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Abstract: In bioprocess development, the host and the genetic construct for a new biomanufacturing 

process are selected in the early developmental stages. This decision, made at the screening scale 

with very limited information about the performance of the selected cell factory in larger reactors, 

has a major influence on the performance of the final process. To overcome this, scale-down 

approaches are essential to run screenings that show the real cell factory performance at industrial 

like conditions. We present a fully automated robotic facility with 24 parallel mini-bioreactors that 

is operated by a model based adaptive input design framework for the characterization of clone 

libraries under scale-down conditions. The cultivation operation strategies are computed and 

continuously refined based on a macro-kinetic growth model that is continuously re-fitted to the 

available experimental data. The added value of the approach is demonstrated with 24 parallel fed-

batch cultivations in a mini-bioreactor system with eight different Escherichia coli strains in triplicate. 

The 24 fed-batches ran under the desired conditions generating sufficient information to define the 

fastest growing strain in an environment with varying glucose concentrations similar to in dustrial 

scale bioreactors.   

Keywords: high throughput screening, rapid phenotyping, model-based experimental design, 

Escherichia coli, automated bioprocess development 

 

1. Introduction 

Emerging technologies in robotic biolaboratories open new opportunities for both, High 

Throughput (HT) Screening and HT Bioprocess Development. Screening can be roughly divided into 

two stages; (i) the “clone library screening” (106-1012 candidates/factors), with yes/no experiments in 

Micro Well Plates (MWP) [1–3], and (ii) the stage known as “conditional screening” [4–6], the focus 

of this work. During the “conditional screening” a reduced number of candidate strains is tested with 

factors that significantly influence the performance at industrial scale (e.g. media, pH and 

temperature profiles, bioreactor heterogeneities, induction and feeding strategies [7–12]). These 

factors are known to affect the underlying nonlinear dynamics of the bioprocess and are par t of the 

very complex time-dependent interaction between the bioreactor environment and the cell factory. 

This highly nonlinear behavior makes it difficult to predict the effect of changes in the cultivating 

conditions and is responsible for the high failure rate in scale-up [13,14]. In order to overcome these 

challenges, experiments in conditional screening require highly advanced experimental setups able 

to: (i) operate as similar as possible to the industrial strategy (e.g. fed-batch or continuous 

cultivations), (ii) mimic the harsh conditions of industrial scale bioreactors as close as possible (e.g. 
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growth limitation; bioreactor heterogeneities), and (iii) generate the maximal amount of information 

possible about the strain ś phenotype and its complex dynamic interaction with the process.  
The technology to perform parallel experiments with advanced operation in fed-batch or 

continuous mode has recently become available [4,15,16]. Mini-BioReactors (MBR) integrated in 

Liquid Handling Stations (LHS) allow a large number of parallel cultivations while maintaining the 

properties of benchtop bioreactors. With working volumes of 2-250 mL [17], geometric similarities to 

large-scale reactors [18], and high frequency measurements and analytics, MBRs have been used for 

process characterizations [15,19–21] and scale-down studies [11,22] for up to 48 cultivations in 

parallel [23]. Such robotic facilities with automated cultivation control, sampling and at -line analytic 

operations [16,24] are very powerful systems that can accelerate bioprocess development, especially 

in combination with digital solutions for experiment planning [25–28], data acquisition [4,16]and real-

time dynamic analysis [29,30]. The bottleneck is currently the lack of advanced computer aided tools 

to plan the experiments, operate the robots and build the necessary models and digital twins for scale-

up and advanced process control. Because of limitations by the planning and operation capacity of 

humans much too often robots are on hold waiting for the next experiment to be planed, experimental 

campaigns need to be repeated because of failures that were not detected on time, and the same 

feeding strategy is used for strains with different characteristics . These are the main issues we 

address in the present work. 

Initial attempts to solve these challenges have demonstrated the added value of model -based 

tools in terms of accelerating the development process and increasing robustness during scale-up 

[10,31,32]. Nevertheless, the existing solutions are mostly limited to single strain applications due to 

the complexity of the used mechanistic models and the difficulty to identify the parameters for a large 

number of strains at the same time [32,33]. Therefore, screening approaches often use simple black-

box models for the microorganisms, which do not allow a detailed comparison of their phenotypes.  

This contribution proposes an advanced conditional screening design framework that can interact 

with the robotic facility to run fed-batch like cultivations with feeding strategies tailored for each 

strain. To achieve this, (i) a model with a general macro-kinetic structure is defined with model-

parameter ranges that can describe the phenotypes of all strains , and (ii) a parameter estimation is 

carried out for each strain to obtain a characteristic parameter set that uniquely describes it. By this 

we gain not only a robust and accurate prediction of the characteristics of each strain, but we also can 

easily quantify and confidently compare their performance. Finally, the method is applied in an 

online model calibration framework to adaptively define individual optimal  feed start and feeding 

strategy. The framework provides all necessary parameters and actions t o define a wide range of 

alternative event triggers (e.g. depletion of glucose or consumption of acetate). 

In summary, during the parallel cultivation the adaptive framework for conditional screening 

experiments recursively executes the following steps: (i) collection of cultivation data from the 

database, (ii) selection of an identifiable parameter (sub)set (PE regularization) for each strain, (iii) 

estimation of kinetic parameters for each clone, (iv) updating of the optimal feeding profiles for each 

clone, and (v) transfer of the new feeding profiles to the database (Figure 1). As a proof of concept, 

parallel screening experiments with eight different strains including six knockout mutants of E. coli 

K-12 are conducted in 24 mini bioreactors. At the start  of the experiment, virtually no information on 

the growth behaviour of all these strains was available. In this one experiment it was possible to 

identify 13 model parameters for all clones with sufficient accuracy. 
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Figure 1: Illustration of the model calibration cycle  in the adaptive framework for conditional 

screening experiments. On the Cultivation and analysis platform (consisting of two liquid handling 

stations, a mini-bioreactor system) the cultivation of the clones is performed, samples are collected 

and autonomously analyzed. The generated online and at-line measurements are sent to the central 

data storage (database). The model calibration cycle starts with the collection of all available data. 

Based on the measurements the Sensitivity analysis is performed, based on the results, the identifiable 

parameters are selected, and non-identifiable  parameters are not considered/ fixed in the subsequent 

parameter estimation. In the Parameter estimation, the identifiable parameter subset is adjusted to fit 

the model to the measurements. Based on the calibrated model, in the Feed calculation, the feed is 

calculated according to previously defined criteria and further converted into corresponding pulses 

with individual times. These time/pulse setpoints are stored in the Database and executed directly by 

the Cultivation and analysis platform. 

2. Materials and Methods  

2.1. HTBD facility 

The high throughput bioprocess development facility is composed of two liquid handling 

stations (Freedom Evo 200, Tecan, Switzerland; Microlab Star, Hamilton, Switzerland) and a mini -

bioreactor system (48 BioReactor, 2mag AG, Munich, Germany). Both liquid handling stations are 

connected on hardware and software level to exchange samples, process and measurement 

information. A detailed description of the used hardware and software framework is given  in Haby 

et al. 2019 [16]. 

2.2. Cultivation 

Precultures were performed with EnPresso B (Enpresso GmbH, Berlin, Germany) medium with 

9 U L-1 Reagent A at 37 °C in a 24 multi well Oxodish plate to keep the cells in the exponential growth 

phase (PreSens GmbH, Regensburg Germany). The main culture was started as batch at 37  °C with 

5 g L-1 glucose. The initial batch phase was prolonged after 1  hour by an additional feed pulse to a 

final concentration of 5 g L-1 glucose. The stirrer speed was kept constant at 3000 rpm. After the end 

of the batch phase a fed-batch was started with a pulse-based glucose feeding every 5 min with a feed 

solution with 400 g L-1 of glucose dissolved in deionized water. The feeding rate was increased 

exponentially and switched to a constant feed when the maximum pulse volume of 22 µL was 
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reached. In total the cultivations were carried out over 8 hours with fed-batch phases of 5.4 to 6.1 

hours, depending on the length of the clone-specific batch phases. The µ set for the exponential feed 

was chosen to be 50 % of the model-predicted µmax value and was adapted in every modelling cycle 

for each clone. The volume of the feed pulses was determined on the basis of the calculated feed rate. 

All experiments were carried out as biological triplicates, each triplicate was run on three columns in 

the same row of the bioreactor system. 

2.3. Sampling and Analytic 

During the cultivations pH and DOT were measured online in the mini bioreactor system. Each 

column of the bioreactor system was sampled every 45 min in a sequential mode with a sampling 

interval of 15 min. Samples were inactivated directly with NaOH in 96 well plates at 4  °C on the deck 

of the robot until further processing. After 5 samplings the sampling plates were automatically 

transferred to the Hamilton robot for OD600, glucose and acetate measurements in 96 well plates as 

described earlier [16]. For the OD600 measurements, the samples were diluted to remain in the linear 

range. The dilution factor was adjusted between 20 and 100 over the course of the cultivation process. 

All OD600 values were multiplied by a correction factor of 2.62 to convert the values to a liquid height 

of 1 cm. Based on the OD600 measurements the dry cell weight of the biomass was calculated by 

multiplying the OD600 with 0.33 [34]. Due to the time-consuming sampling and analysis procedure, 

the values for biomass, glucose and acetate were written to the database with a delay of 0.25 - 1.35 h 

for the biomass and 0.66 - 2 h for glucose and acetate, respectively, depending on the column of the 

bioreactor system where the sample was taken.  

In total, during the eight hours of cultivation per reactor 1440 values for DOT and pH, 

respectively, were collected, as well as 23 samples for biomass (OD600) and each 20 samples for glucose 

and acetate measurements. For each experiment, the parameter estimation had to consider 1503 

measurements leading to a sensitivity matrix of 1503x4x18. 

 

2.4. Strains 

The used strains in this study were E. coli K-12 W3110 (F- lambda- IN(rrnD-rrnE)1 rph-1),  E. coli 

K-12 BW25113 (F-, DE(araD-araB)567, lacZ4787(del)::rrnB-3, LAM-, rph-1, DE(rhaD-rhaB)568, hsdR514) 

and six knockout strains obtained from the NBRP at the National Institute of Genetics, Shizuoka, 

Japan (Keio collection [35]), namely E. coli BW25113-JW0554-KC (ΔompT), E. coli BW25113-JW3975-

KC (ΔaceA), E. coli BW25133-JW1907-KC (ΔfliA), E. coli BW25133-JW2076-KC (ΔgatC), E. coli 

BW25113-JW2082-KC (ΔgatZ), E. coli BW25133-JW2943-KC (ΔglcB). 

2.5. Computational methods 

The E. coli macro-kinetic growth model consists of 5 ordinary differential equations describing 

biomass, glucose, acetate, oxygen, and enzymatic glucose release. The model contains 18 param eters 

from which 13 have been shown to vary with mutations and cultivation conditions, see [36] for 

details. Information on the procedure and numerical implementation for the parameter estimation 

are given  in [11]. Cultivation time and data for the different sequential tasks are summarized in Table 

1. All measurements used for the parameter estimation are available in the table S1. 
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Table 1: Underlying data, i.e . number of analysis of sensor data, for the parameter estimates of one 

biological triplicate . 

Sequential task # Cultivation time [h] 
Available measurements 

DOT  Biomass  Glucose  Acetate  

1 1.38 321 6 0 0 

2 1.88 411 16 0 0 

3 2.55 531 16 10 10 

4 3.52 705 26 10 10 

5 3.93 780 26 20 20 

6 5.17 999 36 20 20 

7 5.94 1137 36 30 30 

8 6.91 1311 46 30 30 

9 7.66 1440 46 40 40 

2.6. Parameter estimation 

The parameter estimation is formulated as the following optimization problem:  

𝜃̂ ≔ argmin
𝜃

 Φ(𝑈, 𝜃)  (1) 

Where the objective function formulated as: 

Φ(𝑈, 𝜃) ≔  ∑
1

𝑁𝑖

5

𝑖 =1

∑(𝑦𝑖 ,𝑗(𝑈, 𝜃) − 𝑦𝑖 ,𝑗
𝑚 )2

𝑁𝑖

𝑗=1

 (2) 

where 𝑦𝑖 ,𝑗
(𝑈, 𝜃)  are the simulated, and 𝑦𝑖 ,𝑗

𝑚  are the corresponding measured states. The index 𝑖 =

1, … ,5 indicates the measured variables and the index  𝑗 = 1, … , 𝑁𝑖  indicates individual datapoints. 

For each state the sum of the squared differences between all measured and simulated datapoints is 

normalized by the number of datapoints.  
All computations, i.e. the numerical solution of the dynamical model, the estimation of kinetic 

growth parameters, and the computation of optimal cultivation conditions are written in MATLAB 

(The MathWorks, Inc., Natick, Massachusetts, USA). The parameter estimation is solved with the 

interior-point algorithm using the wrapper from MATLAB. The states of the model and their 

sensitivities are computed using CVODE available in the SUNDIALS Toolbox [37]. Initial values, 

lower and upper bounds of the parameter estimation are based on expert ś knowledge  and 

summarized in table S2. The PE is regularized using the  Subset Selection method described by Lopez 

et al.  embedded in the optimization. The algorithm implements a stepwise forward selection of 

parameters to be included in the estimation problem based on the dynamical parameter sensitivities. 

Identifiable parameters are selected by a ranking of all parameters according to linear independence 

and an analysis of the matrix rank condition of the sensitivity matrix.  

2.7. Feed calculation 

The exponential feed was calculated using the standard fed-batch equation [39] which was adapted 

to consider a pulse based profile. It is computed as : 

𝐹𝑡 = 𝐹0  𝑒µ
𝑠𝑒𝑡

𝑡 (3) 

where 𝐹𝑡 (𝐿 ℎ−1) represents the feed rate at time point 𝑡 and µ
𝑠𝑒𝑡

 (ℎ−1) the targeted specific growth 

rate. 𝐹0  is the initial feed rate and 𝑡 = 0 the time of the feed start. Since the feed in a fed-batch process 

is the only major volume changing factor, volume changes due to sampling is neglected at this point, 

the volume change could be described as  
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∫ 𝑑𝑉

𝑉

𝑉0

= 𝐹0 ∫ 𝑒µ𝑠𝑒𝑡⋅𝑡 𝑑𝑡

𝑡

𝑡0=0

=
𝐹0

µ
𝑠𝑒𝑡

 𝑒µ𝑠𝑒𝑡⋅𝑡|0
𝑡

 (4) 

The pulse volume is calculated as 

𝑉 = 𝑉0 +
𝐹0

µ𝑠𝑒𝑡

(𝑒 µ𝑠𝑒𝑡⋅𝑡 − 1)  (5) 

with  

𝐹0 =
µ𝑠𝑒𝑡

𝑌𝑋
𝑆⁄  ∗  𝑆𝑖

 𝑋0 𝑉0 (6) 

Where 𝑌𝑋
𝑆⁄  [𝑔 𝑔𝑥

−1] is the Yield coefficient of glucose per biomass, 𝑆𝑖  [𝑔 𝐿−1] the glucose concentration 

in the feed solution, 𝑋0  [𝑔] the biomass concentration and 𝑉0  the volume at the feed start. Volume 

manipulations by the pipetting robot (e.g. volume balancing, sampling, base addition for pH control) 

are considered in the feed calculation apart of the equations above.  
Biomass and volume for the calculation of 𝐹0  (eq. 6) were estimated by simulations based on the 

current parameter set. The end of the batch phase was defined as the time point where the predicted 

glucose and acetate concentrations were below 0.02 g L-1. If the acetate consumption was slow, the 

feed was started anyway no later than 45 min after the depletion of glucose. 

3. Results 

Eight different E. coli K-12 clones were cultivated in parallel with an industrial process-relevant 

feeding design consisting of batch, exponential fed-batch and constant feed phases. The feed is 

applied as pulses to expose the cells to inhomogeneities similar to those in large-scale bioreactors. 

3.1. Parallel cultivation 

The length of the batch phase varied between the and lasted 1.65 h for E. coli W3110 (the fastest 

growing clone) and 1.86 h for E. coli BW25113 ΔglcB (the slowest growing clone). After the end of the 

batch phase the feed was automatically started. Due to the pulse nature of the feed procedure the 

feed start is visible through the oscillating DOT values (see Error! Reference source not found.a). 

These oscillations, as well as the glucose at -line data proof that glucose limitation was maintained 

during the fed-batch phase in all cultivations. Furthermore, no significant acetate accumulation was 

observed (Error! Reference source not found.b). The cultivations show a low variance between 

triplicates which is obvious from the online DOT and pH profiles as well as from the automatically 

analysed glucose and acetate values. Nine glucose data points were detected as possible outliers (at 

6.14 and 7.14 hours). However, no technical issues were  found to explain the sudden drift. In the 

case of E. coli W3110, the biomass of one triplicate was also lower, due to oxygen limitation. This 

could mean that the higher glucose concentration would indicate overfeeding. As expected, the pH 

decreased during the batch phase and started to increase after glucose depletion (typically caused by 

acetate consumption). During each glucose pulse cycle, perturbation of pH is observed which is 

caused by the transient production of acetic acid (Error! Reference source not found.c). Finally, a 

small increase in the pH was observed after the switch to constant pulse based feed. 

3.2. Prediction of batch and feed start 

The first model calibration cycle (cf. Figure 1) was initiated after 1.4 hours of batch cultivation. 

During the batch phase the feed start time and initial biomass were re-computed using the updated 

model parameters after the first measurement. The end of batch was defined as the time point at 

which glucose as well as the acetate (produced during overflow growth) were depleted. Therefore, 

the fed-batch phase in our cultivations started purposely later compared to typical fed-batch 

processes which are mostly started when glucose is depleted, and the DO signal increases. Note that 
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feeding was started only when acetate had been metabolised. This prevents possible overfeeding 

with glucose by co-metabolism of the remaining acetate and thus allowed a higher process stability.  
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Figure 2: Cultivation data of all used strains; Clones from top to bottom: E. coli W3110; E. coli BW25113; E. 

coli BW25113 ΔompT; E. coli BW25113 ΔaceA; E. coli BW25113 ΔfliA; E. coli BW25113 ΔgatC; E. coli BW25113 

ΔgatZ; E. coli BW25113 ΔglcB (a) DOT [%]: solid lines, pH: dotted lines; (b) Biomass [g L--1]: red dots; Glucose 

[g L--1]: purple dots; acetic acid [g L--1]: brown dot. (c): illustration of the oscillating pH values with each 

glucose pulse. The figure shows the section marked in (a) red. An interactive version of (a) and (b) is available  

at http://www.bioprocess.tu-berlin.de/fileadmin/fg187/Publications/Hans_2020/fig2.html  

(a) (b) 

(c) 
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Figure 3a illustrates the outcome of the model calibration cycle during the batch phase, at the 

example of the E. coli BW25113 ΔglcB cultivations data (grey cross) and simulations after model 

calibration (blue line). It is obvious that the first parameter estimate indicates for this strain a slower 

growth compared to the initial parameter set. However, with every model calibration cycl e, the 

computed growth rate (µ max) increased from 0.36 h-1 at t1 to 0.58 h-1 at t2 and up to 0.82 h-1 at the third 

shown model calibration cycle. The fit to the cultivation data is improved with each modelling cycle 

and the trend of the cultivation is well represented, at least after the third modelling cycle. 

In addition, due to the underestimated µ max, the first model calibration cycle failed to propose 

the end of the batch phase properly. An accurate estimation of the specific glucose consumption rate 

is only reached after the glucose had been used up, but then the estimation is very precise. Although, 

the end of the batch phase is equally estimated in the third model calibration cycle and in the initial 

unadjusted model (black dashed lines, Figure 3a; 1.94 h and 1.92 h), the feed (Figure 3b) started 21 

min later (2.40 h and 2.01 h). This is because of differences in the production and consumption rate 

of acetate resulting in different starting times of the fed-batch phase. Based on the DOT profiles, 

acetate was consumed after 2.5 hours; this also corresponds well with the at -line measurements of 

(Figure 2, supplementary table S1). 

 

 

Figure 3: Illustration of the results of the sequential tasks 1 to 3 for the cultures of E. coli 

BW25113 ΔglcB. (a): Comparison of parameter estimation results at different times during the 

cultivation, the initial parameter set and the measurements for strain E. coli BW25113 ΔglcB; (b): 

Results for computed feeding profiles after the sequential task 1-3 as cumulative volume. 

The predicted end of the batch phase is very close to the observed one in all cultivations even 

after the second model calibration and 1.5 hours of cultivation (Table 2). Due to minor variations in 

the initial biomass concentrations the calculated batch end differs from clone to clone, already with 

the initial model and with an equal parameter set. For some cultivations the time of glucose depletion 

was predicted with an accuracy of less than one minute (E. coli BW25113 ΔgatZ). In the worst case the 

time of glucose depletion was predicted 22.8 min too late (E. coli BW25113 ΔaceA). A missed batch 

(a) 

(b) 
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end and even a short starvation phase could lead in unwanted metabolic reactions by the strain and 

can influence the process and product quality. However, in this cultivation triplicate, one cultivation 

can be considered as outlier (Figure 2a) and a difference of 22 min is still in an operational range. Due 

to operational reasons the model calibration with all clones was maintained. The mean difference 

between the observed and predicted time points for glucose depletion is  6.9 min for the calibrated 

model after 1.5 hours and thus better compared to the initial model with a mean prediction error of 

7.3 min. 

Complete consumption of acetate is only observed for five of the eight strains. For all these 

strains the adjusted model predicts the acetic acid consumption better compared to the initial model, 

with the exception of E. coli BW25113 Δomp. Complete consumption of acetic acid was not observed 

for three clones, because of the time depending restrictions in the feed (maximum tolerance between 

end of glucose depletion and feed start, see section 0). However, for these three clones the initial 

model predicted a faster and the adjusted model a slower acetic acid consumption rate. The times of 

the first feed pulse are summarized in Table 2 (Feed start), the predicted end of batch and the first 

pulse may differ due to technical reasons (delay in computation or first pulses are calculated with 

0 µL due as the minimal pipetting volume restrictions). 

Table 2: Batch end prediction overview: initial, adjusted (parameter estimation after 1:52 hour) and 

observed times for consumption of glucose and acetate and the actual feed start based on the first 

executed glucose pulse. 

Strain 

Glucose consumption 

[hh:mm] 

Acetate consumption 

[hh:mm] 

Feed 

start 

[hh:mm] initial adjusted Observed initial adjusted observed 

E. coli W3110 01:46 01:40 01:39 ± 00:01 02:03 01:48 01:48  01:55 

E. coli BW25113 01:52 01:38 01:49 ± 00:03 02:00 03:02 > 02:23  02:23 

E. coli BW25113 ΔompT 01:46 01:40 01:40 ± 00:01 01:53 03:05 02:10  02:23 

E. coli BW25113 ΔaceA 02:13 02:11 01:48 ± 00:21 02:22 03:06 > 02:37  02:37 

E. coli BW25113 ΔfliA 01:51 01:36 01:42 ± 00:01 01:59 02:13 02:07  02:16 

E. coli BW25113 ΔgatC 01:49 01:39 01:46 ± 00:05 01:57 02:50 02:25  02:30 

E. coli BW25113 ΔgatZ 01:46 01:43 01:43 ± 00:01 01:55 03:03 > 02:09  02:09 

E. coli BW25113 ΔglcB 01:55 01:56 01:51 ± 00:03 02:03 02:24 02:30  02:37 

3.3. Feed and fed-batch  

During the fed-batch phase the size of the feed pulses is re-computed during each model 

calibration cycle. Based on the new parameter set the maximal glucose uptake rate was determined 

as basis for the new feeds. With the exception of E. coli BW25113 ΔglcB (Error! Reference source not 

found. (h)), the first feed rate (grey bars) was higher than the following calculated feed pulses. 

However, the second applied feed rates for E. coli BW25113 ΔompT, E. coli BW25113 ΔfliA and E. coli 

BW25113 ΔgatZ (Error! Reference source not found.  (c), (d) and (f)) were close to the initial feed rates 

but were reduced in the later model calibration cycles. In the case of E. coli BW25113 ΔglcB the second 

feed is somewhat higher than the later one, which is reflected in both the initial feed rate and in the 

slope of the feed (all feed pulses are summarised in Error! Reference source not found.). Feed pulses 

are calculated by the optimisation algorithm for each strain and applied to all biological triplicates. 

In this way, eight different feeding rates were calculated, and 24 cultivations were carried out in 

parallel.  
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Figure 4: The applied feed and scheduled feeds for each strain between cultivation hour 2 and 5. Black 

dots: the applied feed based on the real executed feed, logged by the LHS; Light grey bars: scheduled 

feed at feed start; coloured bars: scheduled feeds in the following modelling cycles, the colour change 

indicates the next modelling cycle . (a) E. coli W3110; (b) E. coli BW25113; (c) E. coli BW25113 ΔompT; 

(d) E. coli BW25113 ΔaceA; (e) E. coli BW25113 ΔfliA; (f) E. coli BW25113 ΔgatC; (g) E. coli BW25113 

ΔgatZ; (h) E. coli BW25113 ΔglcB 

3.4. Parameter estimation 

During all model calibration cycles the model parameters are estimated on the basis of all 

available data, i.e. all data which were collected from the start of the cultivations to the actual time 

point. For all strains, the measurements and dynamics of cultivation are well represented in the 

simulation of the calibrated model as illustrated in Figure 5 for the strain E. coli BW25113 ΔglcB (last 

modelling cycle, for the other strains see supplementary figures S1-7). In contrast to the calibrated 

model, the initial model overestimated the biomass formation. This trend could be observed for all 

strains. The DOT measurements indicate a slower glucose uptake than predicted. A lower specific 

glucose uptake rate was calculated in the first two modelling calibration cycles compared to the later 

ones (see Figure 3). The lack of the glucose measurement results in the first two model calibration 

cycles is caused by the time delay in the at -line analytics. The prediction accuracy of acetic acid is 

increased in the batch and fed-batch phase after model calibration. The cultivation dynamics are well 

fitted. The parameters to be adjusted in each model calibration cycle are selected by the included 

subset selection. The parameters Kap, kLa and qm, are not adjusted in one model calibration cycle; Ko, 

Ksq, Yofm and Yoresp are only partly selected for parameter estimation (Figure 6, all parameter sub-sets 

are shown the Supplementary Table S2). Regularization of parameter estimation using a subsets 

selection method [38] was used to ensure a meaningful parameter set. Monte Carlo simulations have 

shown to give a good insight into the actual, non-linear parameter distribution [40] and were 

therefore performed to get a better understanding of the parameter correlation.  

(e) 

(a) (b) (c) (d) 

(f) (g) (h) 
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Figure 5: Model for E. coli BW25113 ΔglcB after the last model calibration cycle and at the beginning 

of the experiment. Solid line: calibrated model; dashed line: initial model; dots: measurements.  

 

Figure 6: Adjusted parameters of the time for each E. coli strain: Parameters are normalized to the 

initial value and scaled to 3 times of the standard derivation. Filled dots: parameter is fixed by the 

sub set selection; open dots: estimated parameter 
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The correlation between all parameters is very weak. Only, Kaq and Ksq showed a correlation with 

qAmax. Kaq and Ksq are the affinity constants for acetate and glucose uptake, respectively, and a 

dependence to the maximal acetate uptake rate (qAmax) cannot be avoided in the model. Parameter 

distribution as well as pairwise correlation of the adapted parameters for E. coli BW25113 ΔglcB (last 

model calibration cycle) is summarized in Figure 7. The high significance of each parameter is 

indicated by the narrow distribution and low variation for the most important model parameters 

(Table 3), especially for Error! Bookmark not defined.the parameters for Yem, qSmax and Yosresp. Normal 

distribution is given for all parameters except for Yam. This parameter is quite close to the lower bound 

of the previously defined solution space. It is noted that this situation should be avoided as it might 

reduce the accuracy of the parameter estimates. The parameter distribution of all other strains at the 

last modelling cycle are disposed in the supplementary  Figures S09-S16. 

 
Figure 7 Monte Carlo parameter estimation: Pair plots of the 500 best Monte Carlo parameter 

estimation results with the regularized parameter set based on the dataset for E. coli BW25113 ΔglcB 

during the last modelling cycle . Monte Carlo simulations were carried out with σ = 0.15 for biomass, 

glucose, acetate and σ = 0.05 for DOT. 

Table 3: Values, variance and relative variance of the adjusted parameters for all clones after the final 

model calibration cycle. 
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In the present work, eight strains were examined in 24 successful cultivations. The end of glucose 

uptake was in part predicted with small errors of less than one minute, thanks to the iterative model 

calibration cycle. The feed start was automatic and in an operable acceptable time window using the 

dynamic process redesign as defined in the model calibration cycle. The parameter sets estimated are 

always unique and with a physiological meaning even with very little data in the initial phase of this 

study, e.g. the first 3 hours. This is ensured by the built -in subset selection and is proofed by the 

Monte Carlo simulations made afterwards. 

4. Discussion 

In this study we presented a computational framework able to design and operate parallel E. coli 

cultivations without human supervision. The results demonstrate that a robust operation tailored to 

each specific clone is possible through an adaptive input design. Undesired experimental conditions 

(e.g. overfeeding and starvation) are avoided while sufficient infor mation to allow for a confident 

discrimination of the strains is generated. Both, start time and feed rate were accurately predicted for 

each one of the eight strains, using feedback information from the online and at -line measurements 

during the cultivation. This is essential in an experimental facility aimed to perform screening 

cultivations for clones whose phenotype is not known beforehand. The relevance of an adaptive and 

specific experimental design can be seen in this case study. As illustrated in Error! Reference source 

not found., despite the fact the strains characteristics differ only minimally from each other, an 

experiment with a fixed start time and feeding rate would have violated im portant experimental 

constrains.  

Additionally, the use of a macro-kinetic growth 

model that describes the main extracellular dynamics of 

E. coli was shown to be sufficient. In average the 

predicted feed start differs by less than 10 min for the 

optimal one, which is in an acceptable range and is 

mainly caused by unobserved disturbances in the 

system. If necessary, the mismatch can be further 

reduced by increasing the frequency of model 

adaptations.  

As expected, the parameter variance in general 

decreases with every model calibration cycle. However, 

some parameters could not or only with insufficient 

confidence be identified. This hampered a distinction of 

some essential parameters as like the maximal acetate 

uptake rate (qAmax). Despite this, the quantification of the 

reliability of the outputs as presented by Anane et al [41] 

allows the differentiation of the main parameter, e.g. the 

maximal glucose uptake (qSmax) with statistical 

significance (see Error! Reference source not found.).  

Nevertheless, statements on the performance of the 

clones can be made using the model parameters. The 

final results show that ∆ompT has the largest qSmax value 

and ∆gatZ the lowest. Furthermore, the parameter 

identifiability can be increased in future applications 

using methods for Optimal Experimental Design (OED) 

[24,42].  

The macro-kinetic model used in this study is clearly insufficient to describe the complex 

nonlinear dynamics of the system. Still, we overcome this issue by the adaptive nature of the 

framework since a proper prediction within the current horizon is sufficient to assure a robust 

operation of the cultivations. The variations on the parameters caused by intracellular changes in the 

metabolic machinery together with heterogeneous mutations in the population [43] are shown in 

Figure 8 In-silico comparison of different 

hosts: Simulation based on last modelling 

cycle  parameter set. Initial values: Glucose 10 

g*L-1, Biomass 2 g/L. Solid line: E. coli 

BW25113 dashed line : E. coli BW25113 ΔgatZ. 

Feed start is simulated at 2.3 hours, µ set is 

fixed at 0.5 h-1. If the feed start and rate  is 

only adjusted to one strain, the cultivation of 

the ΔgatZ mutant would lead to overfeeding. 
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(Figure 6). Therefore, an iterative recalculation of the feed is necessary to cope with disturbances in 

the experiments and inaccuracies in the model.  

 

 

 

Figure 9 Model uncertainty based on parameter standard deviation: Monte Carlo simulation: Results 

of 1000 parameter estimates based on in-silico data. In silico data were generated based on the last 

data set for E. coli BW25113 ΔglcB and by random σ of 0.15 for biomass, glucose, acetate, and a σ of 

0.05 for DOT. 

The frequency of the parameter estimation was defined based on the availability of at -line data 

(biomass, glucose and acetate) and as expected, the at -line data are decisive to achieve model 

identifiability. Still, the results show that especially parameters related to glucose consumption can 

be identified using only the online DOT signal. This shows that, even though in a significantly limited 

manner, the framework can also be used to increase the robustness  of robotic facilities that do not 

have embedded at-line analytics. The glucose consumption rate seems to be observable from the DOT 

signal by which a reduced version of the macro-kinetic model could be used to build an observer 

based feeding control [44]. Finally, we also demonstrated that the length of the batch phase is essential 

to assure sufficient data before the start of the feeding so as to allow a reliable operation of the 

following phases.  

5. Conclusions 

The operation of robotic experiments with mult iple fed-batch cultivations in parallel is very 

challenging even for skilled operators, since many decisions and tasks are needed at the same time. 

In this work we present an adaptive framework for conditional screening for parallel fed-batch 

experiments aiming to identify the best candidate strain for industrial scale biomanufacturing. We 

demonstrate that the use of a macro-kinetic growth model in an adaptive framework using online 

and at-line data information in a feedback loop is necessary to:  
1. design a specific strategy for each different strain of the screening experiment  

2. increase the robustness of the robotic operation against experimental disturbance, and 

3. give an approximation of the reliability of the simulation results with respect to production scale 

performance.  

To our knowledge, this is the first successful model-based operation of 24 fed-batch cultivations 

with as much as eight different strains in parallel including its characterization. The results clearly 

demonstrate the capabilities of the framework to increase the efficiency of combined mini -bioreactor 

systems with liquid handling stations to drastically reduce the experimental time, efforts, and failure 

rate in High Throughput Bioprocess Development.  
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Supplementary Materials Tables S1 all experimental measurements used for the modelling cycles; Table S2: all 

parameter sets; Figure S1-7 
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