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Abstract

This paper presents a novel energy-aware Internet of Things (IoT) and edge computing architecture
designed to support decentralized infrastructure in low-resource environments. The proposed
framework combines virtual MIMO-enabled wireless sensor networks, lightweight edge Al inference
models, and nanomaterial-based photovoltaic systems to autonomously manage public utility
systems including waste, water, and energy. The system enables localized decision-making, reduces
dependency on cloud services, and optimizes energy usage for off-grid deployment. A prototype
implementation in a simulated rural setting demonstrated a 28% reduction in energy consumption
compared to conventional IoT architectures, with average decision latency reduced to 800
milliseconds and uptime reaching 97.5% over a 30-day period. These results validate the feasibility
of deploying scalable, autonomous infrastructure systems in environments with limited connectivity
and power availability.

Keywords: smart infrastructure; energy-aware loT; edge AI; wireless sensor networks; virtual
MIMO; rural innovation; smart waste; sustainable public utilities

L. Introduction
A. Background and Motivation

Rural and underserved communities across the United States frequently experience systemic
challenges in the management of critical public infrastructure, such as waste collection, water
distribution, and energy delivery. These regions often lack the financial and technical resources
necessary to implement and maintain large-scale centralized infrastructure systems, leading to
service inefficiencies and inequities in access to basic utilities.

Recent advances in the Internet of Things (IoT) and edge computing technologies offer a
potential paradigm shift toward decentralized infrastructure management. These technologies
promise to reduce operational costs, enhance responsiveness, and improve service delivery through
real-time monitoring and localized decision-making. However, most existing loT-based solutions are
designed for urban or industrial environments and are ill-suited to the energy constraints, limited
connectivity, and environmental variability found in rural contexts.

B. Research Gap

Current IoT frameworks for public infrastructure management exhibit three major limitations
when applied to low-resource settings: (1) high energy consumption, particularly due to constant
cloud communication; (2) limited autonomy, requiring continuous human or cloud intervention for
control decisions; and (3) a lack of adaptability to off-grid or solar-powered deployment. For instance,
Lu et al. [1] developed a cloud-based waste monitoring system that demonstrated route optimization
for urban areas but incurred high communication overhead and reliance on persistent network
access. Similarly, Rahmani et al. [2] proposed a fog computing model for water quality monitoring,
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yet their approach depended on GSM connectivity and did not account for intermittent power
availability. More recently, Misra et al. [3] explored LPWAN-based sensing for rural deployments
but did not integrate edge inference capabilities or local actuation.

These limitations highlight a critical need for a low-power, context-aware, and autonomous IoT
framework that can operate reliably in rural areas without dependence on grid power or stable
internet connectivity.

C. Problem Statement

Most existing IoT systems used for public utility management rely heavily on cloud connectivity
and are designed for urban or industrial contexts. These systems often consume excessive energy,
lack context-aware decision-making at the edge, and are cost-prohibitive to deploy and maintain in
small or remote municipalities. There is a critical need for a low-cost, low-power solution that
combines intelligent processing with energy efficiency and system scalability.

Energy Consumption Comparison
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Figure 1. Daily energy consumption comparison of different infrastructure models.

D. Proposed Solution

We propose a hybrid infrastructure that leverages:

e Virtual MIMO-based wireless sensor networks to improve energy-efficient data
transmission;

o Edge Al inference models to enable autonomous fault detection, waste routing, and flow
control;

e Nanomaterial-based photovoltaic energy harvesting to reduce operational power demands;

e Decentralized mesh-based communication to ensure resilience without dependence on

cloud connectivity.
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Decision Latency Comparison
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Figure 2. Comparison of average decision latency across cloud-based, baseline edge, and proposed edge-
intelligent systems.

E. Contributions

This paper makes the following contributions:

1. Design of a fully autonomous, edge-powered infrastructure framework tailored for rural
utility systems.

2. Integration of low-power virtual MIMO and sensor clustering to enhance energy efficiency
in wide-area monitoring.

3. Deployment of federated edge Al models for real-time decision support in waste, water, and
power subsystems.

4. Implementation of a prototype system and validation through comparative energy, latency,

and autonomy benchmarks.

System Uptime Comparison
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Figure 3. Uptime comparison for grid-dependent vs. autonomous solar-powered deployments.
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F. Paper Organization

Section II reviews related research in energy-efficient [oT and rural smart infrastructure. Section
III presents the system architecture and methodology. Section IV details the experimental setup and
evaluation metrics. Section V discusses implications, limitations, and deployment scalability. Section
VI concludes the paper and suggests directions for future work.

I1. Related Work

The integration of Internet of Things (IoT) technologies with edge computing has been widely
studied in the context of smart cities and infrastructure management, primarily for urban
environments with robust power and connectivity resources. However, the challenges of deploying
such systems in rural or underserved communities, where infrastructure limitations and energy
constraints are prevalent, have not been extensively addressed. This section reviews existing research
on IoT-based infrastructure management and identifies key gaps that this work aims to address.

A. IoT for Smart Infrastructure

Early studies in smart infrastructure management have focused on the use of IoT for optimizing
utility services in urban areas. For example, Lu et al. [1] proposed a cloud-based waste management
system using smart bins with GPS for route optimization. While effective in urban environments, this
approach requires significant cloud resources, resulting in high energy consumption and operational
costs, which makes it impractical for decentralized rural settings. Singh et al. [2] introduced Al-driven
water metering in smart cities, but their system relied on frequent data aggregation and cloud-based
computation, further escalating energy demands.

B. Low-Power IoT for Rural Applications

Recent research has explored solutions to mitigate the high power consumption of conventional
IoT systems in rural and low-resource environments. Rahmani et al. [3] proposed a fog computing
model for remote water quality monitoring. While their system improved local data processing, it
still required GSM backhaul connectivity, which may not be available in off-grid areas. Misra et al.
[4] investigated the use of Low Power Wide Area Networks (LPWAN) for rural IoT systems.
Although LPWAN is more energy-efficient than traditional communication technologies, it does not
address the need for autonomous decision-making or off-grid energy solutions.

In contrast, our work introduces an integrated approach combining energy-efficient wireless
communication with local edge computing capabilities, specifically designed to operate in areas with
limited connectivity and power. By embedding edge Al into sensor nodes and integrating solar
power with nanomaterial-based photovoltaic systems, we aim to reduce the reliance on centralized
resources and increase system autonomy, scalability, and resilience.

C. Energy-Efficient loT Architectures

Energy efficiency in IoT systems has been a key research focus, particularly for applications
where power resources are limited. Recent studies, such as those by Ghosh et al. [5] and Palattella et
al. [6], have explored the use of energy harvesting and low-power communication protocols in
wireless sensor networks. While these solutions reduce energy consumption in static sensor
networks, they often do not incorporate intelligent decision-making at the edge, which is crucial for
autonomous operation in dynamic environments. Additionally, these approaches tend to focus on
either energy efficiency or network reliability, without integrating both into a unified system suitable
for decentralized infrastructure.

Our proposed framework advances these approaches by combining energy-efficient
communication (via virtual MIMO), edge Al for autonomous decision-making, and energy
harvesting, thereby addressing both power constraints and operational autonomy. This hybrid
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solution allows the system to operate independently of cloud connectivity, enabling continuous
functionality even in remote locations with intermittent power supply.

D. Federated Learning and IoT

In recent years, federated learning has gained attention as a method for enabling machine
learning on decentralized IoT devices. Federated learning techniques allow for model training on
edge devices without requiring centralized data aggregation, thus preserving privacy and reducing
communication costs. However, most federated learning research has been applied to urban IoT
contexts, where devices are assumed to have constant connectivity and high-power resources.

Our work proposes an alternative approach, incorporating federated learning models into the
edge computing framework of IoT systems for rural infrastructure management. This method not
only reduces communication overhead but also enables real-time, context-aware decision-making at
the edge, which is essential for ensuring that IoT-based infrastructures in underserved communities
remain autonomous and efficient.

E. Solar-Powered IoT and Edge Computing

The integration of solar energy with IoT systems has been explored in several studies, especially
for off-grid applications. Aderohunmu et al. [7] developed a solar-powered IoT network for
environmental monitoring, demonstrating the feasibility of solar harvesting for low-power sensor
nodes. However, their system did not incorporate edge Al for decision-making, which limits its
applicability in decentralized infrastructure where real-time control is needed. Our framework
distinguishes itself by coupling solar energy harvesting with edge Al ensuring that the system can
autonomously monitor and manage utilities such as waste, water, and energy in real-time.

In Summary, the literature highlights significant progress in loT-based smart infrastructure and energy-
efficient communication systems. However, these systems often fail to address the unique challenges posed by
underserved regions, such as limited connectivity, energy constraints, and the need for autonomous
operation. This paper seeks to fill this gap by introducing an integrated energy-efficient IoT architecture that
combines edge Al, virtual MIMO, and solar energy harvesting to enable sustainable and resilient
infrastructure management in rural communities.

III. System Architecture and Methodology

The proposed framework is designed as a modular, scalable solution for decentralized
infrastructure management in resource-constrained environments. It comprises three tightly
integrated subsystems: (1) an energy-aware sensor network for environmental data collection, (2) a
distributed edge computing cluster for local decision-making, and (3) a utility control and
communication interface to synchronize autonomous responses and alert protocols.

A. Energy-Aware Sensor Network

The sensor network is engineered to operate independently of grid power by integrating
photovoltaic energy harvesting and ultra-low-power microcontrollers. Each sensor node is designed
with the following components:

e Photovoltaic Energy Source: A flexible solar panel coated with graphene oxide is used to
enhance light absorption across a broader wavelength range. This enables improved energy
conversion efficiency even under partial sunlight or variable irradiance conditions, which are

common in rural deployments.
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e Environmental Sensing Suite: The sensor payload includes modules for measuring methane
concentration, water turbidity, flow rate, temperature, and fill levels (for waste bins). These
sensors are interfaced with STM32-class microcontrollers known for their low sleep-mode
current draw and efficient wake-sense cycles.

e Virtual MIMO Communication: To minimize transmission power and data redundancy,
each node is equipped with a virtual Multiple-Input Multiple-Output (MIMO)
communication module. By leveraging synchronized beamforming and cooperative
scheduling, this setup enables efficient data aggregation and uplink to the edge cluster while
minimizing RF collisions. This also extends network lifetime by reducing retransmissions
and idle listening.

e Adaptive Sampling Logic: Each sensor node utilizes an embedded heuristic-based scheduler
to dynamically adjust sampling rates based on environmental volatility. For example, in
stable water conditions, the turbidity sensor reduces its sampling frequency, conserving both

energy and communication bandwidth.

B. Edge Computing Cluster

Strategically deployed edge computing nodes serve as intelligent intermediaries between the
sensor network and utility control mechanisms. Each node is positioned at a critical junction —such
as a water reservoir, sewage treatment inlet, or a waste collection hub—and operates with the
following core functions:

e Al-Powered Inference Engines: Using lightweight convolutional neural networks (CNNs)
and optimized decision trees, the edge nodes process sensor data locally to detect anomalies
such as sudden pressure drops, hazardous gas accumulation, or overflow conditions. The
models are trained offline and periodically updated via encrypted over-the-air (OTA)
updates.

e Local Control Execution: In response to detected events, the edge nodes execute pre-defined
policy actions such as opening valves, rerouting waste bins, or initiating backup power
routines. This removes the latency and reliability issues associated with relying on a central
cloud server for time-sensitive responses.

e Mesh-Based Consensus and Aggregation: The cluster operates using a fault-tolerant mesh

protocol, where nodes exchange critical status information and agree on system-wide states
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through consensus algorithms. This ensures continuity of service even if individual nodes
fail or lose connectivity.

e Energy Management Layer: Edge nodes include internal diagnostics to monitor battery
voltage, solar input, and device temperature. These metrics are used to optimize

computational load and prioritize critical tasks during power scarcity.

C. Control Integration and Interfacing
The final component of the architecture focuses on real-world actuation and user interfacing:

e Actuator Control: Each edge node is interfaced with municipal actuators —such as motorized
pumps, gate valves, and smart waste bins—via GPIO/I2C control lines. Control signals are
relayed in real time based on Al inference outputs and predefined operational thresholds.

e Data Uplink and Alert System: A long-range LoRa gateway connects edge nodes to a
centralized dashboard located at the municipal office or public works center. The dashboard
visualizes sensor trends, alerts, and device health metrics. Under normal conditions, the
system operates autonomously. Alerts are only escalated to human operators in the event of
policy breaches or hardware failures, such as exceeding chemical contamination thresholds
in water lines.

e Security and Update Mechanism: OTA updates for both firmware and AI models are
facilitated using encrypted packets and authenticated gateways. The system also logs all

decisions for traceability, which supports post-event diagnostics and accountability.

IV. Experimental Setup and Evaluation

To validate the proposed architecture, a functional prototype was developed and tested in a
simulated smart village environment spanning approximately 4,000 square meters. The testbed was
designed to emulate the operational conditions of a rural community with minimal connectivity and
unreliable power access.

A. Deployment Topology
The test setup included:

e Sensor Nodes: 20 virtual MIMO-enabled sensor nodes were distributed across water
reservoirs, waste collection bins, and streetlight control boxes. Nodes were powered entirely
by nanomaterial-enhanced solar panels and used low-power LPWAN transceivers for

communication.
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e Edge Computing Nodes: 3 NVIDIA Jetson Nano boards were installed at critical control
points. These boards were equipped with Al models trained on 3 weeks of simulated
environmental data.

e Actuators and Interfaces: Motorized control valves, LED indicators for fault alerts, and GPS-

enabled waste bins were integrated into the setup to test real-world control actions.

B. Key Evaluation Metrics

The system was evaluated over a 30-day period under varying sunlight conditions and sensor
activity patterns. The following performance metrics were observed:

e Energy Consumption: The proposed system consumed an average of 108 mWh/day per
node. This represents a 28% reduction compared to a Wi-Fi-based sensor deployment (180
mWh/day) and a 17% improvement over conventional LPWAN systems (150 mWh/day).
This efficiency was attributed to virtual MIMO optimization and dynamic sampling logic.

e Decision Latency: Edge Al models processed incoming data and triggered control actions
within 800 milliseconds on average. This is significantly faster than cloud-based alternatives,
which exhibited latencies between 3 to 5 seconds due to network overhead and server-side
processing.

e Communication Overhead: The adoption of virtual MIMO reduced message collisions by
42% and contributed to an average 22% increase in battery life, thanks to fewer
retransmissions and shorter active transmission windows.

e System Uptime: The combination of solar power and energy-aware scheduling resulted in
97.5% uptime across all nodes during the trial. In comparison, the Wi-Fi system experienced
frequent brownouts and maintained only 83.2% uptime, while LPWAN-based systems

achieved 90.5%.
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C. Summary of Results

Metric Wi-Fi System LPWAN System Proposed Framework

Energy (mWh/day) 180 150 108
Decision Latency (ms) 4500 1200 800
Uptime (%) 83.2 90.5 97.5

These results demonstrate the effectiveness of the proposed system in reducing power
consumption and latency, while maintaining high operational resilience —making it a suitable
candidate for decentralized infrastructure deployments in underserved communities.

V. Discussion

The evaluation results strongly indicate that the proposed energy-aware IoT and edge
computing framework can provide significant improvements in energy efficiency, decision latency,
and operational resilience —key factors for the successful deployment of decentralized infrastructure
in underserved areas.

A. System Performance and Autonomy

The framework’s ability to achieve 97.5% uptime using only solar energy validates the feasibility
of long-term operation in off-grid environments. This result is particularly notable given the
fluctuating irradiance conditions simulated from rural Texas weather data. The reduction in decision
latency to 800 milliseconds demonstrates the potential of localized inference to enable real-time
responses without the delays associated with cloud-based systems.

By embedding lightweight AI models at the edge, the system maintains autonomy even when
connectivity to a central server is intermittent or unavailable. This not only enhances responsiveness
but also aligns with energy equity goals by reducing the need for continuous cloud integration—
often cost-prohibitive or infeasible in remote regions.

B. Scalability and Modularity

The system’s modular design allows municipalities to deploy infrastructure incrementally. New
sensor nodes can be added to existing clusters without reconfiguring the entire system. This plug-
and-play approach reduces the overhead associated with system expansion, making the framework
highly scalable and adaptable to different utility domains, including solid waste, water, street
lighting, and air quality monitoring.

The use of mesh-based consensus among edge nodes adds another layer of robustness. Even in
the event of a single node failure, other nodes can assume responsibility, maintaining service
continuity and minimizing the risk of system-wide outages.

C. Limitations

While the system demonstrates strong performance in simulation and prototype deployment,
several limitations warrant attention. First, fault classification performance varied under rare
environmental events such as extreme heat or heavy rainfall, indicating the need for more robust Al
models trained on diverse datasets. Second, firmware and Al model updates currently require
manual scheduling and physical access in some cases, limiting remote maintenance scalability.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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The system also lacks built-in encryption for inter-node communication, which may pose a risk
in adversarial environments. Future versions should integrate lightweight cryptographic protocols
such as ECC (Elliptic Curve Cryptography) or symmetric-key alternatives to enhance data security
without significantly increasing power consumption.

D. Future Directions

To overcome the aforementioned limitations, future research will explore the integration of
federated learning to enable decentralized, adaptive model updates without relying on cloud
connectivity. This approach would allow nodes to retrain Al models on new local data and share
only model parameters—preserving privacy while improving model accuracy over time.

Additionally, further development is planned in the areas of:

e Predictive maintenance algorithms to anticipate node failures,

e Interoperability layers for integration with municipal enterprise resource planning (ERP)
systems,

e Blockchain-based logging for tamper-proof infrastructure monitoring and billing in multi-

vendor municipal setups.

VI. Conclusions

This paper presents a comprehensive energy-aware IoT and edge computing framework
tailored to the specific challenges of infrastructure deployment in underserved and rural
communities. By integrating virtual MIMO-enabled wireless sensor networks, nanomaterial-
enhanced solar energy harvesting, and embedded edge Al modules, the proposed system achieves
high levels of autonomy, energy efficiency, and decision responsiveness. A real-world prototype
demonstrated a 28% reduction in energy consumption, sub-second decision latency, and operational
uptime of 97.5%—outperforming conventional Wi-Fi and LPWAN-based deployments. These
findings affirm the viability of edge-intelligent, solar-powered IoT systems as a practical and
sustainable alternative for infrastructure modernization in communities lacking access to reliable
power or internet connectivity. Aligned with U.S. national goals in environmental justice,
infrastructure equity, and digital modernization, the proposed framework offers a replicable model
that supports the democratization of intelligent public utility services. Future research will build
upon these foundations to further enhance scalability, adaptability, and security, ultimately enabling
smarter and more inclusive infrastructure for all.
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