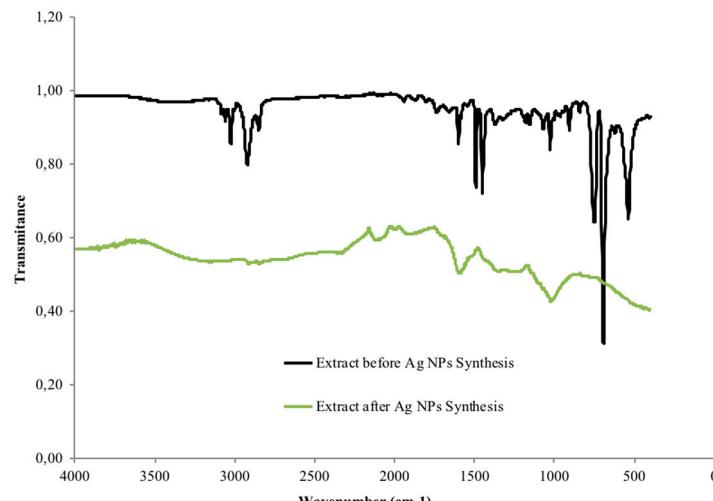
190 plots corresponding to total polyphenol concentration values obtained at different temperatures and
191 at different contact times are presented in Figure 1A and 1B, respectively.

192 From the results of the box plots, a one-way ANOVA test was performed to analyze the
193 differences among group means and their variation, specifically for the concentration of polyphenols
194 and reducing sugars at different temperatures and different extraction times. The results of the
195 ANOVA test (results not presented) showed $p < 0.05$ for the concentration of polyphenols at different
196 temperatures and contact times and also for the concentration of reducing sugars at different contact
197 times. However, $p > 0.05$ for the concentration of reducing sugars at different temperatures was
198 obtained. Bonferroni post hoc test was carried out to seek out the variable responsible for significant
199 differences between the groups of data. Results indicated that temperature is a significant variable
200 for polyphenols concentration: p -values for the comparison between the temperatures 60 and 70°C
201 and 80 and 100°C are above 0.05. Therefore, the temperature significance lies between these two
202 groups (70-80°C). In the case of the variable extraction time, p values were also all above 0.05 for the
203 polyphenols and almost all below this value for the reducing sugars. These results indicate that
204 contact time does not play a significant role in the polyphenols concentration (around 0.5 g L⁻¹) but
205 this variable does have a significant influence in the concentration of reducing sugars (from 0.4 to 0.9
206 g L⁻¹).

207

208

209 **Figure 1:** Boxplot for the concentration of polyphenols at different temperatures (A) and contact
210 times (B).


211

212 **3.2 Silver nanoparticles synthesis**

213 **3.2.1 FTIR characterization of grape stalk**

214 The FTIR spectra of grape stalk (GS) extract before and after the synthesis of Ag-NPs are plotted in
215 Figure 2. The two curves present a high variation in the intensity of bands in most of the regions of
216 the spectrum. Dried extract spectrum displays a number of adsorption peaks indicating the complex
217 nature of this material. The broad peak in the extract spectrum at around 3328 cm⁻¹ is indicative of O-
218 H stretching vibrations. The two peaks at 2950 and 2887 cm⁻¹ correspond to the asymmetric and
219 symmetric vibration, respectively, of C-H in the olephinic chains and the peak at 1731 cm⁻¹ is
220 attributed to the carbonyl C=O in ester groups [14]. The peaks at 1602 and 1524 cm⁻¹ are due to
221 vibration of cyclobenzene and the peaks at 1132, 1106, 1067 and 1048 can be due to C-O stretching of
222 alcohols and phenols [22].

223

224
225 **Figure 2:** FTIR spectrum of dried grape stalks extract before and after the synthesis of Ag-NPs.
226

227 Dried extract spectrum after the synthesis of Ag-NPs shows a broad band in the region of OH-
228 stretching vibrations around 3190 cm^{-1} . The shift from 3328 to 3190 cm^{-1} must be attributed to the
229 formation of Ag-NPs. The observed broadening of the band is characteristic of hydrogen bonding
230 (intra and inter molecular bonds). Free hydroxyl groups might interact with silver to stabilize Ag-
231 NPs. The functional groups p-OH, m-OH and COOH of phenolic groups have been reported to act
232 as hydrogen donor/acceptor [22, 23]. A cooperative association between phenolic compounds and
233 other components of the extract may contribute to the stabilization of the nanoparticles [25]. The
234 band at 1731 cm^{-1} attributed to C=O stretching mode has disappeared indicating that this group is
235 involved in silver reduction and/or NPs stabilization. The bands corresponding to alcohol and phenol
236 stretching shifted to lower wavenumbers and showed a very weak intensity.
237

238 **3.2.2 Study of factors affecting Ag-NPs synthesis**

239 Some physical and chemical parameters such as pH, contact time between extract and metal solution,
240 temperature, extract/metal solution (v/v) ratio and metal salt concentration largely affect the
241 synthesis process and the characteristics (size, shape and morphology) of the synthetized NPs
242 [5]. Therefore, the influence of these parameters on Ag-NPs synthesis mediated by grape stalk extract
243 was investigated. Visual observation of color, changes in the pH and spectra of UV-Vis were useful
244 tools to monitoring Ag-NPs formation.
245

246 Effect of pH

247 The influence of pH on Ag-NPs was investigated adjusting the pH of the extract at different pHs
248 within 2.0-9.0, meanwhile the pH of 0.01 mol L^{-1} AgNO_3 solution was kept unaltered. In these
249 experiments the volume of extract and Ag solution was 4 and 6 mL, respectively, the temperature
250 80°C and the contact time 2 hours.
251

252 The nanoparticles suspension obtained from rinsing the pellet up to three times with Milli-Q water,
253 showed maximum absorbance at around 450 nm, indicating the presence of Ag nanoparticles. It has
254 been reported that silver colloids exhibit maximum absorbance within the range 400-500 nm due to
255 Surface Plasmon Resonance (SPR) [26-28].
256

257 As can be seen in Figure 3A, a peak at 307 nm was observed. This peak must be attributed to the
258 organic matter of the GS extract. This peak is very high in the solution at pH 2, when any other peak
259 was clearly observed. In case of pH 4 and 6, a peak around 450 nm was observed. This peak can be
260 attributed to the SPR of silver nanoparticles as mentioned in section 2.3.1. It must be remarked that
261 the absorbance of peak from solution at pH 6 was higher than that at pH 4. As peak intensity could
262 be related to Ag-NPs concentration, the increase on peak intensity of solution at pH 6 compared to
263 pH 4 could indicate higher nanoparticles presence in solution. Two peaks were observed in the UV-
264 Vis plot of pH 8 solution and both peaks are in the Ag-NP SPR range. The wavelength of the band
265

263 shifted to 470 nm when the reaction pH was 4 and 6. The shift towards large wavelengths (red shift)
264 indicates an increase in the mean diameter of Ag-NPs [25, 26].

265 The high band observed at 440 nm seems indicate a great number of Ag-NPs. Additionally, the shift
266 towards lower wavelengths indicates a decrease in the mean diameter of Ag NPs [25, 26]. Thus, SPR
267 seems indicate a great number of smaller diameter Ag-NPs when synthesis takes place at pH 8.
268 Nevertheless, the additional peak observed at 415 nm indicates the presence of other compounds in
269 solution that could affect Ag-NPs quality.

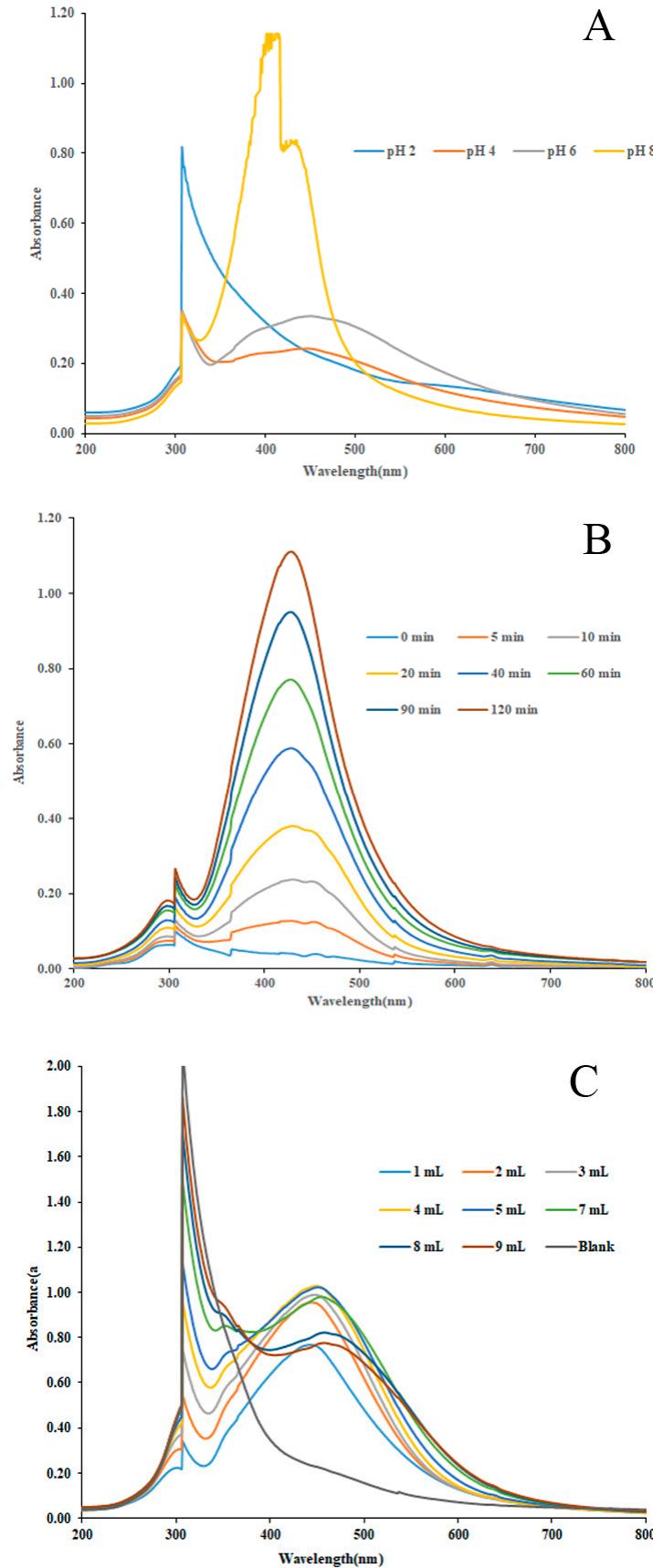
270

271 Effect of contact time

272 In order to ascertain the time required for the completion of the reduction reaction, several tubes
273 containing 4 mL of extract and 6 mL of 0.01 mol L⁻¹ AgNO₃ were heated at 80°C. The tubes were
274 removed from the thermostatic bath at different times ranging from 5 min to 8 h.

275 The UV-Vis spectra of Ag-NPs solution obtained at different reaction times are depicted in Figure 3B.
276 In the experimental conditions used (4 mL extract, 6 mL 0.01 M AgNO₃, 80°C, pH 4) the Ag-NPs SPR
277 band is noticeable after 5 min of reaction. Up to this reaction time the absorbance intensity increased
278 with time, suggesting a great number of nanoparticles in the solution.

279 The pH of the reaction mixture was measured before and after the reduction reaction. The initial pH
280 (4.01) increased in the first 5 min to 4.15 and then progressively diminished with time and reached
281 the pH value 3.02 after 8h. The change of pH might be related to the involvement of some compounds
282 in the reduction or capping processes leading to Ag-NPs formation.


283

284 Effect of extract/silver solution (v/v) ratio

285 Different volume of extract and silver solution ratios were investigated in order to determine the
286 effect of silver addition and the effect of extract addition, respectively. The first one consisted in
287 fixing the volume of extract (4 mL) and adding different volumes (1-6 mL) of 0.01 mol L⁻¹ AgNO₃. In
288 the second one the volume of silver solution was fixed (1 mL) and the volume of extract was varied
289 (1-9 mL). For both sets of experiments total volume in the tubes was adjusted to 10 mL by adding
290 Milli-Q water. Heating temperature of 80°C and contact time of 2 hours were kept as when studying
291 effect of pH.

292 The plot of the spectra obtained at increasing volumes of extract is presented in Figure 3C. The reacted
293 solutions exhibited an intense dark reddish-brown color with independence of the volume of extract
294 added to 1 mL 0.01 mol L⁻¹ AgNO₃. The increasing sharp peak at 307 nm refers to light absorption of
295 extract components at this wavelength. As expected, absorbance intensity at this wavelength
296 increases with the addition of more volume of extract. Maximum absorbance intensity of the SPR
297 band increased with the addition of 1 to 5 mL of extract. Higher volumes of extract led to the
298 opposite trend as absorbance values decreased with the extra extract addition. The decrease of
299 absorbance could be due to the deficiency of silver ions with respect to the amount of biomolecules
300 that could provoke the agglomeration of smaller particles to form larger Ag-NPs that would absorb
301 light in a lower extent [29]. SPR band values shifted from 447.5 to 459 nm with the addition of extract
302 volume from 1 to 9 mL, indicating the effect of extract concentration in the mean diameter of Ag-NPs.
303 López-Carrillo *et al.* [31], reported that in general, particle size can be controlled by changing the
304 volume of the reducing agent.

305

306

307

308

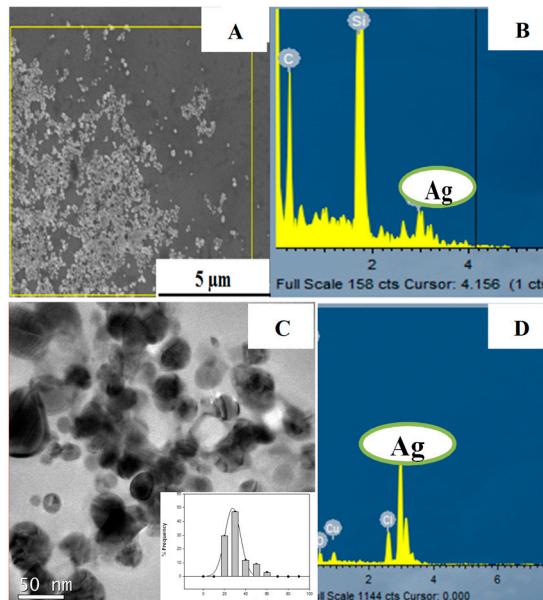

309

Figure 3: UV/Vis Spectra showing the influence of different parameters in the synthesis of Ag-NPs with the GS extract: A) pH, B) contact time and C) extract addition.

310 **3.2.5 Electron Microscopy Characterization**

311 The suitability of the GS extract for the synthesis of Ag-NPs was proved by direct observation of SEM
 312 and TEM images. As an example, Figure 4 shows the electron microscopy characterization for a
 313 sample solution of NPs synthetized at pH 4. Results reveal that Ag-NPs are obtained through this
 314 methodology with an average diameter of (27.7 ± 0.6) nm. Moreover, the chemical identity of the Ag-
 315 NPs is proved by EDX spectra presented as well in Figure 4 (B, D).

316

317

318 **Figure 4:** Electron Microscopy micrographs for Ag-NPs synthesized at pH 4 using the GS
 319 extract as reducing agent. SEM micrograph (A) and corresponding EDX spectra (B) and TEM
 320 micrograph (C) with size distribution histogram inset with the corresponding EDX spectra (D).

321

322 The size distribution analysis for the different Ag-NPs synthetized at different pH and measured by
 323 TEM images was determined and it is summarized in Table I. Due to the higher surface to volume
 324 ratio, these Ag-NPs can present higher electrocatalytical activity, and therefore they could be suitable
 325 for the modification of electrodes, as well be addressed in the following section.

326

327

Table I: Diameter measurements from TEM micrographs as for Ag-NPs prepared at different pH

Sample preparation pH	Diameter (nm)
2	55.4 ± 0.3
4	27.7 ± 0.6
6	54.3 ± 0.1
8	9.0 ± 0.2

328

329 As can be seen, the smaller particles size of Ag-NPs was obtained when synthesis was carried out at
 330 pH 8, confirming the result of the effect of pH on Ag-NPs synthesis analyzed by UV-VIS spectra.
 331 Similar nanoparticle diameters were obtained when synthesis was carried out at pH 2 and pH 6.
 332 Thus, TEM results confirm the effect of pH on nanoparticle size. Nevertheless, other aspects related
 333 to size stabilization seem to influence in great extent on size particle than pH, as no clear trend
 334 between pH and size was observed.

335

336 Figure 5 presents SEM images of a the non-modified(5A) and Ag NPs-modified(5B and 5C) SPCNFEs,
 337 showing that the drop-casting strategy does not alter the morphology of the electrode, but leads to
 338 the incorporation of the green synthesized Ag NPs, distribute all over the surface(5C). This fact is
 339 relevant for the enhancement of the electroanalytical features of the SPCNFE.

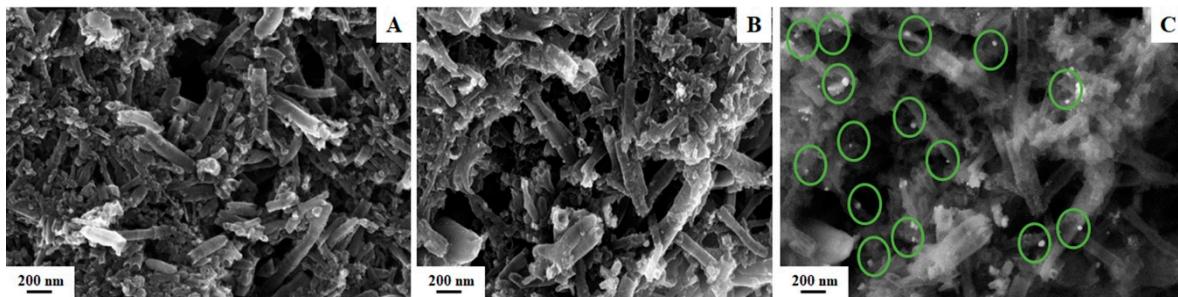
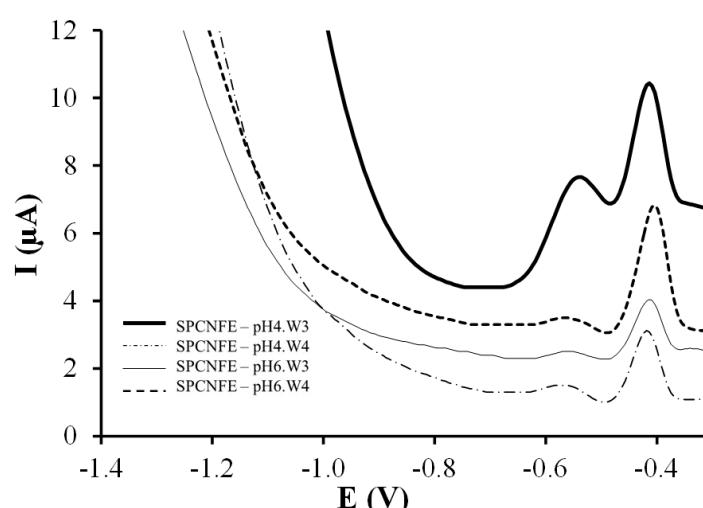


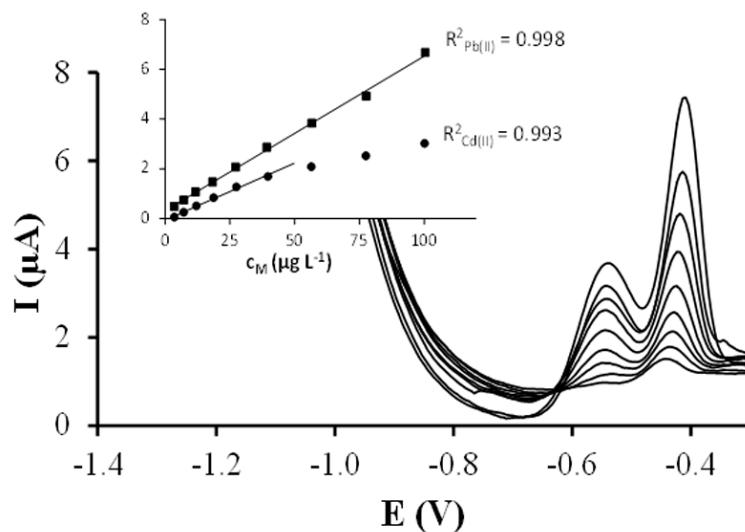
Figure 5: SEM InLens images of raw SPCNFE (A) and SPCNFE after the drop casting of Ag-NPs (B). SEM Secondary Lens of SPCNFE highlighting the location of the drop-casted Ag-NPs.

3.2.6 Electrochemical Characterization

The selected E_d , t_d and t_r were firstly optimized to ensure the simultaneous determination of Cd(II) and Pb(II) at each Ag-NPs-SPCNFE in the selected concentration range (data not shown), being for all cases a E_d of -1.40 V applied with stirring during a t_d of 120 s and followed by a t_r of 5 s.

The comparison of the analytical performance of the SPCNFE modified with Ag-nanoparticles obtained from different synthesis pH and after two or three additional rinsing suspensions (W3 and W4) is shown in Figure 6. In order to study the effect of the NP size on the electrochemical behavior and to avoid the presence of other compounds in solution, Ag-NPs obtained at pH 4 and 6 were chosen to prepare SPCNFE. The aim of the modified Ag-NPs-SPCNFE is the simultaneous determination of a solution containing Pb(II) and Cd(II). Well-defined peaks can be observed for both Pb(II) and Cd(II) ions at -0.42 and -0.55 V, respectively, with all electrodes. However, more intense peaks are obtained using the SPCNFE modified with Ag-NPs prepared at pH 4, supernatant W3 (SPCNFE - pH4.W3), particularly in the case of Cd(II).




Figure 6: Stripping voltammetric measurements of the SPCNFE modified with Ag-NPs obtained from different synthesis pH conditions and washing suspensions for the simultaneous detection of Cd(II) and Pb(II) at 77 $\mu\text{g L}^{-1}$ and pH 4.5

Simultaneous calibration of Pb(II) and Cd(II) ions by DPASV were carried out on each Ag- NPs- SPCNFE. For this purpose, 9 increasing concentrations of Pb(II) and Cd(II) ranging from 1.1 to 100.4 and from 1.1 to 100.1 $\mu\text{g L}^{-1}$, respectively, were used as calibration samples. Figure 7 shows, as an example, the evolution of the DPASV signals of both metal ions using SPCNFE modified with silver nanoparticles obtained from SPCNFE-pH4.W3 when their concentrations increase (the other three Ag-NPs-SPCNFE present equivalent behaviors). The obtained calibration data on each Ag-NPs- SPCNFE are summarized in Table II. The limit of detection (LOD) was calculated as 3 times the standard deviation of the intercept over the slope of the calibration curve of the target ions. The limit

372 of quantification (LOQ) was evaluated by considering 10 times the previous ratio. The lowest value
 373 of the linear concentration range was established from the corresponding LOQ. As shown in Table
 374 II, linear calibration curves were obtained for Pb(II) and Cd(II) up to a maximum concentration level
 375 of 100.4 and 27.5-39.7 $\mu\text{g L}^{-1}$, respectively, depending on the considered Ag-NPs-SPCNFE. Regarding
 376 sensitivities ($\text{nA } \mu\text{g}^{-1} \text{ L}$), obtained from the slope of the calibration curves, they varied from 21.2 to 62
 377 for Pb(II) and from 5.1 to 46 for Cd(II) depending on the Ag-NPs-SPCNFE (Table II). The LOD of the
 378 determination of the two metals in the four considered Ag-NPs-SPCNFEs ranged from 2.7 to 4.9 for
 379 Pb(II) and from 2.8 to 8.1 for Cd(II) according to the considered Ag-NPs-SPCNFE, whereas the LOQ
 380 varied from 8.9 to 16.2 for Pb(II) and from 9.5 to 26.9 for Cd(II) (as seen in Table II). It should be
 381 mentioned that no previous LOD and LOQ data for SPCNFEs modified with Ag-NPs from natural
 382 sources are available in the literature. Nevertheless, as compared to previous results reported using
 383 other electrodes, e. g., synthetic Ag-NPs based electrodes [16,32], bismuth film electrodes [33],
 384 antimony film electrodes [33], chemically modified electrodes [34-37], the LOD and LOQ achieved
 385 in this work for Cd(II) and Pb(II) are similar or even lower depending on the considered modified
 386 electrode.

387 Therefore, the reported calibration data suggests that all the considered Ag-NPs-SPCNFEs could
 388 be suitable and a valuable option to more conventional electrodes for the simultaneous determination
 389 of Pb(II) and Cd(II) at trace levels in natural samples. However, the best results (higher sensitivities,
 390 lower LODs and wider linear ranges) were obtained with SPCNFE-pH4.W3

391

392

393

394 **Figure 7:** DPASV measurements and calibration curves (insets) obtained for the simultaneous
 395 calibration of Pb(II) and Cd(II) in acetate buffer pH 4.5 using an Ag-NPs modified -SPCNFE at an E_{d}
 396 of -1.4 V and a t_{d} of 120 s.

397

398

399

400	401	402	Sample	Pb(II)	Cd(II)			
403	404	405	SPCNFE – pH4.W3					
406	407	408	Sensitivity (nA $\mu\text{g}^{-1} \text{L}$)	62 (1)	46 (2)			
409	410	411	R^2	0.998	0.993			
412	413	414	Linear range ^a ($\mu\text{g L}^{-1}$)	8.9-100.4	9.5-39.7			
415	416	417	LOD ($\mu\text{g L}^{-1}$)	2.7	2.8			
418	419	420	SPCNFE – pH4.W4					
421	422	423	Sensitivity (nA $\mu\text{g}^{-1} \text{L}$)	26.0 (0.7)	8.5 (0.5)			
424	425	426	R^2	0.996	0.993			
427	428	429	Linear range ^a ($\mu\text{g L}^{-1}$)	13.3-100.4	16.0-39.7			
430	431	432	LOD ($\mu\text{g L}^{-1}$)	4.0	4.8			
433	434	435	SPCNFE – pH6.W3					
436	437	438	Sensitivity (nA $\mu\text{g}^{-1} \text{L}$)	21.2 (0.5)	5.1 (0.5)			
439	440	441	R^2	0.996	0.980			
442	443	444	Linear range ^a ($\mu\text{g L}^{-1}$)	12.3-100.4	26.9-39.7			
445	446	447	LOD ($\mu\text{g L}^{-1}$)	3.7	8.1			
448	449	450	SPCNFE – pH6.W4					
451	452	453	Sensitivity (nA $\mu\text{g}^{-1} \text{L}$)	43 (1)	13.8 (0.8)			
454	455	456	R^2	0.993	0.989			
457	458	459	Linear range ^a ($\mu\text{g L}^{-1}$)	16.2-100.4	10.0-27.5			
460	461	462	LOD ($\mu\text{g L}^{-1}$)	4.9	3.0			

Table II. Calibration data for the simultaneous determination of Pb(II) and Cd(II) at each Ag-NPs-SPCNFE at E_d of -1.4 V, t_d of 120 s and pH 4.5. Standard deviations are denoted by parenthesis.

443 4. Conclusions

444 An environmentally friendly preparation of Ag-NPs by using non-toxic reduction chemicals has been
 445 developed. Thus, total polyphenols and reducing sugars present in plant extracts from grape stalk
 446 wastes were used as reducing agents and stabilizers in the nanoparticles production. The extract and
 447 the Ag-NPs generation have been studied and optimized considering several parameters and have
 448 been fully characterized by different spectroscopic and electron microscopy techniques. Finally, these
 449 Ag-NPs were drop-casted on the SPCNFE and the resulting sensors were analytically characterized
 450 in order to proof their suitability for sensing purposes. These modified Ag-NPs-SPCNFE were tested

451 for the simultaneous voltammetric stripping determinations of Pb(II) and Cd(II) providing good
452 reproducibility, sensitivity, lineal range and limits of detection at $\mu\text{g L}^{-1}$ range; more precisely
453 $\text{LOD}_{\text{Pb(II)}}$ 2.7 $\mu\text{g L}^{-1}$ and $\text{LOD}_{\text{Cd(II)}}$ 2.8 $\mu\text{g L}^{-1}$, evidencing the enhancement of the SPCNFE electrodes by
454 adding the above mentioned Ag-NPs.

455 **Author Contributions:** Julio Bastos-Arrieta and Antonio Florido carried out the analysis data obtained from the
456 synthesis and microscopic characterization of silver nanoparticles. Clara Pérez-Ràfols and Núria Serrano carried
457 out the modification of screen-printed electrodes with nanoparticles, the voltammetric measurements and the
458 data treatment. Núria Fiol, Jordi Poch and Isabel Villaescusa carried out the preparation and characterization of
459 the grape stalk, besides the green synthesis of the Ag NPs. All authors contributed to the writing, revision and
460 critical discussion of the results presented in the final version of the manuscript.

461 **Funding:** This research has been supported by Ministerio de Economía y Competitividad (MINECO) and Fondo
462 Europeo de Desarrollo Regional (FEDER), projects CTM2015-68859-C2-1-R and C2-2-R, and by the Generalitat
463 de Catalunya (Projects 2017SGR311 and 2017SGR312).

464 **Acknowledgments:** Clara Pérez-Ràfols also acknowledges the Ministerio de Educación, Cultura y Deporte
465 (MECD) for a Ph.D. grant. Special thanks to Nathalie Gerits, Jeongeun Kim and Pau-Isai Jaile for helping in part
466 of the experimental work

467 **Conflicts of Interest:** The authors declare no conflict of interest

468 References

1. Zhang, X.; Yan, S.; Tyagi, R. D.; Surampalli, R. Y. Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. *Chemosphere* **2011**, *82*, 489–494, doi:10.1016/j.chemosphere.2010.10.023.
2. Sharma, D.; Kanchi, S.; Bisetty, K. Biogenic synthesis of nanoparticles: A review. *Arab. J. Chem.* **2015**, doi:10.1016/j.arabjc.2015.11.002.
3. Kuppusamy, P.; Yusoff, M. M.; Maniam, G. P.; Govindan, N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications – An updated report. *Saudi Pharm. J.* **2016**, *24*, 473–484, doi:10.1016/j.jps.2014.11.013.
4. Mittal, A. K.; Chisti, Y.; Banerjee, U. C. Synthesis of metallic nanoparticles using plant extracts. *Biotechnol. Adv.* **2013**, *31*, 346–356, doi:10.1016/j.biotechadv.2013.01.003.
5. Srikar, S. K.; Giri, D. D.; Pal, D. B.; Mishra, P. K.; Upadhyay, S. N. Green Synthesis of Silver Nanoparticles: A Review. *Green Sustain. Chem.* **2016**, *06*, 34–56, doi:10.4236/gsc.2016.61004.
6. He, Y.; Du, Z.; Lv, H.; Jia, Q.; Tang, Z.; Zheng, X.; Zhang, K.; Zhao, F. Green synthesis of silver nanoparticles by Chrysanthemum morifolium Ramat. extract and their application in clinical ultrasound gel. *Int. J. Nanomedicine* **2013**, *8*, 1809–1815, doi:10.2147/IJN.S43289.
7. Ravichandran, V.; Vasanthi, S.; Shalini, S.; Ali Shah, S. A.; Harish, R. Green synthesis of silver nanoparticles using *Atrocarpus altilis* leaf extract and the study of their antimicrobial and antioxidant activity. *Mater. Lett.* **2016**, *180*, 264–267, doi:10.1016/j.matlet.2016.05.172.
8. Ahmed, S.; Ahmad, M.; Swami, B. L.; Ikram, S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. *J. Adv. Res.* **2016**, *7*, 17–28, doi:10.1016/j.JARE.2015.02.007.
9. Kuppusamy, P.; Ichwan, S. J. A.; Parine, N. R.; Yusoff, M. M.; Maniam, G. P.; Govindan, N. Intracellular biosynthesis of Au and Ag nanoparticles using ethanolic extract of *Brassica oleracea* L. and studies on their physicochemical and biological properties. *J. Environ. Sci. (China)* **2015**, *29*, 151–157, doi:10.1016/j.jes.2014.06.050.
10. Luo, F.; Yang, D.; Chen, Z.; Megharaj, M.; Naidu, R. Characterization of bimetallic Fe/Pd nanoparticles by grape leaf aqueous extract and identification of active biomolecules involved in the synthesis. *Sci.*

496 11. *Total Environ.* **2016**, *562*, 526–532.

497 12. Venkateswarlu, S.; Natesh Kumar, B.; Prathima, B.; Anitha, K.; Jyothi, N. V. V A novel green synthesis
498 of Fe₃O₄-Ag core shell recyclable nanoparticles using *Vitis vinifera* stem extract and its enhanced
499 antibacterial performance. *Phys. B Condens. Matter* **2015**, *457*, 30–35, doi:10.1016/j.physb.2014.09.007.

500 13. Dziwoń, K.; Pilit-Prociak, J.; Banach, M. Green technologies in obtaining nanomaterials—using white
501 grapes (*Vitis vinifera*) in the processes for the preparation of silver nanoparticles. **2015**.

502 14. Krishnaswamy, K.; Vali, H.; Orsat, V. Value-adding to grape waste: Green synthesis of gold
503 nanoparticles. *J. Food Eng.* **2014**, *142*, 210–220, doi:10.1016/j.jfoodeng.2014.06.014.

504 15. Pujol, D.; Liu, C.; Fiol, N.; Olivella, M. À.; Gominho, J.; Villaescusa, I.; Pereira, H. Chemical
505 characterization of different granulometric fractions of grape stalks waste. *Ind. Crops Prod.* **2013**, *50*, 494–
506 500.

507 16. Muñoz, J.; Bastos-Arrieta, J.; Munoz, M.; Muraviev, D. N.; Céspedes, F.; Baeza, M. Simple green routes
508 for the customized preparation of sensitive carbon nanotubes/epoxy nanocomposite electrodes with
509 Functional Metal Nanoparticles. *RSC Adv.* **2014**, *4*, 44517–44524, doi:10.1039/C4RA07294D.

510 17. Pérez-Ràfols, C.; Bastos-Arrieta, J.; Serrano, N.; Díaz-Cruz, J. M.; Ariño, C.; de Pablo, J.; Esteban, M. Ag
511 nanoparticles drop-casting modification of screen-printed electrodes for the simultaneous voltammetric
512 determination of Cu(II) and Pb(II). *Sensors (Switzerland)* **2017**, *17*, doi:10.3390/s17061458.

513 18. Lu, Y.; Liang, X.; Niyungeko, C.; Zhou, J.; Xu, J.; Tian, G. A review of the identification and detection of
514 heavy metal ions in the environment by voltammetry. *Talanta* **2018**, *178*, 324–338.

515 19. Economou, A. Screen-printed electrodes modified with “green” metals for electrochemical stripping
516 analysis of toxic elements. *Sensors (Switzerland)* **2018**, *18*, 1032.

517 20. Pérez-Ràfols, C.; Serrano, N.; Díaz-cruz, J. M.; Ariño, C.; Esteban, M. New approaches to antimony film
518 screen-printed electrodes using carbon-based nanomaterials substrates. *Anal. Chim. Acta* **2016**, *916*, 17–
519 23, doi:10.1016/j.aca.2016.03.003.

520 21. Arthur Israel, V. Vogel’s textbook of quantitative chemical analysis. In; Longman Scientific & Technical,
521 1989.

522 22. Ramteke, C.; Chakrabarti, T.; Sarangi, B. K.; Pandey, R. Synthesis of Silver Nanoparticles from the
523 Aqueous Extract of Leaves of *Ocimum sanctum* for Enhanced Antibacterial Activity. *Hindawi Publ. Corp.*
524 *J. Chem.* **2013**, *2013*, 1–8, doi:10.1155/2013/278925.

525 23. Xu, H.; Wang, L.; Su, H.; Gu, L.; Han, T.; Meng, F.; Liu, C. Making good use of food wastes: green
526 synthesis of highly stabilized silver nanoparticles from grape seed extract and their antimicrobial
527 activity. *Food Biophys.* **2015**, *10*, 12–18.

528 24. Tchaikovskaya, O. N.; Basyl', O. K.; Sultimova, N. B. Proton-acceptor and proton-donor properties of
529 phenol and its substitutes. *Russ. Phys. J.* **2005**, *48*, 1245–1250, doi:10.1007/s11182-006-0054-4.

530 25. Lerma-garcía, M.; Ávila, M.; Simó-alfonso, E. F.; Ríos, Á.; Zougagh, M. Synthesis of gold nanoparticles
531 using phenolic acids and its application in catalysis. **2014**, *5*, 1919–1926.

532 26. Mehanna, N. S.; Hassan, Z. M. R.; El-Din, H. M. F.; Ali, A. A.-E.; Amarowicz, R.; El-Messery, T. M. Effect
533 of Interaction Phenolic Compounds with Milk Proteins on Cell Line. *Food Nutr. Sci.* **2014**, *5*, 2130–2146.

534 27. Fran ccedil ois, E. rsquo ane M.; Marcelle, L. S.; Cecile, O. E.; Agnes, A. N.; Djipang, Y. S.; Fanny, A. E.
535 M.; Lidwine, N.; Harouna, M.; Emmanuel, M. M. Unexplored vegetal green synthesis of silver
536 nanoparticles: A preliminary study with *Corchorus olitorius* Linn and *Ipomea batatas* (L.) Lam. *African*
537 *J. Biotechnol.* **2016**, *15*, 341–349, doi:10.5897/AJB2015.14962.

538 28. Demirbas, A.; Welt, B. A.; Ocsoy, I. Biosynthesis of red cabbage extract directed Ag NPs and their effect

539 on the loss of antioxidant activity. *Mater. Lett.* **2016**, *179*, 20–23, doi:10.1016/j.matlet.2016.05.056.

540 28. Velgosová, O.; Mražíková, A.; Marcinčáková, R. Influence of pH on green synthesis of Ag nanoparticles. *Mater. Lett.* **2016**, *180*, 336–339, doi:10.1016/j.matlet.2016.04.045.

541 29. Ajitha, B.; Kumar Reddy, Y. A.; Reddy, P. S.; Jeon, H.-J.; Ahn, C. W. Role of capping agents in controlling *542* silver nanoparticles size, antibacterial activity and potential application as optical hydrogen peroxide *543* sensor. *RSC Adv.* **2016**, doi:10.1039/C6RA03766F.

544 30. Khalil, M. M. H.; Ismail, E. H.; El-Baghdady, K. Z.; Mohamed, D. Green synthesis of silver nanoparticles *545* using olive leaf extract and its antibacterial activity. *Arab. J. Chem.* **2014**, *7*, 1131–1139, *546* doi:10.1016/j.arabjc.2013.04.007.

547 31. Carrillo-López, L. M.; Morgado-González, A.; Morgado-González, A. Biosynthesized Silver *548* Nanoparticles Used in Preservative Solutions for Chrysanthemum cv. Puma. *J. Nanomater.* **2016**, *2016*, *549* doi:10.1155/2016/1769250.

550 32. Prakash, S.; Shahi, V. K. Analytical Methods. **2011**, 2134–2139, doi:10.1039/c1ay05265a.

551 33. Serrano, N.; Alberich, A.; Díaz-Cruz, J. M.; Ariño, C.; Esteban, M. Coating methods, modifiers and *552* applications of bismuth screen-printed electrodes. *TrAC - Trends Anal. Chem.* **2013**, *46*, 15–29, *553* doi:10.1016/j.trac.2013.01.012.

554 34. Pérez-Ràfols, C.; Serrano, N.; Díaz-Cruz, J. M.; Ariño, C.; Esteban, M. Glutathione modified screen- *555* printed carbon nanofiber electrode for the voltammetric determination of metal ions in natural samples. *Talanta* **2016**, *155*, 8–13, doi:10.1016/j.talanta.2016.04.011.

556 35. Pérez-Ràfols, C.; Serrano, N.; Díaz-Cruz, J. M.; Ariño, C.; Esteban, M. Penicillamine-modified sensor for *557* the voltammetric determination of Cd (II) and Pb (II) ions in natural samples. *Talanta* **2015**, *144*, 569–573.

558 36. Serrano, N.; González-Calabuig, A.; del Valle, M. Crown ether-modified electrodes for the simultaneous *559* stripping voltammetric determination of Cd (II), Pb (II) and Cu (II). *Talanta* **2015**, *138*, 130–137.

560 37. Serrano, N.; Prieto-Simón, B.; Ceto, X.; del Valle, M. Array of peptide-modified electrodes for the *561* simultaneous determination of Pb (II), Cd (II) and Zn (II). *Talanta* **2014**, *125*, 159–166.

562
563