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Abstract: In bioprocess development, the host and the genetic construct for anew biomanufacturing
process are selected in the early developmental stages. This decision, made at the screening scale
with very limited information about the performance of the selected cell factory in larger reactors,
has a major influence on the performance of the final process. To overcome this, scale-down
approaches are essential to run screenings that show the real cell factory performanceat industrial
like conditions. We present a fully automated robotic facility with 24 parallel mini-bioreactors that
is operated by a model based adaptive input design framework for the characterization of clone
libraries under scale-down conditions. The cultivation operation strategies are computed and
continuously refined based on a macro-kinetic growth model that is continuously re-fitted to the
availableexperimental data. The added value of the approachis demonstrated with 24 parallel fed -
batch cultivations in a mini-bioreactor system with eight different Escherichia coli strains in triplicate.
The 24 fed-batches ran under the desired conditions generating sufficient information to define the
fastest growing strain in an environment with varying glucose concentrations similar toin dustrial
scale bioreactors.

Keywords: high throughput screening, rapid phenotyping, model-based experimental design,
Escherichia coli, automated bioprocess development

1. Introduction

Emerging technologies in robotic biolaboratories open new opportunities for both, High
Throughput (HT) Screening and HT Bioprocess Development. Screening can be roughly divided into
twostages; (i) the “clone library screening” (106-1012 candidates/factors), with yes/no experiments in
Micro Well Plates (MWP) [1-3],and (ii) the stage known as “conditional screening” [4-6], the focus
of this work. During the “conditional screening” a reduced number of candidate strains is tested with
factors that significantly influence the performance at industrial scale (e.g. media, pH and
temperature profiles, bioreactor heterogeneities, induction and feeding strategies [7-12]). These
factors are known to affect the underlying nonlinear dynamics of the bioprocess and are part of the
very complex time-dependent interaction between the bioreactor environment and the cell factory.
This highly nonlinear behavior makes it difficult to predict the effect of changes in the cultivating
conditions and is responsible for the high failure ratein scale-up [13,14]. In order to overcome these
challenges, experiments in conditional screening require highly advanced experimental setups able
to: (i) operate as similar as possible to the industrial strategy (e.g. fed-batch or continuous
cultivations), (ii) mimic the harsh conditions of industrial scale bioreactors as close as possible (e.g.
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growth limitation;bioreactor heterogeneities), and (iii) generate the maximal amount of information
possibleabout thestrain’s phenotypeand its complex dynamicinteraction with the process.

The technology to perform parallel experiments with advanced operation in fed-batch or
continuous mode has recently become available [4,15,16]. Mini-BioReactors (MBR) integrated in
Liquid Handling Stations (LHS) allow a large number of parallel cultivations while maintaining the
properties of benchtop bioreactors. With working volumes of 2-250 mL [17], geometric similarities to
large-scalereactors [18],and high frequency measurements and analytics, MBRs have been used for
process characterizations [15,19-21] and scale-down studies [11,22] for up to 48 cultivations in
parallel [23]. Such robotic facilities with automated cultivation control, sampling and at-line analytic
operations [16,24] are very powerful systems that can accelerate bioprocess development, especially
in combination with digital solutions for experiment planning [25-28], data acquisition [4,16]and real-
time dynamic analysis [29,30]. Thebottleneckis currently thelack of advanced computer aided tools
toplan the experiments, operate therobots and build thenecessary models and digital twins for scale-
up and advanced process control. Because of limitations by the planning and operation capacity of
humans much too often robots are on hold waiting for thenext experiment tobe planed, experimental
campaigns need to be repeated because of failures that were not detected on time, and the same
feeding strategy is used for strains with different characteristics . These are the main issues we
address in the present work.

Initial attempts to solve these challenges have demonstrated the added value of model-based
tools in terms of accelerating the development process and increasing robustness during scale-up
[10,31,32]. Nevertheless, the existing solutions are mostly limited to single strain applications due to
the complexity of theused mechanistic models and the difficulty toidentify the parameters for alarge
number of strains at the same time [32,33]. Therefore, screening approaches often use simple black-
box models for the microorganisms, which donot allow a detailed comparison of their phenotypes.
This contribution proposes an advanced conditional screening design framework that can interact
with the robotic facility to run fed-batch like cultivations with feeding strategies tailored for each
strain. To achieve this, (i) a model with a general macro-kinetic structure is defined with model-
parameter ranges that can describe the phenotypes of all strains, and (ii) a parameter estimation is
carried out for each strain to obtaina characteristic parameter set that uniquely describes it. By this
wegain not only arobust and accurate prediction of the characteristics of each strain, but wealso can
easily quantify and confidently compare their performance. Finally, the method is applied in an
online model calibration framework to adaptively define individual optimal feed start and feeding
strategy. The framework provides all necessary parameters and actions to define a wide range of
alternativeevent triggers (e.g. depletion of glucose or consumption of acetate).

In summary, during the parallel cultivation the adaptive framework for conditional screening
experiments recursively executes the following steps: (i) collection of cultivation data from the
database, (ii) selection of an identifiable parameter (sub)set (PE regularization) for each strain, (iii)
estimation of kinetic parameters for each clone, (iv) updating of the optimal feeding profiles for each
clone, and (v) transfer of the new feeding profiles to the database (Figure 1). As a proof of concept,
parallel screening experiments with eight different strains including six knockout mutants of E. coli
K-12 areconducted in 24 mini bioreactors. At thestart of the experiment, virtually noinformation on
the growth behaviour of all these strains was available. In this one experiment it was possible to
identify 13 model parameters for all clones with sufficient accuracy.
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Figure 1: Illustration of the model calibration cycle in the adaptive framework for conditional
screening experiments. On the Cultivation and analysis platform (consisting of two liquid handling
stations, a mini-bioreactor system) the cultivation of the clones is performed, samples are collected
and autonomously analyzed. The generated online and at-line measurements are sent to the central
data storage (database). The model calibration cycle starts with the collection of all available data.
Based on the measurements the Sensitivity analysis is performed, based on the results, the identifiable
parameters are selected, and non-identifiable parameters are not considered/ fixed in the subsequent
parameter estimation. In the Parameter estimation, the identifiable parameter subset is adjusted to fit
the model to the measurements. Based on the calibrated model, in the Feed calculation, the feed is
calculated according to previously defined criteria and further converted into corresponding pulses
with individual times. These time/pulse setpoints are stored in the Databaseand executed directly by

the Cultivationand analysis platform.
2. Materials and Methods

2.1. HTBD facility

The high throughput bioprocess development facility is composed of two liquid handling
stations (Freedom Evo 200, Tecan, Switzerland; Microlab Star, Hamilton, Switzerland) and a mini-
bioreactor system (48 BioReactor, 2mag AG, Munich, Germany). Both liquid handling stations are
connected on hardware and software level to exchange samples, process and measurement
information. A detailed description of the used hardwareand software frameworkis given in Haby
et al. 2019 [16].

2.2. Cultivation

Precultures were performed with EnPressoB (Enpresso GmbH, Berlin, Germany) medium with
9 U L1Reagent A at37 °C in a 24 multi well Oxodish plate tokeep the cells in theexponential growth
phase (PreSens GmbH, Regensburg Germany). The main culture was started as batch at 37 °C with
5 g Lt glucose. The initial batch phase was prolonged after 1 hour by an additional feed pulse to a
final concentration of 5 g L glucose. The stirrer speed was kept constant at 3000 rpm. After the end
of thebatch phasea fed-batch was started with a pulse-based glucose feeding every 5 min with a feed
solution with 400 g L-! of glucose dissolved in deionized water. The feeding rate was increased
exponentially and switched to a constant feed when the maximum pulse volume of 22 uL was
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reached. In total the cultivations were carried out over 8 hours with fed-batch phases of 5.4 to 6.1
hours, depending on the length of the clone-specific batch phases. The pt for the exponential feed
was chosen tobe 50 % of the model-predicted pimax value and was adapted in every modelling cycle
for each clone. The volume of thefeed pulses was determined on the basis of the calculated feed rate.
All experiments were carried out as biological triplicates, each triplicate was run on three columns in
the same row of the bioreactor system.

2.3. Sampling and Analytic

During the cultivations pH and DOT weremeasured online in the minibioreactor system. Each
column of the bioreactor system was sampled every 45 min in a sequential mode with a sampling
interval of 15 min. Samples wereinactivated directly with NaOHin 96 well plates at 4 °C on the deck
of the robot until further processing. After 5 samplings the sampling plates were automatically
transferred to the Hamilton robot for ODesw, glucose and acetate measurements in 96 well plates as
described earlier [16]. For the ODsow measurements, the samples were diluted to remainin the linear
range. The dilution factor was adjusted between 20 and 100 over the course of the cultivation process.
All ODsoo values were multiplied by a correction factor of 2.62 to convert the values to a liquid height
of 1 cm. Based on the ODsio measurements the dry cell weight of the biomass was calculated by
multiplying the ODsoo with 0.33 [34]. Due to the time-consuming sampling and analysis procedure,
the values for biomass, glucose and acetate were written to the databasewith a delay of 0.25-1.35h
for the biomass and 0.66 - 2 h for glucose and acetate, respectively, depending on the column of the
bioreactor system wherethesamplewas taken.

In total, during the eight hours of cultivation per reactor 1440 values for DOT and pH,
respectively, were collected, as well as 23 samples for biomass (ODsw) and each 20 samples for glucose
and acetate measurements. For each experiment, the parameter estimation had to consider 1503
measurements leading to a sensitivity matrix of 1503x4x18.

2.4. Strains

The used strains in this study were E. coli K-12 W3110 (F- lambda- IN(rmD-rrnE)1 rph-1), E. coli
K-12 BW25113 (F, DE(araD-araB)567, lacZ4787(del)::rmB-3, LAM:, rph-1, DE(thaD-thaB)568, hsdR514)
and six knockout strains obtained from the NBRP at the National Institute of Genetics, Shizuoka,
Japan (Keio collection [35]), namely E. coli BW25113-JW0554-KC (AompT), E. coli BW25113-JW 3975-
KC (daceA), E. coli BW25133-JW1907-KC (AfliA), E. coli BW25133-JW2076-KC (AgatC), E. coli
BW25113-JW2082-KC (AgatZ), E. coli BW25133-JW2943-KC (AgIcB).

2.5. Computational methods

The E. coli macro-kinetic growth model consists of 5 ordinary differential equations describing
biomass, glucose, acetate, oxygen, and enzymatic glucose release. The model contains 18 param eters
from which 13 have been shown to vary with mutations and cultivation conditions, see [36] for
details. Information on the procedure and numerical implementation for the parameter estimation
aregiven in [11]. Cultivation timeand data for the different sequential tasks are summarized in Table
1. All measurements used for the parameter estimation areavailablein thetableS1.
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Table 1: Underlying data, i.e. number of analysis of sensor data, for the parameter estimates of one
biologicaltriplicate.

. e Availablemeasurements
Sequential task # Cultivation time [h]

DOT Biomass Glucose Acetate
1 1.38 321 6 0 0
2 1.88 411 16 0 0
3 2.55 531 16 10 10
4 3.52 705 26 10 10
5 3.93 780 26 20 20
6 5.17 999 36 20 20
7 5.94 1137 36 30 30
8 6.91 1311 46 30 30
9 7.66 1440 46 40 40

2.6. Parameter estimation
The parameter estimation is formulated as the following optimization problem:

® = argmin ® (U, 0) 1)
0

Where the objective function formulated as:

i=

5 Ni
1
OW,0) = ) D 31,(U.0) — ¥}’ @
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wherey; ;(U, ) are the simulated, and y are the corresponding measured states. The index i =
1, ...,5indicates the measured variables and theindex j=1,...,N; indicates individual datapoints.
For each statethe sum of the squared differences between all measured and simulated datapointsis
normalized by the number of datapoints.

All computations, i.e. the numerical solution of the dynamical model, the estimation of kinetic
growth parameters, and the computation of optimal cultivation conditions are written in MATLAB
(The MathWorks, Inc.,, Natick, Massachusetts, USA). The parameter estimation is solved with the
interior-point algorithm using the wrapper from MATLAB. The states of the model and their
sensitivities are computed using CVODE available in the SUNDIALS Toolbox [37]. Initial values,
lower and upper bounds of the parameter estimation are based on expert’s knowledge and
summarized in tableS2. The PE is regularized using the Subset Selection method described by Lopez
et al. embedded in the optimization. The algorithm implements a stepwise forward selection of
parameters tobeincluded in the estimation problem based on the dynamical parameter sensitivities.
Identifiable parameters are selected by a ranking of all parameters accordingto linear independence
and an analysis of the matrix rank condition of the sensitivity matrix.

2.7. Feed calculation

The exponential feed was calculated using the standard fed-batch equation [39] which was adapted
to consider a pulse based profile. It is computed as:

F,=F, eMsett 3)

ot (h™") the targeted specific growth
rate. F is theinitial feed rateand t = 0 thetime of the feed start.Since thefeed in a fed-batch process
is the only major volume changing factor, volume changes due to samplingis neglected at this point,
the volume change could be described as

whereF, (L h™') represents the feed rate at time point t and p
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Where YX/S [9 95 ']is theYield coefficient of glucose per biomass, S; [g L™!] the glucose concentration

in the feed solution, X, [g] the biomass concentration and Vj, the volume at the feed start. Volume
manipulations by the pipetting robot (e.g. volume balancing, sampling, base addition for pH control)
are considered in the feed calculation apart of the equations above.

Biomass and volume for the calculation of F; (eq. 6) were estimated by simulations based on the
current parameter set. The end of thebatch phase was defined as the time point where the predicted
glucose and acetate concentrations were below 0.02 g L-1. If the acetate consumption was slow, the
feed was started anyway nolater than 45 min after the depletion of glucose.

3. Results

Eight different E. coli K-12 clones were cultivated in parallel with an industrial process-relevant
feeding design consisting of batch, exponential fed-batch and constant feed phases. The feed is
applied as pulses to expose the cells to inhomogeneities similar to those in large-scalebioreactors.

3.1. Parallel cultivation

The length of the batch phase varied between the and lasted 1.65 h for E. coli W3110 (the fastest
growingclone) and 1.86 h for E. coli BW25113 AglcB (the slowest growing clone). After the end of the
batch phase the feed was automatically started. Due to the pulse nature of the feed procedure the
feed start is visible through the oscillating DOT values (see Error! Reference source not found.a).
These oscillations, as well as the glucose at-line data proof that glucose limitation was maintained
during the fed-batch phase in all cultivations. Furthermore, no significant acetate accumulation was
observed (Error! Reference source not found.b). The cultivations show a low variance between
triplicates which is obvious from the online DOT and pH profiles as well as from the automatically
analysed glucose and acetate values. Nine glucose data points were detected as possible outliers (at
6.14 and 7.14 hours). However, no technical issues were found to explain the sudden drift. In the
case of E. coli W3110, the biomass of one triplicate was alsolower, due to oxygen limitation. This
could mean that the higher glucose concentration would indicate overfeeding. As expected, the pH
decreased during thebatch phaseand started toincrease after glucose depletion (typically caused by
acetate consumption). During each glucose pulse cycle, perturbation of pH is observed which is
caused by the transient production of acetic acid (Error! Reference source not found.c). Finally, a
smallincreasein the pH was observed after the switch to constant pulse based feed.

3.2. Prediction ofbatch and feed start

The first model calibration cycle(cf. Figure 1) was initiated after 1.4 hours of batch cultivation.
During the batch phase the feed start timeand initialbiomass were re-computed using the updated
model parameters after the first measurement. The end of batch was defined as the time point at
which glucose as well as the acetate (produced during overflow growth) were depleted. Therefore,
the fed-batch phase in our cultivations started purposely later compared to typical fed-batch
processes which aremostly started when glucose is depleted, and the DO signalincreases. Note that
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feeding was started only when acetate had been metabolised. This prevents possible overfeeding
with glucose by co-metabolism of theremaining acetateand thus allowed a higher process stability.
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Figure 2: Cultivation data of all used strains; Clones from top to bottom: E. coli W3110; E. coli BW25113; E.
coli BW25113 AompT; E. coli BW25113 AaceA; E. coli BW25113 AfliA; E. coli BW25113 AgatC; E. coli BW25113
AgatZ;E. coliBW25113 AglcB (a) DOT[%]: solid lines, pH: dotted lines; (b) Biomass [g L-']: red dots; Glucose
[g L']: purple dots; acetic acid [g L-']: brown dot. (c): illustration of the oscillating pH values with each
glucose pulse. The figure shows the section marked in (a) red. An interactive version of (a) and (b) is available

at http://www.bioproce 1-berlin.de /fileadmin/fg18 iblications/Hans_2020/fig2.htm
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Figure 3aillustrates the outcome of the model calibration cycle during the batch phase, at the
example of the E. coli BW25113 AglcB cultivations data (grey cross) and simulations after model
calibration (blueline). It is obvious that the first parameter estimateindicates for this strain a slower
growth compared to the initial parameter set. However, with every model calibration cycle, the
computed growthrate (umax) increased from 0.36 h-1atti to 0.58 h-lat tzand up to 0.82 h-! at the third
shown model calibration cycle. The fit to the cultivation data is improved with each modelling cycle
and the trend of the cultivationis well represented, at least after the third modelling cycle.

In addition, due to the underestimated pimax, the first model calibration cycle failed to propose
the end of the batch phase properly. An accurateestimation of the specific glucose consumption rate
is only reached after the glucose had been used up, but then the estimation is very precise. Although,
the end of the batch phase is equally estimated in the third model calibration cycleand in the initial
unadjusted model (black dashed lines, Figure 3a; 1.94 h and 1.92h), the feed (Figure 3b) started 21
min later (2.40 h and 2.01 h). This is because of differences in the production and consumption rate
of acetate resulting in different starting times of the fed-batch phase. Based on the DOT profiles,
acetate was consumed after 2.5 hours; this also corresponds well with the at-line measurements of
(Figure 2, supplementary tableS1).
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Figure 3: Illustration of the results of the sequential tasks 1 to 3 for the cultures of E.coli
BW25113 AglcB. (a): Comparison of parameter estimation results at different times during the
cultivation, the initial parameter set and the measurements for strain E. coli BW25113 AglcB; (b):
Results for computed feeding profiles after the sequentialtask1-3 as cumulative volume.

The predicted end of the batch phaseis very close to the observed one in all cultivations even
after the second model calibration and 1.5 hours of cultivation (Table 2). Due to minor variations in
the initial biomass concentrations the calculated batch end differs from clone to clone, already with
theinitial model and with an equal parameter set. For some cultivations the time of glucose depletion
was predicted with an accuracy ofless than one minute (E. coli BW25113 AgatZ). In theworst case the
time of glucose depletion was predicted 22.8 min too late (E. coli BW25113 AaceA). A missed batch
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end and even a short starvation phase could lead in unwanted metabolicreactions by the strain and
can influence the process and product quality. However, in this cultivation triplicate, one cultivation
canbe considered as outlier (Figure 2a) and a difference of 22 min s stillin an operational range. Due
to operational reasons the model calibration with all clones was maintained. The mean difference
between the observed and predicted time points for glucose depletion is 6.9 min for the calibrated
model after 1.5 hours and thus better compared to the initial model with a mean prediction error of
7.3 min.

Complete consumption of acetate is only observed for five of the eight strains. For all these
strains theadjusted model predicts the acetic acid consumption better compared to the initial model,
with the exception of E. coli BW25113 Aomp. Complete consumption of acetic acid wasnot observed
for three clones, because of the time depending restrictions in the feed (maximum tolerancebetween
end of glucose depletion and feed start, see section 0). However, for these three clones the initial
model predicted a faster and the adjusted model a slower acetic acid consumption rate. The times of
the first feed pulse are summarized in Table 2 (Feed start), the predicted end of batch and the first
pulse may differ due to technical reasons (delay in computation or first pulses are calculated with
0 pL due as the minimal pipetting volume restrictions).

Table 2: Batch end prediction overview: initial, adjusted (parameter estimation after 1:52 hour) and
observed times for consumption of glucose and acetate and the actual feed start based on the first
executed glucose pulse.

Glucose consumption Acetate consumption Feed

Strain [hh:mm] [hh:mm] start
initial adjusted Observed initial adjusted observed [hh:mm]

E. coli W3110 01:46  01:40 01:39+00:01 02:03 01:48 0148 01:55
E. coli BW25113 01:52  01:38 01:49+00:03 02:00 03:02 >02:23 02:23
E. coli BW25113 AompT 01:46 01:40 01:40+00:01 01:53 03:05 02:10 02:23
E. coli BW25113 AaceA 02:13  02:11 01:48+00:21 02:22  03:06 >02:37 02:37
E. coli BW25113 AfliA 01:51  01:36 01:42+00:01 01:59 02:13  02:07 02:16
E. coli BW25113 AgatC 01:49 01:39 01:46+00:05 01:57 02:50  02:25 02:30
E. coliBW25113 AgatZ 01:46 01:43 01:43+00:01 01:55 03:03 >02:09 02:09
E. coli BW25113 AglcB 01:55 01:56 01:51+00:03 02:03 02:224  02:30 02:37

3.3. Feed and fed-batch

During the fed-batch phase the size of the feed pulses is re-computed during each model
calibration cycle. Based on the new parameter set the maximal glucose uptake ratewas determined
as basis for the new feeds. With theexception of E. coli BW25113 AglcB (Error! Reference source not
found. (h)), the first feed rate (grey bars) was higher than the following calculated feed pulses.
However, the second applied feed rates for E. coli BW25113 AompT, E. coli BW25113 AfliA and E. coli
BW25113 AgatZ (Error! Reference source not found. (c), (d) and (f)) wereclose totheinitial feed rates
but werereduced in the later model calibration cycles. In the case of E. coli BW25113 AglcB the second
feed is somewhat higher than the later one, whichis reflected in both the initial feed rate and in the
slope of the feed (all feed pulses are summarised in Error! Reference source not found.). Feed pulses
are calculated by the optimisation algorithm for each strain and applied to all biological triplicates.
In this way, eight different feeding rates were calculated, and 24 cultivations were carried out in
parallel.
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Figure 4: The applied feed and scheduled feeds for each strain between cultivation hour 2 and 5. Black
dots: the applied feed based on the real executed feed, logged by the LHS; Light grey bars: scheduled
feed atfeed start; coloured bars: sche duled feeds in the following modelling cycles, the colour change
indicates the nextmodelling cycle. (a) E. coli W3110; (b) E. coli BW25113; (c) E. coli BW25113 AompT;

(d) E. coliBW25113 AaceA; (e) E. coli BW25113 AfliA; (f) E. coli BW25113 AgatC; (g) E. coli BW25113
AgatZ; (h)E.coliBW25113 AglcB

3.4. Parameter estimation

During all model calibration cycles the model parameters are estimated on the basis of all
available data, i.e. all data which were collected from the start of the cultivations to the actual time
point. For all strains, the measurements and dynamics of cultivation are well represented in the
simulation of the calibrated model asillustrated in Figure 5 for the strain E. coli BW25113 AglcB (last
modelling cycle, for the other strains see supplementary figures S1-7). In contrast to the calibrated
model, the initial model overestimated the biomass formation. This trend could be observed for all
strains. The DOT measurements indicate a slower glucose uptake than predicted. A lower specific
glucose uptake rate was calculated in the first twomodelling calibration cycles compared to thelater
ones (see Figure 3). The lack of the glucose measurement results in the first two model calibration
cycles is caused by the time delay in the at-line analytics. The prediction accuracy of acetic acid is
increasedin thebatch and fed-batch phase after model calibration. The cultivation dynamicsare well
fitted. The parameters to be adjusted in each model calibration cycle are selected by the included
subset selection. The parameters Kap, kia and qm, are not adjusted in one model calibration cycle; Ko,
Ksq Yotm and Yoresp are only partly selected for parameter estimation (Figure 6, all parameter sub-sets
are shown the Supplementary Table S2). Regularization of parameter estimation using a subsets
selection method [38] was used to ensurea meaningful parameter set. Monte Carlo simulations have
shown to give a good insight into the actual, non-linear parameter distribution [40] and were
therefore performed to get a better understanding of the parameter correlation.
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Figure 5: Model for E. coli BW25113 AglcB after the last model calibration cycle and at the be ginning
of the experiment. Solid line: calibrated model; dashed line: initial model; dots: measurements.
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Figure 6: Adjusted parameters of the time for each E. coli strain: Parameters are normalized to the
initial value and scaled to 3 times of the standard derivation. Filled dots: parameter is fixed by the

sub setselection; open dots: estimated parameter
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The correlation between all parametersis very weak. Only, Kagqand Ksq showed a correlation with
gAmax. Kaq and Ksq are the affinity constants for acetate and glucose uptake, respectively, and a
dependence to the maximal acetate uptake rate (QAmax) cannot be avoided in the model. Parameter
distribution as well as pairwise correlation of theadapted parameters for E. coli BW25113 AglcB (last
model calibration cycle) is summarized in Figure 7. The high significance of each parameter is
indicated by the narrow distribution and low variation for the most important model parameters
(Table 3), especially for Error! Bookmark notdefined.the parameters for Yem, qSmax and Yosresp. Normal
distribution is given for all parameters except for Yam. This parameter is quite close to thelower bound
of the previously defined solution space. It is noted that this situation should be avoided as it might
reduce theaccuracy of the parameter estimates. The parameter distribution of all other strains at the
last modelling cycle aredisposed in the supplementary Figures S09-516.

3
(E 1 t z % B
o {
05
o, 05
® S b i L A
0.5
05
g i
0.5
g0.5
5 ». Ly ks x > -
0.5
a 05
5 B f
> 05
05
£
5 - - - - . - - -
>
0.5
x 05 !
g - - - - - - - - -
S 05
2 05
§ w % ’ N . i & .
> .05
2 IS I | P [ e Ly | z 2% — P =
. 05 [
)_8 # 3 i & #
0.5
£ 05 : \
§ . P b @
> 28
05 05 05 05 -05 05 05 05 05 05 -05 05 05 05 -05 05 -05 05 -05 05
WA nax Kaq Keq Yam Yaresp Yom B max Y osresp Yol Yoim

Figure 7 Monte Carlo parameter estimation: Pair plots of the 500 best Monte Carlo parameter
estimation results with the regularized parameter setbased on the dataset for E. coli BW25113 AglcB
during the last modelling cycle. Monte Carlo simulations were carried out with o =0.15 for biomass,
glucose, acetate and 0=0.05 for DOT.

Table 3: Values, variance and relative variance of the adjusted parameters for all clones after the final
modelcalibration cycle.

E.coli E. coli BW215113

Paramater  Unit inital W3110 WT BAompT AaceA AfliA AgatC AgatZ AglcB

guess | @ oy %os| O 69 %og| 8 o0s %oo| @ o0 %os| 8 o5 %oe| O oo %og| O 05 %os| B oo %op
qAmax gg'h® 1,0252| 159 011 6,78 0,52 0,11 21,74| 0,90 0,05 592| 056 0,15 26,05| 0,72 0,11 1559| 0,68 0,08 12,18 0,86 0,10 11,54|0,71 0,07 9,54
Kagq gL'1 0,2133| 0,59 0,14 23,11 0,55 0,09 16,28 098 0,07 7,11 098 0,14 13,82| 0,60 0,12 20,70| 0,68 0,10 14,16| 0,75 0,12 15,97(0,70 0,04 6,24
Ksq gL?! 1,0667| 152 0,33 21,71| 1,98 0,34 16,98 1,97 0,26 13,17 1,91 0,32 16,95 1,77 0,29 16,26 1,99 0,25 12,35| 1,63 0,31 18,80|1,68 0,34 20,14
Yam gg’l 0,1955| 0,40 0,03 7,18 0,41 0,04 10,79 0,44 0,05 10,16| 0,44 0,08 18,79| 0,48 0,04 804 0,44 0,08 17,80 0,44 0,04 8,89/042 0,03 6,82
Yaresp gg’ 0,1672| 0,15 0,01 4,94| 0,15 0,01 509| 0,15 0,01 455 0,12 0,01 8,36 0,15 0,01 4,79 0,15 0,01 802| 0,13 0,01 6,65/0,13 0,00 3,44
Yem g8’ 0,56| 0,60 0,01 248| 0,60 001 1,82| 0,60 0,02 2,89 058 002 2,70 0,60 001 1,94 0,60 0,02 327 058 001 2,190,559 001 1,53
qSmax gg’lhr1 1,3431| 1,60 0,02 1,20( 1,58 0,03 2,09| 1,60 0,03 202| 147 0,03 1,79| 159 003 1,83| 155 0,03 2,08 1,39 0,02 1,16(1,40 0,04 254
Ks gL?! 0,05| 0,03 0,01 22,73| 0,03 0,00 15,72 0,03 0,01 27,93| 0,08 0,01 8,44| 0,03 0,01 19,59| 0,03 0,01 21,88 0,04 0,01 29,35/0,03 0,01 18,79
Ko gL? 119,87 1,52 7,64|18,13 1,87 10,32 14551 1,27 8,76|18,64 1,93 10,38/ 16,29 1,66 10,17|16,00 2,22 13,88| 14,13 0,95 6,69|9,57 1,27 13,28
Yosresp gg’l 1| 2,00 0,05 2,54| 2,00 0,04 190( 1,99 0,09 446 1,80 0,09 4,78 1,76 0,05 3,03| 197 008 4,31| 1,89 0,06 3,04 1,19 0,02 2,03
pAmax gg'h? 1,3001| 1,60 0,07 4,18 0,93 0,12 1329| 1,13 0,08 7,31| 0,86 0,07 8,64 0,95 0,07 745 098 0,09 896 1,08 0,09 837|0,87 0,09 10,77
Yaof gg'l 0,4607| 0,35 0,01 3,88 0,20 0,02 12,23 0,24 0,02 7,52| 021 0,02 6,99| 0,21 002 7,05 0,20 0,02 888 0,23 002 821023 0,02 791
Yofm gg! 0,2795| 0,20 0,01 4,74| 0,20 0,02 7,53| 0,22 0,01 546/ 021 0,02 9,87 0,23 0,01 575 0,21 0,02 10,21| 0,22 0,01 5,20/0,22 0,01 5,08
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In the present work, eight strains were examined in 24 successful cultivations. The end of glucose
uptake was in part predicted with small errors of less than one minute, thanks to theiterativemodel
calibration cycle. The feed start was automaticand in an operableacceptable time window usingthe
dynamic process redesign as defined in the model calibration cycle. The parameter sets estimated are
alwaysuniqueand with a physiological meaning even with very little data in theinitial phase of this
study, e.g. the first 3 hours. This is ensured by the built-in subset selection and is proofed by the
Monte Carlo simulations made afterwards.

4. Discussion

In this study we presented a computational framework ableto design and operate parallel E. coli
cultivations without human supervision. Theresults demonstrate that a robust operation tailored to
each specific clone is possible through an adaptiveinput design. Undesired experimental conditions
(e.g. overfeeding and starvation) are avoided while sufficient information to allow for a confident
discrimination of the strains is generated. Both, start time and feed rate wereaccurately predicted for
each one of the eight strains, using feedback information from the online and at-linemeasurements
during the cultivation. This is essential in an experimental facility aimed to perform screening
cultivations for clones whose phenotype is not known beforehand. The relevance of an adaptiveand
specific experimental design can be seen in this case study. As illustrated in Error! Reference source
not found., despite the fact the strains characteristics differ only minimally from each other, an
experiment with a fixed start time and feeding rate would have violated im portant experimental

constrains.

15

Additionally, the use of a macro-kinetic growth
model that describes the main extracellular dynamics of
E. coli was shown to be sufficient. In average the
predicted feed start differs by less than 10 min for the
optimal one, which is in an acceptable range and is
mainly caused by unobserved disturbances in the

Biomass [g/L]

0 ' ‘ system. If necessary, the mismatch can be further
2 reduced by increasing the frequency of model
adaptations.

As expected, the parameter variance in general
decreases with every model calibration cycle. However,

Glucose [g/L]

some parameters could not or only with insufficient
confidence be identified. This hampered a distinction of

LU some essential parameters as like the maximal acetate
Time [h] uptake rate (QAmax). Despite this, the quantification of the
Figure 8 In-silico comparison of different reliability of the outputs as presented by Anane et al [41]

hosts: Simulation based on last modelling allows the differentiation of the main parameter, e.g. the

cycle parameter set. Initial values: Glucose 10 maximal glucose uptake (qSmax) with statistical
g*L1, Biomass 2 g/L. Solid line: E. coli significance (see Error! Reference source not found.).

BW25113 dashedline: E. coliBW25113 AgatZ. Nevertheless, statements on the performance of the
Feedstartis simulated at 2.3 hours, pet is clones can be made using the model parameters. The
fixed at 0.5 h. If the feed start and rate is final results show that AompT has the largest qSmax value
only adjusted to one strain, the cultivationof and AgatZ the lowest. Furthermore, the parameter
the AgatZ mutant wouldlead to overfeeding. identifiability can be increased in future applications
using methods for Optimal Experimental Design (OED)

[24,42].

The macro-kinetic model used in this study is clearly insufficient to describe the complex
nonlinear dynamics of the system. Still, we overcome this issue by the adaptive nature of the
framework since a proper prediction within the current horizon is sufficient to assure a robust
operation of the cultivations. The variations on the parameters caused by intracellular changes in the
metabolic machinery together with heterogeneous mutations in the population [43] are shown in
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(Figure 6). Therefore, an iterativerecalculation of the feed is necessary to cope with disturbances in
the experiments and inaccuracies in the model.
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s b an A a NG AINAAARNARNNGNANANANANNAA A I

I A AT Ry

£ HERERa IR S0a g0 5

c AR ERHES RN ;

a 3t

- O 1 J

=

2 2

ot

(3]

s 1

@Q . .

< 0 I \I\L PINT SOV SV S VPSS SN M- 10 MMt aad s 2SN
0 1 2 3 4 5 6 7 8

Time [h]

Figure 9 Model uncertainty based on parameter standard de viation: Monte Carlo simulation: Results
of 1000 parameter estimates based on in-silico data. In silico data were generated based on the last
data setfor E. coli BW25113 AgicBand by random o of 0.15 for biomass, glucose, acetate, anda o of
0.05 for DOT.

The frequency of the parameter estimation was defined based on the availability ofat-linedata
(biomass, glucose and acetate) and as expected, the at-line data are decisive to achieve model
identifiability. Still, the results show that especially parameters related to glucose consumption can
beidentified using only the online DOT signal. This shows that, even though in a significantly limited
manner, the framework can also be used to increase the robustness of robotic facilities that do not
haveembedded at-lineanalytics. The glucose consumption rate seems tobe observable from the DOT
signal by which a reduced version of the macro-kinetic model could be used to build an observer
based feeding control [44]. Finally, we also demonstrated that thelength of thebatch phaseis essential
to assure sufficient data before the start of the feeding so as to allow a reliable operation of the
following phases.

5. Conclusions

The operation of robotic experiments with multiple fed-batch cultivations in parallel is very
challenging even for skilled operators, since many decisions and tasks are needed at the same time.
In this work we present an adaptive framework for conditional screening for parallel fed-batch
experiments aiming to identify the best candidate strain for industrial scale biomanufacturing. We
demonstrate that the use of a macro-kinetic growth model in an adaptive framework using online
and at-linedata informationin a feedback loop is necessary to:

1. design a specific strategy for each different strain of the screening experiment

2. increasethe robustness of the robotic operation against experimental disturbance, and

3. giveanapproximation of the reliability of the simulation results with respect to production scale
performance.

To our knowledge, thisis the first successful model-based operation of 24 fed-batch cultivations
with as much as eight different strains in parallel including its characterization. The results clearly
demonstrate the capabilities of the framework to increase the efficiency of combined mini-bioreactor
systems with liquid handlingstations to drastically reduce the experimental time, efforts, and failure
ratein High Throughput Bioprocess Development.
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Supplementary Materials Tables S1 allexperimental measurements used for the modelling cycles; Table S2: all
parameter sets; Figure S1-7
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