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Abstract: Low-grade gliomas (LGG) invade the brains of young and productive adults leading to 

significant neurological morbidity. Mutations in the isocitrate dehydrogenase (IDH) gene are very 

common in LGG. Because IDH1 inhibitors are effective in the treatment of LGG, early detection of 

growth is critical to initiating therapy without delay. This retrospective observational study evaluates 

the ability of AI-assisted volumetric analysis to correctly detect tumor growth in longitudinal studies 

of LGG as compared to the standard clinical method of visual inspection by radiologists. The study 

includes 63 participants categorized into clinical progression (n = 34), clinically stable (n=22), and 

negative control groups (n = 7). The dates of detection of tumor growth by visual inspection were 

gathered from radiological reports. Longitudinal tumor volumes were calculated from automated 

segmentations by the MRIMath FLAIR AI. Golden truths were obtained by physician review using 

the MRIMath Smart manual contouring system. Growth by significant shifts in tumor volumes was 

detected by using the statistical method of online change-of-point method. Our results demonstrate 

that in the clinical progression group, automatic AI segmentation followed by human review 

detected tumor growth at a median of 21 months earlier than visual inspection. In the clinically stable 

group, AI with human review identified growth in 13/22 cases at a median of 23 months earlier than 

the last MRI. AI without human review generated similar results but with a 25% false positive and 

an 8.33% false negative rate. The median time spent by physicians in reviewing, revising, and 

approving the AI segmentations is 2 minutes. These findings highlight the clinical potential of AI-

assisted volumetric analysis followed by physician oversight for the timely detection of tumor 

progression in LGG patients. 

Keywords: low-grade gliomas (LGG); recurrence; disease progression; AI-assisted 

 

1. Introduction 

Low-grade gliomas (LGG) represent a significant challenge due to their subtle growth patterns 

and the difficulty of early and accurate detection of tumor progression. LGG account for 

approximately 15% of all gliomas, with an incidence rate of about 1 in 100,000. These tumors are most 
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observed in adults in their 30s and 40s [1]. LGG, classified as WHO grade 2 gliomas, constitute a 

considerable proportion of adult brain tumors and are known for their brain invasion and potential 

for malignant transformation with life expectancy of about 5–15 years [1]. The predominant majority 

of LGG carry mutations in the IDH gene, which would make them susceptible to clinically proven 

IDH inhibitors [2]. The incidence of LGGs transforming into higher-grade tumors has been reported 

to be as high as 72% [3]. The prognosis of grade 2 IDH-mutant astrocytomas is only slightly better 

than grade 3, with median survival of 11 years compared to 9 years [3,4]. 

The current standard of care for treating LGG includes a multidisciplinary approach tailored to 

individual patient factors, such as tumor location, genetic markers, and patient age. Surgical resection 

is typically the initial treatment, with the goal of maximal safe removal of the tumor to alleviate 

symptoms and obtain tissue for histopathological and molecular analysis [5]. Postoperative 

management protocols are guided by molecular markers such as IDH mutation and 1p/19q 

codeletion status, which have prognostic significance. For high-risk patients (e.g. age over 40, subtotal 

resection, or unfavorable molecular profile) adjuvant therapies are considered. Post-radiation 

chemotherapy is often recommended to improve progression-free and overall survival [6]. 

Regardless of the treatment protocol and molecular profile, the clinical management of LGGs 

typically relies on regular monitoring by longitudinal magnetic resonance imaging (MRI) to detect 

progression. Traditionally, visual inspection by radiologists has been the clinical gold standard for 

assessing tumor growth over time. However, this method is inherently subjective and prone to inter-

observer variability, often resulting in delayed detection of growth, which can impact patient 

outcomes [7]. 

Traditionally, longitudinal studies of LGGs have been evaluated using visual inspection or 2D 

diameter measurements, which have been the standard technique for assessment according to the 

RANO criteria for many years [8]. So far, volumetric measurements have not been widely used 

because traditional manual contouring methods are time-consuming and prone to high inter-user 

variability. Recent advances in artificial intelligence bring timely and accurate volumetric 

measurements within reach [7,9]. Recently, there has been a gradual, though slow, shift from 2D 

measurements to 3D/volumetric assessments of LGGs. Additionally, the most recent version of the 

RANO criteria, RANO 2.0 (introduced in 2023), now incorporates 2D, 3D, and volumetric 

measurements. It also allows for AI-based segmentation, with human supervision during the process 

[10]. 

Here, we evaluate the efficacy of volumetric analysis using the MRIMath platform, including a 

FLAIR AI and human supervision using the Smart contouring system, in detecting tumor growth in 

LGG patients as compared to standard visual inspection. We study AI alone and AI combined with 

human review and approval. Previous studies have shown the benefits of volumetric analysis 

combined with the online change-of-point statistical method in detecting tumor growth significantly 

earlier than visual inspection [11]. Fathallah-Shaykh et al. applied the computationally intensive 

method of non-negative matrix factorization to segment LGG [7,12]; here use an accurate and efficient 

AI that generates segmentations in seconds. We also evaluate the role of physician review in 

enhancing AI prediction accuracy. We hypothesize that AI with volumetric assessment allows for 

earlier detection of tumor growth than current clinical standard of radiological assessment. For 

volumetric assessment, we apply the statistical change-of-point method to determine the first point 

of growth. The change-of-point method applies the same rigorous statistical standard to all patients 

and studies and determines if a current measurement is significantly different from all the 

measurements of the same patient [7,9]. 

2. Materials and Methods 

Ethical Approval 

The Institutional Review Board of the University of Alabama at Birmingham approved the 

research (IRB-150618007); waiver of informed consent was granted because the research involved no 
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greater than minimal risk and no procedures for which written consent is normally required outside 

the research context. 

Study Design and Patient Selection 

The patients were seen at the neuro-oncology clinics of the University of Alabama at 

Birmingham between July 1, 2017, and May 14, 2018. The inclusion criteria were (1) pathological 

diagnosis of grade 2 oligodendroglioma (oligo), grade 2 astrocytoma (astro), or grade 2 mixed glioma 

in the brain excluding the pineal gland and (2) at least 4 MRI scans available for review either after 

the initial diagnosis or after the completion of chemotherapy with temozolomide (if applicable). The 

exclusion criteria were (1) treatment with radiation therapy after the initial diagnosis or (2) 

radiological reports indicating development of new enhancement without an increase in FLAIR 

signal. Patients treated by radiation therapy were excluded because radiation may confound the 

results by causing an independent increase in FLAIR signal. We excluded patients whose radiological 

reports described new enhancing nodules without an increase in FLAIR signal because they are easily 

detected by visual examination. 

A total of 56 gliomas met the inclusion criteria, including 19 oligodendrogliomas, 26 

astrocytomas and 11 mixed gliomas; only 2 patients received temozolomide. All of the oligos had the 

1p/19q co-deletions except for 1 with a single deletion of 19q. At the time of retrospective review, 

34/56 patients had been diagnosed with clinical progression (i.e. clinical progression group) while the 

remaining 22/56 were diagnosed as being clinically stable (clinically stable group) by visual 

comparison of the most recent MRI performed at the last clinic visit. We reviewed the records of 8 

patients followed for an imaging abnormality without pathological diagnosis; 1 patient was excluded 

because of lack of follow-up information. All 7 imaging abnormality patients were considered 

clinically stable at the time of review of this study. 

A total of 56 patients, including 19 oligodendrogliomas, 26 astrocytomas, and 11 mixed gliomas, 

met the inclusion criteria. The selection criteria required at least four MRI scans, excluding those who 

received radiation therapy post-diagnosis, to ensure consistency in the study population. The final 

dataset included 57 patients divided into three groups: clinical progression, clinically stable, and 

imaging abnormality (negative control group). 

Time to Growth Detected by Standard Clinical Care 

Different board-certified neuro-radiologists at the University of Alabama at Birmingham 

Hospital generated the radiological reports after evaluating each longitudinal MRI scan. We 

retrospectively calculated the time to growth detection from the impressions of the radiological 

reports of these patients. 

Tumor Segmentation, Volume Calculation, and Physician Review 

A total of 627 MRI scans were uploaded to the MRIMath platform, resized to 256x256 and 

segmented by the MRIMath Flair AI. Tumor volumes were calculated by applying the following 

equation: 

𝑉𝑜𝑙𝑢𝑚𝑒 =  (𝑆𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 3𝐷) ∗  𝑥 ∗  𝑦 ∗  𝑧 ∗  𝑅𝑜𝑤𝑠 ∗  𝐶𝑜𝑙𝑢𝑚𝑛𝑠 / (256 ∗  256) 

where x, y, and z correspond to x-spacing, y-spacing, and spacing between slices, respectively. 

AI segmentation results were reviewed by physicians Board-certified in radiology, neuro-

oncology, radiation oncology, or neurosurgery by using the MRIMath Smart contouring platform to 

view and modify the contours as needed. Physician reviews served as the gold standard for 

evaluating the accuracy of both AI-generated manual segmentations. 
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Online Change-of-Point Detection 

To detect a the first significant change in a series of longitudinal volumes, we apply the online 

change-of-point method to the AI-generated measurements with or without human review. To 

exclude FLAIR changes due to the evolution of post-surgical changes, the baseline volume in the 

longitudinal series was the first minimum after surgical resection. To identify an abrupt change of 

volume, we applied a change in the root-mean-square level at a minimum threshold of 500/(volume 

at baseline) and a minimum of 2 samples between change points. The number 500 corresponds to 5% 

of the rounded median of the baseline volume. 

The change-of-point is a statistical technique used to identify points in a time series where the 

data’s properties, such as mean, variance, or distribution, change significantly [13,14]. These points, 

known as change points, indicate shifts in the underlying process generating the data. Detecting such 

changes is crucial in patient follow up and can help the physician to detect subtle changes of MR 

images. There are two primary approaches to change point detection: the online method detects 

changes in points in real-time as new data becomes available, making it essential for applications 

requiring immediate detection and response. The offline method analyzes a complete dataset to 

identify any change points that have occurred. It’s often used in post hoc analyses where the entire 

data sequence is available [15]. Here, we use the algorithms developed by Rebecca Killick and apply 

the online method, as it replicates clinical scenarios where the volumetric series includes only 

measurements taken before a specific date [16]. 

3. Results 

Reviewers and Time 

The median time spent reviewing, revising and approving the AI segmentations was 1.18 

minutes (lower quartile of 1.18 minutes and an upper quartile of 3.31), mean = 2.93 minutes, 95% CI: 

(2.32, 3.54). 

Clinical Progression Group 

In the clinical progression group, including the LGG patients whose last MRIs were interpreted 

as showing progression by the radiological reports, the results demonstrate that volumetric analysis 

that combines AI segmentation, human review, and the change-of-point method detects tumor 

growth significantly earlier than traditional visual inspection by radiologists (median of 21 months, 

Table 1). Conversely, AI without human review also detects tumor growth earlier than visual 

inspection (median of 21 months), but with false negative and positive results (Table 1) missed 3 out 

of 35 cases, and these misses were primarily associated with smaller tumors that were more 

challenging to detect and segment. 
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Figure 1. Volumetric analysis combined with the online change-of-point statistical method detects progression 

on 07/30/2012, one year earlier than the date of progression documented in the clinical notes (07/15/2013). Notice 

that though the tumor in the 2D sections containing the largest tumors under columns c and d did not change 

between the baseline (07/25/2011) and 07/30/2012, the 2D sections in columns b and e increased in size between 

the baseline MRI of 07/25/2011 and date of progression detected by the change-of-point method, 07/30/3012 

(white arrows). . 

 

Figure 2. Volume plot of the low-grade tumor shown in Figure 1. The online change-of-point analysis detects 

progression at the red Asterix. The clinical notes detected progression one year later. 

Table 1. Detecting tumor growth in the Clinical Progression Group earlier than visual inspection by 

radiologists. 

Measure AI without Human Review AI with Human Review 

Median (months) 21 21 

Lower Interquartile Range (IQR) 11.75 9 

Upper IQR 38.75 31.5 
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Clinically Stable Group 

In the clinically stable group, including patients whose last MRI was interpreted as stable, where 

tumors were deemed stable by visual inspection, the MRIMath AI with physician review detected 

tumor growth in 13 out of 22 cases (Table 2). Remarkably, this detection occurred at a median of 23 

months earlier than the most recent MRI scan. In comparison, AI without human review detected 

growth at a median of 26 months earlier but missed 1 out of the 13 cases. Moreover, while AI with 

human review accurately flagged the remaining 9 cases as stable, AI without review incorrectly 

detected tumor growth in 1 of those 9 cases. 

 

Figure 3. Volumetric analysis combined with the online change-of-point method detected progression on 

12/19/2016 (see arrows) as compared to baseline on 06/13/2016. The MRI on 12/11/2017 was read as stable; arrows 

point to tumor growth as compared to the MRI of 12/19/2016. 

 

Figure 4. Volume plot of the low-grade tumor shown in Figure 2. The online change-of-point analysis detects 

progression at the red Asterix. The clinical notes considered all these MRIs as stable. 

Table 2. Detecting growth in the Clinically-Stable Group earlier than the last MRI. 

Measure AI without Human Review AI with Human Review 

Median (months) 26 23 

Lower IQR 11.75 9 

Upper IQR 67.5 67 
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Negative Control Group 

For the negative control group, where no tumor was seen on MRI visually and where 

radiological impressions indicated stable disease, the performance of the AI system varied 

significantly based on the presence of human review. The AI with physician review correctly 

identified all 7 cases as stable, demonstrating perfect specificity. In contrast, the AI without human 

review incorrectly diagnosed tumor growth in 3 out of 7 cases. 

False Negative and False Positive Rates 

False Negative Rates 

By combining the 35 cases from the clinical progression group and the 13 cases from the clinically 

stable group that showed progression after computer-assisted diagnosis, the sensitivity The AI 

without human review missed 4 of these 48 cases (8.33%, Table 4). 

Table 3. False Positive and Negative Rates. 

Method FP Rate FN Rate 

AI without Human review 25% (4/16) 8.33% (4/48) 

False Positive Rates 

By combining the 7 cases from the negative control group and 9 stable cases from the clinically 

stable group, we find that the AI without human review incorrectly flagged a total of 4/16 cases as 

tumor growth (Table 3). 

4. Discussion 

We find that human-supervised, AI-supported measurements of longitudinal LGG volumes 

detect tumor growth significantly earlier than radiologists’ interpretations based solely on visual 

inspection. Furthermore, AI-generated segmentations—without human review—also identify 

progression dates earlier than visual inspection, although this comes at the cost of false positives and 

negatives, underscoring the importance of physician oversight. We segment the LGG using the 

MRIMath© FLAIR AI, which is FDA-approved for glioblastoma multiforme [17,18]; The “golden 

truth” is established by Board-certified physicians who review the AI-generated segmentations using 

the FDA-approved MRIMath© Smart Contouring platform. Our design, involving multiple 

reviewers from different subspecialties, mirrors real-world clinical scenarios. For volumetric 

assessment, we employed the statistical online change-of-point method to determine the first point 

of growth [7]. The change-of-point method applies a consistent and rigorous statistical standard 

across all patients and studies. Unlike the conventional RANO product rule, which uses a universal 

approach based on the product of diameters, the change-of-point method assesses whether a current 

measurement significantly deviates from all previous measurements for the same patient. 

Most clinical radiologists use visual inspection to evaluate longitudinal studies, while the RANO 

criteria remain the current standard for detecting progression in clinical trial settings [19]. Significant 

limitations of the RANO criteria include large inter-user variability in determining the perpendicular 

diameters of the largest tumor cross-section and the reliance on two-dimensional measurements 

which may not accurately represent the complex three-dimensional tumor architecture [11,20]. 

Volumetric analysis was also shown to be superior to other established tumor classification criteria, 

such as the Response Evaluation Criteria in Solid Tumors (RECIST) and modified RECIST [21], due 

to their tendency to oversimplify a multidimensional and heterogeneous tumor [22].  

Volumetric measurement remains the gold standard for assessing the growth of low-grade 

gliomas (LGGs) and detecting progression. In particular, tumor volumes and growth rates serve as 

key prognostic factors [23]. Several studies have reported improved diagnostic accuracy of 
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volumetric analysis as compared to the RANO criteria and radiologists’ interpretations of 

longitudinal LGG imaging. From a series of 67 patients, Fathallah-Shaykh et al. and Fabio et al. report 

that volumetric measurements, when combined with the change-of-point method, detect progression 

at significantly earlier time points [7,11]. A recent analysis of the Phase I trial of ivosidenib for low-

grade glioma also confirmed that 3D volumetric measurements outperform 2D measurements in 

response assessment with higher inter-reader agreement and lower rates of reader discordance [24]. 

The findings of two studies on pediatric gliomas support the conclusion that volumetric analysis is 

more effective than 2D measurements in diagnosing tumor progression at significantly earlier time 

points [25,26]. In a study of 6 patients with pediatric glioma, Khalili et al. reported that volumetric 

analysis detected progression earlier than radiologists’ interpretations [26]. Similarly, in a study of 

recurrent gliomas, Dempsey et al. found that only volumetric measurements of tumor size were 

predictive of survival, unlike 1D, 2D, and 3D measurements [27]. One study compared one-

dimensional (1D), two-dimensional (2D), and three-dimensional (3D) linear measurements with 

manual volume measurements in the follow-up of LGG. The authors concluded that 3D “linear” 

measurement of LGGs is superior to 1D and 2D methods, aligning well with tumor volume 

calculations, although it is not without limitations [28]. 

The primary purpose of developing the linear methods—1D, 2D, and 3D—was to address the 

bottleneck created by the time and effort required to segment LGGs. The MRIMath platform 

overcomes this bottleneck by using AI-generated segmentations, paired with the low-variability 

Smart contouring platform, to provide physician-reviewed volume measurements in under 3 

minutes, making this technology easily accessible for clinical use [9]. The FDA has also approved 

teamspaces, allowing technicians, residents, and attendings to collaborate within permissions set by 

the owner, as well as the use of plots [17,18]. 

To our knowledge, our study is one of the few demonstrating the superiority of AI-assisted 

physician-reviewed longitudinal volume measurements of LGG compared to radiologists’ 

interpretations. Further research will compare AI-assisted 3D volumetric measurements with the 

standard 2D RANO criteria. With the advancement of efficient AI-assisted devices and reliable 

human review platforms, we believe that 3D volumetric measurements will greatly enhance glioma 

management, resulting in improved morbidity outcomes, longer survival times, and more accurate 

results. 

Several methods are available for automatically assessing the volumes of gliomas. Compared to 

these methods, the MRIMath FLAIR AI stands out for being fully automated, as it does not require 

preprocessing steps that involve human supervision, such as deboning, interpolation, or registration. 

Additionally, while MRIMath© processes images in 2D and treats the FLAIR modality 

independently, other methods use a 3D approach and integrate the four modalities: T1, T1c, T2, and 

FLAIR [14,29]. MRIMath© has developed a FLAIR series AI, which differs from the subcomponent 

segmentations employed by other platforms. 

The physicians used the MRIMath© Smart contouring platform to review, revise and approve 

the segmentations. This platform is associated with a low inter-user variability of 10% for FLAIR 

images [9]. In a recent report, the mean dice score (DSC) of the gross tumor volume (GTV) of the 

FLAIR signal of low-grade gliomas was reported at 77% (substantial disagreement) [30,31]; in 

contrast, the mean DSC of the manual contouring of FLAIR images using the MRIMath smart 

platform was 92% [9]. The variability of the reviewing software is important because a high 

variability in volume measurements could lead to inaccurate diagnosis of tumor progression. 

Limitations of our study include a retrospective design, a small dataset from a single institution, 

using multiple reviewing physicians from different specialties, primarily using FLAIR sequences, 

and a comparison to visual inspection. Our goal is to evaluate the importance of AI volumetric 

analysis in real world scenarios where multiple physicians evaluate longitudinal LGG images. The 

Response Assessment in Neuro-Oncology (RANO) criteria for lower-grade gliomas (LGGs) define 

tumor progression as ≥25% change in the T2/FLAIR signal area based on an operator’s discretion of 

the perpendicular diameter of the largest tumor cross-section. A recent study found that RANO-
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based assessment of LGGs has moderate reproducibility and poor accuracy when compared to either 

visual or volumetric ground truths. The median time delay at diagnosis by the RANO assessment for 

false negative cases was 2.05 years compared to the previous scan and 1.08 years for baseline scans 

[11]. 

5. Conclusions 

Our study highlights the effectiveness of AI-assisted volumetric analysis using the MRIMath 

FLAIR AI platform for detecting tumor growth in low-grade gliomas. By integrating AI with 

physician review, we were able to detect tumor progression at significantly earlier time points 

compared to traditional visual inspection methods. This study underscores the potential of AI in 

clinical oncology, particularly in enhancing the early detection of tumor growth, while also 

emphasizing the importance of human review in conjunction with a low-variability platform. 

Additionally, it highlights the potential use of accurate volume measurements in advancing clinical 

research [32–37]. 
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