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Abstract: Low-grade gliomas (LGG) invade the brains of young and productive adults leading to
significant neurological morbidity. Mutations in the isocitrate dehydrogenase (IDH) gene are very
common in LGG. Because IDH1 inhibitors are effective in the treatment of LGG, early detection of
growth is critical to initiating therapy without delay. This retrospective observational study evaluates
the ability of Al-assisted volumetric analysis to correctly detect tumor growth in longitudinal studies
of LGG as compared to the standard clinical method of visual inspection by radiologists. The study
includes 63 participants categorized into clinical progression (n = 34), clinically stable (n=22), and
negative control groups (n = 7). The dates of detection of tumor growth by visual inspection were
gathered from radiological reports. Longitudinal tumor volumes were calculated from automated
segmentations by the MRIMath FLAIR Al Golden truths were obtained by physician review using
the MRIMath Smart manual contouring system. Growth by significant shifts in tumor volumes was
detected by using the statistical method of online change-of-point method. Our results demonstrate
that in the clinical progression group, automatic Al segmentation followed by human review
detected tumor growth at a median of 21 months earlier than visual inspection. In the clinically stable
group, Al with human review identified growth in 13/22 cases at a median of 23 months earlier than
the last MRI. AI without human review generated similar results but with a 25% false positive and
an 8.33% false negative rate. The median time spent by physicians in reviewing, revising, and
approving the Al segmentations is 2 minutes. These findings highlight the clinical potential of Al-
assisted volumetric analysis followed by physician oversight for the timely detection of tumor
progression in LGG patients.

Keywords: low-grade gliomas (LGG); recurrence; disease progression; Al-assisted

1. Introduction

Low-grade gliomas (LGG) represent a significant challenge due to their subtle growth patterns
and the difficulty of early and accurate detection of tumor progression. LGG account for
approximately 15% of all gliomas, with an incidence rate of about 1 in 100,000. These tumors are most

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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observed in adults in their 30s and 40s [1]. LGG, classified as WHO grade 2 gliomas, constitute a
considerable proportion of adult brain tumors and are known for their brain invasion and potential
for malignant transformation with life expectancy of about 5-15 years [1]. The predominant majority
of LGG carry mutations in the IDH gene, which would make them susceptible to clinically proven
IDH inhibitors [2]. The incidence of LGGs transforming into higher-grade tumors has been reported
to be as high as 72% [3]. The prognosis of grade 2 IDH-mutant astrocytomas is only slightly better
than grade 3, with median survival of 11 years compared to 9 years [3,4].

The current standard of care for treating LGG includes a multidisciplinary approach tailored to
individual patient factors, such as tumor location, genetic markers, and patient age. Surgical resection
is typically the initial treatment, with the goal of maximal safe removal of the tumor to alleviate
symptoms and obtain tissue for histopathological and molecular analysis [5]. Postoperative
management protocols are guided by molecular markers such as IDH mutation and 1p/19q
codeletion status, which have prognostic significance. For high-risk patients (e.g. age over 40, subtotal
resection, or unfavorable molecular profile) adjuvant therapies are considered. Post-radiation
chemotherapy is often recommended to improve progression-free and overall survival [6].
Regardless of the treatment protocol and molecular profile, the clinical management of LGGs
typically relies on regular monitoring by longitudinal magnetic resonance imaging (MRI) to detect
progression. Traditionally, visual inspection by radiologists has been the clinical gold standard for
assessing tumor growth over time. However, this method is inherently subjective and prone to inter-
observer variability, often resulting in delayed detection of growth, which can impact patient
outcomes [7].

Traditionally, longitudinal studies of LGGs have been evaluated using visual inspection or 2D
diameter measurements, which have been the standard technique for assessment according to the
RANQO criteria for many years [8]. So far, volumetric measurements have not been widely used
because traditional manual contouring methods are time-consuming and prone to high inter-user
variability. Recent advances in artificial intelligence bring timely and accurate volumetric
measurements within reach [7,9]. Recently, there has been a gradual, though slow, shift from 2D
measurements to 3D/volumetric assessments of LGGs. Additionally, the most recent version of the
RANO criteria, RANO 2.0 (introduced in 2023), now incorporates 2D, 3D, and volumetric
measurements. It also allows for Al-based segmentation, with human supervision during the process
[10].

Here, we evaluate the efficacy of volumetric analysis using the MRIMath platform, including a
FLAIR Al and human supervision using the Smart contouring system, in detecting tumor growth in
LGG patients as compared to standard visual inspection. We study Al alone and Al combined with
human review and approval. Previous studies have shown the benefits of volumetric analysis
combined with the online change-of-point statistical method in detecting tumor growth significantly
earlier than visual inspection [11]. Fathallah-Shaykh et al. applied the computationally intensive
method of non-negative matrix factorization to segment LGG [7,12]; here use an accurate and efficient
Al that generates segmentations in seconds. We also evaluate the role of physician review in
enhancing Al prediction accuracy. We hypothesize that Al with volumetric assessment allows for
earlier detection of tumor growth than current clinical standard of radiological assessment. For
volumetric assessment, we apply the statistical change-of-point method to determine the first point
of growth. The change-of-point method applies the same rigorous statistical standard to all patients
and studies and determines if a current measurement is significantly different from all the
measurements of the same patient [7,9].

2. Materials and Methods

Ethical Approval

The Institutional Review Board of the University of Alabama at Birmingham approved the
research (IRB-150618007); waiver of informed consent was granted because the research involved no


https://doi.org/10.20944/preprints202501.0630.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 January 2025 d0i:10.20944/preprints202501.0630.v1

3 of 12

greater than minimal risk and no procedures for which written consent is normally required outside
the research context.

Study Design and Patient Selection

The patients were seen at the neuro-oncology clinics of the University of Alabama at
Birmingham between July 1, 2017, and May 14, 2018. The inclusion criteria were (1) pathological
diagnosis of grade 2 oligodendroglioma (oligo), grade 2 astrocytoma (astro), or grade 2 mixed glioma
in the brain excluding the pineal gland and (2) at least 4 MRI scans available for review either after
the initial diagnosis or after the completion of chemotherapy with temozolomide (if applicable). The
exclusion criteria were (1) treatment with radiation therapy after the initial diagnosis or (2)
radiological reports indicating development of new enhancement without an increase in FLAIR
signal. Patients treated by radiation therapy were excluded because radiation may confound the
results by causing an independent increase in FLAIR signal. We excluded patients whose radiological
reports described new enhancing nodules without an increase in FLAIR signal because they are easily
detected by visual examination.

A total of 56 gliomas met the inclusion criteria, including 19 oligodendrogliomas, 26
astrocytomas and 11 mixed gliomas; only 2 patients received temozolomide. All of the oligos had the
1p/19q co-deletions except for 1 with a single deletion of 19q. At the time of retrospective review,
34/56 patients had been diagnosed with clinical progression (i.e. clinical progression group) while the
remaining 22/56 were diagnosed as being clinically stable (clinically stable group) by visual
comparison of the most recent MRI performed at the last clinic visit. We reviewed the records of 8
patients followed for an imaging abnormality without pathological diagnosis; 1 patient was excluded
because of lack of follow-up information. All 7 imaging abnormality patients were considered
clinically stable at the time of review of this study.

A total of 56 patients, including 19 oligodendrogliomas, 26 astrocytomas, and 11 mixed gliomas,
met the inclusion criteria. The selection criteria required at least four MRI scans, excluding those who
received radiation therapy post-diagnosis, to ensure consistency in the study population. The final
dataset included 57 patients divided into three groups: clinical progression, clinically stable, and
imaging abnormality (negative control group).

Time to Growth Detected by Standard Clinical Care

Different board-certified neuro-radiologists at the University of Alabama at Birmingham
Hospital generated the radiological reports after evaluating each longitudinal MRI scan. We
retrospectively calculated the time to growth detection from the impressions of the radiological
reports of these patients.

Tumor Segmentation, Volume Calculation, and Physician Review

A total of 627 MRI scans were uploaded to the MRIMath platform, resized to 256x256 and
segmented by the MRIMath Flair Al. Tumor volumes were calculated by applying the following
equation:

Volume = (Sumof all pixelsin3D) * x * y * z * Rows * Columns / (256 * 256)

where X, y, and z correspond to x-spacing, y-spacing, and spacing between slices, respectively.

Al segmentation results were reviewed by physicians Board-certified in radiology, neuro-
oncology, radiation oncology, or neurosurgery by using the MRIMath Smart contouring platform to
view and modify the contours as needed. Physician reviews served as the gold standard for
evaluating the accuracy of both Al-generated manual segmentations.
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Online Change-of-Point Detection

To detect a the first significant change in a series of longitudinal volumes, we apply the online
change-of-point method to the Al-generated measurements with or without human review. To
exclude FLAIR changes due to the evolution of post-surgical changes, the baseline volume in the
longitudinal series was the first minimum after surgical resection. To identify an abrupt change of
volume, we applied a change in the root-mean-square level at a minimum threshold of 500/(volume
at baseline) and a minimum of 2 samples between change points. The number 500 corresponds to 5%
of the rounded median of the baseline volume.

The change-of-point is a statistical technique used to identify points in a time series where the
data’s properties, such as mean, variance, or distribution, change significantly [13,14]. These points,
known as change points, indicate shifts in the underlying process generating the data. Detecting such
changes is crucial in patient follow up and can help the physician to detect subtle changes of MR
images. There are two primary approaches to change point detection: the online method detects
changes in points in real-time as new data becomes available, making it essential for applications
requiring immediate detection and response. The offline method analyzes a complete dataset to
identify any change points that have occurred. It’s often used in post hoc analyses where the entire
data sequence is available [15]. Here, we use the algorithms developed by Rebecca Killick and apply
the online method, as it replicates clinical scenarios where the volumetric series includes only
measurements taken before a specific date [16].

3. Results

Reviewers and Time

The median time spent reviewing, revising and approving the Al segmentations was 1.18
minutes (lower quartile of 1.18 minutes and an upper quartile of 3.31), mean = 2.93 minutes, 95% CI:
(2.32, 3.54).

Clinical Progression Group

In the clinical progression group, including the LGG patients whose last MRIs were interpreted
as showing progression by the radiological reports, the results demonstrate that volumetric analysis
that combines Al segmentation, human review, and the change-of-point method detects tumor
growth significantly earlier than traditional visual inspection by radiologists (median of 21 months,
Table 1). Conversely, Al without human review also detects tumor growth earlier than visual
inspection (median of 21 months), but with false negative and positive results (Table 1) missed 3 out
of 35 cases, and these misses were primarily associated with smaller tumors that were more
challenging to detect and segment.


https://doi.org/10.20944/preprints202501.0630.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 January 2025

doi:10.20944/preprints202501.0630.v1

07/25/2011
Volume:
1959 mm3

07/30/2012
Volume:
2556 mms3

5 of 12

Figure 1. Volumetric analysis combined with the online change-of-point statistical method detects progression

on 07/30/2012, one year earlier than the date of progression documented in the clinical notes (07/15/2013). Notice

that though the tumor in the 2D sections containing the largest tumors under columns c and d did not change
between the baseline (07/25/2011) and 07/30/2012, the 2D sections in columns b and e increased in size between
the baseline MRI of 07/25/2011 and date of progression detected by the change-of-point method, 07/30/3012

(white arrows). .

o

07/25/2011 10/24/2011 01/30/2012 04/30/2012 07/302012 11/05/2012 03/11/2013 07/15/2013

Date

Figure 2. Volume plot of the low-grade tumor shown in Figure 1. The online change-of-point analysis detects

progression at the red Asterix. The clinical notes detected progression one year later.

Table 1. Detecting tumor growth in the Clinical Progression Group earlier than visual inspection by

radiologists.
Measure Al without Human Review Al with Human Review
Median (months) 21 21
Lower Interquartile Range (IQR) 11.75 9
Upper IOR 38.75 31.5
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Clinically Stable Group

In the clinically stable group, including patients whose last MRI was interpreted as stable, where
tumors were deemed stable by visual inspection, the MRIMath AI with physician review detected
tumor growth in 13 out of 22 cases (Table 2). Remarkably, this detection occurred at a median of 23
months earlier than the most recent MRI scan. In comparison, Al without human review detected
growth at a median of 26 months earlier but missed 1 out of the 13 cases. Moreover, while Al with
human review accurately flagged the remaining 9 cases as stable, Al without review incorrectly
detected tumor growth in 1 of those 9 cases.

06/13/2016
Volume:
1617 mm3

12/19/2016
Volume:
2151 mm3

«.\ /'_\,\ /—‘,., \ iy

)@@ @ @®

12/11/2017
Volume:
2594 mm3

Figure 3. Volumetric analysis combined with the online change-of-point method detected progression on
12/19/2016 (see arrows) as compared to baseline on 06/13/2016. The MRI on 12/11/2017 was read as stable; arrows
point to tumor growth as compared to the MRI of 12/19/2016.

Volume (mm3)

06/13/2016 09/19/2016 12/19/2016 04/03/2017 O07M7i2017 12/11/2017
Date

Figure 4. Volume plot of the low-grade tumor shown in Figure 2. The online change-of-point analysis detects

progression at the red Asterix. The clinical notes considered all these MRIs as stable.

Table 2. Detecting growth in the Clinically-Stable Group earlier than the last MRI.

Measure Al without Human Review Al with Human Review
Median (months) 26 23
Lower IQR 11.75 9
Upper IOR 67.5 67
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Negative Control Group

For the negative control group, where no tumor was seen on MRI visually and where
radiological impressions indicated stable disease, the performance of the AI system varied
significantly based on the presence of human review. The Al with physician review correctly
identified all 7 cases as stable, demonstrating perfect specificity. In contrast, the AI without human
review incorrectly diagnosed tumor growth in 3 out of 7 cases.

False Negative and False Positive Rates

False Negative Rates

By combining the 35 cases from the clinical progression group and the 13 cases from the clinically
stable group that showed progression after computer-assisted diagnosis, the sensitivity The Al
without human review missed 4 of these 48 cases (8.33%, Table 4).

Table 3. False Positive and Negative Rates.

Method FP Rate FN Rate
Al without Human review 25% (4/16) 8.33% (4/48)

False Positive Rates

By combining the 7 cases from the negative control group and 9 stable cases from the clinically
stable group, we find that the AI without human review incorrectly flagged a total of 4/16 cases as
tumor growth (Table 3).

4. Discussion

We find that human-supervised, Al-supported measurements of longitudinal LGG volumes
detect tumor growth significantly earlier than radiologists” interpretations based solely on visual
inspection. Furthermore, Al-generated segmentations—without human review—also identify
progression dates earlier than visual inspection, although this comes at the cost of false positives and
negatives, underscoring the importance of physician oversight. We segment the LGG using the
MRIMath© FLAIR Al, which is FDA-approved for glioblastoma multiforme [17,18]; The “golden
truth” is established by Board-certified physicians who review the Al-generated segmentations using
the FDA-approved MRIMath© Smart Contouring platform. Our design, involving multiple
reviewers from different subspecialties, mirrors real-world clinical scenarios. For volumetric
assessment, we employed the statistical online change-of-point method to determine the first point
of growth [7]. The change-of-point method applies a consistent and rigorous statistical standard
across all patients and studies. Unlike the conventional RANO product rule, which uses a universal
approach based on the product of diameters, the change-of-point method assesses whether a current
measurement significantly deviates from all previous measurements for the same patient.

Most clinical radiologists use visual inspection to evaluate longitudinal studies, while the RANO
criteria remain the current standard for detecting progression in clinical trial settings [19]. Significant
limitations of the RANO criteria include large inter-user variability in determining the perpendicular
diameters of the largest tumor cross-section and the reliance on two-dimensional measurements
which may not accurately represent the complex three-dimensional tumor architecture [11,20].
Volumetric analysis was also shown to be superior to other established tumor classification criteria,
such as the Response Evaluation Criteria in Solid Tumors (RECIST) and modified RECIST [21], due
to their tendency to oversimplify a multidimensional and heterogeneous tumor [22].

Volumetric measurement remains the gold standard for assessing the growth of low-grade
gliomas (LGGs) and detecting progression. In particular, tumor volumes and growth rates serve as
key prognostic factors [23]. Several studies have reported improved diagnostic accuracy of
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volumetric analysis as compared to the RANO criteria and radiologists’ interpretations of
longitudinal LGG imaging. From a series of 67 patients, Fathallah-Shaykh et al. and Fabio et al. report
that volumetric measurements, when combined with the change-of-point method, detect progression
at significantly earlier time points [7,11]. A recent analysis of the Phase I trial of ivosidenib for low-
grade glioma also confirmed that 3D volumetric measurements outperform 2D measurements in
response assessment with higher inter-reader agreement and lower rates of reader discordance [24].
The findings of two studies on pediatric gliomas support the conclusion that volumetric analysis is
more effective than 2D measurements in diagnosing tumor progression at significantly earlier time
points [25,26]. In a study of 6 patients with pediatric glioma, Khalili et al. reported that volumetric
analysis detected progression earlier than radiologists’ interpretations [26]. Similarly, in a study of
recurrent gliomas, Dempsey et al. found that only volumetric measurements of tumor size were
predictive of survival, unlike 1D, 2D, and 3D measurements [27]. One study compared one-
dimensional (1D), two-dimensional (2D), and three-dimensional (3D) linear measurements with
manual volume measurements in the follow-up of LGG. The authors concluded that 3D “linear”
measurement of LGGs is superior to 1D and 2D methods, aligning well with tumor volume
calculations, although it is not without limitations [28].

The primary purpose of developing the linear methods—1D, 2D, and 3D —was to address the
bottleneck created by the time and effort required to segment LGGs. The MRIMath platform
overcomes this bottleneck by using Al-generated segmentations, paired with the low-variability
Smart contouring platform, to provide physician-reviewed volume measurements in under 3
minutes, making this technology easily accessible for clinical use [9]. The FDA has also approved
teamspaces, allowing technicians, residents, and attendings to collaborate within permissions set by
the owner, as well as the use of plots [17,18].

To our knowledge, our study is one of the few demonstrating the superiority of Al-assisted
physician-reviewed longitudinal volume measurements of LGG compared to radiologists’
interpretations. Further research will compare Al-assisted 3D volumetric measurements with the
standard 2D RANO criteria. With the advancement of efficient Al-assisted devices and reliable
human review platforms, we believe that 3D volumetric measurements will greatly enhance glioma
management, resulting in improved morbidity outcomes, longer survival times, and more accurate
results.

Several methods are available for automatically assessing the volumes of gliomas. Compared to
these methods, the MRIMath FLAIR Al stands out for being fully automated, as it does not require
preprocessing steps that involve human supervision, such as deboning, interpolation, or registration.
Additionally, while MRIMath© processes images in 2D and treats the FLAIR modality
independently, other methods use a 3D approach and integrate the four modalities: T1, T1c, T2, and
FLAIR [14,29]. MRIMath®© has developed a FLAIR series Al, which differs from the subcomponent
segmentations employed by other platforms.

The physicians used the MRIMath© Smart contouring platform to review, revise and approve
the segmentations. This platform is associated with a low inter-user variability of 10% for FLAIR
images [9]. In a recent report, the mean dice score (DSC) of the gross tumor volume (GTV) of the
FLAIR signal of low-grade gliomas was reported at 77% (substantial disagreement) [30,31]; in
contrast, the mean DSC of the manual contouring of FLAIR images using the MRIMath smart
platform was 92% [9]. The variability of the reviewing software is important because a high
variability in volume measurements could lead to inaccurate diagnosis of tumor progression.

Limitations of our study include a retrospective design, a small dataset from a single institution,
using multiple reviewing physicians from different specialties, primarily using FLAIR sequences,
and a comparison to visual inspection. Our goal is to evaluate the importance of Al volumetric
analysis in real world scenarios where multiple physicians evaluate longitudinal LGG images. The
Response Assessment in Neuro-Oncology (RANO) criteria for lower-grade gliomas (LGGs) define
tumor progression as >25% change in the T2/FLAIR signal area based on an operator’s discretion of
the perpendicular diameter of the largest tumor cross-section. A recent study found that RANO-
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based assessment of LGGs has moderate reproducibility and poor accuracy when compared to either
visual or volumetric ground truths. The median time delay at diagnosis by the RANO assessment for

false negative cases was 2.05 years compared to the previous scan and 1.08 years for baseline scans
[11].

5. Conclusions

Our study highlights the effectiveness of Al-assisted volumetric analysis using the MRIMath
FLAIR AI platform for detecting tumor growth in low-grade gliomas. By integrating Al with
physician review, we were able to detect tumor progression at significantly earlier time points
compared to traditional visual inspection methods. This study underscores the potential of Al in
clinical oncology, particularly in enhancing the early detection of tumor growth, while also
emphasizing the importance of human review in conjunction with a low-variability platform.
Additionally, it highlights the potential use of accurate volume measurements in advancing clinical
research [32-37].
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